文档库 最新最全的文档下载
当前位置:文档库 › SD16推土机变矩器常见故障

SD16推土机变矩器常见故障

SD16推土机变矩器常见故障

SD16推土机变矩器故障判断

------------------梁银飞

SD16推土机变矩器故障判断,推土机行走无力,当发动机不掉速且变矩器与变速箱的传动轴不转动时判断为变矩器出故障,变矩器的质量很稳定,出现的故障概率很低而且也好判断。也可以通过放油来观察,油量如果大,就说明密封坏或者是回油泵坏,如果油中有铝末,说明泵体有磨损的地方。这时大胆的拆变矩器即可。变矩器的主要故障主要表现在发热上;正常情况下变矩器内的存油一般在3升左右。还可以通过判断进油口和出油口压力来判断变矩器的故障,进油口压力为0.7~0.9MP,出油口压力为0.3~0.5MP,压力过大,可能是回油滤芯堵塞,或溢流阀卡滞,压力过低,变矩器内部密封下降,出现泄漏。

光伏电站常见故障及解决方法

光伏电站常见故障及解决方法

光伏电站常见故障及解决方法 关键词: 光伏电站光伏发电光伏运维 第一章影响光伏电站发电量的因素 光伏电站发电量计算方法,理论年发电量=年平均太阳辐射总量*电池总面积*光电转换效率。但由于各种因素的影响,光伏电站发电量实际上并没有那么多,实际年发电量=理论年发电量*实际发电效率。那么影响光伏电站发电量有哪些因素?以下是我结合日常的设计以及施工经验,给大家讲一讲分布式电站发电量的一些基础常识。 1.1、太阳辐射量 太阳能电池组件是将太阳能转化为电能的装置,光照辐射强度直接影响着发电量。各地区的太阳能辐射量数据可以通过NASA气象资料查询网站获取,也可以借助光伏设计软件例如 PV-SYS、RETScreen得到。 1.2、太阳能电池组件的倾斜角度

从气象站得到的资料,一般为水平面上的太阳辐射量,换算成光伏阵列倾斜面的辐射量,才能进行光伏系统发电量的计算。最佳倾角与项目所在地的纬度有关。大致经验值如下: A、纬度0°~25°,倾斜角等于纬度 B、纬度26°~40°,倾角等于纬度加5°~10° C、纬度41°~55°,倾角等于纬度加10°~15° 1.3、系统损失 和所有产品一样,光伏电站在长达25年的寿命周期中,组件效率、电气元件性能会逐步降低,发电量随之逐年递减。除去这些自然老化的因素之外,还有组件、逆变器的质量问题,线路布局、灰尘、串并联损失、线缆损失等多种因素。 一般光伏电站的财务模型中,系统发电量三年递减约5%,20年后发电量递减到80%。 1.3.1组合损失

现阶段光伏电站的清洁主要有,洒水车,人工清洁,机器人三种方式。 1.3.3温度特性 温度上升1℃,晶体硅太阳电池:最大输出功率下降0.04%,开路电压下降0.04%(-2mv/℃),短路电流上升0.04%。为了减少温度对发电量的影响,应该保持组件良好的通风条件。 1.3.4线路、变压器损失 系统的直流、交流回路的线损要控制在5%以内。为此,设计上要采用导电性能好的导线,导线需要有足够的直径。系统维护中要特别注意接插件以及接线端子是否牢固。 1.3.5逆变器效率 逆变器由于有电感、变压器和IGBT、MOSFET 等功率器件,在运行时,会产生损耗。一般组串式逆变器效率为97-98%,集中式逆变器效率为98%,变压器效率为99%。 1.3.6阴影、积雪遮挡

3051压力变送器的常见故障及排除

3051压力变送器的常见故障及排除 3051压力变送器广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,下面就简单介 绍一些常用变送器的常见故障及排除方法。 压力变送器的常见故障及排除 1)压力上去,变送器输出上不去加压变送器输出不变化,再加压变送器输出突然变化,泄 压变送器零位回不去。 这种情况应检查压力接口是否漏气或者被堵住,在检查接线方式和电源,如果正常再察看传感器零位是否有输出,或者进行简单加压看输出是否变化,有变化证明传感器没有损坏,如果无变化传感器即已经损坏。最后在考虑还可能是仪表损坏,或者整个系统的其他环节的问题。 2)3051压力变送器输出信号不稳 出现这种情况应考虑A.压力源本身是一个不稳定的压力B.仪表或压力传感器抗干扰能力不强C.传感器接线不牢D.传感器本身振动很厉害E.传感器故障 3)加压变送器输出不变化,再加压变送器输出突然变化,泄压变送器零位回不去,检查传感器器密封圈,一般是因为密封圈规格原因(太软或太厚),传感器拧紧时,密封圈被压缩到传感器引压口里面堵塞传感器,加压时压力介质进不去,但是压力很大时突然冲开密封圈,压力传感器受到压力而变化,而压力再次降低时,密封圈又回位堵住引压口,残存的压力释放不出,因此传感器零位又下不来。排除此原因方法是将传感器卸下看零位是否正常,如果正常更换密 封圈再试。 4)3051压力变送器接电无输出 a)接错线(仪表和传感器都要检查) b)导线本身的断路或短路 c)电源无输出或电源不匹配 d)仪表损坏或仪表不匹配 e)传感器损坏 5)3051压力变送器的误差 确认正常误差范围的方法:计算出压力表的误差值例如:压力表量程为30bar,精度1.5%,最小刻度为0.2bar 正常的误差为:30bar*1.5%+ 0.2*0.5(视觉误差)=0. 55bar 压力变送器的误 差值。 总体来说对3051压力变送器在使用过程中出现的一些故障分析和处理主要由以下几种方 法。 a)替换法:准备一块正常使用的3051压力变送器直接替换怀疑有故障的这样可以简单快捷 的判定是3051压力变送器本身的故障还是管路或其他设备的故障。 b)断路法:将怀疑有故障的部分与其它部分分开来,查看故障是否消失,如果消失,则确定故障所在,否则可进行下一步查找,如:智能差压变送器不能正常Hart远程通讯,可将电源从仪表本体上断开,用现场另加电源的方法为变送器通电进行通讯,以查看是否电缆是否叠加 约2kHz的电磁信号而干扰通讯。 c)短路检测:在保证安全的情况下,将相关部分回路直接短接,如:差变送器输出值偏小,可将导压管断开,从一次取压阀外直接将差压信号直接引到差压变送器双侧,观察变送器输出, 以判断导压管路的堵、漏的连通性。

