文档库 最新最全的文档下载
当前位置:文档库 › 几种常见光纤光栅传感器工作原理

几种常见光纤光栅传感器工作原理

几种常见光纤光栅传感器工作原理
几种常见光纤光栅传感器工作原理

常见光纤光栅传感器工作原理

光纤光栅传感器的工作原理

光栅的Bragg 波长λB由下式决定:λB=2nΛ(1)

式中,n 为芯模有效折射率,Λ为光栅周期。当光纤光栅所处环境的温度、应力、应变或其它物理量发生变化时,光栅的周期或纤芯折射率将发生变化,从而使反射光的波长发生变化,通过测量物理量变化前后反射光波长的变化,就可以获得待测物理量的变化情况。如利用磁场诱导的左右旋极化波的折射率变化不同,可实现对磁场的直接测量。此外,通过特定的技术,可实现对应力和温度的分别测量,也可同时测量。通过在光栅上涂敷特定的功能材料(如压电材料),还可实现对电场等物理量的间接测量。

1、啁啾光纤光栅传感器的工作原理

上面介绍的光栅传感器系统,光栅的几何结构是均匀的,对单参数的定点测量很有效,但在需要同时测量应变和温度或者测量应变或温度沿光栅长度的分布时,就显得力不从心。一种较好的方法就是采用啁啾光纤光栅传感器。

啁啾光纤光栅由于其优异的色散补偿能力而应用在高比特远程通信系统中。与光纤

Bragg 光栅传感器的工作原理基本相同,在外界物理量的作用下啁啾光纤光栅除了△λB的变化外,还会引起光谱的展宽。这种传感器在应变和温度均存在的场合是非常有用的,啁啾光纤光栅由于应变的影响导致了反射信号的拓宽和峰值波长的位移,而温度的变化则由于折射率的温度依赖性(dn /dT),仅影响重心的位置。通过同时测量光谱位移和展宽,就可以同时测量应变和温度。

2、长周期光纤光栅(LPG)传感器的工作原理

长周期光纤光栅(LPG )的周期一般认为有数百微米,LPG 在特定的波长上把纤芯的光耦合进包层:λi=(n0-niclad )。Λ。式中,n0 为纤芯的折射率,niclad 为i 阶轴对称包层模的有效折射率。光在包层中将由于包层/空气界面的损耗而迅速衰减,留下一串损耗带。一个独立的LPG

可能在一个很宽的波长范围上有许多的共振,LPG 共振的中心波长主要取决于芯和包层的折射率差,由应变、温度或外部折射率变化而产生的任何变化都能在共振中产生大的波长位移,通过检测△λ,i就可获得外界物理量变化的信息。LPG 在给定波长上的共振带的响应通常有不同的幅度,因而LPG 适用于多参数传感器。

光纤光栅传感器的应用

1、在民用工程结构中的应用

民用工程的结构监测是光纤光栅传感器最活跃的领域。力学参量的测量对于桥梁、矿井、隧道、大坝、建筑物等的维护和状况监测是非常重要的。通过测量上述结构的应变分布,可

以预知结构局部的载荷及状况。光纤光栅传感器可以贴在结构的表面或预先埋入结构中,对结构同时进行冲击检测、形状控制和振动阻尼检测等,以监视结构的缺陷情况。另外,多个光纤光栅传感器可以串接成一个传感网络,对结构进行准分布式检测,可以用计算机对传感信号进行远程控制。

光纤光栅传感器可以检测的建筑结构之一为桥梁。应用时,一组光纤光栅被粘于桥梁复

合筋的表面,或在梁的表面开一个小凹槽,使光栅的裸纤芯部分嵌进凹槽得以保护。如果需要更加完善的保护,则最好是在建造桥时把光栅埋进复合筋,由于需要修正温度效应引起的应变,可使用应力和温度分开的传感臂,并在每一个梁上均安装这两个臂。

两个具有相同中心波长的光纤光栅代替法布里-珀罗干涉仪的反射镜,形成全光纤法布里-珀罗干涉仪(FFH),利用低相干性使干涉的相位噪声最小化,这一方法实现了高灵敏度的动态应变测量。用FFPI 结合另外两个FBG,其中一个光栅用来测应变,另一个被保护起来,免受应力影响,以测量和修正温度效应,所以FFP~FBG实现了同时测量三个量:

温度、静态应变、瞬时动态应变。这种方法兼有干涉仪的相干性和光纤布拉格光栅传感器的优点。已在5mε的测量范围内,实现了小于1με的静态应变测量精度、0.1 ℃的温度灵敏度和小于1nε/(Hz)1/2 的动态应变灵敏度。

光栅传感器工作原理

光栅传感器工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

一、光栅传感器的基本原理 光栅传感器是根据莫尔条纹原理制成的一种计量光栅,多用于位移测量及与位移相关的物理量,如速度、加速度、振动、质量、表面轮廓等方面的测量。光栅传感器的基本结构如图1所示: 图1 光栅传感器的基本结构 光栅传感器由光源、透镜、光栅副(主光栅和指示光栅)和光电接收元件组成如图1所示,当标尺光栅相对于指示光栅移动时,形成亮暗交替变化的莫尔条纹。利用光电接收元件将莫尔条纹亮暗变化的光信号,转换成电脉冲信号,并用数字显示,便可测量出标尺光栅的移动距离。 光栅传感器光源:钨丝灯泡的输出功率较大,工作范围较宽为-40℃到 +130℃,但是它与光电元件相组合的转换效率低。在机械振动和冲击条件下工作时,使用寿命将降低。因此必须定期更换照明灯泡以防止由于灯泡失效而造成的失误。半导体发光器件转换效率高,响应快速。如砷化镓发光二极管,与硅光敏三极管相结合,转换效率最高可达30%左右。砷化镓发光二极管的脉冲响应速度约为几十ns,可以使光源工作在触发状态,从而减小功耗和热耗散。 光栅副:如图2所示为透射光栅,它是一个长光栅,在一块长方形的光学玻璃上均匀地刻上许多条纹,形成规则的明暗线条。图中a为刻线宽度,b为可惜案件的缝隙宽度,a+b=W称为光栅的栅距或光栅常数。通常情况下, a=b=W/2,也可以做成a:b=1.1:0.9,刻线密度一般为每毫米10,25,50,100线。

