文档库 最新最全的文档下载
当前位置:文档库 › 负荷计算方法

负荷计算方法

负荷计算方法
负荷计算方法

34-3-4 施工供电设施

34-3-4-1 确定供电数量

建筑工地临时供电,包括动力用电与照明用电两种,在计算用电量时,从下列各点考虑:

1.全工地所使用的机械动力设备,其他电气工具及照明用电的数量; 2.施工总进度计划中施工高峰阶段同时用电的机械设备最高数量; 3.各种机械设备在工作中需用的情况。 总用电量可按以下公式计算:

)cos (10.1~05.14433221

1

∑∑∑∑+++=P K P K P K P

K P ?

(34-57)

式中 P ——供电设备总需要容量(kV A );

P 1——电动机额定功率(kW ); P 2——电焊机额定容量(kV A ); P 3——室内照明容量(kW ); P 4——室外照明容量(kW );

cosφ——电动机的平均功率因数(在施工现场最高为0.75~0.78,一般为

0.65~0.75);

K 1、K 2、K 3、K 4——需要系数,参见表34-39。

需要系数(K 值) 表34-39

单班施工时,用电量计算可不考虑照明用电。

各种机械设备以及室内外照明用电定额见表34-40~表34-42。

由于照明用电量所占的比重较动力用电量要少得多,所以在估算总用电量时可以简化,只要在动力用电量(即公式(34-57)括号中的第一、二两项)之外再加10%作为照明用电量即可。

34-3-4-2 选择电源

1.选择建筑工地临时供电电源时须考虑的因素

施工机械用电定额参考资料表34-40

①为各持续率时功率其额定持续率(kV A)。

室内照明用电定额参考资料表34-41

室外照明用电参考资料表34-42

(1)建筑工程及设备安装工程的工程量和施工进度;

(2)各个施工阶段的电力需要量;

(3)施工现场的大小;

(4)用电设备在建筑工地上的分布情况和距离电源的远近情况;

(5)现有电气设备的容量情况。

2.临时供电电源的几种方案

(1)完全由工地附近的电力系统供电,包括在全面开工前把永久性供电外线工程做好,设置变电站;

(2)工地附近的电力系统只能供给一部分,尚需自行扩大原有电源或增设临时供电系统以补充其不足;

(3)利用附近高压电力网,申请临时配电变压器;

(4)工地位于边远地区,没有电力系统时,电力完全由临时电站供给。

3.临时电站

一般有内燃机发电站,火力发电站,列车发电站,水力发电站。

34-3-4-3 确定供电系统

当工地由附近高压电力网输电时,则在工地上设降压变电所把电能从110kV 或35kV降到10kV或6kV,再由工地若干分变电所把电能从10kV或6kV降到380/220V。变电所的有效供电半径为400~500m。

1.常用变压器

工地变电所的网路电压应尽量与永久企业的电压相同,主要为380/220V。对于3kV、6kV、10000kV的高压线路,可用架空裸线,其电杆距离为40~60m,或用地下电缆。户外380/220V的低压线路亦采用裸线,只有与建筑物或脚手架等不能保持必要安全距离的地方才宜采用绝缘导线,其电杆间距为25~40m。分支线及引入线均应由电杆处接出,不得由两杆之间接出。

配电线路应尽量设在道路一侧,不得妨碍交通和施工机械的装、拆及运转,并要避开堆料、挖槽、修建临时工棚用地。

室内低压动力线路及照明线路,皆用绝缘导线。 2,配电导线的选择

导线截面的选择要满足以下基本要求:

(1)按机械强度选择:导线必须保证不致因一般机械损伤折断。在各种不同敷设方式下,导线按机械强度所允许的最小截面见表34-43。

导线按机械强度所允许的最小截面 表34-43

注:目前已能生产小于2.5mm 2的BBLX ,BLV 型铝芯绝缘电线,因此可以根据具体情况,采用小于2.5mm 2的铝芯截面。

(2)按允许电流选择:导线必须能承受负载电流长时间通过所引起的温升。 三相四线制线路上的电流可按下式计算:

?

cos 3???=

线线U P K I (34-58)

二相制线路上的电流可按下式计算:

?

cos ?=

线线U P

I (34-59)

式中 I 线——电流值(A );

K 、P ——同公式(34-57); U 线——电压(V );

cosφ——功率因数,临时网路取0.7~0.75。

制造厂根据导线的容许温升,制定了各类导线在不同敷设条件下的持续容许电流表(表34-44、表34-45),在选择导线时,导线中通过的电流不允许超过此表规定。

橡皮或塑料绝缘电线明设在绝缘支柱上时的持续容许电流表

(空气温度为+25℃,单芯500V)表34-44

裸铜线(TJ)型、裸铝线(LJ型)露天敷设在+25℃

空气中的持续容许电流表表34-45

(3)按允许电压降选择:导线上引起的电压降必须在一定限度之内。配电导线的截面可用下式计算:

%%ε

ε

?=??=∑∑C M C L P S (34-60)

式中 S ——导线截面(mm 2);

M ——负荷矩(kW ·m );

P ——负载的电功率或线路输送的电功率(kW ); L ——送电线路的距离(m );

ε——允许的相对电压降(即线路电压损失)(%);照明允许电压降为

2.5%~5%,电动机电压不超过±5%;

C ——系数,视导线材料、线路电压及配电方式而定。

所选用的导线截面应同时满足以上三项要求,即以求得的三个截面中的最大者为准,从电线产品目录中选用线芯截面。亦可根据具体情况抓住主要矛盾。一般在道路工地和给排水工地作业线比较长,导线截面由电压降选定;在建筑工地配电线路比较短,导线截面可由容许电流选定;在小负荷的架空线路中往往以机械强度选定。

3.计算例题

[例] 为某中学建筑工程的施工做出供电设计。 该工程施工的已知条件如下: (1)施工平面布置图(图34-43);

图34-43 某中学施工平面图

(2)施工动力用电情况:

1)QT1-6型塔式起重机一台,其行走电动机为7.5×2kW,起重电动机为22kW,回转电动机为3.5kW;

2)单筒式卷扬机1台,电动机功率为14kW;