计算机硬件常见故障排除及解决方法

计算机硬件常见故障排除及解决方法 1.CPU常见故障排除 常见的CPU故障大致有以下几种:散热故障、重启故障、黑屏故障及超频故障。由于CPU 本身出现故障的几率非常小,所以大部分故障都是因为用户粗心大意造成的。 1.CPU针脚接触不良导致电脑无法启动 2.CPU高温引起的死机或重启(风扇及硅胶或本身损坏) 3.CPU超屏引起显示器黑屏 4.夏日里灰尘引发的死机故障 2.主板常见故障排除 电脑主板产生故障的原因,一般有三个方面:一是元器件质量引起的故障。这种故障在一些劣质的板子上比较常见,主是指主板的某个元器件因本身质量问题而损坏,导致主板的某部分功能无法正常使用,系统无法正常启动,自检过程中报错等现象。 1.电容爆奖在一些劣质主板上是常有的事情 2.是环境引发的故障。因外界环境引起的故障,一般是指人们在未知的情况下或不可预测、不可抗拒的情况下引起的。如雷击、市电供电不稳定,它可能会直接损坏主板,这种情况下人们一般都没有办法预防;外界环境引起的另外一种情况,就是因温度、湿度和灰尘等引起的故障。这种情况表现出来的症状有:经常死机、重启或有时能开机有时又不能开机等,从而造成机器的性能不稳定。 3.人为故障。有些朋友,电脑操作方面的知识懂得较少,在操作时不注意操作规范及安全,这样对电脑的有些部件将会造成损伤。如带电插拔设备及板卡,安装设备及板卡时用力过度,造成设备接口、芯片和板卡等损伤或变形,从而引发故障。 4.开机无显示的故障处理。一般认为,开机无显示故障是硬件引起,这种看法有一定的片面性。在检修这类故障的时候,我们一般还是应该先从软故障的角度入手解决问题。开机时,若电源指示灯没有亮,一般应该怀疑外接电源没有接好或电源有问题。若开机电源指示灯亮但无显示,这种情况一般应按以下的顺序去排查故障: 一是通过主板的跳线(一般在CMOS的电池旁边)清除主板上CMOS原有的设置再开机。 二是重新安装CPU后再开机。 三将电脑硬件组成最小系统后再开机。 经过以上三个步骤后,若开机还是没有显示,这时可以在最小系统中拔掉内存。若开机报警,则说明主板应该没有太大的问题。故障的怀疑重点应该放在其他设备上。若在拔掉内存后开机不报警,一般来说,故障可能出在主板上。维修或更换 开机有显示但自检无法通过的故障处理。开机有显示但自检无法通过,这类故障一般都会有错误提示信息。我们在排除这类故障时,主要是根据该提示信息,找出故障点。但这类故障一般是因为主板的某个部件损坏引起,多数应该属于硬故障,但也不排除软故障引起的可能。针对软故障的排查,我们可以依照以下的顺序进行: ①.主板温控失常引发主板“假死” 故障分析:由于现在CPU发热量非常大,所以许多主板都提供了严格的温度监控和保护装置。一般CPU温度过高,或主板上的温度监控系统出现故障,主板就会自动进入保护状态。拒绝加电启动,或报警提示。上述例子就是由于主板温度监控线脱落,导致主板自动进入保护状态,拒绝加电。所以当你的主板无法正常启动或报警时,先检查下主板的温度监控装置

轮式装载机液力变矩器故障与维修

工程机械上使用液力变矩器,具有起步平稳、操作方便、可在较大范围内实现无级变速等优点。因此,液力变矩器在工程机械中得到了广泛的应用。国内轮式装载机上应用的双导轮综合式液力变矩器,具有高效区宽广、变矩过渡至偶合工况平稳的特点。但这种变矩器在使用时间较长以后,易出现过热、工作无力、内部元件损坏等故障。由于变矩器的拆装与维修比较困难,在维修液力变矩器时,必须在弄懂其工作原理和正确地分析故障原因的基础上才能保证维修质量。本文以双导轮综合式液力变矩器为例,介绍液力变矩器的工作原理,分析变矩器工作过程中的常见故障现象、原因和诊断维修方法。 1 双导轮综合式变矩器的工作原理 该变矩器主要由泵轮、涡轮、第一导轮、第二导轮及导轮座等组成。 工作过程中,液压油自变速器壳底部通过滤网被油泵吸入,从油泵输出的具有一定压力的液压油通过液压油滤清器、主调压阀后进入导轮座的进油孔,然后流向泵轮。柴油机的动力通过相啮合的齿轮传给泵轮,泵轮的旋转将进入其内部的液压油压入涡轮,冲击涡轮叶片,使涡轮旋转,动力由涡轮轴输出。从涡轮出来的液压油,一部分通过变矩器出口经液压油冷却器后进入离合器壳体,再润滑轴承、齿轮及冷却离合器摩擦片后流回变速器壳底;另一部分经第一、第二导轮传给泵轮,液压油在循环圆内传递动力。当涡轮的液体冲向导轮叶片时,导轮不转,导轮给予液体一定的反作用力矩。这个力矩和泵轮给予液体的力矩合在一起,全部传给涡轮,从而使涡轮起到了增大扭矩的作用,即变矩。当涡轮转速继续增高,涡轮传给导轮的液流方向发生变化至冲击导轮背面时,第一、二导轮在超越离合器的作用下,先后开始旋转,变矩工况变成偶合工况。从主调压阀出来的另一路液压油是流向变速器操纵阀的。 2 液力变矩器的故障诊断 液力变矩器的故障通常表现在三个方面:装载机动力不足,高速档起步困难;油温过高;液力变矩器不工作。液力变矩器出现故障时,一般从液压油路方面(包括液压油路是否通畅、密封是否良好等)开始检查。

