文档库 最新最全的文档下载
当前位置:文档库 › 离散数学考试题详细答案

离散数学考试题详细答案

离散数学考试题详细答案
离散数学考试题详细答案

离散数学考试题(后附详细答案)

一、命题符号化(共6小题,每小题3分,共计18分)

1.用命题逻辑把下列命题符号化

a)假如上午不下雨,我去看电影,否则就在家里读书或看报。

设P表示命题“上午下雨”,Q表示命题“我去看电影”,R表示命题“在家里读书”,S表示命题“在家看报”,命题符号化为:(?P?Q)∧(P?R∨S)

b)我今天进城,除非下雨。

设P表示命题“我今天进城”,Q表示命题“天下雨”,命题符号化为:?Q→P或?P→Q

c)仅当你走,我将留下。

设P表示命题“你走”,Q表示命题“我留下”,命题符号化为: Q→P

2.用谓词逻辑把下列命题符号化

a)有些实数不是有理数

设R(x)表示“x是实数”,Q(x)表示“x是有理数”,命题符号化为:

?x(R(x) ∧?Q(x)) 或??x(R(x) →Q(x))

b)对于所有非零实数x,总存在y使得xy=1。

设R(x)表示“x是实数”,E(x,y)表示“x=y”,f(x,y)=xy, 命题符号化为:?x(R(x) ∧?E(x,0) →?y(R(y) ∧E(f(x,y),1))))

c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b.

设F(f)表示“f是从A到B的函数”, A(x)表示“x∈A”, B(x)表示“x∈B”,E(x,y)表示“x=y”, 命题符号化为:F(f)??a(A(a)→?b(B(b) ∧ E(f(a),b) ∧?c(S(c) ∧ E(f(a),c) →E(a,b))))

二、简答题(共6道题,共32分)

1.求命题公式(P→(Q→R))?(R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋

值。(5分)

(P→(Q→R))?(R→(Q→P))?(?P∨?Q∨R)?(P∨?Q∨?R)

?((?P∨?Q∨R)→(P∨?Q∨?R)) ∧ ((P∨?Q∨?R) →(?P∨?Q∨R)).

?((P∧Q∧?R)∨ (P∨?Q∨?R)) ∧ ((?P∧Q∧R) ∨(?P∨?Q∨R))

?(P∨?Q∨?R) ∧(?P∨?Q∨R) 这是主合取范式

公式的所有成真赋值为000,001,010,100,101,111,故主析取范式为

(?P∧?Q∧?R)∨(?P∧?Q∧R)∨(?P∧Q∧?R)∨(P∧?Q∧?R)∨(P∧?Q∧R)∨(P∧Q∧R)

2.设个体域为{1,2,3},求下列命题的真值(4分)

a)?x?y(x+y=4)

b)?y?x (x+y=4)

a) T b) F

3.求?x(F(x)→G(x))→(?xF(x)→?xG(x))的前束范式。(4分)

?x(F(x)→G(x))→(?xF(x)→?xG(x)) ??x(F(x)→G(x))→(?yF(y)→?zG(z))??x(F(x)→G(x))→?y?z(F(y)→G(z)) ??x?y?z((F(x)→G(x))→ (F(y)→G(z)))

4.判断下面命题的真假,并说明原因。(每小题2分,共4分)

a)(A?B)-C=(A-B) ?(A-C)

b)若f是从集合A到集合B的入射函数,则|A|≤|B|

a) 真命题。因为(A?B)-C=(A?B)?~C=(A?~C)?(B?~C)=(A-C)?(B-C)

b) 真命题。因为如果f是从集合A到集合B的入射函数,则|ranf|=|A|,且ranf?B,故命

题成立。

5.设A是有穷集,|A|=5,问(每小题2分,共4分)

a)A上有多少种不同的等价关系?

b)从A到A的不同双射函数有多少个?

a) 52 b) 5!=120

6.设有偏序集,其哈斯图如图1,求子集B={b,d,e}的最小元,最大元、极大元、

极小元、上界集合、下界集合、上确界、下确界,(5分)

f g

图1

B的最小元是b,无最大元、极大元是d和e、极小元是b、上界集合是{g}、下界集合是{a,b}、上确界是g、下确界是b.

7.已知有限集S={a1,a2,…,a n},N为自然数集合,R为实数集合,求下列集合的基数

S;P(S);N,N n;P(N);R,R×R,{o,1}N(写出即可)(6分)

K[S]=n; K[P(S)]=n2; K[N]=?0,K[N n]=?0, K[P(N)]=?; K[R]=?, K=[R×R]= ?,K[{0,1}N]= ?

三、证明题(共3小题,共计40分)

1.使用构造性证明,证明下面推理的有效性。(每小题5分,共10分)

a)A→(B∧C),(E→?F)→?C, B→(A∧?S)?B→E

b)?x(P(x)→?Q(x)), ?x(Q(x)∨R(x)),?x?R(x) ??x?P(x)

a) 证(1)B P(附加条件)

(2)B→(A∧?S) P

(3) A∧?S T(1)(2) I

(4) A T(3) I

(5) A→(B∧C) P

(6) B∧C T(4)(5) I

(7) C T(6) I

(8) (E →?F)→?C P

(9) ?(E →?F) T(7)(8) I (10) E ∧F T(9) E (11) E T(10) I (12) B →E CP b) 证 (1) ?x ?R(x) P (2) ?R(c) ES(1) (3) ?x(Q(x)∨R(x)) P (4) Q(c)∨R(c) US(3) (5) Q(c) T(2)(4) I (6) ?x(P(x)→?Q(x)) P

(7) P(c)→?Q(c) US(6) (8) ?P(c) T(5)(7) I (9) ?x ?P(x) EG(8)

2. 设R 1是A 上的等价关系,R 2是B 上的等价关系,A ≠?且B ≠?,关系R 满足:

<,>∈R ,当且仅当< x 1, x 2>∈R 1且∈R 2。试证明:R 是A ×B 上的等价关系。(10分) 证 任取,

∈A ×B ?x ∈A ∧ y ∈B ?∈R 1∧∈R 2?<,>∈R ,故R 是自反的 任取<,>,

<,>∈R ?∈R 1∧∈R 2?∈R 1∧∈R 2?<,>∈R.故R 是对称的。

任取<,>,<,>∈R

<,>,<,>∈R ?∈R 1∧∈R 2∧∈R 1∧∈R 2?(∈R 1∧∈R 1)∧(∈R 2∧∈R 2)? R 1∧∈R 2?<,>∈R, 故R 是传递的。

综上所述R 是A ×B 上的等价关系。

3. 用伯恩斯坦定理证明(0,1]和(a,b)等势。(10分) 证 构造函数f :(0,1]→(a,b),f(x)=

2

2b

x a +,显然f 是入射函数 构造函数g: (a,b)→(0,1],a

b a

x x g --=)(,显然g 是入射函数, 故(0,1]和(a,b)等势。

由于2

2122

221??