3)400L混凝土搅拌机1台,电动机为10kW;

4)滤灰机1台,电动机为4.5kW;

5)电动打夯机3台,每台电动机为1kW;

6)振动器5台,每台电动机为2.8kW。

设计步骤:

(1)估算施工用电总容量,选择配电变压器

施工现场所用全部动力设备的总功率为:

ΣP=7.5×2+22+3.5+14+10+4.5+1×3+2.8×5=86.0kW 此工地所用电动机虽然已在10台以上,但其主要负荷是塔式起重机,而塔式起重机的各台电机往往要同时工作,甚至满载运行。所以需要系数K应该选得大一些。这里,选用K=0.7,cosφ=0.75。这样,动力用电容量即为:

P动=KΣP/cosφ=0.7×86.0/0.75=80.3kV A

再加10%的照明用电,算出施工用电总容量为:

P=1.10×P动=1.10×80.3=88.3kV A

当地高压电为三相10000V,施工动力用电需三相380V电源,照明需单相220V电源,按上述要求可选得SL7-100/10型三相降压变压器,其主要技术数据为:额定容量100kV A,高压额定线电压10kV,低压额定线电压为0.4kV,作Y 接使用。

(2)确定变压器的位置和配电线路的布局

根据现场高压电源线路情况,以及变压器装置地点应注意的一些原则,变压器的位置以西北角为宜(图34-43)。

塔式起重机配电盘设在轨道西端。卷扬机配电盘的位置(即井架控制棚的位置)与井架间的距离,应等于或稍大于井架的总高度,并以能看清被吊物为准。混凝土搅拌机设置在水泥库附近,且在塔式起重机一侧。

根据现场临时设施和路灯照明等的需要,配电线路分两路,在总配电盘上(位置在变压器旁)分别由总刀闸进行控制。

(3)配电导线截面的选择

为了安全和节约起见,选用BLX型橡皮绝缘铝导线,按两路分别进行计算。

1路(北路)导线截面的选择:

1)按导线的允许电流选择该路的工作电流为:

由表34-44,选用4mm2的橡皮绝缘铝线。

2)按允许电压降选择为了简化计算,把全部负荷集中在1路的末端来考虑。已知由变压器总配电盘到滤灰池的线路长度约为L=140m;允许相对电压损失ε=8%。当采用铝线作380/220V三相四线供电时,C=46.3,导线的截面为:

3)按机械强度选择由表34-43中得知,橡皮绝缘铝线架空敷设时,其截面不得小于10mm2。

最后,为了同时满足上述三者要求,1路导线的截面应选用10mm2。

2路(西段与南段)导线截面的选择:

这一路由于主要负荷是塔式起重机,而塔式起重机距变压器较近,南段线路上负荷量并不大,需要系数也较低,故2路导线可按两段来考虑,即自变压器总配电盘至塔式起重机分支的电杆为一段(简称西段),此段需考虑到2路的全部负荷量;自塔式起重机分支的电杆至最后一根电杆为另一段(简称南段),此段只要考虑卷扬机、振捣器以及打夯机等的用电量即可。

1)西段导线截面的选择由于这段线路较短,而负荷量较大,显然其主要矛盾将表现在导线的容许电流方面。因此只要计算出线路上的工作电流,按表34-44中导线的持续容许电流来选即可。

2路所带用电设备的总功率为:

ΣP (2)=7.5×2+22+3.5+14+1×3+2.8x5=71.5kW

若K 0按0.9考虑,且仍取cosφ=0.75,那么其总工作电流为

由表34-45中查得,选截面为50mm 2的橡皮绝缘铝线即可满足要求,中线则选用小1号35mm 2的即可。

2)南段导线截面的选择 由于这段线路所带负荷的设备功率仅为ΣP (3)=14+1×3+2.8×5=31kW ,再加上这些机具的需要系数并不很高,线路电流就不会很大,且线路并不太长,线路的电压降也不是主要矛盾,因此按照导线的机械强度选择10mm 2的橡皮绝缘铝线。

自2路分支杆到塔式起重机配电盘这段支线的导线是专门供给塔式起重机用电的,所以它的截面即可按塔式起重机的需要进行选择。由产品说明书中得知,国产QT1-6型塔式起重机所采用的电源馈电电缆的型号为YHC (移动式铜芯软电缆)3×16+1×6(即三芯16mm 2,第四芯供接地接零保护用,截面为6mm 2),

与此电缆相对应,橡皮绝缘铝线架空敷设时,选用???

? ????161353BLX 。

(4)绘制施工现场电力供应平面图

在施工平面布置图上,画出变压器的安装位置,低压配电线路的走向以及电杆位置,并标出所用导线的型号与规格(图34-43)。其标注方法如下:a -b (c

×d),其中a表示支路编号,b为导线型号,c为导线根数,d为导线截面积。如图34-43中的1-BLX(4×10)即表示第一路采用BLX型导线,10m2的4根。

空调负荷计算公式

1、冷负荷计算 (一)外墙的冷负荷计算 通过墙体、天棚的得热量形成的冷负荷,可按下式计算: CLQτ=KF⊿tτ-ε W 式中K——围护结构传热系数,W/m2?K; F——墙体的面积,m2; β——衰减系数; ν——围护结构外侧综合温度的波幅与内表面温度波幅的比值为该墙体的传热衰减度; τ——计算时间,h; ε——围护结构表面受到周期为24小时谐性温度波作用,温度波传到内表面的时间延迟,h; τ-ε——温度波的作用时间,即温度波作用于围护结构内表面的时间,h; ⊿tε-τ——作用时刻下,围护结构的冷负荷计算温差,简称负荷温差。 (二)窗户的冷负荷计算 通过窗户进入室内的得热量有瞬变传热得热和日射得热量两部分,日射得热量又分成两部分:直接透射到室内的太阳辐射热qt和被玻璃吸收的太阳辐射热传向室内的热量qα。 (a)窗户瞬变传热得形成的冷负荷 本次工程窗户为一个框二层3.0mm厚玻璃,主要计算参数K=3.5 W/m2?K。工程中用下式计算: CLQτ=KF⊿tτ W 式中K——窗户传热系数,W/m2?K; F——窗户的面积,m2; ⊿tτ——计算时刻的负荷温差,℃。 (b)窗户日射得热形成的冷负荷 日射得热取决于很多因素,从太阳辐射方面来说,辐射强度、入射角均依纬度、月份、日期、时间的不同而不同。从窗户本身来说,它随玻璃的光学性能,是否有遮阳装置以及窗户结构(钢、木窗,单、双层玻璃)而异。此外,还与内外放热系数有关。工程中用下式计算: CLQj?τ= xg xd Cs Cn Jj?τ W