图2 透射光栅 指示光栅一般比主光栅短得多,通常刻有与主光栅同样密度的线纹。 光电元件包括有光电池和光敏三极管等部分。在采用固态光源时,需要选用敏感波长与光源相接近的光敏元件,以获得高的转换效率。在光敏元件的输出端,常接有放大器,通过放大器得到足够的信号输出以防干扰的影响。二、莫尔条纹形成的原理 把光栅常数相等的主光栅和指示光栅相对叠合在一起(片间留有很小的间隙),并使两者栅线之间保持很小的夹角θ,于是在近于垂直栅线的方向上出现明暗相间的条纹,如图3所示。在a-a’线上,两光栅的栅线彼此重合,光线从缝隙中通过,形成亮带;在b-b’线上,两光栅的栅线彼此错开,形成暗带。这种明暗相见的条纹称为莫尔条纹。莫尔条纹方向与刻线方向垂直,故又称做横向莫尔条纹。

光纤光栅传感器的应用

光纤光栅传感器的应用 一、光纤光栅传感器的优势 与传统的传感器相比,光纤Bragg光栅传感器具有自己独特的优点: (1) 传感头结构简单、体积小、重量轻、外形可变, 适合埋入大型结构中, 可测量结构内部的应力、应变及结构损伤等, 稳定性、重复性好; (2) 与光纤之间存在天然的兼容性, 易与光纤连接、低损耗、光谱特性好、可靠性高; (3) 具有非传导性, 对被测介质影响小, 又具有抗腐蚀、抗电磁干扰的特点, 适合在恶劣环境中工作; (4) 轻巧柔软, 可以在一根光纤中写入多个光栅, 构成传感阵列, 与波分复用和时分复用系统相结合, 实现分布式传感; (5) 测量信息是波长编码的, 所以, 光纤光栅传感器不受光源的光强波动、光纤连接及耦合损耗、以及光波偏振态的变化等因素的影响, 有较强的抗干扰能力; (6) 高灵敏度、高分辩力。 正是由于具有这么多的优点,近年来,光纤光栅传感器在大型土木工程结构、航空航天等领域的健康监测,以及能源化工等领域得到了广泛的应用。 光纤Bragg光栅传感器无疑是一种优秀的光纤传感器,尤其在测量应力和应变的场合,具有其它一些传感器无法比拟的优点,被认为是智能结构中最有希望集成在材料内部,作为监测材料和结构的载荷,探测其损伤的传感器。 二、光纤光栅的传感应用 1、土木及水利工程中的应用 土木工程中的结构监测是光纤光栅传感器应用最活跃的领域。 力学参量的测量对于桥梁、矿井、隧道、大坝、建筑物等的维护和健康状况监测是非常重要的.通过测量上述结构的应变分布,可以预知结构局部的载荷及健康状况.。光纤光栅传感器可以贴在结构的表面或预先埋入结构中,对结构同时进行健康检测、冲击检测、形状控制和振动阻尼检测等,以监视结构的缺陷情况.。

光纤光栅原理及应用

光纤光栅传感器原理及应用 (武汉理工大学) 1光纤光栅传感原理 光纤光栅就是利用紫外光曝光技术,在光纤中产生折射率的周期分布,这种光纤内部折射率分布的周期性结构就是光纤光栅。光纤布喇格光栅(Fiber Bragg grating ,FBG )在目前的应用和研究中最为广泛。光纤布喇格光栅,周期0.1微米数量级。FBG 是通过改变光纤芯区折射率,周期的折射率扰动仅会对很窄的一小段光谱产生影响,因此,如果宽带光波在光栅中传输时,入射光将在相应的波长上被反射回来,其余的透射光则不受影响,这样光纤光栅就起到了波长选择的作用,如图1。 图1 FBG 结构及其波长选择原理图 在外力作用下,光弹效应导致折射率变化,形变则使光栅常数发生变化;温度变化时,热光效应导致折射率变化,而热膨胀系数则使光栅常数发生变化。 (1)光纤光栅应变传感原理 光纤光栅反射光中心波长的变化反映了外界被测信号的变化情况,在外力作用下,光弹效应导致光纤光栅折射率变化,形变则使光栅栅格发生变化,同时弹光效应还使得介质折射率发生改变,光纤光栅波长为1300nm ,则每个με将导致1.01pm 的波长改变量。 (2)光纤光栅温度传感原理 光温度变化时,热光效应导致光纤光栅折射率变化,而热膨胀系数则使光栅栅格发生变化。光纤光栅中心波长为1300nm ,当温度变化1摄氏度时,波长改变量为9.1pm 。 反射光谱 入射光谱 投射光谱 入射光 反射光 投射光 包层 纤芯 光栅 光栅周期

2光纤光栅传感器特点 利用光敏元件或材料,将被测参量转换为相应光信号的新一代传感技术,最大特点就是一根光纤上能够刻多个光纤光栅,如图2所示。 光纤光栅传感器可测物理量: 温度、应力/应变、压力、流量、位移等。 图2 光纤光栅传感器分布式测量原理 光纤光栅的特点: ● 本质安全,抗电磁干扰 ● 一纤多点(20-30个点),动态多场:分布式、组网测量、远程监测 ● 尺寸小、重量轻; ● 寿命长: 寿命 20 年以上 3目前我校已经开展的工作(部分) 3.1 基于光纤光栅传感的旋转传动机械动态实时在线监测技术与系统 利用光纤光栅传感技术的特性,实现转子运行状态的非接触直接测量。 被测参量 宽带光源 光纤F-P 腔 测点1 测点2 测点3 测点n 波长 光 强 λ1 测点1 λ2 测点2 λ3 测点3 λn 测点n 光源波长