? ??+++≥+++r m m m r m m m r r ,所以22

r n r s ≥

4. 设R 是集合A 上的等价关系,A 的元素个数为n ,R 作为集合有s 个元素,若A 关于R

的商集A/R 有r 个元素,证明:rs ≥n 2。(10分)

证 设商集A/R 的r 个等价类的元素个数分别为m 1,m 2,…,m r ,由于一个划分对应一个等价

关系,m 1+m 2+…+m r =n , s m m m r =+++22

221

由于2

2122

221??

?

??+++≥+++r m m m r m m m r r (r 个数的平方的平均值大于等于这

r 个数的平均值的平方),所以22r

n r s ≥,即2

n rs ≥

四、应用题(10分)

在一个道路上连接有8个城市,分别标记为a,b,c,d,e,f,g,h 。城市之间的直接连接的道路是单向的,有a →b, a →c, b →g, g →b, c →f, f →e, b →d, d →f.对每一个城市求出从它出发所能够到达的所有其他城市。

解 把8个城市作为集合A 的元素,即A={a,b,c,d,e,,f,g,h},在A 上定义二元关系R ,∈R 当且仅当从x 到y 有直接连接的道路,即

R={,,,,,,,} 那么该问题即变为求R 的传递闭包。

利用Warshal 算法,求得t(R)=?

????????????????????????

?00

00000001111010000100000000000000

11000000110000011110000111111

0 那么从城市x 出发能到达的城市为})(,|{}])[{)((y x R t y x y x I R t A ≠∧>∈<=-, 故有},,,,,{}])[{)((g f e d c b a I R t A =-

},,,{}])[{)((g f e d b I R t A =- },{}])[{)((f e c I R t A =- },{}])[{)((f e d I R t A =- }{}])[{)((e f I R t A =- },,,{}])[{)((f e d b g I R t A =-

φ=-=-}])[{)((}])[{)((e I R t e I R t A A

离散数学考试题答案

一、命题符号化(共6小题,每小题3分,共计18分)

1.用命题逻辑把下列命题符号化

a)设P表示命题“上午下雨”,Q表示命题“我去看电影”,R表示命题“在家里读书”,S

表示命题“在家看报”,命题符号化为:(?P?Q)∧(P?R∨S)

b)设P表示命题“我今天进城”,Q表示命题“天下雨”,命题符号化为:?Q→P或?P→Q

c)设P表示命题“你走”,Q表示命题“我留下”,命题符号化为: Q→P

2.用谓词逻辑把下列命题符号化

a)设R(x)表示“x是实数”,Q(x)表示“x是有理数”,命题符号化为:

?x(R(x) ∧?Q(x)) 或??x(R(x) →Q(x))

b)设R(x)表示“x是实数”,E(x,y)表示“x=y”,f(x,y)=xy, 命题符号化为:

?x(R(x) ∧?E(x,0) →?y(R(y) ∧E(f(x,y),1))))

c)设F(f)表示“f是从A到B的函数”, A(x)表示“x∈A”, B(x)表示“x∈B”,E(x,y)表示

“x=y”, 命题符号化为:

F(f)??a(A(a)→?b(B(b) ∧ E(f(a),b) ∧?c(S(c) ∧ E(f(a),c) →E(a,b))))

二、简答题(共6道题,共32分)

1.(P→(Q→R))?(R→(Q→P))?(?P∨?Q∨R)?(P∨?Q∨?R)

?((?P∨?Q∨R)→(P∨?Q∨?R)) ∧ ((P∨?Q∨?R) →(?P∨?Q∨R)).

?((P∧Q∧?R)∨ (P∨?Q∨?R)) ∧ ((?P∧Q∧R) ∨(?P∨?Q∨R))

?(P∨?Q∨?R) ∧(?P∨?Q∨R) 这是主合取范式

公式的所有成真赋值为000,001,010,100,101,111,故主析取范式为

(?P∧?Q∧?R)∨(?P∧?Q∧R)∨(?P∧Q∧?R)∨(P∧?Q∧?R)∨(P∧?Q∧R)∨(P∧Q∧R)

2.a) T b) F

3.?x(F(x)→G(x))→(?xF(x)→?xG(x)) ??x(F(x)→G(x))→(?yF(y)→?zG(z))

??x(F(x)→G(x))→?y?z(F(y)→G(z)) ??x?y?z((F(x)→G(x))→ (F(y)→G(z)))

4.a) 真命题。因为(A?B)-C=(A?B)?~C=(A?~C)?(B?~C)=(A-C)?(B-C)

b) 真命题。因为如果f是从集合A到集合B的入射函数,则|ranf|=|A|,且ranf?B,故命

题成立。

5.a) 52 b) 5!=120

6.B的最小元是b,无最大元、极大元是d和e、极小元是b、上界集合是{g}、下界集合

是{a,b}、上确界是g、下确界是b.

7.K[S]=n; K[P(S)]=n2; K[N]=?0,K[N n]=?0, K[P(N)]=?; K[R]=?, K=[R×R]=

?,K[{0,1}N]= ?

三、证明题(共3小题,共计40分)

1.a) 证(1)B P(附加条件)

(2)B→(A∧?S) P

(3) A∧?S T(1)(2) I

(4) A T(3) I

(5) A→(B∧C) P

(6) B ∧C T(4)(5) I (7) C T(6) I (8) (E →?F)→?C P

(9) ?(E →?F) T(7)(8) I (10) E ∧F T(9) E (11) E T(10) I (12) B →E CP b) 证 (1) ?x ?R(x) P (2) ?R(c) ES(1) (3) ?x(Q(x)∨R(x)) P (4) Q(c)∨R(c) US(3) (5) Q(c) T(2)(4) I (6) ?x(P(x)→?Q(x)) P

(7) P(c)→?Q(c) US(6) (8) ?P(c) T(5)(7) I (9) ?x ?P(x) EG(8) 2. 证 任取,

∈A ×B ?x ∈A ∧ y ∈B ?∈R 1∧∈R 2?<,>∈R ,故R 是自反的 任取<,>,

<,>∈R ?∈R 1∧∈R 2?∈R 1∧∈R 2?<,>∈R.故R 是对称的。

任取<,>,<,>∈R

<,>,<,>∈R ?∈R 1∧∈R 2∧∈R 1∧∈R 2?(∈R 1∧∈R 1)∧(∈R 2∧∈R 2)? R 1∧∈R 2?<,>∈R, 故R 是传递的。

综上所述R 是A ×B 上的等价关系。 3. 证 构造函数f :(0,1]→(a,b),f(x)=

22b

x a +,显然f 是入射函数 构造函数g: (a,b)→(0,1],a

b a

x x g --=)(,显然g 是入射函数, 故(0,1]和(a,b)等势。

由于2

2122

221??

