文档库 最新最全的文档下载
当前位置:文档库 › Lawson猜想的证明

Lawson猜想的证明

Lawson猜想的证明
Lawson猜想的证明

哥德巴赫 庞加莱猜想

哥德巴赫猜想(Goldbach Conjecture)大致可分为两个猜想(前者称"强"或"二重哥德巴赫猜想,后者称"弱"或"三重哥德巴赫猜想):1.每个不小于6的偶数都可以表示为两个奇素数之和;2.每个不小于9的奇数都可以表示为三个奇素数之和。考虑把偶数表示为两数之和,而每一个数又是若干素数之积。把命题"每一个大偶数可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b",那么哥氏猜想就是要证明"1+1"成立。1966年陈景润证明了"1+2"成立,即"任何一个大偶数都可表示成一个素数与另一个素因子不超过2个的数之和"。 这个问题是德国数学家哥德巴赫(C.Goldbach,1690-1764)于1742年6月7日在给大数学家欧拉的信中提出的,所以被称作哥德巴赫猜想(Goldbach Conjecture)。同年6月30日,欧拉在回信中认为这个猜想可能是真的,但他无法证明。现在,哥德巴赫猜想的一般提法是:每个大于等于6的偶数,都可表示为两个奇素数之和;每个大于等于9的奇数,都可表示为三个奇素数之和。其实,后一个命题就是前一个命题的推论。哥德巴赫(Goldbach ]C.,1690.3.18~1764.11.20)是德国数学家;出生于格奥尼格斯别尔格(现名加里宁城);曾在英国牛津大学学习;原学法学,由于在欧洲各国访问期间结识了贝努利家族,所以对数学研究产生了兴趣;曾担任中学教师。1725年,到了俄国,同年被选为彼得堡科学院院士;1725年~1740年担任彼得堡科学院会议秘书;1742年,移居莫斯科,并在俄国外交部任职。1729年~1764年,哥德巴赫与欧拉保持了长达三十五年的书信往来。在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题。他写道:"我的问题是这样的:随便取某一个奇数,比如77,可以把它写成三个素数(就是质数)之和:77=53+17+7;再任取一个奇数,比如461,461=449+7+5,也是三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。这样,我发现:任何大于5的奇数都是三个素数之和。但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是个别的检验。" 欧拉回信说:―这个命题看来是正确的‖。但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和,但是这个命题他也没能给予证明。不难看出,哥德巴赫的命题是欧拉命题的推论。事实上,任何一个大于5的奇数都可以写成如下形式:2N+1=3+2(N-1),其中2(N-1)≥4。若欧拉的命题成立,则偶数2N可以写成两个素数之和,于是奇数2N+1可以写成三个素数之和,从而,对于大于5的奇数,哥德巴赫的猜想成立。但是哥德巴赫的命题成立并不能保证欧拉命题的成立。因而欧拉的命题比哥德巴赫的命题要求更高。现在通常把这两个命题统称为哥德巴赫猜想。 哥德巴赫猜想貌似简单,要证明它却着实不易,成为数学中一个著名的难题。18、19世纪,所有的数论专家对这个猜想的证明都没有作出实质性的推进,直到20世纪才有所突破。1937年苏联数学家维诺格拉多夫(и.M.Bиногралов,1891-1983),用他创造的"三角和"方法,证明了"任何大奇数都可表示为三个素数之和"。不过,维诺格拉多夫的所谓大奇数要求大得出奇,与哥德巴赫猜想的要求仍相距甚远。关于偶数可表示为a个质数的乘积与b个质数的乘积之和(简称―a + b‖问题)进展如下: 1920年,挪威的布朗证明了―9 + 9‖。1924年,德国的拉特马赫证明了―7 + 7‖。

泰特猜想的延续 ——四色定理的书面证明

Pure Mathematics 理论数学, 2019, 9(8), 949-960 Published Online October 2019 in Hans. https://www.wendangku.net/doc/df11106717.html,/journal/pm https://https://www.wendangku.net/doc/df11106717.html,/10.12677/pm.2019.98121 Tait’s Conjecture Continue —The Proof of the Four-Color Theorem Wenzhen Han Jincheng Energy Co. Ltd., Jincheng Shanxi Received: Sep. 30th, 2019; accepted: Oct. 22nd, 2019; published: Oct. 29th, 2019 Abstract The four-color theorem also known as the four-color conjecture or the four-color problem is one of the world’s three largest mathematical conjecture. Although it has been proved on computer, which owes to its powerful computing ability, after all, it isn’t strictly reasoned mathematically. Lots of math enthusiasts devote themselves to studying the problem around the globe. In this pa-per, the new concepts of two-color dyeable continuous line are put forward. A new method is used to prove that the 3-coloring of 3-regular planar graph lines is equivalent to the 4-coloring of maximal graph points. It is also proved that the 3-coloring of 3-regular planar graph lines is in-evitably possible. Thus, a universal four-color coloring method for vertices of any maximal graph is given. Keywords Four Colors Enough, Two-Color Dyeable Continuous Line, 3-Regular Plane, Maximum Graph, Even Ring Elimination Method 泰特猜想的延续 ——四色定理的书面证明 韩文镇 晋城能源有限责任公司,山西晋城 收稿日期:2019年9月30日;录用日期:2019年10月22日;发布日期:2019年10月29日 摘要 四色定理,又称四色猜想、四色问题,是世界三大数学猜想之一。计算机证明虽然做了百亿次判断,终

