文档库 最新最全的文档下载
当前位置:文档库 › 热学(9.15)

热学(9.15)

Xi’an Jiaotong University

Xiaoli Wang

9 / 15 / 2010

第十二章热力学基础

热力学

(thermodynamics )

气体动理论

(Kinetics of gas molecules )

微观粒子,无序运动观察和实验出发点热力学验证气体动理论

气体动理论揭示热力学本质

两者关系

无法自我验证

不够深刻缺

揭露本质,严格普遍,可靠优点统计平均方法力学规律

总结归纳逻辑推理

方法微观量宏观量物理量热现象与热运动热现象,热运动,热运动与其他运动的转换

研究对象

§12 Thermodynamics

★热力学的研究对象和基本方法

●热现象

从能量转换的观点研究物质的热学性质●宏观量温度、压强、体积、热容量、密度、熵等

和宏观实验规律

§12-1 热力学系统的状态描述

系统system

Surrounding 热力学所研究的对象

系统以外的物体活塞

气缸

——描述宏观物体特性的物理量

回顾:

一. 热力学过程

平衡态A

平衡态B

作用

过程——一般是非平衡过程1

2

2

1

热力学过程的分类:

●根据系统与外界的关系分类: 自发过程、非自发过程●根据过程中各中间态的性质: 准静态过程、非静态过程

讨论:过程与平衡态

中间状体是否是平衡态?是否有可能?

§12-2 First law of thermodynamics

热学系统与外界传递能量的两种方式work

Heat transfer

一. 基本物理量

1. 功(A )——做功是交换能量的一种方式

外P P

dV

V

外P dV

dA

A

外F

内P V

dl

S 准静态过程

外P = 内P dA Fdl =PSdl =PdV

=A ??==2

1

2

1

V V V V PdV

dA 对于有限过程

微元过程:

2. 热量Q 热容量C

1T 2

T 2

1T T >3

T 3

T 热量是由于物体之间温度不同,在传热过程中所传递能量多少的量度——

Q Q

m 2

1T T →)T T (mc Q 12-=)

T T ('C 12-=比热

热容量

微元过程:

dT

'C dQ =对有限过程:

??==2

1

2

1

T T T T dT

'C dQ Q 讨论:

(1)热量也是一过程量P

V

P

T T P dT 'C Q ?

=2

1

V

T T

V dT

'C Q ?=2

1

1

T 2

T ≠

基于ANSYS有限元的热学力模拟分析全文

基于ANSYS有限元的热学力模拟分析全文 第1章绪论 1.1选题背景及意义 随着时代的发展,现代各个领域包括船舶,航天等对于新型高分子纳米材料的诉求越来越高,基于这种背景下,石墨烯(G)和碳纳米管(CNTs)诞生了。虽然二种材料从发明开始,就受到了极大的推崇,但是不能否认的是,它们也有一些缺陷,比如团聚现象;这一种现象在某些特殊的背景下应用,缺陷暴露的就更加明显了。因此,必众多学者从本质上出发,根据二种材料的最外层电子为4的特性,从共价非共价改性进行探索,进而拓宽了二种材料的应用。 并且基于实际情况的需求,由于离子液体(ILs)一些优良性能,比如不易挥发等;完美的契合了这些实际情况的需求,并且ILs对于石墨烯材料以及碳纳米管材料有着很好地改良作用,进而进一步得到了推崇。 本文最大的创新就在于对于三者的综合应用,本文选用的离子液体是绿色溶剂离子液体,选用此溶剂是因为其对于石墨烯材料以及碳纳米管材料有着物理吸附作用,物理吸附可以不破外这些材料本身的化学结构,并且使得二种材料在基体中具有之前没有的特性:分散性,进而得到导电润滑脂。这一新的研究,是一种三种元素结合起来的新的研究方向。最后,把本文比较了ILs改性后和未改性后的二种高分子纳米材料作为润滑添加剂的各项性能。 1.2 石墨烯 1.2.1 石墨烯的结构与性质 对于石墨烯(G)这样一种新型高分子纳米材料而言,本质是碳原子组成的