温度传感器的选用

温度传感器的选用 摘要:在各种各样的测量技术中,温度的测量可能是最为常见的一种,因为许多的应用领域,掌握温度的确切数值,了解温度与实际状态之间的差异等,都具有极为重要的意义。就以测量为例,在力的测量,压力,流量,位置及电平高低等测量的过程中,为了提高测量精度,通常都会要求对温度进行监视。可以说,各种的物理量都是温度的函数,要得到精确的测定结果,必须针对温度的变化,作出精确的校正。 关键字:温度传感器热电偶热电阻集成电路 引言: 工业上常用的温度传感器有四类:即热电偶、热电阻RTD、热敏电阻及集成电路温 度传感器;每一类温度传感器有自己独特的温度测量围,有自己适用的温度环境;没有一种温度传感器可以通用于所有的用途:热电偶的可测温度围最宽,而热电阻的测量线性度最优,热敏电阻的测量精度最高。 1、热电偶 热电偶由二根不同的金属线材,将它们一端焊接在一起构成;参考端温度(也称冷补偿端)用来消除铁-铜相联及康铜-铜联接端所贡献的误差;而两种不同金属的焊接端放置于需 要测量温度的目标上。 两种材料这样联接后会在未焊接的一端产生一个电压,电压数值是所有联接端温度的函数,热电偶无需电压或电流激励。实际应用时,如果试图提供电压或电流激励反而会将误差 引进系统。 鉴于热电偶的电压产生于两种不同线材的开路端,其与外界的接口似乎可通过直接测量两导线之间的电压实现;如果热电偶的的两端头不是联接至另外金属,通常是铜,那末事情 真会简单至此。 但热电偶需与另外一种金属联接这一事实,实际上又建立了新的一对热电偶,在系统中引入了极大的误差,消除此误差的唯一办法是检测参考端的温度,以硬件或硬件-软件相结 合的方式将这一联接所贡献的误差减掉,纯硬件消除技术由于线性化校正的因素,比软件-硬件相结合技术受限制更大。一般情况下,参考端温度的精确检测用热电阻RTD,热敏电 阻或是集成电路温度传感器进行。原则上说,热电偶可由任意的两种不同金属构建而成,但在实践中,构成热电偶的两种金属组合已经标准化,因为标准组合的线性度及所产生的电压与温度的关系更趋理想。 表3与图2是常用的热电偶E,J,T,K,N,S,B R的特性。

光纤光栅传感器的应用

光纤光栅传感器的应用 光纤布拉格光栅传感器的应用 1。光纤光栅传感器 的优点与传统传感器相比,光纤光栅传感器有其独特的优点:(1)传感头结构简单,体积小,重量轻,形状可变,适合嵌入大型结构中,能够测量结构内部的应力、应变和结构损伤,具有良好的稳定性和重复性; (2)与光纤自然兼容,易于与光纤连接,损耗低,光谱特性好,可靠性高; (3)不导电,对被测介质影响小,具有耐腐蚀和抗电磁干扰的特点,适合在恶劣环境下工作; (4)轻便灵活,可在一根光纤中写入多个光栅组成传感阵列,结合波分复用和时分复用系统实现分布式传感; (5)测量信息为波长编码,因此光纤光栅传感器不受光源光强波动、光纤连接和耦合损耗以及光波偏振态变化的影响,抗干扰能力强。 (6)高灵敏度和分辨率 正是因为它的许多优点。近年来,光纤光栅传感器已经广泛应用于大型土木工程结构、航空航天等领域的健康监测,以及能源和化工等领域。 光纤光栅传感器无疑是一种优秀的光纤传感器,特别是在测量应力和应变的情况下,具有其他传感器无法比拟的优势。它被认为是智能结构中最有前途的集成在材料内部的传感器,作为监测材料和结构的

载荷和检测其损伤的传感器。 2,光纤光栅的传感应用 1,在土木和水利工程中的应用 土木工程中的结构监测是光纤光栅传感器应用最活跃的领域 力学参数的测量对于桥梁、矿山、隧道、大坝、建筑物等的维护和健康监测非常重要。通过测量上述结构的应变分布,可以预测结构的局部载荷和健康状况。光纤布拉格光栅传感器可以预先附着在结构表面或嵌入结构中,同时对结构进行健康检测、冲击检测、形状控制和减振检测,监测结构的缺陷。 另外,多个光纤光栅传感器可以串联成传感网络,对结构进行准分布式检测,传感信号可以由计算机远程控制 (1)在桥梁安全监测中的应用目前,光纤光栅传感器应用最广泛的领域是桥梁安全监测 斜拉桥的斜拉索、悬索桥的主缆和吊杆、系杆拱桥的系杆是这些桥梁体系的关键受力构件,其他土木工程结构的预应力锚固系统,如用于结构加固的锚索和锚杆,也是关键受力构件上述受力构件的应力大小和分布变化最直接地反映了结构的健康状况,因此监测这些构件的应力状态并以此为基础进行安全分析和评价具有重要意义。加拿大卡尔加里附近的 199贝丁顿小道桥是最早使用光纤光栅传感器进行测量的桥梁之一(1993)。16个光纤光栅传感器连接到预应力混凝土支撑的钢筋和碳纤维复合材料钢筋上,对桥梁结构进行长期监测,这在以前被认为是不

常用的五类光纤传感器基本原理解析

常用的五类光纤传感器基本原理解析 根据被调制的光波的性质参数不同,这两类光纤传感器都可再分为强度调制光纤传感器、相位调制光纤传感器、频率调制光纤传感器、偏振态调制光纤传感器和波长调制光纤传感器。 1)强度调制型光纤传感器 基本原理是待测物理量引起光纤中传输光光强的变化,通过检测光强的变化实现对待测量的测量。恒定光源发出的强度为I的光注入传感头,在传感头内,光在被测信号的作用下其强度发生了变化,即受到了外场的调制,使得输出光强的包络线与被测信号的形状一样,光电探测器测出的输出电流也作同样的调制,信号处理电路再检测出调制信号,就得到了被测信号。 这类传感器的优点是结构简单、成本低、容易实现,因此开发应用的比较早,现在已经成功的应用在位移、压力、表面粗糙度、加速度、间隙、力、液位、振动、辐射等的测量。强度调制的方式很多,大致可分为反射式强度调制、透射式强度调制、光模式强度调制以及折射率和吸收系数强度调制等等。一般反射式强度调制、透射式强度调制、折射率强度调制称为外调制式,光模式称为内调制式。但是由于原理的限制,它易受光源波动和连接器损耗变化等的影响,因此这种传感器只能用于干扰源较小的场合。 2)相位调制型光纤传感器 基本原理是:在被测能量场的作用下,光纤内的光波的相位发生变化,再用干涉测量技术将相位的变化转换成光强的变化,从而检测到待测的物理量。相位调制型光纤传感器的优点是具有极高的灵敏度,动态测量范围大,同时响应速度也快,其缺点是对光源要求比较高同时对检测系统的精密度要求也比较高,因此成本相应较高。 目前主要的应用领域为:利用光弹效应的声、压力或振动传感器;利用磁致伸缩效应的电流、磁场传感器;利用电致伸缩的电场、电压传感器;利用赛格纳克效应的旋转角速度传感器(光纤陀螺)等。