数学猜想

数学猜想 四色猜想(三大数学难题之三) 世界近代三大数学难题之一。四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。 1852年10月23日,他的弟弟就这个问题的证明请教他的老师、著名数学家德.摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密尔顿爵士请教。哈密尔顿接到摩尔根的信后,对四色问题进行论证。但直到1865年哈密尔顿逝世为止,问题也没有能够解决。 1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。 11年后,即1890年,数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题:先辈数学大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路。 进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。1913年,伯克霍夫在肯普的基础上引进了一些新技巧,美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,有人从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。四色猜想的计算机证明,轰动了世界。它不仅解决了一个历时100多年的难题,而且有可能成为数学史上一系列新思维的起点。不过也有不少数学家并不满足于计算机取得的成就,他们还在寻找一种简捷明快的书面证明方法。

四色猜想的证明

四色猜想的证明 吴道凌 (广东省广州市,510620) 摘要:四色猜想至今未得到书面证明。根据其定义的国家概念和着 色要求,揭示了无限平面或球面上任意国家及其邻国的构成和着色规 律,从而给四色猜想一个书面证明。 关键词:四色;猜想;证明;国家;着色 中图分类号:O157.5 文献标识码:A 1852年,英国学者弗南西斯·格思里(Francis Guthrie)提出,“每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色”,这就是后来数学上著名的四色猜想。对此猜想,一百多年来曾有无数学者予以研究,但人工验证均无功而返。1976年,美国数学家阿佩尔(Kenneth Appel)和哈肯(Wolfgang Haken)利用电子计算机,作了大量判断,对四色猜想进行了机器证明,但这一证明不能由人工直接验证,人们必须对计算机编译的正确性以及运行这一程序的硬件设备充分信任,因此并不被人们普遍接受。 本文拟根据四色猜想定义的国家概念和着色要求,研究无限平面或球面上国家的构成及其着色规律,寻找对四色猜想的书面证明。 1 四色猜想相关定义及表述方法 四色猜想所指的国家,是指连续的区域,可为单连通区域,也可为多连通区域,不连续的区域不属一个国家。共同边界指相邻国家有无数个共同点,四个或四个以上的国家不交于一点,或者说,这种交点不认为是共同边界, 只有这种交点的国家不需区分着色。 四色猜想并未限制地图范围,地图可定义在球面或无限平面 上。在球面上的任何国家,将存在一个外边界,由一条简单闭曲线 构成,在无限平面上的国家,一般也由一条简单闭曲线构成外边界, 个别国家也许在某些区间不存在边界(即区域无限延伸),其外边 界将由若干段曲线构成,对于这种情况,我们可在其无限远处虚拟 若干个国家若干段边界,与实在的若干段边界构成一条简单闭曲线 边界,这种做法实际上提高了这些国家的着色要求,因此不影响本 命题的论证。如为单连通区域,国家里边将不存在内边界,如为多 连通区域,国家里边将存在若干由简单闭曲线构成的内边界。因此,为使命题具有普遍性,把国家定义为具有一个外边界和若干内边界的区域,每 一边界均为该国与若干邻国的共同边界构成的简单闭曲线,如图1 示。下面把构成一条这种共同边界闭曲线的若干邻国称为一个邻国 圈。 用小圆圈表示邻国,两国相邻时,用线条连接两个小圆圈, 一个邻国在共同边界多处出现时,各处分别用小圆圈表示,并用线 条连接各处表示连通。把一个国家表示为由其若干邻国圈构成的闭 合圈围闭的区域,如图2示。其中,外闭合圈之外,一些邻国可能 跨越闭合圈上的一个或多个邻国与其它一个或多个邻国相邻,一些 邻国也可能多处出现在闭合圈上,这些情况将使闭合圈外存在若干

两个猜想不等式的证明

两个猜想不等式的证明 宋 庆 (南昌大学附中,江西 330047) 文[1]提出了四个猜想不等式: 22 2 1222a b c a b c ++≥+++; (1) 2221 111124124124a a b b c c ++≥-+-+-+; (2) 2221222b c a a b c ++≥+++; (3) 2221111 3232322a b b c c a ++≤++++++。 (4) 其中,,,a b c 是正实数,且满足1abc =。 文[1]、[2]分别证明了不等式(1)、(2)。本文旨在证明不等式(3)、(4) 证明 文末,笔者给出 猜想 若,a b 为满足21a b +=的正数,则 2 3263a b a b +≥--+2 .213a b a b +≥-- 参考文献 [1] 宋庆.从一个简单的不等式命题说开去. 中学数学研究,2010(4) [2] 张 . 一个不等式猜想的肯定性证明与推广. 中学数学研究, 2011(1) [3] 张 .一个不等式猜想的解决.中学数学研究, 2011(4)