? ??+++≥+++r m m m r m m m r r ,所以22

r n r s ≥

4. 证 设商集A/R 的r 个等价类的元素个数分别为m 1,m 2,…,m r ,由于一个划分对应一个等

价关系,m 1+m 2+…+m r =n , s m m m r =+++2

2221

由于2

2122

221??

?

??+++≥+++r m m m r m m m r r (r 个数的平方的平均值大于等于这

r 个数的平均值的平方),所以22r

n r s ≥,即2

n rs ≥

四、应用题(10分)

解 把8个城市作为集合A 的元素,即A={a,b,c,d,e,,f,g,h},在A 上定义二元关系R ,∈R 当且仅当从x 到y 有直接连接的道路,即

R={,,,,,,,} 那么该问题即变为求R 的传递闭包。

利用Warshal 算法,求得t(R)=????????????

????????

??????00

000000

01111010000100000000000000

110000

00110000011110000111111

0 那么从城市x 出发能到达的城市为})(,|{}])[{)((y x R t y x y x I R t A ≠∧>∈<=-, 故有},,,,,{}])[{)((g f e d c b a I R t A =-

},,,{}])[{)((g f e d b I R t A =- },{}])[{)((f e c I R t A =- },{}])[{)((f e d I R t A =- }{}])[{)((e f I R t A =- },,,{}])[{)((f e d b g I R t A =-

φ=-=-}])[{)((}])[{)((e I R t e I R t A A

离散数学题库及答案

数理逻辑部分 选择、填空及判断 ?下列语句不就是命题的( A )。 (A) 您打算考硕士研究生不? (B) 太阳系以外的星球上有生物。 (C) 离散数学就是计算机系的一门必修课。 (D) 雪就是黑色的。 ?命题公式P→(P∨?P)的类型就是( A ) (A) 永真式(B) 矛盾式 (C) 非永真式的可满足式(D) 析取范式 ?A就是重言式,那么A的否定式就是( A ) A、矛盾式 B、重言式 C、可满足式 D、不能确定 ?以下命题公式中,为永假式的就是( C ) A、p→(p∨q∨r) B、(p→┐p)→┐p C、┐(q→q)∧p D、┐(q∨┐p)→(p∧┐p) ?命题公式P→Q的成假赋值就是( D ) A、 00,11 B、 00,01,11 C、10,11 D、 10 ?谓词公式) x xP∧ ?中,变元x就是 ( B ) R , ( x ) (y A、自由变元 B、既就是自由变元也就是约束变元 C、约束变元 D、既不就是自由变元也不就是约束变元 ?命题公式P→(Q∨?Q)的类型就是( A )。 (A) 永真式 (B) 矛盾式 (C) 非永真式的可满足式 (D) 析取范式 ?设B不含变元x,) x x→ ?等值于( A ) A ) ( (B A、B (D、B x xA→ x ?) ( ( ?C、B x∧ A ?) (B、) ?) xA→ x ) ( A x (B x∨ ?下列语句中就是真命题的就是( D )。 A.您就是杰克不? B.凡石头都可练成金。 C.如果2+2=4,那么雪就是黑的。 D.如果1+2=4,那么雪就是黑的。 ?从集合分类的角度瞧,命题公式可分为( B ) A、永真式、矛盾式 B、永真式、可满足式、矛盾式 C、可满足式、矛盾式 D、永真式、可满足式 ?命题公式﹁p∨﹁q等价于( D )。 A、﹁p∨q B、﹁(p∨q) C、﹁p∧q D、 p→﹁q ?一个公式在等价意义下,下面写法唯一的就是( D )。 (A) 范式 (B) 析取范式 (C) 合取范式 (D) 主析取范式 ?下列含有命题p,q,r的公式中,就是主析取范式的就是( D )。

离散数学期末试题

离散数学考试试题(A 卷及答案) 一、(10分)求(P ↓Q )→(P ∧?(Q ∨?R ))的主析取范式 解:(P ↓Q )→(P ∧?(Q ∨?R ))??(?( P ∨Q ))∨(P ∧?Q ∧R )) ?(P ∨Q )∨(P ∧?Q ∧R )) ?(P ∨Q ∨P )∧(P ∨Q ∨?Q )∧(P ∨Q ∨R ) ?(P ∨Q )∧(P ∨Q ∨R ) ?(P ∨Q ∨(R ∧?R ))∧(P ∨Q ∨R ) ?(P ∨Q ∨R )∧(P ∨Q ∨?R )∧(P ∨Q ∨R ) ?0M ∧1M ?2m ∨3m ∨4m ∨5m ∨6m ∨7m 二、(10分)在某次研讨会的休息时间,3名与会者根据王教授的口音分别作出下述判断: 甲说:王教授不是苏州人,是上海人。 乙说:王教授不是上海人,是苏州人。 丙说:王教授既不是上海人,也不是杭州人。 王教授听后说:你们3人中有一个全说对了,有一人全说错了,还有一个人对错各一半。试判断王教授是哪里人? 解 设设P :王教授是苏州人;Q :王教授是上海人;R :王教授是杭州人。则根据题意应有: 甲:?P ∧Q 乙:?Q ∧P 丙:?Q ∧?R 王教授只可能是其中一个城市的人或者3个城市都不是。所以,丙至少说对了一半。因此,可得甲或乙必有一人全错了。又因为,若甲全错了,则有?Q ∧P ,因此,乙全对。同理,乙全错则甲全对。所以丙必是一对一错。故王教授的话符号化为: ((?P ∧Q )∧((Q ∧?R )∨(?Q ∧R )))∨((?Q ∧P )∧(?Q ∧R )) ?(?P ∧Q ∧Q ∧?R )∨(?P ∧Q ∧?Q ∧R )∨(?Q ∧P ∧?Q ∧R ) ?(?P ∧Q ∧?R )∨(P ∧?Q ∧R ) ??P ∧Q ∧?R ?T 因此,王教授是上海人。 三、(10分)证明tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。 证明 设R 是非空集合A 上的二元关系,则tsr (R )是包含R 的且具有自反性、对称性和传递性的关系。 若'R 是包含R 的且具有自反性、对称性和传递性的任意关系,则由闭包的定义知r (R )?' R 。则sr (R )?s ('R )='R ,进而有tsr (R )?t ('R )='R 。

离散数学期末试题及答案完整版

离散数学期末试题及答 案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

326《离散数学》期末考试题(B ) 一、填空题(每小题3分,共15分) 1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ), )(A P 中的元素个数=|)(|A P ( ). 2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数. 3.谓词公式))()(())()((y P y Q y x Q x P x ?∧?∧→?中量词x ?的辖域为( ), 量词y ?的辖域为( ). 4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元. 5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二.1. 若n B m A ==||,||,则=?||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个. 2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3, 1)},则( )是单射,( )是满射,( )是双射. 3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号). (1)q q p p →→∧)(; (2))(q p p ∨→; (3))(q p p ∧→; (4)q q p p →∨∧?)(; (5)q q p →→)(. 4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).