二维晶体,其各个维面是六边形蜂窝状。首次发现是在21世纪初期,是由Novoselov[1]等通过胶带法首次获得的。石墨烯具有一个特殊的离域大π键,其穿透了只有一个碳原子厚度的石墨烯。这一特性使得石墨烯具有强度高,导电性好[2]、几乎完全透明、比表面积大[3]、载流子迁移率高[4]。 1.2.2石墨烯的制备方法 对于石墨烯(G)获得的方法划分可以分为三种、石墨烯超声研磨法制取、石墨烯热剥离法制取、、石墨烯电化学法制取,三种方法具体情况如下:(1)超声研磨法 第一种方法主要是根据超声波的原理,使得完整的石墨内部承受超过其承受能力的剪切应力,进而其二侧会造成缺陷,也就得到了石墨烯;该方法对于石墨的剥落产生了极大地便利。但是这种方法也是有着一定的缺陷的,由于巨大的剪切应力会造成所使用的石墨片层不完整[5],进而影响生成的石墨烯的产量以及性能。 2010 年,Wang 等[6]最早采用超声进行剥离。从一种叫做三氟甲磺酰基形成的亚胺盐使用石墨烯超声研磨法制取得到,并且经过试验,最好的时候,获得了0.95 mgmL?1 的悬浮液,然后利用得到的悬浮液经过相应的离心干燥处理,就可以得到石墨烯片。基于Wang 等研究,著名学者Nuvoli 等[7]进一步改进,采用了改进的1-己基-3-甲基六氟磷酸盐,使用同样的方法,经过试验,最好的时候,获得了5.33 mgmL?1 的悬浮液。 Shang 等[8]在上面二者的研究基础上,直接物理层面的对于使用研钵和杵研磨,对于1-丁基-3-甲基咪唑六氟硼酸盐进行了处理,进而进一步得到了相应的凝胶。然后加入化学原料二甲基甲酰胺以及化学原料丙酮,继续进行离心操作,然后对于所得物进行改造,就得到了需要的石墨烯。Shang 等改进的方法在一定程度上来说,可以一定程度的降低成本,操作也变得更为简单了,但是制取的产品会变得隔更加容易破碎。 (2)热剥离法 对于石墨烯的制取的研究从未停止,在2012年的时候,著名学者Safavi 等[9]通过对于大于或者等于12个碳阳离子的烃基链进行研究,发现了烃基链如果

热力学作业

第三章 热力学作业 3-9 0.32kg 的氧气作如图3-36所示的循环,循环路径为abcda , V 2= 2V 1, T 1= 300K ,T 2=200K ,求循环效率。设氧气可以看做理想气体。 解: mol M M mol 10032 .032.0===ν 氧气为双原子分子, R c v 25= a-b 为等温过程,0=?E J V V RT A Q 412 11110728.12ln 30031.810ln ?=???===ν 此过程系统从外界吸热J 410728.1?,全部用来向外做功。 b-c 为等体过程,A =0 () J T T c E Q v 4122100775.2)300200(31.82 510?-=-???=-=?=ν 此过程系统向外放热J 4100775.2?,系统内能减少J 4100775.2?。 c-d 过程为等温过程,E ?=0 J V V RT A Q 42 1 22310152.121ln 20031.810ln ?-=???===ν 此过程外界对系统做功J 410152.1?,系统向外放热J 410152.1? d-a 为等体过程,A =0 () ()J T T c E Q v 4214100775.220030031.82 510?=-???=-=?=ν 此过程系统从外界吸热J 4100775.2?,使内能增加J 4100775.2?。 热机效率为 ()()%14.150775 .2728.1152.10775.20775.2728.1==-吸放吸++-+=Q Q Q η

3-14 一个卡诺致冷机从0℃的水中吸收热量制冰,向27℃的环境放热。若将 5.0kg 的水变成同温度的冰(冰的熔解热为 3.35×105J /kg ),求:(l )放到环境的热量为多少?(2)最少必须供给致冷机多少能量? 解: 设高温热源温度为T 1,低温热源温度为T 2 T 1=27+273=300K ,T 2=0+273=273K (1) 设此致冷机从低温热源吸热为Q 2,则 J ==Q 65210675.11035.30.5??? 设此致冷机致冷系数为ε,则 11.10273300273212 == -T T T =-ε 由212 -Q Q Q =ε,可得放到环境中的热量为 J ==Q Q =Q 666 22 110841.110675.111.1010675.1???++ε (2) 设最少必须供给致冷机的能量为A ,则 J =-Q Q A 566211066.110675.110841.1???=-=

第二章均匀物质的热力学性质教案

热力学与统计物理课程教案 第二章均匀物质的热力学性质

2.1 内能、焓、自由能和吉布斯函数的全微分 1、全微分形式、、、G F H U 在第一章我们根据热力学的基本规律引出了三个基本的热力学函数,物态方程、内能和熵,并导出了热力学基本方程:PdV TdS dU -=①。即U 作为V S 、函数的全微分表达式。 焓的定义:PV U H +=,可得:VdP TdS dH += ②,即H 作为P S 、函数的全微分表达式。 自由能:TS U F -=,求微分并代入①式可得:PdV SdT dF --= ③ 吉布斯函数:PdV TS U G +-=,求微分并代入①可得:VdP SdT dG +-=④ 2、麦氏关系的推导 U 作为V S 、的函数:()V S U U ,=,其全微分为:dV V U dS S U dU S V ??? ????+??? ????= 与(1)式比较,得:V S U T ??? ????=,S V U P ??? ????-=, 求二次偏导数并交换次序,得:V S S P V T V S U ??? ????-=??? ????=???2⑤, 类似地,由焓的全微分表达式②可得: P S H T ??? ????=,S P H V ??? ????=,P S S V P T P S H ??? ????=??? ????=???2⑥, 由自由能的全微分表达式可得: V T F S ??? ????=-,T V F P ??? ????=-,V T T P V S V T F ??? ????=??? ????=???2⑦ 由吉布斯函数的全微分表达式可得: P T G S ??? ????=-,T P G V ??? ????=,P T T V P S P T G ??? ????-=??? ????=???2⑧。 ⑤-⑧四式给出了V P T S ,,,这四个量的偏导数之间的关系。 2.2 麦氏关系的简单应用