逆变器常见故障及处理方法

逆变器常见故障及处理方法在采用DC600V供电系统的旅客列车上每节车厢都设置一台三相逆变器将机车供给的DC600V的直流电逆变为380V/50HZ三相交流电给客车空调以及其它一些三相用电设备供电。 逆变器设两台互为独立的热备逆变器单元(硬卧车、行李车为一台无热备),逆变器容量:2*35KV A逆变器+隔离变压器(高寒车及餐车为15KV A、非高寒车为5KV A),当某一台逆变器发生故障造成停止输出时,另一台逆变器可通过转换向两路负载供电,以确保客车用电设备的正常工作。 一、逆变器的操作要求: 为了确保逆变器的可靠工作,必须按照逆变器的操作规程进行操作。上电的时候,先给110V控制电然后再给600V 的大电;断电的时候先断600V的大电,再断110V控制电,即遵行先弱电、后强电,先轻载,再重载的操作原则。为了确保检修人员和设备的安全,逆变器的检修必须在断电五分钟后进行。 一、逆变器常见故障的处理 1.正常工作时,逆变器报代码为“OO”,输入欠压时报 “O2”,除此之外,出现其它代码均为故障状态。 2.如果逆变器报“O5”,断开负载,看能否正常工作,如 正常,检查负载是否有问题,如仍有“O5”故障,则

更换驱动板或控制板,如仍有问题,更换输出电流传感器LT208。如减载后两路都报“O5”故障,是负载有问题,检查负载。 3.如果逆变器报“O7”,空载情况下,如果复位后能重启, 检查负载是否有问题(短路、断路、绝缘不良)。如果不能进行重启,车上四合一电气柜显示屏直接报“O7”,打开相关逆变单元的散热器,检查IGBT是否完好,如IGBT完好,则驱动板故障,更换驱动板。 4.如果逆变器报“OC”,用万用表测量熔断器,如果坏, 更换熔断器,然后,打开对应单元的散热器,测量IGBT 是否有损坏,有损坏则进行更换,同时检查驱动板是否正常,有问题更换。 5.如果逆变器报“OE”,检查相应单元的接触器触头和触 点是否异常,检查散热器箱内左侧的电源板插头是否有松动,如果接触器触头有粘连现象,要检查散热器上的IGBT是否有问题,同时检查驱动板。如都正常,测量相应单元的固态继电器,有问题则更换相应单元箱的固态继电器。 6.如果逆变器报“FE”,打开相应散热器,检查控制板是 否工作,不工作,更换控制板。 7.另外,还有三种故障现象,表现为逆变器上传的代码为 “OO”,但仍为故障的状态:第一种为逆Ⅰ或逆Ⅱ无输

液力变矩器常见故障诊断

液力变矩器常见故障诊断 朱建山 摘要:本文结合作者在福建可门港物流有限责任公司顶岗实习期间的实践,阐述了装载机液力变矩器的基本结构及其工作原理,在此基础上,对其故障进行分析诊断并提出相应的改进建议。 关键词:故障分析设计改进建议 引言: 装载机是一种广泛用于公路、铁路、建筑、水电、港口、矿山等建设工程的土石方施式机械,它主要用于铲装土壤、砂石、石灰、煤炭等散状物料,也可对矿石、硬土等作轻度铲挖作业。换装不同的辅助工作装置还可进行推土、起重和其他物料如木材的装卸作业。在道路、特别是在高等级公路施工中,装载机用于路基工程的填挖、沥青混合料和水泥混凝土料场的集料与装料等作业。此外还可进行推运土壤、刮平地面和牵引其他机械等作业。由于装载机具有作业速度快、效率高、机动性好、操作轻便等优点,因此它成为工程建设中土石方施工的主要机种之一。 工程机械上使用液力变矩器,具有起步平稳、操作方便、可在较大范围内实现无级变速等优点。因此,液力变矩器在工程机械中得到了广泛的应用。国内轮式装载机上应用的双导轮综合式液力变矩器,具有高效区宽广、变矩过渡至偶合工况平稳的特点。但这种变矩器在使用时间较长以后,易出现过热、工作无力、内部元件损坏等故障。由于变矩器的拆装与维修比较困难,在维修液力变矩器时,必须在弄懂其工作原理和正确地分析故障原因的基础上才能保证维修质量。本文以双导轮综合式液力变矩器为例,介绍液力变矩器的工作原理,分析变矩器工作过程中的常见故障现象、原因和诊断维修方法。

1液力变矩器的基本结构和工作原理 1.1 双导轮液力变矩器的基本结构 该变矩器主要由泵轮、涡轮、第一导轮、第二导轮及导轮座等组成。 1.2 液力变速器的工作原理 工作过程中,液压油自变速器壳底部通过滤网被油泵吸入,从油泵输出的具有一定压力的液压油通过液压油滤清器、主调压阀后进入导轮座的进油孔,然后流向泵轮。柴油机的动力通过相啮合的齿轮传给泵轮,泵轮的旋转将进入其内部的液压油压入涡轮,冲击涡轮叶片,使涡轮旋转,动力由涡轮轴输出。从涡轮出来的液压油,一部分通过变矩器出口经液压油冷却器后进入离合器壳体,再润滑轴承、齿轮及冷却离合器摩擦片后流回变速器壳底;另一部分经第一、第二导轮传给泵轮,液压油在循环圆内传递动力。当涡轮的液体冲向导轮叶片时,导轮不转,导轮给予液体一定的反作用力矩。这个力矩和泵轮给予液体的力矩合在一起,全部传给涡轮,从而使涡轮起到了增大扭矩的作用,即变矩。当涡轮转速继续增高,涡轮传给导轮的液流方向发生变化至冲击导轮背面时,第一、二导轮在超越离合器的作用下,先后开始旋转,变矩工况变成偶合工况。从主调压阀出来的另一路液压油是流向变速器操纵阀的。 2 液力变矩器的常见故障分析 2.1变矩器过热故障的检查诊断

液力变矩器故障的处理正式版

Guide operators to deal with the process of things, and require them to be familiar with the details of safety technology and be able to complete things after special training.液力变矩器故障的处理正 式版