[4] 宋庆. 一个新的代数不等式的发现. 中学数学研究, 2007(7) [5] 宋庆.几个有趣的双边不等式.数学通讯, 2001(20) [6] 宋庆.一组三角不等式的简单证明.数学通报, 1997(7) [7] 宋庆.三个新发现的三角不等式.中学数学教学参考,1995(11) [8] 宋庆.Hayashi 不等式的推广.中学数学教学参考,1994(9) [9] 宋庆.一个三角不等式的加强 湖南数学通讯, 1989(4) (本文刊载于《中学数学研究》2010年第4期)数学是可以在纸上思考出来的,但这种思考方式的根本,必须要从观察开始才行。《走向IMO -数学奥林匹克试题集锦》(.华东师大出版社,2005)有: 命题 若,a b 为正实数, 则 22111(1)(1)1a b ab +≥+++. 但肯寻诗便有诗,灵犀一点是吾师。夕阳芳草寻常物,解用都为绝妙词。笔者在文[1]中给出了以下简洁 证明: ()(1)a b ab ++因为 222(1)(1)(1)b a a b b a =++-≥+, 故21(1)()(1)b a a b ab ≥+++,同理21(1)()(1) a b a b ab ≥+++,两式相加,便知原不等式成立。 天下难事,必做于易,必做于细。但把简单的东西做好是一件不容易的事。众所周知,看的结果常常依赖于你怎么去看。你能不能观察眼前的现象,取决于运用什么样的理论。理论决定你到底能够观察到什么。用自己的眼睛去看别人见过的东西,在别人司空见惯的东西上能够发现出美来,这就更不是一件容易的事。由命题,可得2005年IMO 中国国家集训队测试题,即 定理1 设,,,a b c d 是正实数,且满足d 1abc =, 求证:222211111(1)(1)(1)(1d) a b c +++≥++++. 证明: 因为 22111(1)(1)1a b ab +≥+++,22111(1)(1)1c d cd +≥+++,所以 22221111(1)(1)(1)(1d)a b c +++++++11111111 ab ab cd ab ab ≥+=+=++++。 独创性是把旧的、很早就已知的或者人人都视而不见的事物当作新事物观察,它不在于生造出一些悖于常理的新词,而在于巧妙使用旧词。旧词足以表达一切,旧词对行家来说已经足够了。四个字母成双,三个字母怎么办呢?文[1]巧妙地解决了这个问题。 定理2 已知,,a b c 是正实数,且满足1abc =,

最新中国著名数学家资料

中国著名数学家资料 工作到最后一天的华罗庚(1910—1985) 1985年6月12日,在东京一个国际学术会议上,75岁的华罗庚教授用流利的英语,作了十分精彩的报告。当他讲完最后一句话,人们还在热烈鼓掌时,他的身子歪倒了。 华罗庚出生于江苏省金坛县一个小商人家庭,从小喜欢数学,而且非常聪明。一天老师出了一道数学题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”“23!”老师的话音刚落,华罗庚的答案就脱口而出,老师连连点头称赞他的运算能力。可惜因为家庭经济困难,他不得不退学去当店员,一边工作,一边自学。18岁时,他又染上伤寒病,与死神搏斗半年,虽然活了下来,但却留下终身残疾——右腿瘸了。 1930年,19岁的华罗庚写了一篇《苏家驹之代数的五次方程不成立的理由》,发表在上海《科学》杂志上。清华大学数学系主任熊庆来从文章中看到了作者的数学才华,便问周围的人,“他是哪国留学的?在哪个大学任教?”当他知道华罗庚原来是一个19岁的小店员时,很受感动,主动把华罗庚请到清华大学。华罗庚在清华四年中,在熊庆来教授的指导下,刻苦学习,一连发表了十几篇论文,后来又被派到英国留学,获得博士学位。他对数论有很深的研究,得出了著名的华氏定理。 抗日战争时期,华罗庚白天在西南联大任教,晚上在昏暗的油灯下研究。在这样艰苦的环境中,华罗庚写出了20多篇论文和厚厚的一本书《堆垒素数论》。他特别注意理论联系实际,1958年以后,他走遍了20多个省市自治区,动员群众把优选法用于农业生产。记者在一次采访时问他:“你最大的愿望是什么?”他不加思索地回答:“工作到最后一天。”他的确为科学辛劳工作到最后一天,实现了自己的诺言。