热力学作业答案

热力学作业答案 The pony was revised in January 2021

第八章 热力学基 础 一、选择题 [ A ]1.(基础训练4)一定量理想气体从体积V 1,膨胀到体积V 2分别经历的过程是:A →B 等压过程,A →C 等温过程;A →D 绝热过程,其中吸热量最多的过程 (A)是A →B. (B)是A →C. (C)是A →D. (D)既是A →B 也是A →C , 两过程吸热一样多。 【提示】功即过程曲线下的面积,由图可知AD AC AB A A A >>; 根据热力学第一定律:E A Q ?+= AD 绝热过程:0=Q ; AC 等温过程:AC A Q =; AB 等压过程:AB AB E A Q ?+=,且0 >?AB E [ B ]2.(基础训练6)如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为p 0,右边为真空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是 (A) p 0. (B) p 0 / 2. (C) 2γp 0. (D) p 0 / 2γ.

【提示】该过程是绝热自由膨胀:Q=0,A=0;根据热力学第一定律Q A E =+?得 0E ?=,∴0T T =;根据状态方程pV RT ν=得00p V pV =;已知02V V =,∴0/2p p =. [ D ]3.(基础训练10)一定量的气体作绝热自由膨胀,设其热力学能增量为 E ?,熵增量为S ?,则应有 (A) 0......0=???=?S E 【提示】由上题分析知:0=?E ;而绝热自由膨胀过程是孤立系统中的不可逆过程,故熵增加。 [ D ]4.(自测提高1)质量一定的理想气体,从相同状态出发,分别经历等温过程、等压过程和绝热过程,使其体积增加1倍.那么气体温度的改变(绝对值)在 (A) 绝热过程中最大,等压过程中最小. (B) 绝热过程中最大,等温过程中最小. (C) 等压过程中最大,绝热过程中最小. (D) 等压过程中最大,等温过程中最小. 【提示】如图。等温AC 过程:温度不变,0C A T T -=; 等压过程:A B p p =,根据状态方程pV RT ν=,得: B A B A T T V V =,2B A T T ∴=,B A A T T T -=

作业(热力学答案)

作业8(热力学) 一、选择题 [ ] 1. 有A 、B 两种不同的容器,A 中装有单原子理想气体,B 中装有双原子理想气体,若两种气体的压强相同,则这两种气体的单位体积内的内能之间的关系为: (A) A B E E V V ????< ? ?????; (B) A B E E V V ????> ? ?????;(C) A B E E V V ????= ? ?????;(D) 无法判定 [ ] 2. 对于室温下的双原子分子理想气体,在等压膨胀的情况下,系统对外所做的功与从外界吸收的热量之比W/Q 为: (A) 1/3; (B) 1/4; (C) 2/5; (D) 2/7 [ ] 3.“ 理想气体和单一热源接触作等温膨胀时,吸收的热量全部用来对外做功”。对此说法有如下几种评论,其中正确的是: (A) 不违反热力学第一定律,但违反热力学第二定律; (B) 违反热力学第一定律,但不违反热力学第二定律; (C) 不违反热力学第一定律,也不违反热力学第二定律; (D) 违反热力学第一定律,也违反热力学第二定律 [ ] 4.在给出的4个图像中,能够描述一定质量的理想气体在可逆绝热过程中密度随压强变化的图像为: (A) (B) (C) (D) [ ] 5. 一定质量的理想气体经过压缩过程后,体积减小为原来的一半,如果要使外界所做的机械功为最大,那么这个过程应是: (A) 绝热过程; (B) 等温过程;(C) 等压过程;(D) 绝热过程或等温过程均可 [ ] 6. 关于可逆过程和不可逆过程的判断:(1)可逆热力学过程一定是准静态过程;(2)难静态过程一定是可逆过程;(3)不可逆过程就是不能向相反方向进行的过程;(4)凡有摩擦的过程,一定是不可逆过程。以上4种判断正确的是: (A) (1)(2)(3); (B) (1)(2)(4);(C) (2)(4);(D) (1)(4) [ ] 7. 你认为以下哪个循环过程是不可能的: (A) 绝热线、等温线、等压线组成的循环; (B) 绝热线、等温线、等容线组成的循环; (C) 等容线、等压线、绝热线组成的循环; (D) 两条绝热线和一条等温线组成的循环 [ ] 8. 一绝热容器被隔板分成两半,一半是真空,另一半是理想气体.若把隔板抽出进行自由膨胀,达到平衡后: (A) 温度不变,熵增加; (B) 温度升高,熵增加; (C) 温度降低,熵增加; (D) 温度不变,熵不变