液力变矩器故障的处理正式版 下载提示:此操作规程资料适用于指导操作人员处理某件事情的流程和主要的行动方向,并要求参加施工的人员,熟知本工种的安全技术细节和经过专门训练,合格的情况下完成列表中的每个操作事项。文档可以直接使用,也可根据实际需要修订后使用。 (1)功率不足。一是失速造成的。二是发动机转速过低或达不到额定转速。三是旋转件的平衡度不符合要求。在变矩器的维修中,常以失速试验来检验变矩器的性能,失速会造成工作油温升高,因此试验时间不要太长。 此外,变矩器的泵轮、罩壳和涡轮都是高速旋转件,其平衡度不得超过 15g?cm,在使用中切不可随意用长、短螺钉及增、减垫片来改变泵轮和涡轮的连接,以免破坏平衡度造成功率损失。其摆动量对传动效率也有影响,制造时,泵轮

轴承座端面、涡轮接盘端、壳体与导轮座轴承连接端的摆差不得大于0.02 mm,因此安装时必须检查。 (2)油温过高。液力变矩器正常的工作油温一般在100℃以下。造成变矩器油温过高的原因主要有以下几个方面:一是冷却器的冷却效果不佳。二是油压失常(变矩器的进油口压力为0.5 4MPa,出口压力为0.22 MPa,在修理时应检查,必要时更换)。三是工作油量不足、油质不佳。 (3)异响。液力变矩器常见异响有振动撞击声和尖叫声。振动撞击声主要由轴承松旷或损坏、紧固螺栓松动引起,应及时处理。尖叫声是变矩器叶片气蚀或零件损坏引起的。发出尖叫声一般伴有油温升高

最常见的电脑故障以及解决方法500例

电脑出现的故障原因扑朔迷离,让人难以捉摸。并且由于Windows操作系统的组件相对复杂,电脑一旦出现故障,对于普通用户来说,想要准确地找出其故障的原因几乎是不可能的。那么是否是说我们如果遇到电脑故障的时候,就完全束手无策了呢?其实并非如此,使电脑产生故障的原因虽然有很多,但是,只要我们细心观察,认真总结,我们还是可以掌握一些电脑故障的规律和处理办法的。在本期的小册子中,我们就将一些最为常见也是最为典型的电脑故障的诊断、维护方法展示给你,通过它,你就会发现——解决电脑故障方法就在你的身边,简单,但有效! 一、主板 主板是整个电脑的关键部件,在电脑起着至关重要的作用。如果主板产生故障将会影响到整个PC机系统的工作。下面,我们就一起来看看主板在使用过程中最常见的故障有哪些。 常见故障一:开机无显示 电脑开机无显示,首先我们要检查的就是是BIOS。主板的BIOS中储存着重要的硬件数据,同时BIOS也是主板中比较脆弱的部分,极易受到破坏,一旦受损就会导致系统无法运行,出现此类故障一般是因为主板BIOS被CIH病毒破坏造成(当然也不排除主板本身故障导致系统无法运行。)。一般BIOS被病毒破坏后硬盘里的数据将全部丢失,所以我们可以通过检测硬盘数据是否完好来判断BIOS是否被破坏,如果硬盘数据完好无损,那么还有三种原因会造成开机无显示的现象: 1. 因为主板扩展槽或扩展卡有问题,导致插上诸如声卡等扩展卡后主板没有响应而无显示。 2. 免跳线主板在CMOS里设置的CPU频率不对,也可能会引发不显示故障,对此,只要清除CMOS即可予以解决。清除CMOS的跳线一般在主板的锂电池附近,其默认位置一般为1、2短路,只要将其改跳为2、3短路几秒种即可解决问题,对于以前的老主板如若用户找不到该跳线,只要将电池取下,待开机显示进入CMOS设置后再关机,将电池上上去亦达到CMOS放电之目的。 3. 主板无法识别内存、内存损坏或者内存不匹配也会导致开机无显示的故障。某些老的主板比较挑剔内存,一旦插上主板无法识别的内存,主板就无法启动,甚至某些主板不给你任何故障提示(鸣叫)。当然也有的时候为了扩充内存以提高系统性能,结果插上不同品牌、类型的内存同样会导致此类故障的出现,因此在检修时,应多加注意。 对于主板BIOS被破坏的故障,我们可以插上ISA显卡看有无显示(如有提示,可按提示步骤操作即可。),倘若没有开机画面,你可以自己做一张自动更新BIOS的软盘,重新刷新BIOS,但有的主板BIOS被破坏后,软驱根本就不工作,此时,可尝试用热插拔法加以解决(我曾经尝试过,只要BIOS相同,在同级别的主板中都可以成功烧录。)。但采用热插拔除需要相同的BIOS外还可能会导致主板部分元件损坏,所以可靠的方法是用写码器将BIOS更新文件写入BIOS里面(可找有此服务的电脑商解决比较安全)。 常见故障二:CMOS设置不能保存 此类故障一般是由于主板电池电压不足造成,对此予以更换即可,但有的主板电池更换后同样不能解决问题,此时有两种可能: 1. 主板电路问题,对此要找专业人员维修; 2. 主板CMOS跳线问题,有时候因为错误的将主板上的CMOS跳线设为清除选项,或者设置成外接电池,使得CMOS数据无法保存。 常见故障三:在Windows下安装主板驱动程序后出现死机或光驱读盘速度变慢的现象 在一些杂牌主板上有时会出现此类现象,将主板驱动程序装完后,重新启动计算机不能以正常模式进入Windows 98桌面,而且该驱动程序在Windows 98下不能被卸载。如果出现这种情况,建议找到最新的驱动重新安装,问题一般都能够解决,如果实在不行,就只能重新安装系统。 常见故障四:安装Windows或启动Windows时鼠标不可用 出现此类故障的软件原因一般是由于CMOS设置错误引起的。在CMOS设置的电源管理栏有一项modem use IRQ项目,他的选项分别为3、4、5......、NA,一般它的默认选项为3,将其设置为3以外的中断项即可。 常见故障五:电脑频繁死机,在进行CMOS设置时也会出现死机现象 在CMOS里发生死机现象,一般为主板或CPU有问题,如若按下法不能解决故障,那就只有更换主板或CPU了。