简洁破解四色猜想——“1+3”证明与“3+1”充要条件模型证明——

简洁破解四色猜想 ——“1+3”证明与“3+1”充要条件模型证明—— 李传学 四色猜想与费马猜想、哥德巴赫猜想,是数学界三大难题。本文利用“1+3”、“3+1”链锁思维方式,并结合计算机逻辑判断方式,给予地球四色猜想的有、且只有数学方法与应用方法的两种证明。并在实践中,使链锁着色,直至组成四色猜想的(△)网状平面整(总)体地图。 一、四色猜想简洁证明的提出。 随着计算机运算速度的加快、人机对话智能的出现,极大加快了对四色猜想研究、证明的步伐。1976年6月,美国哈肯与阿佩尔编制程序,利用1200个小时,分别在两台计算机上,作了100亿次判断,终于完成了四色猜想的证明。到目前为止,仍是世界上唯一被认可的证明方法。但是,由于计算机证明方法过程深长,不符合人的逻辑思维判断过程,缺乏简洁性,无法令人信服。 二、“四色”是地球“四方八位”的客观存在。 “四方八位”是个动态概念,存在于“天、地、人合一”的地球万物运动的整个过程中。同样,数学界三大难题之一的四色猜想,也离不开这一客观规律。 地球,蕴育了万物。天圆地方、“四方八位”、四面八方、东西南北、五湖四海是人类认识地球的思维方式。远在史前人类整体文明时期,就有文物记载了地球上有关“四方八位”的许多概念。如半坡人鱼盆、人网盆、含山玉版、澄湖陶罐、八角星陶豆、良渚陶璧、古埃及金字塔,以及其他图形、符号记载的伏羲八卦图、彝族八卦图、河图、洛书、五行属性,也都应用了“四方八位”概念。 四色绚丽的地球生生不息,是“天人合一”的赋予。地球的天圆地(四)方是阴阳学说的核心和精髓,又是阴阳学说的具体体现,具有朴素的辩证法色彩,是古代人类认识世界的思维方式。 阴阳五行中的五色、四方位:即,木有青、东,金有白、西,火有红、南,水有黑、北,土有黄、中,以及罗盘定位、经纬仪、四季、纳米四大光波(红、蓝、绿、黄)、四色光谱仪都与地球上的“四方八位”寓意紧密相关。当然,“四色猜想”也不例外,也只能有、且只有在地球图上的客观存在。 三、四色猜想的数学语言定义。 任何一张平面地图,只要用四种不同颜色就能使具有共同边界的国家,着上不同颜色,称之为四色猜想。 四色猜想的数学语言定义:将平面任意地细分为不相重叠的区域,每一区域总可以用1、2、3、4这四个数字之一来进行标记,且不会使相邻的两个区域得到相同的数字。这里的相邻区域,是指有一整段(非点)边界是公共的边界(注:据网络“科普中国”)。 四、四色猜想的数学证明。

哥德巴赫猜想的证明思路

哥德巴赫猜想的证明方法 引言 数论之位数运算,一个新的的概念,一个新的方向,一个新的课题。希望广大数学爱好者能参加到这个课题的研究中,从中发现更多的理论,解决更多的问题。 目录 一、哥德巴赫猜想的证明思路 1、哥德巴赫猜想证明引入的一些符号代表含义 2、素数定理代数表达式 3、哥德巴赫猜想的证明 第一章哥德巴赫猜想的证明思路 通过证明一任意大偶数可拆分2素数之和的数量呈增长趋势来证明哥德巴赫猜想成立 一、哥德巴赫猜想证明引入的一些符号代表含义 1、n,(n≥1;n∈自然数) 2、Pn≈π(x)任意正整数n包含的素数数量 3、Pn1,(0,m)区间内素数数量 4、Pn2,(m,2m)区间内素数数量 5、Pm,任意正整数n包含的素数类型数量 5、(γ,γ=-0.0674243197727122)素数分布系数 6、(λ,λ=0.615885*********)素数类型中素数与伪素数等差比例

系数。 7、logn,以n为底的对数 8、H,小于等于n的所有素数类型的组合数量 9、H1,小于等于n的素数类型组合数量 10、Hn,取值为n时可拆分素数对数量 11、HAL,偶数类型1 12、HBL,偶数类型2 13、HCL,偶数类型3 14、HDL,偶数类型4 15、(m,2m 2m=n)相对区间 16、Hnx=Pn2*(Pn2*2+1)*H1/H,相对区间内两素数组合下限 17、HALx,偶数类型1组合下限 18、HBLx,偶数类型2组合下限 19、HCLx,偶数类型3组合下限 20、HDLx,偶数类型4组合下限 21、Hns=Pn1*(Pn1*2+1)*H1/H,相对区间内两素数组合上限 22、HALs,偶数类型1组合上限 23、HBLs,偶数类型2组合上限 24、HCLs,偶数类型3组合上限 25、HDLs,偶数类型4组合上限 二、素数定理代数表达式 1、Pn=π(x)≈(0.8n/3)/{γ+λ*(logn-2)+1}