光纤传感器论文

摘要 关键词:光纤传感器;介绍;优点;应用 近几年来,物联网发展飞快。光纤通信与光纤传感技术将在物联网领域发挥重要作用。光纤具有宽带特性,可将各种传感器复用到一根光纤,进行检测和传输。由于光纤本身具有电绝缘性好、不受电磁干扰、无火花、能在易燃易爆的环境中,还具有成本低、结构简单、可靠性高等优点,光纤材料用做传感器具有独特的优势。物联网与光纤传感有相辅相成、相互促进的作用。各种光纤传感器有望在物联网中得到广泛应用。 ABSTRACT The Internet of things develop quickly in recent years.Optical fiber communication and optical fiber sensing technology will play an important role in the field of Internet of things.Optical fiber have broadband characteristics, various sensors can be reused to a single fiber to text and transport.Because of the fiber’s good electrical insulation, not subject to electromagnetic interference, no spark, can in inflammable and explosive environment ,also has the advantages of low cost, simple structure, high reliability ,optical fiber materials used for sensor has a unique advantage.The Internet of things with the optical fiber sensing supplement each other and promote each other. All kinds of optical fiber sensor is expected to be widely used in the Internet of things. Keywords:Optical fiber grating sensor; Introduction; Advantages; application

各种温度传感器分类及其原理.

各种温度传感器分类及其原理

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化,在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1.热电偶的工作原理 当有两种不同的导体和半导体A和B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端或冷端,则回路中就有电流产生,如图2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。 与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向, 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决 于电流相对于温度梯度的方向,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势EAB(T,T0 是由接触电势和温差电势合成的。接触电势是指两种不同 的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。 温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。 无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势:热电偶测量的热电势是二者的合成。当回路断开时,在断开处a,b 之间便有一电动势差△ V,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由A流向B时,称A为正极,B 为负极。实验表明,当△ V很小时,△ V与厶T成正比关系。定义△ V对厶T 的微分热电势为热电势率,又称塞贝克系数。

光纤式传感器

光纤式传感器 传感技术与计算机技术、通讯技术被称为信息产业三大支柱技术, 是组成现代信息化技术的基础。世界各大强国均将传感器技术视为国家科技发展战略中的重要组成部分, 作为国家重点发展的领域之一。光纤传感器主要有传感型和传光型两大类, 两类传感器在传感原理上均可分为光强调制、相位调制、偏振态调制及波长调制不同形式, 由此构成不同的传感器。迄今业已证实, 被光纤传感器敏感的物理量有 70多种, 与传统的传感器相比, 光纤传感器有灵敏度高、重量轻和体积小、多用途、对介质影响小、抗电磁干扰和耐腐蚀且本质安全、易于组网等特点, 使其近年来在航天航空、国防、能源电力、医疗和环保、石油化工、食品加工、土木工程等领域的应用得到了迅速发展。表 1 为光纤传感器对参数测定的原理及主要方式。 一、光纤传感器的基本原理及组成 光纤传感器由光源、敏感元件、光探测器、信号处理器系统以及光纤等组成。光纤传感器的基本原理是将来自光源的光经过光纤送入调制器,使待测量参数与进入调制区的光相互作用后,导致光的光学性质(如光的强度、波长频率、相位偏振态等)发生变化,成为被调制的信号光,再经过光纤送入光探测器,经解调器解调后,获得被测参数。 1.1强度调制光纤传感器 强度调制光纤传感器的基本原理是:待测物理量引起光纤中传输光的光强变化,通过检测光强的变化实现对待测量的测量。待测量作用于光纤敏感元件,使通过光纤的光强发生变化。设输入光强为恒量Iin,输出光强为Iout,即待测量对光纤中的光强度产生调制。可

直接连接光探测器变成电信号(即调制的强度包括电信号)。 1.2相位调制光纤传感器 相位调制光纤传感器的基本原理是:通过被测能量场的作用,使光纤内传输的光波相位发生变化,再用干涉测量技术把相位变化转换为光强变化,从而检测出待测的物理量。所有能够影响光纤长度、折射率和内部应力的被测量都会引起相位变化,如应力应变温度和磁场等外界物理量。但是,目前的各类光探测器都不能探测敏感光的相位变化,必须采用干涉测量技术,才能实现对外界物理量的检测。与其他调制方式相比,相位调制技术由于采用干涉技术而具有很高的检测灵敏度。常用的干涉仪有四种:迈克尔逊、马赫-琴特、法布里-珀罗和萨格耐克。它们的共同点是:光源发出的光都要分成两束或更多束的光,沿不同的路径传播后,分离的光束又重新汇合,产生干涉现象。