式中xg——窗户的有效面积系数; xd——地点修正系数; Jj?τ——计算时刻时,透过单位窗口面积的太阳总辐射热形成的冷负荷,简称负荷,W/m2; Cs——窗玻璃的遮挡系数; Cn——窗内遮阳设施的遮阳系数。 (三)外门的冷负荷计算 当房间送风两大于回风量而保持相当的正压时,如形成正压的风量大于无正压时渗入室内的空气量,则可不计算由于门、窗缝隙渗入空气的热、湿量。如正压风量较小,则应计算一部分渗入空气带来的热、湿量或提高正压风量的数值。 (a)外门瞬变传热得形成的冷负荷 计算方法同窗户瞬变传热得形成的冷负荷。 (b)外门日射得热形成的冷负荷 计算方法同窗户日射得热形成的冷负荷,但一层大门一般有遮阳。 (c)热风侵入形成的冷负荷 由于外门开启而渗入的空气量G按下式计算: G=nVmγw kg/h 式中Vm——外门开启一次(包括出入各一次)的空气渗入量(m2/人次?h),按下表3—9选用; n——每小时的人流量(人次/h); γw——室外空气比重(kg/m2)。 表3—9 Vm值(m2/人次?h) 每小时通过 的人数普通门带门斗的门转门 单扇一扇以上单扇一扇以上单扇一扇以上 100 3.0 4.75 2.50 3.50 0.80 1.00 100~700 3.0 4.75 2.50 3.50 0.70 0.90 700~1400 3.0 4.75 2.25 3.50 0.50 0.60

负荷计算方法

负荷计算方法 供电设计常采用的电力负荷计算方法有:需用系数法、二项系数法、利用系数法和单位产品电耗法等。需用系数法计算简便,对于任何性质的企业负荷均适用,且计算结果基本上符合实际,尤其对各用电设备容量相差较小,且用电设备数量较多的用电设备组,因此,这种计算方法采用最广泛。二项系数法主要适用于各用电设备容量相差大的场合,如机械加工企业、煤矿井下综合机械化采煤工作面等。利用系数法以平均负荷作为计算的依据,利用概率论分析出最大负荷与平均负荷的关系,这种计算方法目前积累的实用数据不多,且计算步骤较繁琐,故工程应用较少。单位产品电耗法常用于方案设计。 一、设备容量的确定 用电设备铭牌上标出的功率(或称容量)称为用电设备的额定功率P N ,该功率是指用电设备(如电动机)额定的输出功率。 各用电设备,按其工作制分,有长期连续工作制、短时工作制和断续周期工作制三类。因而,在计算负荷时,不能将其额定功率简单地直接相加,而需将不同工作制的用电设备额定功率换算成统一规定的工作制条件下的功率,称之为用电设备功率P N μ。 (一)长期连续工作制 这类工作制的用电设备长期连续运行,负荷比较稳定,如通风机、空气压缩机、水泵、电动发电机等。机床电动机,虽一般变动较大,但多数也是长期连续运行的。 对长期工作制的用电设备有 P N μ=P N (2-9) (二)短时工作制 这类工作制的用电设备工作时间很短,而停歇时间相当长。如煤矿井下的排水泵等。 对这类用电设备也同样有 P N μ=P N (2-10) (三)短时连续工作制用电设备 这类工作制的用电设备周期性地时而工作,时而停歇。如此反复运行,而工作周期一般不超过10分钟。如电焊机、吊车电动机等。断续周期工作制设备,可用“负荷持续率”来表征其工作性质。 负荷持续率为一个工作周期内工作时间与工作周期的百分比值,用ε表示 0100%100%t t T t t ε=?=?+ (2-11) 式中 T ——工作周期,s ; t ——工作周期内的工作时间,s ; t 0——工作周期内的停歇时间,s 。 断续周期工作制设备的设备容量,一般是对应于某一标准负荷持续率的。 应该注意:同一用电设备,在不同的负荷持续率工作时,其输出功率是不同的。因此,不同负荷持续率的设备容量(铭牌容量)必须换算为同一负荷持续率下的容量才能进行相加运算。并且,这种换算应该是等效换算,即按同一周期内相同发热条件来进行换算。由于电流I 通过设备在t 时间内产 生的热量为I 2Rt ,因此,在设备电阻不变而产生热量又相同的条件下,I ∝ 备容量P ∝I 。由式(2-11)可知,同一周期的负荷持续率ε∝t 。因此,P ∝

负荷计算公式

2.1 围护结构冷负荷计算 2.1.1 屋面和外墙逐时传热形成的冷负荷 在日射和室外气温综合作用下,外墙和屋面的瞬时冷负荷按下式计算: Q c(t)=AK(t′c(t)-t R) t′c (t)=(t c(t)+△t d)ka*kp (2-1) 式中: A:房面、外墙的面积,㎡; K:房面外墙传热系数,W/㎡.℃; t :房顶冷负荷计算温度逐时温度,℃,; c(t) t :室内计算温度,℃; R ka:放热系数修正值; k p:吸收系数修正值。 2.1.2 玻璃幕墙、玻璃外门及外窗瞬时传热形成的冷负荷 在室内外温差作用下,通过外玻璃窗瞬变传热引起的冷负荷可按下式计算: Q c(t)=C W A w K w(t c(t)+△t d-t R) (2-2) 式中: A w:窗口面积,㎡; K w:外玻璃窗传热系数,w/㎡.℃; t :外玻璃窗的冷负荷温度的逐时值,℃; c(t) t :室内计算温度,℃; R C W :窗框修正值。 2.1.3 透过玻璃进入室内日射得热引起的冷负荷 透过玻璃窗进入日射得热形成的逐时冷负荷按下式计算: Q c(t)=C a A w C s C i D j.max C LQ C=C s C i C a (2-3) 式中: C a:有效面积系数; A w:窗口面积,㎡; C s:窗玻璃的遮阳系数; C i:窗内遮阳设施的遮阳系数; D j.max:最大日射得热因数: C LQ:窗玻璃冷负荷系数。 2.1.4 内墙,楼板等室内传热维护结构形成的瞬时冷负荷 1)当空气调节区域与临室的夏季温差是3o C以内时,不予以计算。当空气调节区域与临室的夏季温差大于3o C以内时,这部分冷负荷应按公式(2-4)进行计算: Q=KF△t (2-4) o