一个不等式猜想的证明及推广

一[收稿日期]2018G03G11;一[修改日期]2018G04G06一[基金项目]国家自然科学基金(61370177);广州市科学技术局项目(201707010227 )一[作者简介]黄辉(1968-),男,博士,副教授,从事偏微分方程数值解二图像处理与模式识别研究.E m a i l :x x h u a n g h u i @126.c o m 第34卷第3期大一学一数一学V o l .34,?.32018年6月C O L L E G E MA T H E MA T I C S J u n .2018 一个不等式猜想的证明及推广 黄一辉(广东财经大学统计与数学学院,广州510320 )一一[摘一要]针对?数学通报?2003年9月号第1454问题, 利用数学分析的方法证明基于该问题的一个不等式猜想.在此基础上,给出其更一般的推广形式及证明,并指出?绵阳师范学院学报?2014年11月康晓蓉文中错误.最后,举例说明其应用.[关键词]不等式猜想;推广;证明;应用[中图分类号]O 172一一[文献标识码]C 一一[文章编号]1672G1454(2018)03G0099G04 1一引一一言 ?数学通报?2003年9月号第1454问[1]:设a ,b >0, 求证:a a 2+3b 2+b b 2+3a 2?1. 在文献[2]中,康晓蓉提出一个猜想及其等价命题不等式1:设a ,b ,c ??+,则a a 2+4(b 2+c 2)+b b 2+4(c 2+a 2)+c c 2+4(a 2+b 2)?1,(1 )其中等式成立当且仅当a =b =c 成立.不等式2:设x ,y ,z ??+且x +y +z =1,则14x -3+14y -3+14z -3?1,(2 )其中等式成立当且仅当x =y =z =13成立.2一等价命题的证明及应用 定理1一在题设条件下不等式(1)与不等式(2 )等价.证一a a 2+4(b 2+c 2)+b b 2+4(c 2+a 2)+c c 2+4(a 2+b 2) ?1一?11+4(a 2+b 2+c 2a 2-1)+11+4(a 2+b 2+c 2b 2-1)+11+4(a 2+b 2+c 2c 2-1)?1.

盘点我国古今伟大的数学家

盘点我国古今伟大的数学家 1、祖冲之,字文远[公元429-500年] 祖籍范阳郡道县[今河北省涞水县北]人。他生活在南北朝时代,出身于天文、历算世家,是刘宋王朝奉朝请祖朔之的儿子。他历任徐州从事吏、公府参军、娄县令、竭者仆射、长水校尉等职。 祖日桓,祖冲之的儿子,字景烁,生卒年代无可考。 祖冲之的杰出成就主要在数学、天文历法和机械三方面,他研究过《九章算术》及刘徽注。在天文历法方面,祖之创制了《大明历》,最早把岁差引进历法。后经其子祖日桓向梁武帝两次提出修改历法,说可以纠正何承天元嘉历法的疏远,政府终于公元510年起,用大明历法推算历书。 祖冲之父子的数学成就十分丰富,《缀术》是他们的代表作,唐初被列入《算经十书》之一,可惜,现在已失传。在其它的著作中,我们可知他们的数学成就有圆周率、球体积和开带从立方等三个方面。祖之提出了3.1415926<π<3.1415927,更得出了圆周率的密率——355/113[现称祖率]比西方早1000年。祖日桓亦解决了魏晋时期刘徽未解决的问题——计算球体的体积,其中运用到「幂势既同,则积不容异」的原理[现称刘祖原理或祖日桓原理]该原理在西方直到十七世纪才由意大利数学家卡瓦列利[bonaventuracavalieri 公元1598-1647年]发现,比祖日桓晚一千一百多年。

祖冲之亦曾造指南车、欹器、千里船、水碓磨等机械,经过试验都有成效。 2、张衡[公元78-139年] 字平子,东汉南阳西鄂[今河南南召]人。历任郎中、太史令、尚书郎。富文采、善机巧、尤精天文历算。创制水运浑象和地动仪,着有《灵宪》、《算罔论》等。在他的《灵宪》中取用π=730/232[3.1466],又在他的球体积公式中取用π= [3.162],又曾应用重差术于他的宇宙模型之中。 3、刘徽[约公元3世纪] 刘徽注《九章算术》,同时又撰有《重差》一卷,《重差》后来印成单行本改称为《海岛算经》,在注文中,刘徽用语言来讲清道理,用图形来解释问题[析理以辞,解体用图]。他不是只停留在对《九章》的注释上,而是更上一层楼,在注释的同时提出了许多创造性见解,例如为阐述几何命题,证明几何定理,创造了「以盈补虚法」,更为计算圆周率提出了「割圆术」:刘徽从最简单的正六边形开始,由正192边形的面积得到π=151/50或3.14。不过他更进一步算出3.14 <π<3.14 ,后来在另一个地方,刘徽用他的方法,继续演算到3072边形,并且得到他的最佳值——一个相当于3.14159的数。 「割圆术」是我国数学史上首次将极限概念用于近似计算。此外,刘徽的「齐同术」和「方程新术」等,是对《九章算术》方法的进一步阐述与补充。在注释《九章》的同时,刘徽深感有创立新的测量方法的必要,于是提出了重差术,撰《重差》一卷。

验证哥德巴赫猜想

例7-3 验证“哥德巴赫猜想” ?“哥德巴赫猜想”是数论中的一个著名难题,200多年来无数数学家为其呕心沥血,却始终无人能够证明或伪证这个猜想。 ? ?“哥德巴赫猜想”表述为:任何一个大于等于4的偶数均可以表示为两个素数之和。 ? ?1742年法国数学爱好者哥德巴赫在给著名数学家欧拉的信中提出“哥德巴赫猜想”问题。 问题的分解 求解第一步提出问题: 验证哥德巴赫猜想 ?第二步设一上限数M,验证从4到M的所有偶数是否能被分解为两个素数之和。 1. 定义一个变量X,初值为4。 2. 每次令其加2,并验证X能否被分解为两个素数之和,直到 X不小于M为止。