温度传感器的常见分类 温度传感器应用大全

温度传感器的常见分类温度传感器应用大全 温度传感器在我们的日常生活中扮演着十分重要的角色,同时它也是使用范围最广,数量最多的传感器。关于它你了解多少呢?本文主要介绍的就是各种温度传感器的分类及其原理,温度传感器的应用电路。 温度传感器从17世纪温度传感器首次应用以来,依次诞生了接触式温度传感器,非接触式温度传感器,集成温度传感器,近年来在智能温度传感器在半导体技术,材料技术等新技术的支持下,温度传感器发展迅速,由于智能温度传感器的软件和硬件的合理配合既可以大大增强传感器的功能、提高传感器的精度,又可以使温度传感器的结构更为简单和紧凑,使用也更加方便。 1、热电偶传感器: 两种不同导体或半导体的组合称为热电偶。热电势EAB(T,T0)是由接触电势和温差电势合成的,接触电势是指两种不同的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关,当有两种不同的导体和半导体A和B组成一个回路,其相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端,另一端温度为TO,称为自由端,则回路中就有电流产生,即回路中存在的电动势称为热电动势,这种由于温度不同而产生电动势的现象称为塞贝克效应。 2、热敏电阻传感器: 热敏电阻是敏感元件的一类,热敏电阻的电阻值会随着温度的变化而改变,与一般的固定电阻不同,属于可变电阻的一类,广泛应用于各种电子元器件中,不同于电阻温度计使用纯金属,在热敏电阻器中使用的材料通常是陶瓷或聚合物,正温度系数热敏电阻器在温度越高时电阻值越大,负温度系数热敏电阻器在温度越高时电阻值越低,它们同属于半导体器件,热敏电阻通常在有限的温度范围内实现较高的精度,通常是-90℃?130℃。 3、模拟温度传感器: HTG3515CH是一款电压输出型温度传感器,输出电流1~3.6V,精度为±3%RH,0~100%RH相对湿度范围,工作温度范围-40~110℃,5s响应时间,0±1%RH迟滞,是一个带

光栅尺工作原理

光栅尺位移传感器原理简介及维护注意事项 一、光栅尺是什么? 轨道旁边的黄色金属条,与其对 应部位,在移载台底部装有光读 头 定义: 光栅尺位移传感器(简称光栅尺),是利用光栅的光学原理工作的测量反馈装置。 光栅尺位移传感器经常应用于机床与现在加工中心以及测量仪器等方面,可用作 直线位移或者角位移的检测。其测量输出的信号为数字脉冲,具有检测范围大, 检测精度高,响应速度快的特点。 二、光栅尺的分类、构造 1)分类: 光栅尺位移传感器按照制造方法和光学原理的不同,分为透射光栅和反射光栅。 ●透射光栅指的玻璃光栅. ●反射光栅指的钢带光栅 2)结构: 光栅尺位移传感器是由标尺光栅和光栅读数头两部分组成。标尺光栅一般固定在机 床活动部件上,光栅读数头装在机床固定部件上,指示光栅装在光栅读数头中。下图所示的 就是光栅尺位移传感器的结构。

三、光栅尺的工作原理? 常见光栅的工作原理都是根据物理上莫尔条纹的形成原理进行工作的。(关于莫尔条纹的原理,可参考相关文献) 简单的说:光读头通过检测莫尔条纹个数,来“读取”光栅刻度,然后再根据驱动电路的作用,计算出光栅尺的位移和速度。 莫尔条纹 四、光栅尺的维护 1)尽可能外加保护罩,并及时清理溅落在尺上的切屑和油液,严格防止任何异物进入光栅尺传感器壳体内部。 2)定期检查各安装联接螺钉是否松动、定期使用干燥的洁净布擦拭表。 3)光栅尺位移传感器严禁剧烈震动及摔打、踩踏,以免破坏光栅尺,如光栅尺断裂,光

栅尺传感器即失效了。 4)不要自行拆开光栅尺位移传感器,更不能任意改动主栅尺与副栅尺的相对间距,否则一方面可能破坏光栅尺传感器的精度;另一方面还可能造成主栅尺与副栅尺的相对摩擦,损坏铬层也就损坏了栅线,以而造成光栅尺报废。 5)应注意防止油污及水污染、硬物划伤光栅尺面,以免破坏光栅尺线条纹分布,引起测量误差。 6)光栅尺位移传感器应尽量避免在有严重腐蚀作用的环境中工作,以免腐蚀光栅铬层及光栅尺表面,破坏光栅尺质量。 (注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注!)

常见光纤光栅传感器工作原理

常见光纤光栅传感器工作原理 光纤光栅传感器的工作原理 光栅的Bragg波长λB由下式决定:λB=2nΛ (1) 式中,n为芯模有效折射率,Λ为光栅周期。当光纤光栅所处环境的温度、应力、应变或其它物理量发生变化时,光栅的周期或纤芯折射率将发生变化,从而使反射光的波长发生变化,通过测量物理量变化前后反射光波长的变化,就可以获得待测物理量的变化情况。如利用磁场诱导的左右旋极化波的折射率变化不同,可实现对磁场的直接测量。此外,通过特定的技术,可实现对应力和温度的分别测量,也可同时测量。通过在光栅上涂敷特定的功能材料(如压电材料),还可实现对电场等物理量的间接测量。 1、啁啾光纤光栅传感器的工作原理 上面介绍的光栅传感器系统,光栅的几何结构是均匀的,对单参数的定点测量很有效,但在需要同时测量应变和温度或者测量应变或温度沿光栅长度的分布时,就显得力不从心。一种较好的方法就是采用啁啾光纤光栅传感器。 啁啾光纤光栅由于其优异的色散补偿能力而应用在高比特远程通信系统中。与光纤Bragg光栅传感器的工作原理基本相同,在外界物理量的作用下啁啾光纤光栅除了△λB的变化外,还会引起光谱的展宽。这种传感器在应变和温度均存在的场合是非常有用的,啁啾光纤光栅由于应变的影响导致了反射信号的拓宽和峰值波长的位移,而温度的变化则由于折射率的温度依赖性(dn/dT),仅影响重心的位置。通过同时测量光谱位移和展宽,就可以同时测量应变和温度。 2、长周期光纤光栅(LPG)传感器的工作原理 长周期光纤光栅(LPG)的周期一般认为有数百微米,LPG在特定的波长上把纤芯的