电线电缆负荷计算方法

电线电缆负荷计算方法 实际使用中,一般电工都用好记的"经验公式":即每一平方毫米截面积的铜芯线可以 通过约4.5---5A的电流。 如果是单相电路,则每1KW的负载电流约为4.5A,如果是三相平衡负载,那每1KW的负载电流约为2A。 每平方毫米截面积的铜芯线,可以带1KW的单相负载或2.5KW的三相平衡负载,以此类推,就可以知道多大的电缆芯线可以带多大的负载了. 拖动选线一般不考虑长度,因为电源和动力的距离都很近。 环境温度只考虑穿管和架空两种形式。 拖动选线主要考虑的是动力所需要的电流大小。一般计算电流后还要考虑启动电流和使用系数。 以30千瓦的电机为例来说说选择导线的过程: 30KW的电机功率比较大,应该是三相电机。对于三相平衡电路而言,三相电路功率的计算公式是:P=1.732IUcosφ。 由三相电路功率公式可推出线电流公式: I=P/1.732Ucosφ 式中: P为电路功率 U为线电压,三相是380V cosφ是感性负载功率因素,一般取0.75 你的30KW负载的线电流: I=P/1.732Ucosφ=30000/1.732*380*0.75=30000/493.62=60.8A 还要根据负载的性质和数量修正电流值。 如果负载中大电机机多,由于电机的启动电流很大,是工作电流的4到7倍,所以还要考虑电机的启动电流,但启动电流的时间不是很长,一般在选择导线时只按1.3到1.7的系数考虑。这里取1.5,那么电流就是91A。 如果负载中数量多,大家不是同时使用,可以取使用系数为0.5到0.8,这里取0.8,这里只一台电机,就取1,电流为91A。就可以按这个电流选择导线、空开、接触器、热继电器等设备。计算电流的步骤是不能省略。 导线选择:

负荷计算方法

负荷计算方法 供电设计常采用的电力负荷计算方法有:需用系数法、二项系数法、利用系数法和单位产品电耗法等。需用系数法计算简便,对于任何性质的企业负荷均适用,且计算结果基本上符合实际,尤其对各用电设备容量相差较小,且用电设备数量较多的用电设备组,因此,这种计算方法采用最广泛。二项系数法主要适用于各用电设备容量相差大的场合,如机械加工企业、煤矿井下综合机械化采煤工作面等。利用系数法以平均负荷作为计算的依据,利用概率论分析出最大负荷与平均负荷的关系,这种计算方法目前积累的实用数据不多,且计算步骤较繁琐,故工程应用较少。单位产品电耗法常用于方案设计。 一、设备容量的确定 用电设备铭牌上标出的功率(或称容量)称为用电设备的额定功率P N ,该功率是指用电设备(如电动机)额定的输出功率。 各用电设备,按其工作制分,有长期连续工作制、短时工作制和断续周期工作制三类。因而,在计算负荷时,不能将其额定功率简单地直接相加,而需将不同工作制的用电设备额定功率换算成统一规定的工作制条件下的功率,称之为用电设备功率P Nμ。 (一)长期连续工作制 这类工作制的用电设备长期连续运行,负荷比较稳定,如通风机、空气压缩机、水泵、电动发电机等。机床电动机,虽一般变动较大,但多数也是长期连续运行的。 对长期工作制的用电设备有 P Nμ=P N (2-9) (二)短时工作制 这类工作制的用电设备工作时间很短,而停歇时间相当长。如煤矿井下的排水泵等。 对这类用电设备也同样有 P Nμ=P N (2-10) (三)短时连续工作制用电设备 这类工作制的用电设备周期性地时而工作,时而停歇。如此反复运行,而工作周期一般不超过10分钟。如电焊机、吊车电动机等。断续周期工作制设备,可用“负荷持续率”来表征其工作性质。 负荷持续率为一个工作周期内工作时间与工作周期的百分比值,用ε表示 100%100%t t T t t ε=?=?+ (2-11) 式中 T ——工作周期,s ; t ——工作周期内的工作时间,s ; t 0——工作周期内的停歇时间,s 。 断续周期工作制设备的设备容量,一般是对应于某一标准负荷持续率的。 应该注意:同一用电设备,在不同的负荷持续率工作时,其输出功率是不同的。因此,不同负荷持续率的设备容量(铭牌容量)必须换算为同一负荷持续率下的容量才能进行相加运算。并且,这种换算应该是等效换算,即按同一周期内相同发热条件来进行换算。由于电流I 通过设备在t 时间内产生的热量为I 2Rt ,因此,在设备电阻不变而产生热量又相同的条 件下,I ∝P ∝I 。由式(2-11)可知,同一周期的负荷持 续率ε∝t 。因此,P ∝ε