验证哥德巴赫猜想(续一) 第三步如何验证X是否能被分解为两个素数之和。 1.从P=2开始; 2.判别X—P是否仍为素数: 3.若是,打印该偶数的分解式。 4.否则,换更大的素数,再继续执行2.。

如此循环,直到用于检测的素数大X/2且X 与其之差仍不是素数,则打印“哥德巴赫猜想”不成立。 验证哥德巴赫猜想(续二) 第四步生成下一个素数。 (1)当前素数P加1 (2)判别P是否是素数; (3)若是素数,返回P;

(4)否则,P加1,继续执行( 2)。 验证哥德巴赫猜想(续三) ?经过四步分解精化,将“验证哥德巴赫猜想”这个命题已经分解为计算机可以求解的数学模型了。 ? ?剩下的问题就是编程求解了。如何编程是程序设计课程要解决的问题。 哥德巴赫猜想算法分析

1) 用“筛选”法生成素数表PrimeList[M]。先在素数表中产生0到M-1的所有自然数,然后将已确定的所有素数的倍数置0(求模取余为0)。 2,3,5,7,11,13,17,19,21,23,29,31... 2) 这样一来,素数表中有许多0,为找下一个素数,要跳过这些0。 3) 分解0到M-1之间的所有偶数; ①循环(x

研究性学习内容

1.华罗庚 自学成材的天才数学家,中国近代数学的开创人!! 在众多数学家里华罗庚无疑是天分最为突出的一位!! 华罗庚通过自学而成为世界级的数学家,他是解析数论、矩阵几何学、典型群、自守函数论、多复变函数论、偏微分方程、高维数值积分等广泛数学领域的中都作出卓越贡献。在这些数学领域他或是创始人或是开拓者! 从某种意义上他也是位传奇数学家,一生最高文凭是初中,早年在美国取得巨大成就后,闻知新中国成立后,发出"粱园随好,非久居之处"呼吁在国外的科学家学成回去报效祖国,跟他同时代在闻讯回国的科学家,许多都为中国做出了巨大贡献,其中最著名的有: 导弹之父钱学森:为中国火箭,导弹做出贡献 两弹元勋邓稼先:为中国创立了原子弹,氢弹等; 回国后华罗庚开创了中国的近代数学,并建立了中科院数学研究所,培养了大批数学家如陈景润,王元等号称华学派,后来致力于应用数学,将数学应用于工业生产,推广"优选法"和"统筹法"! 由于华罗庚的重大贡献,有许多用他的名字命名的定理,如华引理、华不等式、华算子与华方法。 另外华罗庚还被列为芝加哥科学技术博物馆中当今世界88位数学伟人之一。 美国著名数学家贝特曼著文称:“华罗庚是中国的爱因斯坦,足够成为全世界所有著名科学院院士”。 2.陈省身----微分几何之父 陈省身,汉族,美籍华人,国际数学大师、著名教育家、中国科学院外籍院士,“走进美妙的数学花园”创始人,20世纪世界级的几何学家。少年时代即显露数学才华,在其数学生涯中,几经抉择,努力攀登,终成辉煌。他在整体微分几何上的卓越贡献,影响了整个数学的发展,被杨振宁誉为继欧几里德、高斯、黎曼、嘉当之后又一里程碑式的人物。曾先后主持、创办了三大数学研究所,造就了一批世界知名的数学家。 美国国家科学院院士(1961年), 第三世界科学院创始成员(1983年), 英国皇家学会国外会员(1985年), 意大利国家科学院外籍院士(1988年), 法国科学院外籍院士(1989年)。 1994年当选为中国科学院首批外籍院士。 现代微分几何的开拓者,曾获数学界终身成就奖----沃尔夫奖! 他对整体微分几何的卓越贡献,影响着半个多世纪的数学发展。 他创办主持的三大数学研究所,造就了一批承前启后的数学家。 在微分几何领域有诸多贡献,如以他命名的"陈空间","陈示性类","陈纤维从" 一位数学家说道“陈省身就是现代微分几何。”这也许是对他的最好评价!! 3.中国现代数学家——苏步青 苏步青,浙江平阳人,出生于1902年9月,中国现代杰出的数学家。从小的时候起,苏步青就立下大志。中学毕业后赴日本深造。先入东京高等工业学校,后转入日本东北帝国大学数学系,1927年毕业之后进入该校研究生院,1931年获理学博士学位。