液力变矩器故障和工作原理

4.1 液力变矩器构造和工作原理 4.1.1液力变矩器构造 1、三元一级双相型液力变矩器 三元是指液力变矩器是由泵轮、涡轮和导轮三个主要元件组成的。一级是指只有一个涡轮(部分液力偶合器里装有两个涡轮,工作时油液容易发生紊乱)。双相是指液力变矩器的工作状态分为变矩区和偶合区。 * 图4-1为液力变矩器三个主要元件的零件图。 2、液力变矩器的结构和作用 泵轮的叶片装在靠近变速器一侧的变矩器壳上,和变矩器壳是一体的。变矩器壳是和曲轴或曲轴上的挠性板用螺栓连接的,所以泵轮叶片随曲轴同步运转。发动机工作时,它引导液体冲击涡轮叶片,产生液体流动功能,是液力变矩器的 主动元件。 *

1-变速器壳体2-泵轮3-导轮4-变速器输出轴5-变矩器壳体 6-曲轮7-驱动端盖8-单向离合器9-涡轮 涡轮装在泵轮对面,二者的距离只有3~4mm,在增矩工况时悬空布置,被泵轮的液流驱动,并以它特有的速度转动。在锁止工况时它被自动变速器油挤到离合器盘上,随变矩器壳同步旋转。它是液力变矩器的输出元件。涡轮的花键毂负责驱动变速器的输入轴(涡轮轴)。它将液体的动能转变为机械能。 导轮的直径大约是泵轮或涡轮直径的一半。并位于两者之间。导轮是变矩器中的反作用力元件,用来改变液体流动的方向。 导轮叶片的外缘一般形成三段式油液导流环内缘。分段导流环可以引导油液平稳的自由流动,避免出现紊流。 导轮支承在与花键和导轮轴连接的单向离合器上。单向离合器使导轮只能与泵轮同向转动。涡轮的油液流经导轮时改变了方向,使液流返回泵轮时,液流的流向和导轮旋转方向一致,可以使泵轮转动更有效。 *

图4-3为液力变矩器油液流动示意图。 观看液力变矩器油液流动 图上通过箭头示意液体流动方向。油液由泵轮的外端传入涡轮的外端,经涡轮内端传到导轮时改变了油液的流动方向,经导轮传给泵轮的油液的流动方向恰 好和泵轮的旋转方向一致。 * 3、液力变矩器的锁止和减振 液力变矩器用油液作为传力介质时,即使在传递效果最佳时,也只能传递90%的动力。其余的动力都被转化为热量,散发到油液里。为提高偶合工况的传动效率,变矩器设置了锁止离合器。液力变矩器进入偶合工况后,变矩器内的闭锁离合器就有可能进入锁止工况。而变矩器一旦进入锁止工况,发动机的动力就可以100%的传给传动系。可以避免液力传动过程中不可避免的动力损失,提高液力变 矩器的工作效率。 液力变矩器根据锁止形式的不同,负责锁止的闭锁离合器分为液力锁止、离

常见问题及解决方法

重庆电子招投标常见问题

目录 一、常见问题说明 (3) 二、投标人注意事项 (6) 1、投标函 (6) 2、导入word目录乱的问题 (6) 3、资格标制作 (7) 4、技术标 (7) 5、填报“清单数据”中分部分项清单综合单价与综合合价 (7) 5、填报措施项目费 (9) 6、填报主要材料 (9) 三、招标人注意事项 (10) 1、填写项目基本信息 (10) 2、模版的应用 (10) 3、清单数据 (10) 4、添加补遗、答疑或者最高限价文件 (12) 五、标盾使用说明 (12) 六、开标 (13)

一、常见问题说明 《金润电子标书生成器》软件需安装在Windows Xp系统上,暂不支持Vista和Win7系统,安装时不能插入任何加密锁,同时关闭所有杀毒软件和防火墙 1、安装了“重庆电子标书生成器(重庆)”,导入标书一闪而过,却没有导入任何文件? 答:金润电子标书生成器没有正确安装,若安装正常可在“打印机和传真”看到“金润电子标书生成器”的虚拟打印机,如下图: 解决方法:A:运行以下命令安装打印机不包含引号 “C:\WINDOWS\system32\BJPrinter\PrinterSet.exe”,点击“安装打印机”,如(图一)。此后如弹出提示框都选择继续、信任、通过等按钮,如(图二):倘若被阻止则程序安装不完整,电子标书生成器软件无法正常使用。 图一图二 或者 B:卸载金润电子标书生成器并且重新安装。 2、安装了“重庆电子标书生成器(重庆)”,却无法双击打开或者报错? 答:金润软件相关程序可能被防火墙或者杀毒软件默认阻止了。 解决方法:查看杀毒防护软件,在阻止列表将其设为信任,以360安全卫士为例

液力变矩器故障分析

液力变矩器故障分析 1.液力变矩器内支撑导轮的单向离合器打滑(1)故障现象当车辆出现在 30~50 km/h以下加速不良,车速上升缓慢,过了低速区后加速良好的故障时, 很可能是液力变矩器内支撑导轮的单向离合器打滑。(2)故障诊断方法发动机热机后,将4个车轮用三角木或砖头塞住,拉紧驻车制动器,踩住脚制动踏板, 用眼睛盯住发动机转速表,将油门完全踩到底,如发动机的失速转速明显低于 规定值,说明液力变矩器内支撑导轮的单向离合器打滑。(3)故障分析图1导轮变矩器低速增扭,靠的是导轮(图1)改变液流方向,变矩器内支撑导轮的单向 离合器打滑后,导轮没有了单向离合器的支撑,在增扭工况时无法改变液流的 方向。这样经导轮返回的液流流向和泵轮旋转方向相反,发动机需克服反向液 流带来的附加载荷,于是液力变矩器变成了液力偶合器,低速增扭变成了低速 降扭,所以汽车在低速区(变矩器增加扭矩工况区域)加速不良。(4)维修方法更换液力变矩器总成或用车床剖开液力变矩器,然后更换导轮和单向离合器即可 排除故障。2.液力变矩器内支撑导轮的单向离合器卡滞(1)故障现象汽车起动和中低速行驶正常,但没有高速,温和踩油门最高车速只有80~90 km/h左右;加大节气门开度,最高车速也只有110~120 km/h左右。(2)故障诊断方法支撑导 轮的单向离合器卡滞时,在感觉上有一点像发动机排气不畅,但发动机排气不 畅时冷车起动困难。打开空气滤清器上盖,拆下滤芯,发动机急加速时此处能 看见废气返流,而支撑导轮的单向离合器卡滞,不会导致废气返流。从油液颜 色看一切正常,用故障诊断仪也找不到故障,发动机失速转速正常。(3)维修方法更换液力变矩器总成或用车床剖开液力变矩器,然后更换导轮和单向离合器 即可排除故障。3.液力变矩器内锁止离合器的锁止力矩不足(1)故障现象汽车低速行驶和发动机冷机时没有异响,热机车速提高后能听到"嗡嗡"的异响声,20 min后发动机冷却液过热,报警装置开始报警。(2)故障诊断方法发动机热机后,车速在30~50 km/h后若听到"嗡嗡"的异响声,轻轻地踩下制动踏板,使制动踏板臂和制动灯开关分开即可(制动灯开关负责解除变矩器锁止工况)。若踩下制 动踏板时"嗡嗡"的异响声立即终止,抬起制动踏板时"嗡嗡"的异响声立即恢复,说明异响是由于液力变矩器内锁止离合器的锁止力矩不足造成的。(3)故障分析图2 4L60E型变速器锁止电磁阀控制阀中的锁止继动阀控制液力变矩器进入锁 止工况的时机,锁止电磁阀(图2)决定锁止油压的大小。若锁止电磁阀密封不