电气设计中负荷计算方法选择

电气设计中负荷计算方法选择 电力负荷计算方法包括:利用系数法、单位产品耗电量法、需要系数法、二项式系数法。我国一般使用需要系数法和二项式系数法,前者适用于确定全厂计算负荷、车间变电所计算负荷及负荷较稳定的干线计算负荷;后者用于负荷波动较大的干线或支线。在实际设计和实践中.电力负荷计算的有关计算系数和特征参数的选择都会影响电负荷计算结果,使其偏大、偏高。 电力负荷的正确计算非常重要,它是正确选择供电系统中导线、开关电器及变压器等的基础,也是保障供电系统安全可靠运行必不可少的重要一环。在方案设计与初步设计时,其电力负荷计算过小或过大,都会引起严重的后果。如果电力负荷计算过小,就会引起供电线路过热,加速其绝缘的老化;同时,还会过多损耗能量,引起电气线路走火,引发重大事故。而电力负荷计算过大,将会引起变压器容量过剩,以及供电线路截面过大,相应的保护整定值就会定得过高,从而降低了电气设备保护的灵敏度;与此同时,电力负荷计算过大还增加了投资,降低了工程的经济性。 一般说来,当电力负荷值大于实际使用负荷的10%时,变压器容量要增加11%一12%,电线电缆等有色金属的消耗量也要增加巧%一20%,同时还会增加变压器无功功率所造成的有功电力损耗。由此可见,电力负荷计算在供电设计中,特别是在确定变压器容量时所占据的重要位置。故正确地选择计算负荷方法与特征参数,对电气设计具有特别重要的意义。 电力负荷计算方法概述 电力负荷的变化是受多种因素制约的,难以用简单的计算公式来表示。在实际的工程计算工作中,通常采用的方法有需要系数法、利用系数法、二项式系数法、单位产品耗电量法等进行工业企业供电设计中的电力负荷计算。 1.利用系数法 以平均负荷为基础,利用概率论分析出最大负荷与平均负荷的关系。 2.单位产品耗电量法 在初步设计阶段对供电方案作比较时,可根据车间的单位产品耗电定额,产品的年产量和年工作小时数来估算。 3.二项系数法 考虑用电设备数量和大容量设备对计算负荷的影响的经验公式。 由于在一条干线上或一个车间里,当有多组性质不同的用电设备时,应根据其工作性质

冷负荷计算方法

冷负荷计算方法 发布时间:2016-01-30 冷负荷的定义是维持室内空气热湿参数在一定要求范围内时,在单位时间内需要从室内除去的热量,包括显热量和潜热量两部分。 1建筑物结构的蓄热特性决定了冷负荷与得热量之间的关系。瞬时得热中潜热得热和显热得热的对流成分立即构成瞬时冷负荷,而显热得热中的辐射成份则不能立即构成冷负荷,辐射热被室内的物体吸收和储存后,缓慢散发给室内空气。 2、空调负荷为保持建筑物的热湿环境,在某一时刻需向房间供应的冷量称为冷负荷。相反,为了补偿房间失热量需向房间供应的热量称为热负荷。 3、室内冷负荷主要有以下几方面的内容:照明散热、人体散热、室内用电设备散热、透过玻璃窗进入室内日照量、经玻璃窗的温差传热以及维护结构不稳定传热。

外墙的冷负荷计算 通过墙体、天棚的得热量形成的冷负荷,可按下式计算: CLQτ=KF⊿tτ-ε W 式中K——围护结构传热系数,W/m2·K; F——墙体的面积,m2; β——衰减系数; ν——围护结构外侧综合温度的波幅与内表面温度波幅的比值为该墙体的传热衰减度;τ——计算时间,h; ε——围护结构表面受到周期为24小时谐性温度波作用,温度波传到内表面的时间延迟,h;τ-ε——温度波的作用时间,即温度波作用于围护结构内表面的时间,h; ⊿tε-τ——作用时刻下,围护结构的冷负荷计算温差,简称负荷温差。 窗户的冷负荷计算 通过窗户进入室内的得热量有瞬变传热得热和日射得热量两部分,日射得热量又分成两部分:直接透射到室内的太阳辐射热qt和被玻璃吸收的太阳辐射热传向室内的热量qα。(a)窗户瞬变传热得形成的冷负荷 本次工程窗户为一个框二层3.0mm厚玻璃,主要计算参数K=3.5 W/m2·K。工程中用下式计算:

负荷计算方法分析

负荷计算方法分析 (Load calculation method analysis) 张华 (苏州科技学院建筑环境与设备工程0920118131) 摘要本文回顾了空调负荷计算方法的发展简史,综述了应用较为广泛的谐波反应法和冷负荷系数法等计算方法及各自 的优缺点;并介绍了空调负荷模拟的意义和现行 发展概况。 关键词:空调负荷计算方法冷负荷计算谐波反应法冷负荷系数法概算法 1空调负荷计算发展简史 人们能够比较系统地进行空调负荷的计算是从20世纪40年 代开始的。1964年美国的C.O.Mackey和L.T.Wight提出了用当量温差法(ETD)计算通过围护结构的负荷计算方法;50年代初,苏联的A.T.IIIkojiobep等人又提出了谐波分解法。这两种方法共同的缺点是对得热量和冷负荷不加区分,所以空调冷负荷计算量往往偏大。1968年加拿大D.G.Stephonsen 和G.P.Mitalas提出反应系数法后,掀起了空调负荷计算方法革新的研究潮,使负荷计算从粗放的稳态计算发展到较 为精确的动态计算。1971年D.G.Stephonsen和G.P.Mitalas

又用Z传递函改进了反应系数法,并提出了适合手算的冷负荷系数法合手算的冷负荷系数法(CLF)。我国于上世纪70年代开展了计算方法的研究,并评议通过了谐波反应法和冷负荷系数法两种新的计算方法。随着计算机技术的发展,自70年代末,动态负荷计算从古典的单点计算过渡到以典型设计日为基准的负荷计算。到80年代又发展到以设计年为基准,进行HVAC系统全年的负荷计算与模拟。至此,负荷计算进入了建筑能耗模拟的新时代。 2 几种典型的负荷计算方法 1谐波反应法 室外空气综合温度作用下形成空调负荷有两个过程:一是室外综合温度作用(外扰)产生室内得热量;另一个是室内得热量经围护结构和室内家俱等吸热、放热,最后形成冷负荷的过程。两者的共同点是扰量具有周期性和围护结构及整个房间对扰量具有衰减和延迟作用。当室外综合温度作用于围护结构外表面,则内表面温度和热流将产生衰减和延迟。该热流值即为室内得热量,其中对流部分直接变为室内冷负荷;辐射部分经室内围护结构和家俱等的吸热—放热反应后再形成冷负荷,该负荷有衰减和延迟。因此,衰减度和延迟时间是谐波法的两个重要参数,它们与材料热阻和蓄热系数有关,通过求解导热微分方程来求得。对于多层围护结构,衰减度是多层衰减度之积,延迟时间是各层延迟时间之和。谐