光耦合进包层:λi=(n0-niclad)。Λ。式中,n0为纤芯的折射率,niclad为i阶轴对称包层模的有效折射率。光在包层中将由于包层/空气界面的损耗而迅速衰减,留下一串损耗带。一个独立的LPG可能在一个很宽的波长范围上有许多的共振,LPG共振的中心波长主要取决于芯和包层的折射率差,由应变、温度或外部折射率变化而产生的任何变化都能在共振中产生大的波长位移,通过检测△λi,就可获得外界物理量变化的信息。LPG在给定波长上的共振带的响应通常有不同的幅度,因而LPG适用于多参数传感器。 光纤光栅传感器的应用 1、在民用工程结构中的应用 民用工程的结构监测是光纤光栅传感器最活跃的领域。力学参量的测量对于桥梁、矿井、隧道、大坝、建筑物等的维护和状况监测是非常重要的。通过测量上述结构的应变分布,可以预知结构局部的载荷及状况。光纤光栅传感器可以贴在结构的表面或预先埋入结构中,对结构同时进行冲击检测、形状控制和振动阻尼检测等,以监视结构的缺陷情况。另外,多个光纤光栅传感器可以串接成一个传感网络,对结构进行准分布式检测,可以用计算机对传感信号进行远程控制。 光纤光栅传感器可以检测的建筑结构之一为桥梁。应用时,一组光纤光栅被粘于桥梁复合筋的表面,或在梁的表面开一个小凹槽,使光栅的裸纤芯部分嵌进凹槽得以保护。如果需要更加完善的保护,则最好是在建造桥时把光栅埋进复合筋,由于需要修正温度效应引起的应变,可使用应力和温度分开的传感臂,并在每一个梁上均安装这两个臂。 两个具有相同中心波长的光纤光栅代替法布里-珀罗干涉仪的反射镜,形成全光纤法布里-珀罗干涉仪(FFH),利用低相干性使干涉的相位噪声最小化,这一方法实现了高灵敏度的动态应变测量。用FFPI结合另外两个FBG,其中一个光栅用来测应变,另一个被保护起来,免受应力影响,以测量和修正温度效应,所以FFP~FBG实现了同时测量三个量:温度、静态应变、瞬时动态应变。这种方法兼有干涉仪的相干性和光纤布拉格光栅传感器的优点。已在5mε的测量范围内,实现了小于1με的静态应变测量精度、0.1℃的温度灵敏度和小于1nε/(Hz)1/2的动态应变灵敏度。

各种温度传感器分类及其原理.

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化, 在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1. 热电偶的工作原理 当有两种不同的导体和半导体 A 和 B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为 T ,称为工作端或热端,另一端温度为 TO ,称为自由端 (也称参考端或冷端,则回路中就有电流产生,如图 2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。与塞贝克有关的效应有两个:其一, 当有电流流过两个不同导体的连接处时, 此处便吸收或放出热量 (取决于电流的方向 , 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量 (取决于电流相对于温度梯度的方向 ,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势 EAB(T, T0 是由接触电势和温差电势合成的。接触电势是指两种不同的导体或半导体在接触处产生的电势, 此电势与两种导体或半导体的性质及在接触点的温度有关。温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关, 而与导体的长度、截面大小、沿其长度方向的温度分布无关。无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势, 热电偶测量的热电势是二者的合成。当回路断开时,在断开处 a , b 之间便有一电动势差△ V ,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由 A 流向 B 时, 称 A 为正极, B 为负极。实验表明,当△ V 很小时,△ V 与△ T 成正比关系。定义△ V 对△ T 的微分热电势为热电势率, 又称塞贝克系数。塞贝克系数的符号和大小取决于组成热电偶的两种导体的热电特性和结点的温度差。 2. 热电偶的种类

光栅传感器的工作原理

光栅传感器的工作原理 光栅数字传感器,通常由光源5(聚光镜4)、计量光栅、光电器件3及测量电路等部分组成,如图12.1.2所示。计量光栅由标尺光栅1(主光栅)和指示光栅2组成,因此计量光栅又称光栅副,它决定了整个系统的测量精度。一般主光栅和指示光栅的刻线密度相同,但主光栅要比指示光栅长得多。测量时主光栅与被测对象连在一起,并随其运动,指示光栅固定不动,因此主光栅的有效长度决定了传感器的测量范围。 1.莫尔条纹 将主光栅与标尺光栅重叠放置,两者之间保持很小的间隙,并使两块光栅的刻线之间有一个微小的夹角θ,如图12.1.3所示。当有光源照射时,由于挡光效应(对刻线密度≤50条/mm的光栅)或光的衍射作用(对刻线密度≥100条/mm的光栅),与光栅刻线大致垂直的方向上形成明暗相间的条纹。在两光栅的刻线重合处,光从缝隙透过,形成亮带;在两光栅刻线的错开的地方,形成暗带;这些明暗相间的条纹称为莫尔条纹。 莫尔条纹有如下几个重要特性: (1)莫尔条纹的运动与光栅的运动一一对应 当指示光栅不动,主光栅的刻线与指示光栅刻线之间始终保持夹角θ,而使主光栅沿刻线的垂直方向作相对移动时,莫尔条纹将沿光栅刻线方向移动;光栅反向移动,莫尔条纹也反向移动。主光栅每移动一个栅距W,莫尔条纹也相应移动一个间距S。因此通过测量莫尔条纹的移动,就能测量光栅移动的大小和方向,这要比直接对光栅进行测量容易得多。 (2)莫尔条纹具有位移放大作用 当主光栅沿与刻线垂直方向移动一个栅距W时,莫尔条纹移动一个条纹间距。当两个光栅刻线夹角θ较小时,由式(12.1.1)可知,W一定时,θ愈小,则B愈大,相当于把栅距W放大了1/ θ倍。例如,对50条/mm的光栅,W=0.02mm,若取,则莫尔条纹间距,K=573,相当于将栅距放大了573倍。因此,莫尔条纹的放大倍数相当大,可以实现高灵敏度的位移测量。(3)莫尔条纹具有误差平均效应 莫尔条纹是由光栅的许多刻线共同形成的,对刻线误差具有平均效应,能在很大程度上消除由于刻线误差所引起的局部和短周期误差影响,可以达到比光栅本身刻线精度更高的测量精度。因此,计量光栅特别适合于小位移、高精度位移测量。 (4)莫尔条纹的间距S随光栅刻线夹角θ变化 由于光栅刻线夹角θ可以调节,因此可以根据需要改变θ的大小来调节莫尔条纹的间距,这给实际应用带来了方便。 当两光栅的相对移动方向不变时,改变θ的方向,则莫尔条纹的移动方向改变。 2.光电转换 主光栅和指示光栅的相对位移产生了莫尔条纹,为了测量莫尔条纹的位移,必须通过光电器件(如硅光电池等)将光信号转换成电信号。 在光栅的适当位置放置光电器件,当两光栅作相对移动时,光电器件上的光强随莫尔条纹移动,光强变化为正弦曲线,如图12.1.4所示。在a位置,两个光栅刻线重叠,透过的光强最大,光电器件输出的电信号也最大;在c位置由于光被遮去一半,光强减小;位置d的光被完全遮去而成全黑,光强最小;若光栅继续移动,透射到光电器件上的光强又逐渐增大。光电器件上的光强变化近似于正弦曲线,光栅移动一个栅距W,光强变化一个周期。光电器件的输出电压 通过整形电路,将正弦信号转变成方波脉冲信号,则每经过一个周期输出一个方波脉冲,这样脉冲总数N就与光栅移动的栅距数相对应,因此光栅的位移为