差压流量计常见故障及处理[1]

差压流量计常见故障及处理试卷 姓名分数 一、判断题(15×2′=30′) 1、用节流式流量计测量流量时,流量越小,测量误差越小。() 2、若流量孔板接反,将导致流量的测量值增加。() 3、差压流量计导压管路阀门组成系统中,当平衡阀门泄漏时,仪表指示值将偏低。() 4、使用差压变送器反吹风方式测量流量,当负压管泄漏时,流量示值减小。() 5、智能变送器的零点和量程都可以在手持通信器上进行设定和修改,所以智能变送器不需 要压力信号进行校验。() 6、德尔塔巴流量计测量流量时,对直管段没有要求。() 7、超声波液位计不适合测量带有较高压力罐体设备的液位。() 8、流量是一个动态量,其测量过程应与流体的物理性质无关。() 9、靶式流量计适用于测量粘性介质和悬浮颗粒的介质。() 10、电磁流量计的感应信号电压方向与所加的磁场方向垂直,并且与被测流体的运动方向垂 直。() 11、电磁流量计适用测管内具有一定导电性液体的瞬时体积流量。() 12、用差压法测液位,启动变送器时应先打开平衡阀和正负压阀中的一个阀,然后关闭平衡 阀,开启另一个阀。() 13、罗斯蒙特3051C智能变送器的传感器是硅电容式,它将被测参数转换成电容的变化然 后通过测电容来得到被测差压式压力值。() 14、超声波流量计的输出信号与被测流体的流量成线性关系。() 15、电磁流量计电源的相线和中线,激励绕组的相线和中线以及变送器输出信号的1、2端 子线是不能随意对换。() 二、选择题(13×2′=26′) 1、用差压法测量容器液位时,液位的高低取决于() A、容器上下两点的压力差 B、压力差、容器截面积和介质密度 C、压力差、介质密度和取压点位置 D、容器截面积和介质密度 2、用双法兰变送器测量容器内的液位,变送器的零点和量程均已校正号,后因维护需要,仪表的安装位置上移了一段距离,则变送器() A、零点上升,量程不变 B、零点下降,量程不变 C、零点不变,量程增大 D、零点和量程都不变 3、用节流装置测量气体流量,如果实际工作温度高于设计工作温度,这时仪表的指示值将() A、大于真实值 B、小于真实值 C、没有影响 4、1151压力变送器的测量原0~100kPa,现零点迁移100%,则仪表的测量范围() A、0~100kPa B、50~100kPa C、-50~+50kPa D、100~200kPa 5、管道上安装孔板时如果将方向装反了会造成() A、差压计倒指示 B、差压计指示变小 C、差压计指示变大 D、对差压指示无影响 6、设计节流装置时为了使流量系数稳定不变,应设定()雷诺数 A、最大流量 B、最小流量 C、常用流量D中间流量 7、标准孔板的安装要求管道的内表面应清洁的直管段要求是() A、上游5D,下游10D B、上游10D,下游5D

液力变矩器的故障检测及维修

液力变矩器的故障检测及维修 液力变矩器常见的故障主要有:油温过高、供油压力过低、漏油、机器行驶速度过低或行驶无力,以及工作时内部发出异常响声等5种。 1、油温过高 油温过高表现为机器工作时油温表超过120°C或用手触摸感觉汤手,主要有以下几种原因:变速器油位过低;冷却系中水位过低;油管及冷却器堵塞或太脏;变矩器在低效率范围内工作时间太长;工作轮的紧固螺钉松动;轴承配合松旷或损坏;综合式液力变矩器因自由轮卡死而闭锁;导轮装配时自由轮机构化机构缺少零件。 液力变矩器油温过高故障的诊断和排除方法如下:出现油温过高时,首先应立即停车,让发动机怠速运转,查看冷却系统有无泄漏,水箱是否加满水;若冷却系正常,则应检查变速器油位是否位于油尺两标记之间。若油位太低,应补充同一牌号的油液;若油位太高,则必须排油至适当油位。如果油位符合要求,应调整机器,使变矩器在高效区范围内工作,尽量避免在低效区长时间工作。如果调整机器工作状况后油温仍过高,应检查油管和冷却器的温度,若用手触摸时温度低,说明泄油管或冷却器堵塞或太脏,应将泄油管拆下,检查是否有沉积物堵塞,若有沉积物应予以清除,再装上接头和密封泄油管。若触摸冷却器时感到温度很高,应从变矩器壳体内放出少量油液进行检查。若油液内有金属末,说明轴承松旷或损坏,导致工作轮磨损,应对其进行分解,更换轴承,并检查泵轮与泵轮毂紧固螺栓是否松动,若松动应予以紧固。以上检查项目均正常,但油温仍高时,应检查导轮工作是否正常。将发动机油门全开,使液力变矩器处于零速工况,待液力变矩器出口油温上升到一定值后,再将液力变矩器换入液力耦合器工况,以观察油温下降程度。若油温下降速度很慢,则可能是由于自由轮卡死而使导轮闭锁,应拆解液力变矩器进行检查。 2、供油压力过低 现象为:当发动机油门全开时,变矩器进口油压仍小于标准值。主要由以下几种原因引起:供油量少,油位低于吸油口平面;油管泄漏或堵塞;流到变速器的油过多;进油管或滤油网堵塞;液压泵磨损严重或损坏; 吸油滤网安装不当;油液起泡沫;进出口压力阀不能关闭或弹簧刚度减小。 如果出现供油压力过低,应首先检查油位:若油位低于最低刻度,应补充油液;若油位正常,应检查进、出油管有无泄漏,若有漏油,应予以排除。若进、出管密封良好,应检查进、出口压力阀的工作情况,若进、出口压力阀不能关闭,应将其拆下,检查其上零件有无裂纹或伤痕,油路和油孔是否畅通,以及弹簧刚度是否变小,发现问题应及时解决。如果压力阀正常,应拆下油管或滤网进行检查。如有堵塞,应进行清洗并清除沉积物;如油管畅通,则需检查液压泵,必要时更换液压泵。如果液压油起泡沫,应检查回油管的安装情况,如回油管的油位低于油池的油位,应重新安装回油管。 3、变矩器漏油 变矩器漏油主要是由于变矩器后盖与泵轮拼命面、泵轮与轮毂拼命处连接螺栓松动或密封件老化或损坏造成的。发现漏油应启动发动机,检查漏油部位。如果从变矩器与发动机的连接处漏油,说明泵轮与泵轮罩连接螺栓松动或密封圈老化,应紧固连接螺栓或更换O形密封圈;如果从变矩器与变速器连接处甩油,说明泵轮与泵轮毂连接螺栓松动或密封圈损坏,应紧固螺栓或检查密封圈;如果漏油部位在加油口或放油口位置,应检查螺栓连接的松紧度以及是否有裂纹等。