冷热负荷简化计算方法

冷热负荷简化计算方法 一、空调系统夏季冷负荷简化计算 以外维护结构和室内人员两部分为基础,把整个建筑物看成一个大空间,按各朝向计算冷负荷,再加上每位在室人员按116W 计算的人体散热,然后将计算结果乘以新风负荷系数1.5,极为建筑物的冷负荷。 5.1)116(?+=∑n Q Q w 式中,Q —建筑物空调系统总冷负荷(W ) ΣQw —整个建筑物维护结构引起的总冷负荷(W) n —建筑物内总人数 建筑物维护结构包括的朝向的屋顶的外墙,可用下列公式计算整个维护结构引起的总冷负荷: ])[(N d lf i i w t t t F K Q -+=∑∑ 式中,Ki —外墙或屋顶的传热系数[W/(㎡·℃)],见附录6 Fi —外墙或屋顶的传热面积(㎡) t lf —冷负荷计算温度(℃),见附录7 t d —冷负荷计算温度t lf 关于地区的修正值(℃),见附录8 t N —室内空气设计温度(℃),见附录3 考虑到系统的漏冷损失,所配空调器或制冷机的容量应由下式确定: max 0)15.1~1.1(Q Q = 式中,Q 0—所选配空调器或制冷机的容量(kW ) 如果为了预先估计空调工程的设备费用,则可根据实际工作中积累的空调负荷概算指标作粗略估算。所谓空调负荷概算指标,是指折算到建筑物中每平方米空调面积所需制冷机或空调器提供的冷负荷制。 冷负荷指标估算法是以旅馆为基础,对其他建筑物则乘以修正系数β: 旅 馆 81~93W/㎡(中外合资旅游旅馆目前一般提高到105~116 W/㎡) 办公楼 β=1.2 图书馆 β=0.5(按总面积) 商 店 β=0.8(只营业厅空调); β=1.5(全部空调) 体育馆 β=3.0(按比赛馆面积); β=1.5(按总建筑面积) 大会堂 β=2~2.5 影剧院 β=1.2(电影厅空调); β=1.5~1.6(大剧院空调) 医 院 β=0.8~1.0 建筑物总建筑面积小于5000㎡时,宜取上限制;大于10000㎡时,宜取下限制。 对于单层住宅或楼房局部居室空调,冷负荷指标宜取150~180kcal/(㎡·h),即174~209W/㎡。(1kcal/h=1.163W )

电力负荷计算公式与范例

常用电工计算口诀第一章按功率计算电流的口诀之一 1.用途: 这是根据用电设备的功率(千瓦或千伏安)算出电流(安)的口诀。 电流的大小直接与功率有关,也与电压,相别,力率(又称功率因数)等有关。一般有公式可供计算,由于工厂常用的都是380/220 伏三相四线系统,因此,可以根据功率的大小直接算出电流。 2.口诀:低压380/220 伏系统每KW 的电流,安。 千瓦,电流,如何计算? 电力加倍,电热加半。 单相千瓦,4 . 5 安。 单相380 ,电流两安半。 3. 说明:口诀是以380/220V 三相四线系统中的三相设备为 准,计算每千瓦的安数。对于某些单相或电压不同的单相设 备,其每千瓦的安数.口诀中另外作了说明。 ①这两句口诀中,电力专指电动机.在380V 三相时(力率 左右),电动机每千瓦的电流约为2 安.即将“千瓦数加一 倍”( 乘2)就是电流, 安。这电流也称电动机的额定电流. 【例1 】千瓦电动机按“电力加倍”算得电流为11 安。 【例2 】4 0 千瓦水泵电动机按“电力加倍”算得电流为8 0安。 电热是指用电阻加热的电阻炉等。三相380 伏的电热 设备,每千瓦的电流为安.即将“千瓦数加一半”(乘,就是电流,安。 【例1】3 千瓦电加热器按“电热加半”算得电流为安。 【例2】1 5 千瓦电阻炉按“电热加半”算得电流为2 3 安。 这口诀并不专指电热,对于照明也适用.虽然照明的灯泡 是单相而不是三相,但对照明供电的三相四线干线仍属三相。 只要三相大体平衡也可以这样计算。此外,以千伏安为单位的电器(如变压器或整 流器)和以千乏为单位的移相电容器(提高力率用)也都适用。即是说,这后半句虽 然说的是电热,但包括所有以千伏安、千乏为单位的用电设备,以及以千瓦为单位 的电热和照明设备。 【例1 】1 2 千瓦的三相( 平衡时) 照明干线按“电热加半”算得电流为1 8 安。 【例2】30 千伏安的整流器按“电热加半”算得电流为45 安。(指380 伏三相交流侧) 【例3 】3 2 0 千伏安的配电变压器按“电热加半”算得电流为480 安(指 380/220 伏低压侧)。 【例4】100 千乏的移相电容器(380 伏三相)按“电热加半”算得电流为150 安。 ②.在380/220伏三相四线系统中,单相设备的两条线,一条接相线而另一条接零线的(如照明设备)为单相220 伏用电设备。这种设备的力率大多为1,因此,口诀便直接说明“单相(每) 千瓦安”。计算时, 只要“将千瓦数乘”就是电流, 安。同上面一样,它适用于所有以千伏安为单位的单相220伏用电设备,以及以千瓦为单位的电热及照明设备,而且也适用于220 伏的直流。 【例1】500 伏安千伏安)的行灯变压器(220 伏电源侧)按“单相( 每)千瓦安”算得电流为安。