离散数学试题与答案

试卷二试题与参考答案 一、填空 1、 P:您努力,Q:您失败。 2、 “除非您努力,否则您将失败”符号化为 ; “虽然您努力了,但还就是失败了”符号化为 。 2、论域D={1,2},指定谓词P P (1,1) P (1,2) P (2,1) P (2,2) T T F F 则公式x ??真值为 。 3设A={2,3,4,5,6}上的二元关系}|,{是质数x y x y x R ∨<><=,则 R= (列举法)。 R 的关系矩阵M R = 。 4、设A={1,2,3},则A 上既不就是对称的又不就是反对称的关系 R= ;A 上既就是对称的又就是反对称的关系R= 。 5、设代数系统,其中A={a,b,c}, 则幺元就是 ;就是否有幂等 性 ;就是否有对称性 。 6、4阶群必就是 群或 群。 7、下面偏序格就是分配格的就是 。 8、n 个结点的无向完全图K n 的边数为 ,欧拉图的充要条件就是 。 * a b c a b c a b c b b c c c b

二、选择 1、在下述公式中就是重言式为( ) A.)()(Q P Q P ∨→∧; B.))()(()(P Q Q P Q P →∧→??; C.Q Q P ∧→?)(; D.)(Q P P ∨→。 2、命题公式 )()(P Q Q P ∨?→→? 中极小项的个数为( ),成真赋值的个数为 ( )。 A.0; B.1; C.2; D.3 。 3、设}}2,1{},1{,{Φ=S ,则 S 2 有( )个元素。 A.3; B.6; C.7; D.8 。 4、设} 3 ,2 ,1 {=S ,定义S S ?上的等价关系 },,,, | ,,,{c b d a S S d c S S b a d c b a R +=+?>∈∈<><><<=则由 R 产 生的S S ?上一个划分共有( )个分块。 A.4; B.5; C.6; D.9 。 5、设} 3 ,2 ,1 {=S ,S 上关系R 的关系图为 则R 具有( )性质。 A.自反性、对称性、传递性; B.反自反性、反对称性; C.反自反性、反对称性、传递性; D.自反性 。 6、设 ο,+ 为普通加法与乘法,则( )>+<ο,,S 就是域。 A.},,3|{Q b a b a x x S ∈+== B.},,2|{Z b a n x x S ∈== C.},12|{Z n n x x S ∈+== D.}0|{≥∧∈=x Z x x S = N 。 7、下面偏序集( )能构成格。

离散数学试题及答案精选版

离散数学试题及答案 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

一、填空题 1设集合A,B,其中A={1,2,3},B={1,2},则A-B=____________________; (A)-(B)=__________________________. 2.设有限集合A,|A|=n,则|(A×A)|=__________________________. 3.设集合A={a,b},B={1,2},则从A到B的所有映射是 _______________________________________,其中双射的是 __________________________. 4.已知命题公式G=(PQ)∧R,则G的主析取范式是 _______________________________ __________________________________________________________. 6设A、B为两个集合,A={1,2,4},B={3,4},则从AB= _________________________;AB=_________________________;A-B=_____________________. 7.设R是集合A上的等价关系,则R所具有的关系的三个特性是 ______________________,________________________,__________________ _____________. 8.设命题公式G=(P(QR)),则使公式G为真的解释有 __________________________, _____________________________,__________________________. 9.设集合A={1,2,3,4},A上的关系 R 1={(1,4),(2,3),(3,2)},R 2 ={(2,1),(3,2),(4,3)},则

【浙江工商大学】《离散数学》期末考试题(B)

《离散数学》期末考试题(B) 一、填空题(每小题3分,共15分) 1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ),)(A P 中的元素个数=|)(|A P ( ). 2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数. 3.谓词公式))()(())()((y P y Q y x Q x P x ?∧?∧→?中量词x ?的辖域为 ( ), 量词y ?的辖域为( ). 4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元. 5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二、单选题(每小题3分,共15分) 1.设R 是集合A 上的偏序关系,1-R 是R 的逆关系,则1 -?R R 是A 上的 (A)偏序关系 (B)等价关系 (C)相容关系 (D)以上结论都不成立 2.由2个命题变元p 和q 组成的不等值的命题公式的个数有 (A)2 (B)4 (C)8 (D)16 3.设p 是素数且n 是正整数,则任意有限域的元素个数为 (A)n p + (B)pn (C)n p (D)p n 4.设R 是实数集合,≤是其上的小于等于关系,则(R, ≤)是 (A)有界格 (B)分配格 (C)有补格 (D)布尔格 5.3阶完全无向图3K 的不同构的生成子图有 (A)2 (B)3 (C)4 (D)5 三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”. 1.若一个元素a 既存在左逆元l a ,又存在右逆元r a ,则r l a a =. ( ) 2.命题联结词→不满足结合律. ( ) 3.在Z 8 = {0,1,2,3,4,5,6,7}中,2关于“?8”的逆元为 4. ( ) 4.整环不一定是域. ( )

离散数学题库

常熟理工学院20 ~20 学年第学期 《离散数学》考试试卷(试卷库01卷) 试题总分: 100 分考试时限:120 分钟 题号一二三四五总分阅卷人得分 一、单项选择题(每题2分,共20分) 1.下列表达式正确的有( ) (A)(B)(C)(D) 2.设P:2×2=5,Q:雪是黑的,R:2×4=8,S:太阳从东方升起,下列( )命题的真值为 真。 (A)(B)(C)(D) 3.集合A={1,2,…,10}上的关系R={|x+y=10,x,y A},则R 的性质为( ) (A)自反的(B)对称的(C)传递的,对称的(D)传递的 4.设,,其中表示模3加法,*表示模2乘法,在集合上 定义如下运算: 有称为的积代数,则的积代数幺元是( ) (A)<0,0> (B)<0,1> (C)<1,0> (D)<1,1> 5.下图中既不是Eular图,也不是Hamilton图的图是( ) 6.设为无向图,,则G一定是( ) (A)完全图(B)树(C)简单图(D)多重图 7.设P:我将去镇上,Q:我有时间。命题“我将去镇上,仅当我有时间”符号化为()。 (A) P Q (B)Q P (C)P Q (D) 8.在有n个结点的连通图中,其边数() (A)最多有n-1条(B)最多有n 条(C)至少有n-1条(D)至少有n条 9.设A-B=,则有() (A)B=(B)B(C)A B (D)A B 10.设集合A上有3个元素,则A上的不同的等价关系的个数为() (A)5 (B)7 (C)3 (D)6 二、填空题(每题2分,共20分)