光纤光栅传感器及其在桥梁结构健康监测中的应用

光纤光栅传感器及其在桥梁结构健康监 测中的应用 姓名:朱少波 学号:U201115536 班级:电气中英1101班 2015年1月23日星期五

摘要:作为20世纪测试领域的重大发明,光纤光栅传感技术得到了快速发展,并已经成 为诸多领域的前沿研究与应用方向。本文主要介绍了相关产业化企业近年来基于光纤光栅感知元件发展起来的系列传感器、部品、重大土木工程结构健康监测的应用以及项目研究与产业化状况。主要包括:光纤光栅系列直接传感器、光纤光栅间接传感器、光纤光栅传感部品(结构)与结构健康监测的光纤光栅传感网络与集成系统及其在大型桥梁结构健康监测中的应用。最后,介绍了课题组与相关企业在该方向的项目研究、国际合作与产业化情况,并指出该方向的主要研究与应用方向。 关键词:光纤光栅传感器,桥梁结构,健康监测 1.引言 重大桥梁工程结构的使用期长达几十年、甚至上百年,环境侵蚀、材料老化和荷载的长期效应、疲劳效应与突变效应等灾害因素的耦合作用将不可避免地导致结构和系统的损伤积累和抗力衰减,从而抵抗自然灾害、甚至正常环境作用的能力下降,极端情况下引发灾难性的突发事故。因此,为了保障结构的安全性、完整性、适用性与耐久性,对重大桥梁工程结构增设长期的健康监测系统,以监测结构的服役安全状况,并为验证结构设计、施工控制以及研究结构服役期间的损伤演化规律提供有效的、直接的手段,并实时监测其服役期间的安全状况、避免重大事故的发生。结构健康监测已经成为世界范围内重大桥梁结构工程的前沿研究方向。 然而,重大桥梁工程结构和基础设施体积大、跨度长、分布面积大,使用期限长,传统的电学量传感设备组成的长期监测系统性能稳定性、耐久性和分布范围都不能很好地满足实际工程需要。随着智能感知材料的发展,高性能传感器及其测试技术为结构智能健康监测系统的研究与发展提供了崭新的途径,尤其是以光纤光栅为代表的光纤传感元件的出现与发展,更为这一热点课题提供了广阔的生机。光纤通信技术和光纤传感技术在20世纪后半叶至21世纪初期的几十年里日新月异,极大地推动了人类社会的进步。光纤传感技术随着光通信技术的发展应运而生,尤其是光纤光栅的出现不仅给光纤传感技术,而且给相关领域带来了一次里程碑式的革命[1],使人们可以设计和制作大量基于光纤光栅的新型智能传感器[2]。与传统的各类传感器相比光纤光栅传感器具有以下优点[3]: 1)抗电磁干扰,电绝缘,本质安全 由于光纤传感器是利用光波传输信息,而光纤是电绝缘的传输媒质,因而不怕强电磁干扰,也不影响外界的电磁场,并且安全可靠。这一特性使其在高压、强电磁干扰、易燃、易爆的环境中能有效的传感。 2)耐腐蚀 由于光纤表面的涂覆层是由高分子材料组成,承受环境或者结构中酸碱等化学成分腐蚀的能力强,适合于结构的长期健康监测。 3)测量精度高 光纤传感器采用波长调制技术,分辨率可达到波长尺度的皮米量级,对应温度监测中0.1℃与应变监测中1με。光测量及波长调制技术使光纤传感器的灵敏度优于一般的传感器。 4)测量对象广泛

光纤传感器的位移特性

光纤传感器的位移特性实验报告 一、实验目的 了解光纤位移传感器的工作原理和性能。 二、基本原理 本实验采用的是传光型光纤,它由两束光纤混合后,组成Y型光纤,半园分布即双D型一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。两光束混合后的端部是工作端亦称探头,它与被测体相距X,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,而光电转换器转换的电量大小与间距X有关,因此可用于测量位移。 三、需用器件与单元 光纤传感器、光纤传感器实验模板、数显单元、测微头、直流源、反射面。 四、实验步骤 1、根据图1-6安装光纤位移传感器,二束光纤插入实验板上的座孔上。其内部已和发光管D及光电转换管T 相接。 图1-6光纤传感器安装示意图

2、将光纤实验模板输出端V O1与数显单元相连,见图1-7。 图1-7光纤传感器位移实验接线图 2、调节测微头,使探头与反射面圆平板接触。 3、实验模板接入±15V电源,合上主控箱电源开关,调R W、使 数显表显示为零。 4、旋转测微头,被测体离开探头,每隔0.1mm读出数显表值, 将其填入表1-4。 表1-4光纤位移传感器输出电压与位移数据 X(mm) V(v) 5、根据表9-1数据,作光纤位移传感器的位移特性,计算在量 程1mm时灵敏度和非线性误差。 五、实验数据处理 1、实验数据: X(mm) 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 V(v)0.00 0.08 0.19 0.32 0.45 0.59 0.76 0.92 1.13 1.27 X(mm) 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 V(v) 1.39 1.50 1.59 1.65 1.70 1.78 1.84 1.88 1.91 1.91