华为光伏逆变器常见故障及处理

华为光伏逆变器常见故障及处理 1、绝缘阻抗低:使用排除法。把逆变器输入侧的组串全部拔下,然后逐一接上,利用逆变器开机检测绝缘阻抗的功能,检测问题组串,找到问题组串后重点检查直流接头是否有水浸短接支架或者烧熔短接支架,另外还可以检查组件本身是否在边缘地方有黑斑烧毁导致组件通过边框漏电到地网。 2、母线电压低:如果出现在早/晚时段,则为正常问题,因为逆变器在尝试极限发电条件。如果出现在正常白天,检测方法依然为排除法,检测方法与1项相同。 3、漏电流故障:这类问题根本原因就是安装质量问题,选择错误的安装地点与低质量的设备引起。故障点有很多:低质量的直流接头,低质量的组件,组件安装高度不合格,并网设备质量低或进水漏电,一但出现类似问题,可以通过在洒粉找出**点并做好绝缘工作解决问题,如果是材料本省问题则只能更换材料。 4、直流过压保护:随着组件追求高效率工艺改进,功率等级不断更新上升,同时组件开路电压与工作电压也在上涨,设计阶段必须考虑温度系数问题,避免低温情况出现过压导致设备硬损坏。 5、逆变器开机无响应:请确保直流输入线路没有接反,一般直流接头有防呆效果,但是压线端子没有防呆效果,仔细阅读逆变器说明书确保正负极后再压接是很重要的。逆变器内置反接短路保护,在恢复正常接线后正常启动。 6、电网故障: 电网过压:前期勘察电网重载(用电量大工作时间)/轻载(用电量少休息时间)的工作就在这里体现出来,提前勘察并网点电压的健康情况,与逆变器厂商沟通电网情况做技术结合能保证项目设计在合理范围内,切勿“想当然”,特别是农村电网,逆变器对并网电压,并网波形,并网距离都是有严格要求的。出现电网过压问题多数原因在于原电网轻载电压超过或接近安规保护值,如果并网线路过长或压接不好导致线路阻抗/感抗过大,电站是无法正常稳定运行的。解决办法是找供电局协调电压或者正确选择并网并严抓电站建设质量。 电网欠压:该问题与电网过压的处理方法一致,但是如果出现独立的一相电压过低,除了原电网负载分配不完全之外,该相电网掉电或断路也会导致该问题,出现虚电压。 电网过/欠频:如果正常电网出现这类问题,证明电网健康非常堪忧。 电网没电压:检查并网线路即可。 电网缺相:检查缺相电路,即无电压线路。 三相不平衡,并网线路外加特殊设备导致并网异常震荡,超长距离并网,电网削顶过压相移。 7、最后一点——监控搭接:正确阅读各设备说明书机型线路压接,设备连接,并设置好设备的通讯地址,时间,是保证通讯稳定有效的保证! 8、发电量保证:有空擦擦板子,发电量“凸”一下就起来了。

逆变器操作说明和故障处理

一逆变器原理介绍 1.1逆变(invertion):把直流电转变成交流电的过程。 逆变电路是把直流电逆变成交流电的电路。当交流侧和电网连结时,为有源逆变电路。变流电路的交流侧不与电网联接,而直接接到负载,即把直流电逆变为某一频率或可调频率的交流电供给负载,称为无源逆变。 逆变桥式回路把直流电压等价地转换成常用频率的交流电压。逆变器主要由晶体管等开关元件构成,通过有规则地让开关元件重复开-关(ON-OFF),使直流输入变成交流输出。当然,这样单纯地由开和关回路产生的逆变器输出波形并不实用。一般需要采用高频脉宽调制(SPWM),使靠近正弦波两端的电压宽度变狭,正弦波中央的电压宽度变宽,并在半周期内始终让开关元件按一定频率朝一方向动作,这样形成一个脉冲波列(拟正弦波)。然后让脉冲波通过简单的滤波器形成正弦波。 1.2 IGBT的结构和工作原理 1.2.1 IGBT的结构 IGBT是三端器件,具有栅极G、集电极C和发射极E。IGBT由N沟道VDMOSFET 与双极型晶体管组合而成的,VDMOSFET多一层P+注入区,实现对漂移区电导率进行调制,使得IGBT具有很强的通流能力。图1-1为IGBT等效原理图及符号表示 图1-1 IGBT等效原理图及符号表示 1.2.2IGBT的工作原理 IGBT的驱动原理与电力MOSFET基本相同,是一种场控器件。 其开通和关断是由栅极和发射极间的电压U GE决定的。