1.n个命题变元组成的命题公式共有种不同的等价公式。 2.设〈L,≤〉为有界格,a为L中任意元素,如果存在元素b∈L,使,则称b是a 的补元。 3.设*,Δ是定义在集合A上的两个可交换二元运算,如果对于任意的x,y∈A,都有 ,则称运算*和运算Δ满足吸收律。 4.设T是一棵树,则T是一个连通且的图。 5.一个公式的等价式称作该公式的主合取范式是指它仅由组成。 6.量词否定等价式? ("x)P(x) ?,? ($x)P(x) ?。 7.二叉树有5个度为2的结点,则它的叶子结点数为。 8.设是一个群,是阿贝尔群的充要条件是。9.集合S={α,β,γ,δ}上的二元运算*为 * αβγδ αδαβγ βαβγδ γβγγγ δαδγδ 那么,代数系统中的幺元是,α的逆元是。 10.设A={<1,2>,<2,4>,<3,3>},B={<1,3>,<2,4>,<4,2>} = 。 = 。 三、判断题(每题1分,共10分) 1.命题公式是一个矛盾式。() 2.,若,则必有。() 3.设S为集合X上的二元关系,则S是传递的当且仅当(S S)S。() 4.任何一棵二叉树的结点可对应一个前缀码。() 5.代数系统中一个元素的左逆元一定等于该元素的右逆元。() 6.一个有限平面图,面的次数之和等于该图的边数。() 7.A′B = B′A () 8.设*定义在集合A上的一个二元运算,如果A中有关于运算*的左零元θl和右零θr,则A中 有零元。() 9.一个循环群的生成元不是唯一的。() 10.任何一个前缀码都对应一棵二叉树。() 四、解答题(5小题,共30分) 1.(5分)什么是欧拉路?如何用欧拉路判定一个图G是否可一笔画出? 2.(8分)求公式 (P∨Q)R 的主析取范式和主合取范式。

离散数学期末考试试题及答案

离散数学试题(B卷答案1) 一、证明题(10分) 1)(P∧(Q∧R))∨(Q∧R)∨(P∧R)R 证明: 左端(P∧Q∧R)∨((Q∨P)∧R) ((P∧Q)∧R))∨((Q∨P)∧R) ((P∨Q)∧R)∨((Q∨P)∧R) ((P∨Q)∨(Q∨P))∧R ((P∨Q)∨(P∨Q))∧R T∧R(置换)R 2) x (A(x)B(x))xA(x)xB(x) 证明:x(A(x)B(x))x(A(x)∨B(x)) x A(x)∨xB(x) xA(x)∨xB(x) xA(x)xB(x) 二、求命题公式(P∨(Q∧R))(P∧Q∧R)的主析取范式和主合取范式(10分)。 证明:(P∨(Q∧R))(P∧Q∧R)(P∨(Q∧R))∨(P∧Q∧R)) (P∧(Q∨R))∨(P∧Q∧R) (P∧Q)∨(P∧R))∨(P∧Q∧R) (P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R))∨(P∧Q∧R))∨(P∧Q∧R) m0∨m1∨m2∨m7 M3∨M4∨M5∨M6 三、推理证明题(10分) 1)C∨D,(C∨D)E, E(A∧B),(A∧B)(R∨S)R∨S证明:(1) (C∨D) E ?P (2) E(A∧B) ??P (3) (C∨D)(A∧B) T(1)(2),I (4) (A∧B)(R∨S)??P (5) (C∨D)(R∨S) ? T(3)(4),I (6) C∨D P (7) R∨S T(5),I 2) x(P(x)Q(y)∧R(x)),xP(x)Q(y)∧x(P(x)∧R(x)) 证明(1)xP(x) P

(2)P(a) T(1),ES (3)x(P(x)Q(y)∧R(x)) P (4)P(a)Q(y)∧R(a) T(3),US (5)Q(y)∧R(a) T(2)(4),I (6)Q(y) T(5),I (7)R(a) T(5),I (8)P(a)∧R(a) T(2)(7),I (9)x(P(x)∧R(x)) T(8),EG (10)Q(y)∧x(P(x)∧R(x)) T(6)(9),I 四、某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。而6个会打网球的人都会打另外一种球,求不会打这三种球的人数(10分)。 解:A,B,C分别表示会打排球、网球和篮球的学生集合。则|A|=12,|B|=6,|C|=14,|A∩C|=6,|B∩C|=5,|A∩B∩C|=2。 先求|A∩B|。 ∵6=|(A∪C)∩B|=|(A∩B)∪(B∩C)|=|(A∩B)|+|(B∩C)|-|A∩B∩C|=|(A∩B)|+5-2,∴|(A∩B)|=3。 于是|A∪B∪C|=12+6+14-6-5-3+2=20。不会打这三种球的人数25-20=5。五、已知A、B、C是三个集合,证明A-(B∪C)=(A-B)∩(A-C)(10分)。 证明:∵x A-(B∪C) x A∧x(B∪C) xA∧(xB∧x C) (x A∧x B)∧(x A∧xC) x(A-B)∧x(A-C) x(A-B)∩(A-C) ∴A-(B∪C)=(A-B)∩(A-C) 六、已知R、S是N上的关系,其定义如下:R={| x,yN∧y=x2} R*S={| x,y N∧y=x2+1} S*R={<x,y>| x,yN∧y=(x+1)2},R{1,2}={<1,1>,<2,4>},S[{1,2}]={1,4}。 七、设R={<a,b>,,<c,a>},求r(R)、s(R)和t(R) (15分)。 解:r(R)={,,,<b,b>,

离散数学试题及答案(1)

离散数学试题及答案 一、填空题 1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=____________________; ρ(A) - ρ(B)=__________________________ . 2. 设有限集合A, |A| = n, 则|ρ(A×A)| = __________________________. 3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是__________________________ _____________, 其中双射的是__________________________. 4. 已知命题公式G=?(P→Q)∧R,则G的主析取范式是_______________________________ __________________________________________________________. 5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为__________,分枝点数为________________. 6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A?B=_________________________; A?B =_________________________;A-B=_____________________ . 7. 设R是集合A上的等价关系,则R所具有的关系的三个特性是______________________, ________________________, _______________________________. 8. 设命题公式G=?(P→(Q∧R)),则使公式G为真的解释有__________________________, _____________________________, __________________________. 9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R1 = {(2,1),(3,2),(4,3)}, 则 R1?R2 = ________________________,R2?R1 =____________________________, R12 =________________________. 10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A?B)| = _____________________________. 11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = __________________________ , B-A = __________________________ , A∩B = __________________________ , . 13.设集合A={2, 3, 4, 5, 6},R是A上的整除,则R以集合形式(列举法)记为___________ _______________________________________________________. 14. 设一阶逻辑公式G = ?xP(x)→?xQ(x),则G的前束范式是__________________________ _____. 15.设G是具有8个顶点的树,则G中增加_________条边才能把G变成完全图。

离散数学期末试卷A卷及答案

《离散数学》试卷(A 卷) 一、 选择题(共5 小题,每题 3 分,共15 分) 1、设A={1,2,3},B={2,3,4,5},C={2,3},则C B A ⊕?)(为(C )。 A 、{1,2} B 、{2,3} C 、{1,4,5} D 、{1,2,3} 2、下列语句中哪个是真命题 ( A ) A 、如果1+2=3,则4+5=9; B 、1+2=3当且仅当4+5≠9。 C 、如果1+2=3,则4+5≠9; D 、1+2=3仅当4+5≠9。 3、个体域为整数集合时,下列公式( C )不是命题。 A 、)*(y y x y x =?? B 、)4*(=??y x y x C 、)*(x y x x =? D 、)2*(=??y x y x 4、全域关系A E 不具有下列哪个性质( B )。 A 、自反性 B 、反自反性 C 、对称性 D 、传递性 5、函数612)(,:+-=→x x f R R f 是( D )。 A 、单射函数 B 、满射函数 C 、既不单射也不满射 D 、双射函数 二、填充题(共 5 小题,每题 3 分,共15 分) 1、设|A|=4,|P(B)|=32,|P(A ?B)|=128,则|A ?B|=??2???.