负荷计算方法

负荷计算方法

加,而需将不同工作制的用电设备额定功率换算成统一规定的工作制条件下的功率,称之为用电设备功率P Nμ。 (一)长期连续工作制 这类工作制的用电设备长期连续运行,负荷比较稳定,如通风机、空气压缩机、水泵、电动发电机等。机床电动机,虽一般变动较大,但多数也是长期连续运行的。 对长期工作制的用电设备有 P Nμ=P (2-9) N (二)短时工作制 这类工作制的用电设备工作时间很短,而停歇时间相当长。如煤矿井下的排水泵等。 对这类用电设备也同样有 P Nμ=P (2-10) N (三)短时连续工作制用电设备 这类工作制的用电设备周期性地时而工作,时而停歇。如此反复运行,而工作周期一般不超过10分钟。如电焊机、吊车电动机等。断续周期工作制设备,可用“负荷持续率”来表征其工作性质。

负荷持续率为一个工作周期内工作时间与工作周期的百分比值,用ε表示 0100%100%t t T t t ε=?=?+ (2-11) 式中 T ——工作周期,s ; t ——工作周期内的工作时间,s ; t 0——工作周期内的停歇时间,s 。 断续周期工作制设备的设备容量,一般是对应于某一标准负荷持续率的。 应该注意:同一用电设备,在不同的负荷持续率工作时,其输出功率是不同的。因此,不同负荷持续率的设备容量(铭牌容量)必须换算为同一负荷持续率下的容量才能进行相加运算。并且,这种换算应该是等效换算,即按同一周期内相同发热条件来进行换算。由于电流I 通过设备在t 时间内产生的热量为I 2Rt ,因此,在设备电阻不变而产生热量又相同的条件下,I t ∝而在同电压下,设备容量P ∝I 。由式(2-11)可知,同一周期的负荷持续率ε∝t 。因此,P ε∝即设备容量与负荷持续率的平方根值成反比。假如设备在εN 下的额定容量为P N ,则换算到ε下的设备

电力负荷计算公式

电力负荷及计算 (electrical load and load calculation) 用电设备在运行时消耗的功率及其计算。电力负荷包括基本负荷和冲击负荷。基本负荷是生产过程中比较平稳、幅值变化不大的电力负荷,冲击负荷是在较短的时间内幅值变化大的突加、突减负荷。冲击负荷的负荷曲线有较规则的,如带钢连轧机的负荷曲线,也有不规则的,如炼钢电弧炉的负荷曲线。在开展设计时,根据用电设备容量(或耗电量)和工作制度进行负荷计算。 冶金工厂电力负荷特点主要为:(1)生产规模大,单体设备容量和总用电量都比较大。在中国,一个年产量为300万t的钢铁联合企业,用电最大负荷在250Mw左右,一个年产量为10万t的铝厂,用电最大负荷在230Mw左右。吨钢耗电量在450~650kw.h 之间,吨铝耗电量在15000~17000kw?h之间。150t超高功率炼钢电弧炉变压器容量为90MVA,大型电解整流变压器容量为58MVA。(2)冶金工厂是连续生产部门,供电不能间断,一般采用多电源供电。(3)大功率炼钢电弧炉、大型轧钢机主传动晶闸管变流装置,电diarl在生产过程中产生有功和无功冲击负荷,引起电网周波变化、电压波动、电压闪变及波形畸变,均须采取抑制措施。 电力负荷分级及供电要求冶金工厂电力负荷按用电设备对供电可靠性的不同要求,可划分为三个等级: (1)一级负荷。突然停电将造成人身伤亡或重大设备损坏,且难以修复者,或在经济上造成重大损失者。如炼铁高炉的泥炮机、开口机、热风炉助燃风机、鼓风机站、水泵站;炼钢转炉吹氧管升降机构、烟罩升降机构、炉体倾动机构;大型连续轧钢机;铝电解装置;焦炉推焦车、消火车、拦焦车、煤气加压站和氧气站等的电力负荷。 (2)二级负荷。突然停电将产生大量废品、引起大量减产、企业内运输停顿等,在经济上造成较大损失者。如高炉上料系统、转炉上料系统、电炉电极升降机构、倾动机构、电磁搅拌机、连铸机、轧钢机和金属制品生产系统等的电力负荷。 (3)三级负荷。所有不属于一级和二级的电力负荷。如机械修理设施、电气修理设施等的电力负荷。 各级电力负荷的供电要求,一般不低于以下所列:1)一级负荷由两个独立电源供电,对特殊重要的一级负荷应由两个独立电源点供电(见供电电源)2)二级负荷由两回线路供电,该两回线路应尽可能引自不同的变压器和母线段。3)三级负荷按实际需要容量供电。 负荷计算冶金工厂电力负荷分为最大负荷、尖峰负荷和最大负荷班的平均负荷。最大负荷是30min的最大平均负荷。最大负荷分别乘以适当系数,便可求得尖峰负荷和最大负荷班的平均负荷。它们又分别作为选择供配电设备、计算电压降、选择保护装置、计算电能消耗和选择补偿装置的依据。

电气设计负荷计算方法

电气设计负荷计算 1.设备组设备容量 采用需要系数法时,首先应将用电设备按类型分组,同一类型的用电设备归为一组,并算出该组用电设备的设备容量e P 。 对于长期工作制的用电负荷(如空调机组等),其设备容量就是设备铭牌上所标注的额定功率。 对于断续周期制的用电设备,其设备容量是: 对于照明设备:白炽灯的设备容量按灯泡上标注的额定功率取值;带自感式镇流器的荧光灯和高压汞灯等照明装置,由于自感式镇流器的影响,不仅功率因数很低,在计算设备容量时,还应考虑镇流器上的功率消耗。因此,对采用自感式镇流器的荧光灯装置,其设备容量取灯管额定功率的1.2倍,高压汞灯装置的设备容量取灯泡额定功率的1.1倍。 2.用电设备组的计算负荷 根据用电设备组的设备容量e P ,即可算得设备的计算负荷: 有功计算负荷 e x c P K P = (12-1) 无功计算负荷 ?tg P Q c c = 视在计算负荷 2 2 c c c Q P S +=