当U GE为正且大于开启电压U GE(th)时,MOSFET内形成沟道,并为晶体管提供基极电流进而使IGBT导通。 当栅极与发射极间施加反向电压或不加信号时,MOSFET内的沟道消失,晶体管的基极电流被切断,使得IGBT关断。 电导调制效应使得电阻R N减小,这样高耐压的IGBT也具有很小的通态压降。 1.3逆变电路介绍 1.3.1逆变产生的条件为 1,要有直流电动势,其极性须和晶闸管的导通方向一致,其值应大于变流器直流侧的平均电压。 2要求晶闸管的控制角α>π/2,使U d为负值。 两者必须同时具备才能实现有源逆变。 逆变运行时,一旦发生换相失败,外接的直流电源就会通过晶闸管电路形成短路,或者使变流器的输出平均电压和直流电动势变成顺向串联,由于逆变电路的内阻很小,形成很大的短路电流,这种情况称为逆变失败,或称为逆变颠覆。 逆变失败的原因 1触发电路工作不可靠,不能适时、准确地给各晶闸管分配脉冲,如脉冲丢失、脉冲延时等,致使晶闸管不能正常换相。 2晶闸管发生故障,该断时不断,或该通时不通。 3交流电源缺相或突然消失。 4换相的裕量角不足,引起换相失败 为了防止逆变失败,不仅逆变角β不能等于零,而且不能太小,必须限制在某一允许的最小角度内。 1.3.2逆变电路基本的工作原理 图1-2单相逆变电路原理图

液力变矩器故障作原理

液力变矩器故障作原理

————————————————————————————————作者:————————————————————————————————日期:

4.1 液力变矩器构造和工作原理 4.1.1液力变矩器构造 1、三元一级双相型液力变矩器 三元是指液力变矩器是由泵轮、涡轮和导轮三个主要元件组成的。一级是指只有一个涡轮(部分液力偶合器里装有两个涡轮,工作时油液容易发生紊乱)。双相是指液力变矩器的工作状态分为变矩区和偶合区。 * 图4-1为液力变矩器三个主要元件的零件图。 2、液力变矩器的结构和作用 泵轮的叶片装在靠近变速器一侧的变矩器壳上,和变矩器壳是一体的。变矩器壳是和曲轴或曲轴上的挠性板用螺栓连接的,所以泵轮叶片随曲轴同步运转。发动机工作时,它引导液体冲击涡轮叶片,产生液体流动功能,是液力变矩器的 主动元件。 *

1-变速器壳体2-泵轮3-导轮4-变速器输出轴5-变矩器壳体 6-曲轮7-驱动端盖8-单向离合器9-涡轮 涡轮装在泵轮对面,二者的距离只有3~4mm,在增矩工况时悬空布置,被泵轮的液流驱动,并以它特有的速度转动。在锁止工况时它被自动变速器油挤到离合器盘上,随变矩器壳同步旋转。它是液力变矩器的输出元件。涡轮的花键毂负责驱动变速器的输入轴(涡轮轴)。它将液体的动能转变为机械能。 导轮的直径大约是泵轮或涡轮直径的一半。并位于两者之间。导轮是变矩器中的反作用力元件,用来改变液体流动的方向。 导轮叶片的外缘一般形成三段式油液导流环内缘。分段导流环可以引导油液平稳的自由流动,避免出现紊流。 导轮支承在与花键和导轮轴连接的单向离合器上。单向离合器使导轮只能与泵轮同向转动。涡轮的油液流经导轮时改变了方向,使液流返回泵轮时,液流的流向和导轮旋转方向一致,可以使泵轮转动更有效。 *

逆变器常见故障及处理方法

逆变器常见故障及处理方法在采用DC600V供电系统得旅客列车上每节车厢都设置一台三相逆变器将机车供给得DC600V得直流电逆变为380V/50HZ三相交流电给客车空调以及其它一些三相用电设备供电、 逆变器设两台互为独立得热备逆变器单元(硬卧车、行李车为一台无热备),逆变器容量:2*35KV A逆变器+隔离变压器(高寒车及餐车为15KV A、非高寒车为5KVA),当某一台逆变器发生故障造成停止输出时,另一台逆变器可通过转换向两路负载供电,以确保客车用电设备得正常工作。一、逆变器得操作要求: 为了确保逆变器得可靠工作,必须按照逆变器得操作规程进行操作。上电得时候,先给110V控制电然后再给600V 得大电;断电得时候先断600V得大电,再断110V控制电,即遵行先弱电、后强电,先轻载,再重载得操作原则。为了确保检修人员与设备得安全,逆变器得检修必须在断电五分钟后进行、 一、逆变器常见故障得处理 1.正常工作时,逆变器报代码为“OO",输入欠压时报“O 2”,除此之外,出现其它代码均为故障状态、 2.如果逆变器报“O5”,断开负载,瞧能否正常工作,如正 常,检查负载就是否有问题,如仍有“O5”故障,则更换驱

动板或控制板,如仍有问题,更换输出电流传感器LT208。如减载后两路都报“O5”故障,就是负载有问题,检查负载。 3.如果逆变器报“O7”,空载情况下,如果复位后能重启, 检查负载就是否有问题(短路、断路、绝缘不良)。如果不能进行重启,车上四合一电气柜显示屏直接报“O7",打开相关逆变单元得散热器,检查IGBT就是否完好,如IGBT完好,则驱动板故障,更换驱动板。 4.如果逆变器报“OC”,用万用表测量熔断器,如果坏,更 换熔断器,然后,打开对应单元得散热器,测量IGBT就是否有损坏,有损坏则进行更换,同时检查驱动板就是否正常,有问题更换。 5.如果逆变器报“OE",检查相应单元得接触器触头与触 点就是否异常,检查散热器箱内左侧得电源板插头就是否有松动,如果接触器触头有粘连现象,要检查散热器上得IGBT就是否有问题,同时检查驱动板。如都正常,测量相应单元得固态继电器,有问题则更换相应单元箱得固态继电器。 6.如果逆变器报“FE”,打开相应散热器,检查控制板就是 否工作,不工作,更换控制板。 7.另外,还有三种故障现象,表现为逆变器上传得代码为 “OO”,但仍为故障得状态:第一种为逆Ⅰ或逆Ⅱ无输

相关文档
相关文档 最新文档