4、现代物理学对于统一场论研究的基本思路

4、现代物理学对于统一场论研究的基本思路 1968 年,一个重大的历史时刻提前一个世纪到来了,意大利物理学家维尼基亚诺随手翻阅了一本数学书,找到了数学家欧拉于1771 年研究过的一条函数,他把它应用到“雷吉轨迹”的问题做了计算,结果发现它能很好地描述核子中许多强相对作用力的效应。不久,南部阳一郎、萨思金和尼尔森三人分别证明了维尼基亚诺模型在描述粒子的时候,它等效于描述一根一维的“弦”。这是量子研究的一个重大突破。量子向来只被看成是粒或点,现在却被描述成为一根“弦”了。这个偶然的发现把量子的研究步伐推进了一个世纪。因按正常的科研步伐,这个问题要到21 世纪中叶才可能发现。到了1984年,施瓦茨和格林取得了一个伟大的突破,也是第一次超弦革命。他们对量子弦的描述图像是:任何粒子其实都不是传统意义上的点,而是开放或闭合(头尾相接而成环)的弦,它有十维,其中六维蜷缩在大一点的另一头,人类只能感知四维,这四维就是我们的生活时空。1995 年爱德华·威顿完善了超弦的理论。这时,爱因斯坦的统一场论又出现新的转机。如果人们能找出控制超弦的那种最终的力,统一场论就能成立。 最近20年来统一场论的研究主要有四条道路: 第一条道路即所谓的“弦论”。大约在公元前387年,希腊哲学家柏拉图认为,几何学研究是通向认识宇宙本质的道路。卡拉比猜想是在1954年召开的国际数学家大会上,意大利几何学家卡拉比提出:在封闭的空间中,有无可能存在没有物质分布的引力场。这就是著名的卡拉比猜想。卡拉比认为自己的猜想是正确的,但是,包括他自己在内,没有人能证实。然而,几乎所有的数学家都认为,卡拉比是错的,包括年轻的丘成桐在内。在1973年初,丘成桐花了相当多的时间,证明卡拉比猜想是错的;几个月后丘成桐认为自己最终得出了卡拉比猜想是错误的证明时,一个有顶级几何学家参加的大型会议1973年8月在斯坦福大学召开,丘成桐就将自己的想法告诉了卡拉比。当天晚上7点卡拉比带来了几个来自宾夕法尼亚州的同事。丘成桐讲了大约一个小时,大家也认为可以停止一相情愿地认为卡拉比是正确的想法。 但在当年10月,卡拉比和丘成桐都发现其证明思想有一些问题。于是,丘成桐开始寻找别的例子来证明卡拉比是错的。两个星期后,仍发现证明总会在最后崩溃……这时,丘成桐才对卡拉比猜想有更深刻的理解,认为它应该是正确的;也开始发明新工具,来理解卡拉比猜想。1975年丘成桐最终解决了整个问题,然后到宾夕法尼亚大学去见卡拉比。他们又一起再到纽约大学找数学家路易斯·尼伦伯格讨论这个问题。之后几个月里,丘成桐写了证明卡拉比猜想的论文。这一年,丘成桐27岁。卡拉比猜想的证明,让丘成桐一举

历届菲尔兹奖得主汇总

F i e l d s(菲尔兹)奖 菲尔兹奖(Fields Medal)是一个在国际数学联盟的国际数学家大会上颁发的奖项。每四年颁奖一次,颁给有卓越贡献 3、A.Selberg(赛尔伯格)(1917--) 美籍挪威数学家。在筛法理论、素数定理、黎曼假设、弱对称黎曼空间中的调和分析、不连续群及其对于狄里克雷级数的应用、连续群的离子群等领域有突出贡献,在数论学界有崇高声望。1950年在第11届国际数学家大会上获奖。 没有任职 4、L.Schwartz(施瓦尔茨)(1915--2002) 法国数学家。创立了广义函数论,在泛函分析、概率论、偏微分方程等领域均有突出工

作。1950年在第11届国际数学家大会上获奖。 没找到任职,但政治上活跃。 5、K.Kodaira(小平邦彦)(1915--1997) 日本数学家。推广了代数几何的一条中心定理——黎曼-罗赫定理,证明了狭义卡勒流形是代数流形,得到了小平邦彦消没定理,在代数几何和微分方程等多个领域都有突出工作。1954年在第12届国际数学家大会上获奖。 1971-1973年小平邦彦任东京大学理学院院长(在他缺席的情况下选上的)。1983年他又毅然接下了1990年国际数学家大会营运委员会主席的职位。 不适合这个工作。在1987—1990任国际数学联盟副主席。 10、https://www.wendangku.net/doc/df11106717.html,nor(米尔诺)(1931--) 美国数学家。证明了微分拓扑中7维球面上存在多种微分结构,否定了庞加莱主猜想。1962年在第14届国际数学家大会上获奖。 1963—1966年任数学系主任,曾担任美国数学会副主席,从1989年起任纽约州立大学石溪分校数学研究所所长。 11、M.F.Atiyah(阿蒂亚)(1929--)