2、公式)(Q P Q ?∨∧的主合取范式为 。 3、对于公式))()((x Q x P x ∨?,其中)(x P :x=1, )(x Q :x=2,当论域为{0,1,2}时,其真值为???1???。 4、设A ={1,2,3,4},则A 上共有???15????个等价关系。 5、设A ={a ,b ,c },B={1,2},则|B A |= 8 。 三、判断题(对的填T ,错的填F ,共 10 小题,每题 1 分,共计10 分) 1、“这个语句是真的”是真命题。 ( F ) 2、“张刚和小强是同桌。”是复合命题。 ( F ) 3、))(()(r q q p p ∧?∧→?∨是矛盾式。 ( T ) 4、)(T S R T R S R ??????。 ( F ) 5、恒等关系具有自反性,对称性,反对称性,传递性。 ( T ) 6、若f 、g 分别是单射,则g f ?是单射。 ( T ) 7、若g f ?是满射,则g 是满射。 ( F ) 8、若A B ?,则)()(A P B P ?。 ( T ) 9、若R 具有自反性,则1-R 也具有自反性。 ( T ) 10、B A ∈并且B A ?不可以同时成立。 (F ) 四、计算题(共 3 小题,每题 10 分,共30 分) 1、调查260个大学生,获得如下数据:64人选修数学课程,94人选修计算机课程,58人选修商贸课程,28人同时选修数学课程和商贸课程,26人同时选修数学课程和计算机课程,22人同时选修计算机课程和商贸课程,14人同时选修三门课程。问 (1)三门课程都不选的学生有多少? (2)只选修计算机课程的学生有多少?

离散数学期末考试试题及答案

离散数学试题(B卷答案1) 一、证明题(10分) 1)(?P∧(?Q∧R))∨(Q∧R)∨(P∧R)?R 证明: 左端?(?P∧?Q∧R)∨((Q∨P)∧R) ?((?P∧?Q)∧R))∨((Q∨P)∧R) ?(?(P∨Q)∧R)∨((Q∨P)∧R) ?(?(P∨Q)∨(Q∨P))∧R ?(?(P∨Q)∨(P∨Q))∧R ?T∧R(置换)?R 2) ?x (A(x)→B(x))??xA(x)→?xB(x) 证明:?x(A(x)→B(x))??x(?A(x)∨B(x)) ??x?A(x)∨?xB(x) ???xA(x)∨?xB(x) ??xA(x)→?xB(x) 二、求命题公式(P∨(Q∧R))→(P∧Q∧R)的主析取范式和主合取范式(10分)。 证明:(P∨(Q∧R))→(P∧Q∧R)??(P∨(Q∧R))∨(P∧Q∧R)) ?(?P∧(?Q∨?R))∨(P∧Q∧R) ?(?P∧?Q)∨(?P∧?R))∨(P∧Q∧R) ?(?P∧?Q∧R)∨(?P∧?Q∧?R)∨(?P∧Q∧?R))∨(?P∧?Q∧?R))∨(P∧Q∧R) ?m0∨m1∨m2∨m7 ?M3∨M4∨M5∨M6 三、推理证明题(10分) 1)C∨D, (C∨D)→?E,?E→(A∧?B), (A∧?B)→(R∨S)?R∨S 证明:(1) (C∨D)→?E P (2) ?E→(A∧?B) P (3) (C∨D)→(A∧?B) T(1)(2),I (4) (A∧?B)→(R∨S) P (5) (C∨D)→(R∨S) T(3)(4), I (6) C∨D P (7) R∨S T(5),I 2) ?x(P(x)→Q(y)∧R(x)),?xP(x)?Q(y)∧?x(P(x)∧R(x)) 证明(1)?xP(x) P

离散数学章练习题及答案

离散数学练习题 第一章 一.填空 1.公式) ∨ ? ∧的成真赋值为 01;10 ? p∧ ( (q ) p q 2.设p, r为真命题,q, s 为假命题,则复合命题) ? ? →的真值为 0 p→ ( q (s ) r 3.公式) ∨ ? p∧ q ?与共同的成真赋值为 01;10 ? ∧ p ( ) ) (q q p ( 4.设A为任意的公式,B为重言式,则B A∨的类型为重言式 5.设p, q均为命题,在不能同时为真条件下,p与q的排斥也可以写成p与q的相容或。 二.将下列命题符合化 1. 7不是无理数是不对的。 解:) ? ?,其中p: 7是无理数;或p,其中p: 7是无理数。 (p 2.小刘既不怕吃苦,又很爱钻研。 解:其中 ?p: 小刘怕吃苦,q:小刘很爱钻研 p∧ ,q 3.只有不怕困难,才能战胜困难。 解:p →,其中p: 怕困难,q: 战胜困难 q? 或q →,其中p: 怕困难, q: 战胜困难 p? 4.只要别人有困难,老王就帮助别人,除非困难解决了。 解:) → ?,其中p: 别人有困难,q:老王帮助别人,r: 困难解决了 p (q r→ 或:q ?) (,其中p:别人有困难,q: 老王帮助别人,r: 困难解决了r→ ∧ p 5.整数n是整数当且仅当n能被2整除。 解:q p?,其中p: 整数n是偶数,q: 整数n能被2整除 三、求复合命题的真值 P:2能整除5, q:旧金山是美国的首都, r:在中国一年分四季 1. )) p∧ → q ∨ r → ∧ ((q r ( ) ( ) p 2.r ?) → (( → (( ∨ ) ( )) p r p ∨ p q ? ∧ ? q∧ 解:p, q 为假命题,r为真命题 1.)) p∧ → q ∨的真值为0 r → ∧ ( ) ( ) ((q p r