光纤光栅传感器的应用及发展

光纤光栅传感器的应用及发展 光纤光栅自从问世以来,就以其优良特性成为传感领域的新亮点。简要回顾了光纤光栅的 发展历史,介绍了光纤光栅的分类,着重论述了光纤光栅传感器的应用情况,分析了光纤光栅 传感器的未来发展趋势及面临的问题。 光纤光栅的分类: 光纤光栅是光纤导波介质中物理结构呈周期性分布的一种光子器件。根据物理机制的不同,可将光纤 光栅分为蚀刻光栅和折射率调制的相位光栅两类。前者在成栅过程中使光纤的结构出现明显的物理刻痕, 后者主要使纤芯折射率呈周期性分布。目前,无论是发还是工程实用,后者均占主导地位。因此,通常所说的光纤光栅 指的是后者。根据光敏机制的不同,又可将光纤光栅分为I型、Ⅱ型和Ⅲ型. I型先纤光栅 连续或者能量较弱的多个脉冲光波在光敏光纤中形成的传统意义上的光折变光栅被称之为I型光栅 Ⅱ型光纤光栅 采用单脉冲成栅时发现,不断提高脉冲能量存在一个取决于光纤中锗浓度的阈值(~1J/cm),低于该 阈值时形成的光栅均为I型光栅,而高于该阈值时写入光栅的调制度变得非常大,反射率接近100%,将 此时的光栅称为Ⅱ型光栅。Ⅲ型光纤光栅区别于I型光栅的是,随着曝光量的增加,折射率呈负增长趋势,显然也不属于Ⅱ型光栅,因此称之为Ⅲ型光栅。根据折射率变化是否均匀,可以将其分为均匀光纤光 栅和非均匀光纤光栅两类。 1)均匀光纤光栅 指栅格周期沿纤芯轴向均匀且折射率调制深度为常数的一类光纤光栅。从栅格周期的长短及波矢方向的差异等因素考虑,这类光纤光栅的典型代表有光纤布喇格光栅(rBG)、长周期光纤光栅(LPG)闪烁光纤光栅刮等. 2)非均匀光纤光栅 指栅格周期沿纤芯轴向不均匀或折射率调制深度不为常数的一类光纤光栅。从栅格周期的长短及折射率调制深度等因素考虑,这类光纤光栅的典型代表有线性啁啾光纤光栅、分段啁啾光纤光栅和非均匀特种光纤光栅等。 光纤光栅传感器的应用与发展: 1978年,加拿大的Hill等人首次观察到掺锗光纤中因光诱导产生光的效应J,制成了世界上第一只被称为“Hill光栅”的光纤光栅。1989年,美国的Meltz等人发明了紫外光侧面写入光敏光栅的技术,为光纤光栅实用化开辟了一条可行的道路。1993年,Hill等人提出了相位掩模写人技术,极大地放宽了对写入光源相干性的要求,使得光纤光栅的制作更加灵活并使光栅的批量生产成为可能。此后,世界各国迅速开展了对光纤光栅及其应用的研究。光纤光栅的写入技术及光纤光敏化技术不断取得新的进展,其制作技术也不断提高和完善。而光纤光栅独有的抗电磁干扰、高灵敏度和复用技术等优势也逐渐显现出来。自从1989年美国的Morey等人首次报导光纤光栅用于传感以来,光纤光栅传感技术引起了人们极大的兴趣并得到飞速发展,被广泛用于温度、应变、压力、加速度、超声波、振动、电磁场和折射率等多种物理量的测量,其中一部分光纤光栅传感系统已经实际应用。目前,FBG为传感器件的传感器成为研发主流,以LPG和啁啾光纤光栅CFG)为传感器件的传感器的研究同样引起人们的兴趣。在土木工程中,对于桥梁大坝、隧道矿井和大型建筑物等来说,其结构会随着时间的推移或者外界环境的改变而变化。因此,需要通过测量结构的应变分布和局部载荷状态来确保其结构健康并安全运行。光纤光栅传感器尺寸小,既可以贴在现存工程结构的表面,也可以在浇筑时埋入结构中。多个光纤光栅传感器可以串接成一个传感网络,对结构进行准分布式实时监测。1993年,加拿大卡尔加里附近的BeddingtonTrail大桥首先采用了光纤光栅进行应力测量,并用此方法长期监测桥梁结构。此后,国外发达国家也都选用光纤光栅传感器作为桥梁长期安全监测的首选技术。1999年,美国新墨西哥Las Cruces10号州际高速公路的一座钢结构桥梁上安装了120个光纤光栅传感器,创造了当时在一座桥梁上使用光纤光栅传感器数量最多的纪录。在我国,近几年来,随着国家对安全生产问题的高度重视,大型建筑物安全监测与预警的意义和作用也逐步受到人们的重视。武汉理工大学将光纤光栅传感器引入桥梁长期安全监测预警系统中,解决了传统电测手段无法长期稳定监测的问题,并应用于武汉阳逻长江大桥、武汉长江二桥等十余座大型桥梁的长期安全监测,取得了非常好的效果。哈尔滨工业大学采用光纤光栅传感器完成了lO余项重大工程的健康监测。此外,南开大学与上海紫珊光电技术有限公司合作,在世博场馆大空间结构安全保障关键技术项目中采用光纤光栅传感器进行健康监测J。这些领域开展的实验测试和实际应用为我国桥梁大坝、隧道矿井及大型建筑物的长期安全监测与预警提供了典范。先进的复合材料抗疲劳、抗腐蚀性能较好,质量轻,可以减轻船体或航天器的重量,已经越来越多地被用于制造高速航空航海工具。在复合材料结构的制造过程中埋入光纤光栅传感器,可以在飞行器或舰船运行过程中进行实时健康监测和损伤探测J。自从光纤光栅传感器于1990年次埋人环氧树脂复合材料以及1992年首次埋人混凝土中以来,光纤光栅在航空航天复合材料/结构的健康监测中开始试用。将光纤光栅粘贴于航空航天飞行器(如机身、机翼蒙皮)及发射塔表面或者埋人其内部,可构成分布式智能传感网络,实时监测飞行器及发塔的应力、应变、温度及其结构内部损伤等健康状况. 根据测结果,由驱动元件对结构状态进行相

相关文档