标准热力学数据

标准热力学数据(298.15K) https://www.wendangku.net/doc/df10638987.html, 2005-6-7 20:58:37 来源:生命经纬 化学式(状态)H G S 氢(hydrogen) H2(g)0 0 130.57 H+(aq)0 0 0 锂(lithium) Li(s)0 0 29.12 Li+(aq)-278.49 -293.30 13.39 Li2O(s)-597.94 -561.20 37.57 LiCl(s)-408.61 -384.38 59.33 钠(sodium) Na(s)0 0 51.21 Na+(aq)-240.12 261.89 58.99 Na2O(s)-414.22 -375.47 75.06 NaOH(s)-425.61 -379.53 64.45 NaCl(s)-411.65 -384.15 72.13 钾(potassium) K(S)0 0 64.18 K+(aq)-252.38 -283.26 102.51 KOH(s)-424.76 -379.11 78.87 KCl(s)-436.75 -409.15 82.59 铍(beryllium) Be(s)0 0 9.50 BeO(s)-609.61 -580.32 14.14 镁(magnesium) Mg(s)0 0 32.68 Mg2+(aq)-466.85 -454.80 -138.07 MgO(s)-601.70 -569.44 27.91 Mg(OH)2(s)-924.54 -833.58 63.18 MgCl2(s)-641.32 -591.83 89.62 MgCO3(s)-1095.79 -1012.11 65.69 钙(calcium) Ca(s)0 0 41.42 Ca2+(aq)-542.83 -553.54 -53.14 CaO(s)-635.09 -604.04 39.75 Ca(OH)2(s)-986.09 -898.56 83.39

几种热力学模拟软件比较

Thermo-Calc 概述:(原产地:瑞典)热力学计算软件的开拓者,软件开发历史比较悠久,因此软件功能比较完善和强大,所涉及的领域比较广泛,包括冶金、金属合金、陶瓷、熔岩、硬质合金、粉末冶金、无几物等等,产品主要包括TCC、TCW、DICTRA、二次开发工具和数据库。 软件功能:1、热力学——相图、热力学性能、凝固模拟、液相面、热液作用、变质、岩石形成、沉淀、风化过程的演变、腐蚀、循环、重熔、烧结、煅烧、燃烧中的物质形成、CVD 图、薄膜的形成、CVM 计算,化学有序- 无序等等。2、动力学(DICTRA)——扩散模拟,如合金均匀化、渗碳、脱碳、渗氮、奥氏体/铁素体相变、珠光体长大、微观偏析、硬质合金的烧结等等。 数据库:TC的数据库比较多,甚至可以说杂来形容,呵呵,TC自己做的最好的数据库应该是Fe,当然现在也有像Ni等等的自己开发的数据库,但是大部分数据库都是利用第三方的,如有色金属(Al、Mg、Ti等)是英国ThermoTech的。当然TC的同盟战线非常广,所以相应可用的数据库也就非常多,包括众多无几物数据库、陶瓷数据库、硬质合金数据库、核材料数据库等等。 优势:软件功能强大、用户群较大方便交流、软件扩展性能好、灵活性强、适用范围广。 缺点:操作界面不是很友好,很难上手,动力学(扩散)数据目前不是很全,计算引擎技术滞后(主要表现在初始值方面)。 适用范围:适合于科学研究,尤其是理论研究,从行上来讲非常适合黑色金属行业,当然陶瓷、化工等行业也是首选(因为其他没有软件有这方面的数据库和功能)。 Pandat 概述:(原产地:美国,全是中国人开发,呵呵)热力学计算软件的后起者,或者说新秀吧,呵呵!主要是抓住竞争对手界面不友好和需要计算初值的弱点发展起来的,目前主要是在金属材料也就是合金行业中发展,产品包括Pandat、PanEngine和数据库。 软件功能:相图计算、热力学性能、凝固模拟、液相投影面、相图优化以及动力学二次开发(注意二次开发要在C++环境中进行)等。 数据库:Pandat的数据库主要的优势还在于有色金属方面,尤其是Mg和Al的数据应该是全球最优秀的,除此之外还有自己开发的Ti、Fe、Ni、Zr等,以及日本的Cu和Solder数据库。 优势:界面非常友好,容易上手不要很多的计算机知识,计算引擎先进(其实就是算法比较好),可二次开发。 缺点:功能不是很完善,适用面比较窄(暂时只能用于金属行业) 适用范围:适合于科学研究,工程应用,但目前只推荐用于金属行业。

热力学作业 答案

第八章 热力学基础 一、选择题 [ A ]1.(基础训练4)一定量理想气体从体 积 V 1,膨胀到体积V 2分别经历的过程是:A →B 等压过程,A → C 等温过程;A → D 绝热过程,其中吸热量最多的过程 (A)是A →B. (B)是A →C. (C)是A →D. (D)既是A →B 也是A →C , 两过程吸热一样多。 【提示】功即过程曲线下的面积,由图可知AD AC AB A A A >>; 根据热力学第一定律:E A Q ?+= AD 绝热过程:0=Q ; AC 等温过程:AC A Q =; AB 等压过程:AB AB E A Q ?+=,且0 >?AB E [ B ]2.(基础训练6)如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为p 0,右边为真空.今将隔板 抽去,气体自由膨胀,当气体达到平衡时,气体的压强是 (A) p 0. (B) p 0 / 2. (C) 2γp 0. (D) p 0 / 2γ. 【提示】该过程是绝热自由膨胀:Q=0,A=0;根据热力学第一定律Q A E =+?得 0E ?=, ∴0T T =;根据状态方程pV RT ν=得00p V pV =;已知02V V =,∴0/2p p =. [ D ]3.(基础训练10)一定量的气体作绝热自由膨胀,设其热力学能增量为E ?,熵增量为S ?,则应有 (A) 0......0=???=?S E 【提示】由上题分析知:0=?E ;而绝热自由膨胀过程是孤立系统中的不可逆过