离散数学期末试卷及答案

一.判断题(共10小题,每题1分,共10分) 在各题末尾的括号内画 表示正确,画 表示错误: 1.设p、q为任意命题公式,则(p∧q)∨p ? p ( ) 2.?x(F(y)→G(x)) ? F(y)→?xG(x)。( ) 3.初级回路一定是简单回路。( ) 4.自然映射是双射。( ) 5.对于给定的集合及其上的二元运算,可逆元素的逆元是唯一的。( ) 6.群的运算是可交换的。( ) 7.自然数集关于数的加法和乘法构成环。( ) 8.若无向连通图G中有桥,则G的点连通度和边连通度皆为1。( ) 9.设A={a,b,c},则A上的关系R={,}是传递的。( ) 10.设A、B、C为任意集合,则A?(B?C)=(A?B)?C。( ) 二、填空题(共10题,每题3分,共30分) 11.设p:天气热。q:他去游泳。则命题“只有天气热,他才去游泳”可符号 化为。 12.设M(x):x是人。S(x):x到过月球。则命题“有人到过月球”可符号 化为。 13.p?q的主合取范式是。 14.完全二部图K r,s(r < s)的边连通度等于。 15.设A={a,b},,则A上共有个不同的偏序关系。 16.模6加群中,4是阶元。 17.设A={1,2,3,4,5}上的关系R={<1,3>,<1,5>,<2,5>,<3,3>,<4,5>},则R的传递闭包t(R) = 。. 18.已知有向图D的度数列为(2,3,2,3),出度列为(1,2,1,1),则有向图D的入度

列为。 19.n阶无向简单连通图G的生成树有条边。 20.7阶圈的点色数是。 三、运算题(共5小题,每小题8分,共40分) 21.求?xF(x)→?yG(x,y)的前束范式。 22.已知无向图G有11条边,2度和3度顶点各两个,其余为4度顶点,求G 的顶点数。 23.设A={a,b,c,d,e,f},R=I A?{,},则R是A上的等价关系。求等价类[a]R、[c]R及商集A/R。 24.求图示带权图中的最小生成树,并计算最小生成树的权。 25.设R*为正实数集,代数系统< R*,+>、< R*,·>、< R*,/>中的运算依次为普通加法、乘法和除法运算。试确定这三个代数系统是否为群?是群者,求其单位元及每个元素的逆元。 四、证明题(共3小题,共20分) 26 (8分)在自然推理系统P中构造下述推理的证明: 前题:p→(q∨r),?s→?q,p∧?s 结论:r 27 (6分)设是群,H={a| a∈G∧?g∈G,a*g=g*a},则是G的子群 28.(6分)设G是n(≥3)阶m条边、r个面的极大平面图,则r=2n-4。

《离散数学》期末考试试题

《离散数学》期末考试试题 一、 填空题(每空2分,合计20分) 1. 设个体域为{2,3,6}D =-, ():3F x x ≤,():0G x x >。则在此解释下公式 ()(()())x F x G x ?∧的真值为______。 2. 设:p 我是大学生,:q 我喜欢数学。命题“我是喜欢数学的大学生”为可符合化 为 。 3. 设{1,2,3,4}A =,{2,4,6}B =,则A B -=________,A B ⊕=________。 4. 合式公式()Q P P ?→∧是永______式。 5. 给定集合{1,2,3,4,5}A =,在集合A 上定义两种关系: {1,3,3,4,2,2}R =<><><>, {4,2,3,1,2,3}S =<><><>, 则_______________S R =ο,_______________R S =ο。 6. 设e 是群G 上的幺元,若a G ∈且2a e =,则1a -=____ , 2a -=__________。 7. 公式))(()(S Q P Q P ?∧?∨∧∨?的对偶公式为 。 8. 设{2,3,6,12}A =, p 是A 上的整除关系,则偏序集,A <>p 的最大元是________,极小元是_ _。 9. 一棵有6个叶结点的完全二叉树,有_____个内点;而若一棵树有2个结点度数为2,一 个结点度数为3,3个结点度数为4,其余是叶结点,则该树有_____个叶结点。 10. 设图,G V E =<>, 1234{v ,v ,v ,v }V =,若G 的邻接矩阵????????????=0001001111011010A ,则1()deg v -=________, 4()deg v +=____________。 二、选择题(每题2分,合计20分) 1.下列各式中哪个不成立( )。 A 、)()())()((x xQ x xP x Q x P x ?∨??∨? ; B 、)()())()((x xQ x xP x Q x P x ?∨??∨?; C 、)()())()((x xQ x xP x Q x P x ?∧??∧?; D 、Q x xP Q x P x ∧??∧?)())((。

山东大学离散数学题库及答案

《离散数学》题库答案 一、选择或填空 (数理逻辑部分) 1、下列哪些公式为永真蕴含式?( ) (1)?Q=>Q →P (2)?Q=>P →Q (3)P=>P →Q (4)?P ∧(P ∨Q)=>?P 答:(1),(4) 2、下列公式中哪些是永真式?( ) (1)(┐P ∧Q)→(Q →?R) (2)P →(Q →Q) (3)(P ∧Q)→P (4)P →(P ∨Q) 答:(2),(3),(4) 3、设有下列公式,请问哪几个是永真蕴涵式?( ) (1)P=>P ∧Q (2) P ∧Q=>P (3) P ∧Q=>P ∨Q (4)P ∧(P →Q)=>Q (5) ?(P →Q)=>P (6) ?P ∧(P ∨Q)=>?P 答:(2),(3),(4),(5),(6) 4、公式 x((A(x) B(y ,x)) z C(y ,z))D(x)中,自由变元是( ),约束变元是( )。 答:x,y, x,z 5、判断下列语句是不是命题。若是,给出命题的真值。( ) (1) 北京是中华人民共和国的首都。 (2) 陕西师大是一座工厂。 (3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。 (5) 前进! (6) 给我一杯水吧! 答:(1) 是,T (2) 是,F (3) 不是 (4) 是,T (5) 不是 (6) 不是 6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。 答:所有人都不是大学生,有些人不会死 7、设P :我生病,Q :我去学校,则下列命题可符号化为( )。 (1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校 (3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校 答:(1) P Q →? (2) Q P ?→ (3) Q P ?? (4)Q P →? 8、设个体域为整数集,则下列公式的意义是( )。 (1) x y(x+y=0) (2) y x(x+y=0) 答:(1)对任一整数x 存在整数 y 满足x+y=0(2)存在整数y 对任一整数x 满足x+y=0 9、设全体域D 是正整数集合,确定下列命题的真值: (1) x y (xy=y) ( ) (2) x y(x+y=y) ( ) (3) x y(x+y=x) ( ) (4) x y(y=2x) ( ) 答:(1) F (2) F (3)F (4)T 10、设谓词P(x):x 是奇数,Q(x):x 是偶数,谓词公式 x(P(x)Q(x))在哪个个体域中为真?( ) (1) 自然数 (2) 实数 (3) 复数 (4) (1)--(3)均成立 答:(1) 11、命题“2是偶数或-3是负数”的否定是( )。 答:2不是偶数且-3不是负数。 12、永真式的否定是( ) (1) 永真式 (2) 永假式 (3) 可满足式 (4) (1)--(3)均有可能 答:(2) 13、公式(?P ∧Q)∨(?P ∧?Q)化简为( ),公式 Q →(P ∨(P ∧Q))可化简为( )。 答:?P ,Q →P