证明四色猜想

证明四色猜想 本文用递推的方法,分别用点和线代替平面图形及平面图形相交,则三个平面图形两两相交时,构成一个三角形的封闭空间。通过讨论第四个点与此三角形的关系,简明地证明了四色猜想。 四色猜想最先是由一位叫古德里的英国大学生提出来的。高速数字计算机的发明,促使更多数学家对“四色问题”的研究。就在1976年6月,哈肯和与阿佩尔合在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。不过不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法。直到现在,仍有不少数学家和数学爱好者在寻找更简洁的证明方法。 证明 将平面图形抽象极限成成点或线,当然在这一点或线的基础上可以任意发出一些线(这些射线可以任意扩展为面)。这些射线都属于这个点。 首先,A,B两个面相交看成点A发出的射线和点B发出的射线相遇于点Pab,如图1。第三点C要和A,B两两相交,则构成一个三角形ABC的封闭空间,如图2。 这时点D要和A、B、C两两相交则有两种情况: (1)D在ABC之内和ABC相交 当D和和A、B、C中任意两者相交都将构成新封闭三角形。第五点E继续相交时就和D与A、B、C相交的情况一样。 假设D和A,B,C分别相交于Pad,Pbd和Pcd。Pbd在P到B点间,Pad 在Pac到A点间,Pcd在Pac到C点间。这样即使A,B,C内部还有剩余空间也被分成了3部分如图3。尽管这三个图形不一定都是三角形但都是封闭的,都可以简化成三角形。所以无论第五点E在哪部分都是点与三角形关系。(见图3) (2)D在ABC之外和ABC相交 D可以完全将ABC包围或者将ABC一部分包围。但无论怎样ABC三者至少有一者完全在D的图形内。 若D将ABC一部分包围。那么ABC至少有一点完全被D包围。如图5 若E在D外就不能和A、B同时相交。

哥德巴赫猜想分析教案

哥德巴赫猜想分析教案 世界近代三大数学难题之一。哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现, 每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。 公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出 了以下的想法: (a)任何一个>=6之偶数,都可以表示成两个奇质数之和。 (b)任何一个>=9之奇数,都可以表示成三个奇质数之和。 这就是着名的哥德巴赫猜想。欧拉在6月30日给他的回信中说,他相信这个猜想是 正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。从费马提出这个猜想至今,许多数学家都不断努力 想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例 如:6=3+3,8=3+5,10=5+5=3+7,12=5+7,14=7+7=3+11,16=5+11,18=5+13,....等等。有人对 33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但验格的数学证明尚待数学家的努力。 从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没 有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。到了20世 纪20年代,才有人开始向它靠近。1920年、挪威数学家布爵用一种古老的筛选法证明, 得出了一个结论:每一个比大的偶数都可以表示为(99)。这种缩小包围圈的办法很管用, 科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个 数里都是一个质数为止,这样就证明了“哥德巴赫”。 目前最佳的结果是中国数学家陈景润於1966年证明的,称为陈氏定理 (Chen‘sTheorem)“任何充份大的偶数都是一个质数与一个自然数之和,而後者仅仅是两 个质数的乘积。”通常都简称这个结果为大偶数可表示为“1+2”的形式。 1920年,挪威的布朗(Brun)证明了“9+9”。 1924年,德国的拉特马赫(Rademacher)证明了“7+7”。 1932年,英国的埃斯特曼(Estermann)证明了“6+6”。 1937年,意大利的蕾西(Ricei)先後证明了“5+7”,“4+9”,“3+15”和“2+366”。1938年,苏联的布赫夕太勃(Byxwrao)证明了“5+5”。 1940年,苏联的布赫夕太勃(Byxwrao)证明了“4+4”。

四色问题又称四色猜想

四色问题又称四色猜想,是世界近代三大数学难题之一。 四色问题的内容是:“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。”用数学语 言表示,即“将平面任意地细分为不相重迭 的区域,每一个区域总可以用1,2,3,4这 四个数字之一来标记,而不会使相邻的两个 区域得到相同的数字。”(右图) 这里所指的相邻区域,是指有一整段边界是公共的。如果两个区域只相遇于一点或有限多点,就不叫相邻的。因为用相同的颜色给它们着色不会引起混淆。 四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯·格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。”这个现象能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。 1852年10月23日,他的弟弟就这个问题的证明请教了他的老师、著名数学家德·摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家汉密尔顿爵士请教。汉密尔顿接到摩尔根的信后,对四色问题进行论证。但直到1865年汉密尔顿逝世为止,问题也没有能够解决。

1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。 肯普的证明是这样的:首先指出如果没有一个国家包围其他国家,或没有三个以上的国家相遇于一点,这种地图就说是“正规的” (左图)。如为正规地图,否则为非正规地图(右 图)。一张地图往往是由正规地图和非 正规地图联系在一起,但非正规地图所 需颜色种数一般不超过正规地图所需的颜色,如果有一 张需要五种颜色的地图,那就是指它的正规地图是五色 的,要证明四色猜想成立,只要证明不存在一张正规五色地图就足够了。 肯普是用归谬法来 证明的,大意是如果有一 张正规的五色地图,就会存在一张国数最少的“极小正规五色地图”,如果极小正规五色地图中有一个国家的邻国数少于六个,就会存在一张国数较少的正规地图仍为五色的,这样一来就不会有极小五色地图的国数,也就不存在正规五色地图了。这样肯普就认为他已经证明了“四色问题”,但是后来人们发现他错了。

相关文档
相关文档 最新文档