哈工大-传热学虚拟仿真实验报告

哈工大-传热学虚拟仿真实验报告

Harbin Institute of Technology 传热学虚拟仿真实验报告 院系:能源科学与工程学院 班级:设计者: 学号: 指导教师:董士奎 设计时间:2016.11.7

传热学虚拟仿真实验报告 1 应用背景 数值热分析在核工业、铁道、石油化工、航空航天、机械制造、能源、汽车交通、国防军工、电子、土木工程、造船、生物医学、轻工、地矿、水利、以及日用家电等各个领域都有广泛的应用。 2 二维导热温度场的数值模拟 2.1 二维稳态导热实例 假设一用砖砌成的长方形截面的冷空气通道,其截面如图2.1所示,假设在垂直于纸面方向上冷空气及砖墙的温度变化很小,可以近似地予以忽略。 图2.1一用砖砌成的长方形截面的冷空气通道截面 2.2二维数值模拟 基于模型的对称性,简化为如图所示的四分之一模

型。 图2.2 二维数值模拟 2.3 建立离散方程 此时对于内部节点,如图2.3: ,1,,1,,,1,,1=? ? - +??-+??-+??--++-x y t t x y t t y x t t y x t t j t j i j t j i j t j i j t j i λ λ λ λ 对于平直边界上的节点,如图2.4: 2 22,,1,,1,,,1=?+Φ??+??-+??-+??-? -+-w j i j t j i j t j i j t j i yq y x x y t t x y t t y x t t λλλ 对于外部和内部角点,如图2.5: 2 43220 2422,,,1,1,,1,,,1,,1,,,1=?+?+Φ??+??-+??-+??-+??-=?+?+Φ??+??-+??-?+-+-?--w n m n m n m n m n m n m n m n m n m w n m n m n m n m n m q y x y x y x t t x y t t x y t t y x t t q y x y x x y t t y x t t λλλλλλ

材料热力学练习三:各种热力学性质的计算

新型材料设计及其热力学与动力学 The excess Gibbs energies of bcc solid solution of (Fe,Cr) and fcc solid solution of (Fe,Cr) is represented by the following expressions: G ex(bcc)/J=x Cr x Fe (25104-11.7152T); G ex(fcc)/J=x Cr x Fe (13108-31.823T+2.748T log e T) For the bcc phase, please do the following calculations using one calculator. (a) Calculate the partial Gibbs energy expressions for Fe and Cr (b) Plot the integral and partial Gibbs energies as a function of composition at 873 K (c) Plot the activities (a Cr and a Fe) as a function of composition at 873K (d) What are the Henry’s law constants for Fe and Cr? For the fcc phase, please do the calculations (a) to (b) by using your own code 翻译: BCC(Fe,Cr)固溶体的过剩吉布斯自由能和fcc固溶体(Fe,Cr)的吉布斯自由能表达式如下: G ex(bcc)/J=x Cr x Fe (25104-11.7152T); G ex(fcc)/J=x Cr x Fe (13108-31.823T+2.748T ln T) G ex/J 对于体心立方相,请使用计算器做下面的计算。 (a)计算Fe和Cr的局部吉布斯能量表达式; (b)画出873K时局部吉布斯自由能和整体吉布斯自由能的复合函数图。 (c)画出873K时Fe和Cr反应的活度图。 (d)F e和Cr亨利定律常数是什么? 对于fcc,请用你自己的符号计算a和b。

使用Solidworks进行热设计仿真

使用Solidworks进行热设计仿真 1 引言 通常对电子设备进行热分析主要有4个步骤:建模、确定边界条件、网格划分及计算、后处理。其中建模的工作量最大,要进行准确的热分析,必须建立一个良好的热分析模型,但在实际工程中模型往往非常复杂,很难精确建模。 一般建模的流程是先由结构设计工程师建立设备的计算机辅助设计(CAD)模型,然后由热设计工程师在该CAD模型上进行适合热仿真软件的二次建模。二次建模的方法可以是由热仿真软件自带的转换程序进行CAD 模型导入,也可以在热仿真软件中手动重新建模。当模型热设计优化完成后还需要反馈CAD 模型修正信息给结构设计工程师,由结构设计工程师对CAD模型进行更改,完成整个设计闭环。在这个过程中,存在CAD模型的转换,不能完全重新利用,CAD模型需要修改乃至重新建模,这些都会占用设计人员相当多的时间和精力,且限制于热仿真软件的建模能力,某些CAD模型需要简化或变通才能使用,而这些改变往往会影响仿真精度。SolidWorks三维设计软件具有结构建模和热仿真分析同时进行的能力和优点,能够克服上述缺陷,简化设计过程。 2 FlOEFD流体分析工具 Solidworks软件是结构设计工程师们广泛使用的三维设计软件,其具有良好的人机操作界面,强大的在线帮助系统,同时还有数量众多的设计插件,利用其中的FlOEFD流体分析工具能够很方便地进行热分析和仿真。 FlOEFD流体分析工具是Flomerics公司的产品,是可以无缝集成于主流CAD 软件中的通用计算流体动力学分析软件,是针对工程师开发,因此工程师只需要很少的流体动力学以及热传导知识,无需更多理解数值分析方法,即可在熟悉的CAD 软件界面中完成热仿真分析。FlOEFD 流体分析工具在Solidworks软件中的嵌入式版本为流体仿真(FlowSimulation),是Solidworks软件中的一款插件。FlOEFD流体分析工具的分析步骤包括CAD模型建立、自动网格划分、边界施加、求解和后处理等,这些都完全可以在CAD软件界面下完成,整个过程快速高效。FlOEFD流体分析工具直接应用CAD 实体模型,自动判定流体区域,自动进行网格划分,无需对流体区域再建模。在做CAD 结构优化分析时,对一个CAD 模型进行一次分析定义,同类结构的CAD 模型只需应用FlOEFD流体分析工具独有的项目克隆Project Clone)技术,即可马上进行不同配置下的计算。 3 应用实例