离散数学-期末考试卷-A卷

离散数学-期末考试卷-A卷

东莞理工学院城市学院(本科)试卷(A卷) 2013-2014学年第一学期 开课单位:计算机与信息科学系,考试形式:闭卷,允许带入场 科目:离散数学,班级:软工本2012-1、2、3 姓名:学号: 题序一二三四总分 得分 A评 卷人 一、单项选择题(每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,错选、多选或未选均无分。 1. 下述不是命题的是( ) A. 做人真难啊! B. 后天是阴天。 C. 2是偶数。 D. 地球是方的。 2. 命题公式P→(P∨Q∨R)是( ) A. 永假的 B. 永真的 C. 可满足的

D. 析取范式 3. 命题公式﹁B→﹁A等价于( ) A. ﹁A∨﹁ B B. ﹁(A∨B) C. ﹁A∧﹁ B D. A→B 4.设P:他聪明,Q:他用功,命题“他虽聪明但不用功”的符号化正确的是()A.?P∧Q B.P∧?Q C.P→?Q D.P∨?Q 5.设A(x):x是人,B(x):x犯错误,命题“没有不犯错误的人”符号化为()A.?x(A(x))∧B(x) B.??x( A(x)→?B(x) ) C.??x( A(x)∧B(X)) D.??x( A(x)∧?B(x) ) 6. 设有A={a,b,c}上的关系R={,,,},则R具有( ) A. 自反性 B. 反自反性 C. 传递性 D. 反对称性

7. 设A={1,2,3,4,5,6},B={a,b,c,d,e},以下哪一个关系是从A到B的满射函数( ) A. f={<1,a>,<2,b>,<3,c>,<4,d>,<5,e>} B. f={<1,e>,<2,d>,<3,c>,<4,b>,<5,a>,<6,e>} C. f={<1,a>,<2,b>,<3,c>,<4,a>,<5,b>,<6,c>} D. f={<1,a>,<2,b>,<3,c>,<4,d>,<5,e>,<1,b>} 8.设简单图G所有结点的度数之和为10,则G一定有() A.3条边B.4条边C.5条边 D.6条边 9.下列不.一定是树的是() A.每对结点之间都有通路的图 B.有n个结点,n-1条边的连通图 C.无回路的连通图D.连通但删去一条边则不连通的图 10.下列各图中既是欧拉图,又是哈密顿图的是()

《离散数学》题库及答案

《离散数学》题库与答案 一、选择或填空 (数理逻辑部分) 1、下列哪些公式为永真蕴含式?( A ) (1)?Q=>Q→P (2)?Q=>P→Q (3)P=>P→Q (4)?P∧(P∨Q)=>?P 答:在第三章里面有公式(1)是附加律,(4)可以由第二章的蕴含等值式求出(注意与吸收律区别) 2、下列公式中哪些是永真式?( ) (1)(┐P∧Q)→(Q→?R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q) 答:(2),(3),(4)可用蕴含等值式证明 3、设有下列公式,请问哪几个是永真蕴涵式?( ) (1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q (4)P∧(P→Q)=>Q (5) ?(P→Q)=>P (6) ?P∧(P∨Q)=>?P 答:(2)是第三章的化简律,(3)类似附加律,(4)是假言推理,(3),(5),(6)都可以用蕴含等值式来证明出是永真蕴含式 4、公式?x((A(x)→B(y,x))∧?z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。 答:x,y, x,z(考察定义在公式?x A和?x A中,称x为指导变元,A为量词的辖域。在?x A和?x A的辖域中,x的所有出现都称为约束出现,即称x为约束变元,A中不是约束出现的其他变项则称为自由变元。于是A(x)、B(y,x)和?z C(y,z)中y为自由变元,x和z为约束变元,在D(x)中x为自由变元) 5、判断下列语句是不是命题。若是,给出命题的真值。( ) (1)北京是中华人民共和国的首都。 (2) 陕西师大是一座工厂。 (3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。 (5) 前进! (6) 给我一杯水吧!

离散数学题库

离散数学 1.在自然推理系统P 中构造下面推理的证明: 前提:,,p q r q r s ?∨∨?→ 结论:p s →. 3设一阶逻辑公式 ((,)(()()))G x yP x y zQ z R x =???→?→ 试将G 化成与其等价的前束范式。 4.判断下面推理是否正确,并证明你的结论。 如果小王今天家里有事,则他不会来开会。 如果小张今天看到小王,则小王今天来开会了。 小张今天看到小王。所以小王今天家里没事。 5、构造下面推理的证明 前提: ))()(()),()()((x R x F x x H x G x F x ∧?∧→? 结论: ))()()((x G x R x F x ∧∧? 6用等值演算法和真值表法判断公式)())()((Q P P Q Q P A ??→∧→=的类型。 7分别用真值表法和公式法求(P →(Q ∨R ))∧(?P ∨(Q ?R ))的主析取范式 ,并写出其相应的成真赋值和成假赋值。 8用逻辑推理证明: 所有的舞蹈者都很有风度,王华是个学生且是个舞蹈者。因此有些学生很有风度。 9、设A ={?,1,{1}},B ={0,{0}},求P (A )、P (B )-{0}、P (B )⊕B 。 10、设X ={1,2,3,4},R 是X 上的二元关系,R ={<1,1>,<3,1>,<1,3>,<3,3>,<3,2>,<4,3>,<4,1>,<4,2>,<1,2>} (1)画出R 的关系图。 (2)写出R 的关系矩阵。 (3)说明R 是否是自反、反自反、对称、传递的。 11、集合X={<1,2>, <3,4>, <5,6>,… },R={<,>|x 1+y 2 = x 2+y 1} 。 (1)、证明R 是X 上的等价关系。 (2)、求出X 关于R 的商集。 12.分别画出下列各偏序集的哈斯图,并找出A 的极大元`极小元`最大元和最小元. (1)A={a,b,c,d,e} R ={,,,,,,}?I A . (2)A={a,b,c,d,e}, R ={,}?IA. 14A={a,b,c,d},R={,,,}为A 上的关系,利用矩阵乘法求R 的传递闭包,并画出t (R )的关系图。 15. 设>< ,G 是群, },|{x y y x G y G x x S =∈?∈=且对于,证明S 是G 的子群。 17 S=Q×Q,其中Q 为有理数集合,定义S 上的二元运算*, ?,∈S ,*=, (1)求<3,4>*<1,2>. (2)已知<-1,3>*=<-5,1>,求a,b. (3)*是可交换的吗?是可结合的吗? 18. 设R 为实数集,+为普通加法,?为普通乘法,是一个代数系统,*是R 上的一个二元运算,使得R y x ∈?,,都有 x*y=x+y+x ?y

相关文档
相关文档 最新文档