热力学作业(答案)

一、选择题 [ A ]1.(基础训练4)一定量理想气体从体积V 1,膨胀 到体积V 2分别经历的过程是:A → B 等压过程,A → C 等温过程;A → D 绝热过程,其中吸热量最多的过程 (A)是A →B. (B)是A →C. (C)是A →D. (D)既是A →B 也是A →C , 两过程吸热一样多。 【提示】功即过程曲线下的面积,由图可知AD AC AB A A A >>; 根据热力学第一定律:E A Q ?+= AD 绝热过程:0=Q ; AC 等温过程:AC A Q =; AB 等压过程:AB AB E A Q ?+=,且0>?A B E [ B ]2.(基础训练6)如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为p 0,右边为真 空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是 (A) p 0. (B) p 0 / 2. (C) 2γp 0. (D) p 0 / 2γ . 【提示】该过程是绝热自由膨胀:Q=0,A=0;根据热力学第一定律Q A E =+?得 0E ?=,∴0T T =;根据状态方程pV RT ν=得00p V pV =;已知02V V =,∴0/2p p =. [ D ]3.(基础训练10)一定量的气体作绝热自由膨胀,设其热力学能增量为E ?,熵增量为S ?,则应有 (A) 0...... 0=???=?S E 【提示】由上题分析知:0=?E ;而绝热自由膨胀过程是孤立系统中的不可逆过程,故熵增加。 [ D ]4.(自测提高1)质量一定的理想气体,从相同状态出发,分别经历等温过程、等压过程和绝热过程,使其体积增加1倍.那么气体温度的改变(绝对值)在 (A) 绝热过程中最大,等压过程中最小. (B) 绝热过程中最大,等温过程中最小. (C) 等压过程中最大,绝热过程中最小. (D) 等压过程中最大,等温过程中最小. 【提示】如图。等温AC 过程:温度不变,0C A T T -=; 等压过程:A B p p =,根据状态方程pV RT ν=,得: B A B A T T V V =,2B A T T ∴=,B A A T T T -=

水的热力学性质介绍

物质常用状态参数:温度、压力、比体积(密度)、内能、焓、熵。(只需知道其中两参数)比容和比体积概念完全相同。建议合并。单位质量的物质所占有的容积称为比容,用符号"V" 表示。其数值是密度的倒数。 比热容(specific heat capacity)又称比热容量,简称比热(specific heat),是单位质量的某种物质,在温度升高时吸收的热量与它的质量和升高的温度乘积之比。比热容是表示物质热性质的物理量。通常用符号c表示。比热容与物质的状态和物质的种类有关。 三相点是指在热力学里,可使一种物质三相(气相,液相,固相)共存的一个温度和压力的数值。举例来说,水的三相点在0.01℃(273.16K)及611.73Pa 出现;而汞的三相点在?38.8344℃及0.2MPa出现。 临界点:随着压力的增高,饱和水线与干饱和蒸汽线逐渐接近,当压力增加到某一数值时,二线相交即为临界点。临界点的各状态参数称为临界参数,对水蒸汽来说:其临界压力为22.11999035MPa,临界温度为:374.15℃,临界比容0.003147m3/kg。 超临界流体是处于临界温度和临界压力以上,介于气体和液体之间的流体。由于它兼有气体和液体的双重特性,即密度接近液体,粘度又与气体相似,扩散系数为液体的10~100倍,因而具有很强的溶解能力和良好的流动、输运性质。 当一事物到达相变前一刻时我们称它临界了,而临界时的值则称为临界点。 临界点状态:饱和水或饱和蒸汽或湿蒸汽 在临界点,增加压强变为超临界状态;增加温度变为过热蒸汽状态。 为什么在高压下,低温水也处于超临界?(如23MP,200℃下水状态为超临界?)应该是软件编写错误。 超临界技术: 通常情况下,水以蒸汽、液态和冰三种常见的状态存在,且是极性溶剂,可以溶解包括盐在内的大多数电解质,对气体和大多数有机物则微溶或不溶。液态水的密度几乎不随压力升高而改变。但是如果将水的温度和压力升高到临界点 (Tc=374.3℃,Pc=22.1MPa)以上,水的性质发生了极大变化,其密度、介电常数、黏度、扩散系数、热导率和溶解性等都不同于普通水。水的存在状态如图:

单、双级压缩空气源热泵的热力学仿真与研究对比分析

单、双级压缩空气源热泵的热力学仿真与研究对比分析 空气源热泵以其使用方便、能源利用率高、不产生环境污染等特点在我国广大地区得到了广泛的应用。而由于我国地域辽阔,东西和南北跨度较大,又受到海洋气流和西伯利亚寒流的交替影响,气候复杂多样。 面对复杂多样的气候,空气源热泵在冬季应用的过程中出现了一些问题。首先,在长江中下游等夏热冬冷地区,由于冬季环境湿度较高,室外蒸发器结霜较为严重,导致蒸发器的换热效果严重降低,进而导致空气源热泵的整体的热效率下降和供热能力衰减;其次,在我国北方寒冷地区,冬季室外环境温度很低,室外蒸发器的蒸发温度和蒸发压力也会变得很低,导致空气源热泵的压缩机的排气温度上升,使系统热效率下降和系统运行的不稳定性增加。 本文针对现在最为常用的单级压缩空气源热泵系统在寒冷地区供暖的应用中所出现的问题,研究了一种带有中间冷却器的双级压缩空气源热泵系统。基于传热学和热力学第二定律,建立单、双级压缩空气源热泵系统的热力学仿真模型,对比了双级压缩空气源热泵优于单级压缩空气源热泵的特点。 本次研究对于空气源热泵的更新换代和在寒冷地区的推广应用具有重要的意义。本此研究主要集中在以下几个方面:选取一种带有中间冷却器的双级压缩空气源热泵系统和普通的单级压缩空气源热泵为研究对象,分别建立他们的热力学仿真模型。 该仿真模型综合了空气的性能参数、制冷剂工质的热力学参数、部件的型号类别等方面,能够较为真实地反映出空气源热泵的工作原理和实际运行状况。在模型建立的方法上,采用动态分布参数法,使模型的计算精度更高。 同时引入PID控制算法,建立一种基于PID控制算法的全过程循环分布参数

模型,使模型的计算速度和精度大幅度提高。在制冷剂工质的状态参数和空气的状态参数的选取上,一方面在前人研究的基础上,采用经验公式,并对比已有的实验数据进行验证;另一方面利用已有的实验数据,通过matlab工具进行拟合出较为准确的计算模型。 以建立的单、双级压缩空气源热泵的热力学仿真模型为研究基础,分别改变模型运行的环境温度和蒸发温度等参数,使模型运行出计算的结果。通过对比单、双级压缩空气源热泵的COP、压缩机的排气温度、冷凝器的换热量、空气的出风温度等性能参数,进而对比得出单、双级压缩空气源热泵的性能。 通过调节双级压缩空气源热泵的中间压力、蒸发器的换热管的长度、中间换热器换热管的长度等参数,再次运行双级压缩空气源热泵的模型,分别得出双级压缩空气源热泵的运行结果参数,得出使双级压缩空气源热泵的运行在最佳状态的中间压力、蒸发器换热管的长度、中间换热器换热管的长度等参数。提出一种新型的空气源热泵系统,该系统能够根据不同的环境温度,调节空气源热泵的运行方式。 当夏季、过渡季运行和冬季室外环境温度较高的情况运行时,系统调整为单级压缩模式运行;当冬季室外环境温度变得很低时,系统调整为双级压缩模式运行。此运行模式能够很好地解决空气源热泵对环境的适应性较低的问题。 本次研究针对空气源热泵在冬季低温环境运行时出现的问题,建立了一种较为可靠的热力学仿真模型,提出了一种方便可靠的运行方法,对于解决空气源热泵的适应性差的问题会有很大的帮助。本次研究对空气源热泵的更新换代具有重要的指导意义,对空气源热的继续推广应用也会产生积极的影响。

工程热力学作业

1-1 一立方形刚性容器,每边长1m ,将其中气体的压力抽至1000Pa ,问其真空度为多少毫米汞柱?容器每面受力多少牛顿?已知大气压力为0.1MPa 。 解:p = 1 000 Pa = 0.001 MPa 真空度mmHg Pa MPa MPa MPa p p p b V 56.74299000099.0001.01.0===-=-= 容器每面受力F =p V A = 9 900 Pa×1m 2 =9.9×104 N 1-2 试确定表压力为0.01 MPa 时U 形管压力计中液柱的高度差。(1)U 形管中装水,其密度为1 000 kg/m 3;(2) U 形管中装酒精,其密度为789 kg/m 3。 解: 因为表压力可以表示为p g =ρgΔz ,所以有 g p z g ρ= ? 既有(1)mm m s m m kg Pa g p z g 72.101901972.1/80665.9/10001001.0236==??=?=水ρ (2) mm m s m m kg Pa g p z g 34.129729734.1/80665.9/7891001.02 36==??=?=酒精 ρ 1-7 从工程单位制热力性质查得,水蒸气在500℃、100at 时的比体积和比焓分别为v =0.03347m 3/kg 、h =806.6kcal/kg 。在国际单位制中,这时水蒸气的压力和比热力学能各为多少? 解: 水蒸气压力p =100at×9.80665×104Pa/at = 9.80665×106Pa=9.80665MPa 比热力学能u=h-pv=806.6kcal ×4.1868kJ/kcal)/kg-9806.65kPa ×0.03347m 3/kg = 3377.073kJ-328.228kJ =3048.845kJ 2-1 冬季,工厂某车间要使室内维持一适宜温度。在这一温度下,透过墙壁和玻璃等处,室内向室外每一小时传出0.7×106kcal 的热量。车间各工作机器消耗的动力为是500PS(认为机器工作时将全部动力转变为热能)。另外,室内经常点着50 盏100W 的电灯,要使该车间的温度保持不变,问每小时需供给多少kJ 的热量? 解:要使车间保持温度不变,必须使车间内每小时产生的热量等散失的热量 Q = Q 机+Q 灯+Q 散+Q 补 = 0 Q 机 = 500PSh = 500×2.647796×103 kJ = 1.32×106 kJ Q 灯 = 50×100W×3600s = 1.8×107J = 1.8×104 kJ Q 散 = -0.7×106kcal =- 0.7×106×4.1868kJ = -2.93×106 kJ Q 补 = -Q 机-Q 灯+Q 散 = -1.32×106 kJ-1.8×104 kJ+2.93×106 kJ = 1.592×106 kJ

高压高温下Re 2 N的弹性和热力学性能

Trans. Nonferrous Met. Soc. China 23(2013) 3714?3721 Elastic and thermodynamic properties of Re2N at high pressure and high temperature Mei-guang ZHANG1, Hai-yan YAN2, Qun WEI3, Duo-hui HUANG4 1. Department of Physics and information Technology, Baoji University of Arts and Sciences, Baoji 721016, China; 2. College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China; 3. School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China; 4. Computational Physics Key Laboratory of Sichuan Province, Yibin University, Yibin 644007, China Received 24 September 2012; accepted 14 April 2013 Abstract: First principles calculations are preformed to systematically investigate the elastic and thermodynamic properties of Re2N at high pressure and high temperature. The Re2N exhibits a clear elastic anisotropy and the elastic constants C11 and C33vary rapidly in comparison with the variations in C12, C13 and C44 at high pressure. In addition, bulk modulus B, elastic modulus E, and shear modulus G as a function of crystal orientations for Re2N are also investigated for the first time. The tensile directional dependences of the elastic modulus obey the following trend: [0001][1211][1010][1011] E E E E >>>. The shear moduli of Re2N within the (0001) basal plane are the smallest and greatly reduce the resistance of against large shear deformations. Based on the quasi-harmonic Debye model, the dependences of Debye temperature, Grüneisen parameter, heat capacity and thermal expansion coefficient on the temperature and pressure are explored in the whole pressure range from 0 to 50 GPa and temperature range from 0 to 1600 K. Key words: Re2N; transition metal nitrides; elastic properties; thermodynamic properties 1 Introduction Transition metal nitrides are of great interest in both fundamental science and technological applications because of their unusual physical and chemical properties [1?3]. Traditional applications have taken advantage of the hard and refractory nature of many early transition metal nitrides, such as TiN, CrN and HfN. In contrast, not too much success has been achieved in exploring the late transition metal nitrides, especially for platinum group and noble metals nitrides. Until recently, a significant progress in synthesis of the dinitrides of Pt, Ir, Os, and Pd has been made at extreme conditions (approximately 50 GPa and 2000 K) [4?7]. These nitrides have been shown to possess ultrahigh bulk moduli (428 GPa for IrN2) comparable with those of the traditional superhard materials, thus exhibiting interesting mechanical properties. Extensive studies [8?13] are therefore carried out in order to hunt for new potential superhard transition metal nitrides. More recently, FRIEDRICH et al [14] have succeeded in synthesizing two novel rhenium nitrides (Re2N and Re3N) and characterized them using white beam Laue microdiffraction. Both hexagonal phases have very high bulk moduli (> 400 GPa); close to that of c-BN and higher than that of ReB2. Between these two nitrides, the Re2N adopts hexagonal structures with a space group P63/mmc, and the atomic positions are Re (1/3, 2/3, 0.106) and N (1/3, 2/3, 3/4). Following this exciting work, FRIEDRICH et al [15] and DELIGOZ et al [16] investigated the vibrational properties of the hexagonal Re2N. ZHANG et al [17] later have studied the thermodynamic stability and mechanical properties as well as a bond deformation mechanism of Re2N. The structural, electronic, and elastic properties of Re2N have been also investigated at ambient conditions [18?21], and the Re2N was found to be an ultra-incompressible Foundation item: Project (11204007) supported by the National Natural Science Foundation of China; Project (2012JQ1005) supported by Natural Science Basic Research Plan of Shaanxi Province, China; Project (2013JK0638) supported by the Education Committee Natural Science Foundation of Shaanxi Province, China Corresponding author: Mei-guang ZHANG; Tel: +86-917-3364258; E-mail: zhmgbj@https://www.wendangku.net/doc/df10638987.html, DOI:10.1016/S1003-6326(13)62921-0

相关文档