或 ? cos c P S = 计算电流 U S I c c 3103 ?= (12-2) 式中 x K ——设备组的需要系数; e P ——设备组设备容量(KW ) ; ? ——用电设备功率因数角; U ——线电压(V ); c I ——计算电流(A )。 上述公式适用计算三相用电设备组的计算负荷,其中式(12-2)计算电流的确定尤为重要,因为计算电流是选择导线截面积和开关容量的重要依据。 对于单相用电设备,可分为两种情况: (1)相负荷 相负荷的额定工作电压为相电压,正常运行时,相负荷接在火线和中性线之间,民用建筑中的大多数单相用电设备和家用电器都属于相负荷。在供配电设计中,应将相负荷尽量均匀地分配到三相之中,按照最大的单相设备乘以3,求得等效的三相设备容量,然后按上述公式求得计算电流(线电流)。 ?m e P P 3= ? m P ——最大负荷相的单相设备容量 (2)线间负荷 线间负荷是指额定工作电压为线电压的单相

负荷计算公式

负荷计算公式标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

①由用电设备组计算负荷直接相加来计算时取K∑p=~K∑q=~? ②由车间干线计算负荷直接相加来计算时取K∑p=~K∑q=~? 3. 对断续周期工作制的用电设备组①电焊机组要求统一换算到ε=100﹪, Pe=PN(εN)½ =Sncosφ(εN)½ ? 为电焊机的铭牌容量;εN为与铭牌容量对应的负荷持续率;cosφ为铭 牌规定的功率因数. ) ? ②吊车电动机组要求统一换算到ε=25﹪, Pe=2PN(εN)½ 二. 单相用电设备组计算负荷的确定: ? 单相设备接在三相线路中,应尽可能地均衡分配,使三相负荷尽可能的平衡.如果三 相线路中单相设备的总容量不超过三相设备总容量的? 15﹪,则不论单相设备容量如何分配,单相设备可与三相设备综合按三相负荷平衡计算.如果单相设备容量超过三相设备容量15﹪时,则应将? 单相设备容量换算为等效三相设备容量,再与三相设备容量相加. ? 1. 单相设备接于相电压时等效三相负荷的计算: Pe=φ ( φ最大单相设备所接 的容量) ? 2. 单相设备接于线电压时等效三相负荷的计算: ①接与同一线电压时 Pe=.φ ?

②接与不同线电压时 Pe=+P2 ? Qe=φ1+P2tanφ2 ? 设P1>P2>P3,且cosφ1≠cosφ2≠cosφ3,P1接与UAB,P2接与UBC,P3接与UCA. ? ③单相设备分别接与线电压和相电压时的负荷计算 首先应将接与线电压的单相设备容量换算为接与相电压的设备容量,然后分相计算各相的设备容量 和计算负荷.而总的等效三相有功计算负荷为其最大有功负荷相的有功计算负荷φ的3倍.即 P30=φ Q30=φ 5施工用电准备 现场临时供电按《工业与民用供电系统设计规范》和《施工现场临时用电安全技术规范》设计并组织施工,供配电采用TN—S接零保护系统,按三级配电两级保护设计施工,PE 线与N线严格分开使用。接地电阻不大于4欧姆。开关箱内漏电保护器额定漏电动作电流不大于30毫安,额定漏电动作时间不大于秒。 临时用电系统根据各种用电设备的情况,采用三相五线制树干式与放射式相结合的配电方式。施工配电箱采用安监站推荐的统一制作的标准铁质电箱,箱、电缆编号与供电回路对应。

汽车冷负荷计算方法

1 汽车空调的计算温度选择 按表1 数据作为微型汽车空调系统的计算温度(即车内平均温度)。从上表我们可以看到,微型车的计算温度在环境温度为35℃时定为27℃,而一般轿车在环境温度38℃时定为24℃~27℃ ,一般大中型客车定为27℃ ~28℃ ,可看到微型车车内温差都比它们要高,这其实是综合了多种因素 并经过很多次试验得出的较经济 合理的车内平均温度。因为对微 型车来说,如果计算温度定得过 高了,乘员就会明显感觉制冷不 足;而如果定得过低,势必需要 加大压缩机排量才能满足,这样 功耗必然增加,并影响到整车的 动力性,否则又很可能无法实现。 2 计算方法 2.1 微型车车内与外界热交换示意图 为便于分析,绘制图1 的微型车热交换 示意图。 2.2 计算公式 2.2.1计算方法 考虑到汽车空调工作条件都很恶劣,其 热负荷与行车时间、地点、速度、行使 方向、环境状况以及乘员的数量随时发 生变化,以及要求在短时间内降温等特 殊性,按照常规方法来计算制冷量的计 算公式为: Q 0=kQ T =k(Q B + Q G + Q F +Q P + Q A +Q E + Q S )) ⑴ 式中:Q 0———汽车空调设计制冷量,单位为W ; k ———修正系数,可取k=1.05~1.15,这里取k=1.1 Q T ———总得热量,单位为W ; Q B ———通过车体围护结构传入的热量,单位为W ; Q G ———通过各玻璃表面以对流方式传入的热量,单位为W ; Q F ———通过各玻璃表面以辐射方式直接传入的热量,单位为W ; Q P ———乘员散发的热量,单位为W ; Q A ———由通风和密封性泄露进入车内的热量,单位为W ; Q E ———发动机室传入的热量,单位为W ; Q S ———车内电器散发的热量,单位为W ; 从公式中我们也可以看出它是通过分别计算各部分得热量求得总需求制冷量的。 3 计算示例 以五菱之光微型客车空调系统的制冷量计算为例,设计条件和工况见表3: (1)整车乘员7 人,各部分参数见下表: (2)查文献[2],取水平面和垂直面的太

负荷计算方法及公式

负荷计算方法及公式 室外气象资料: 省份:郑州 海拔:110.4米经度:113.65 纬度:34.71 夏季空调室外干球温度(℃):35.6(℃) 夏季空调日平均温度(℃):30.8(℃) 夏季室外平均风速(m/s): 2.6 m/s 夏季大气压(Pa):991.7 KPa 夏季空调大气透明度等级:5 最热月相对湿度(%):76%(平均) 冬季大气压(Pa):101.280 KPa 冬季空调室外干球温度(℃):-7℃ 冬季室外平均风速(m/s):3.4 m/s 最冷月相对湿度(%):60% 冷负荷计算 (一)、外墙和屋面传热冷负荷计算公式 外墙或屋面传热形成的计算时刻冷负荷LQτ(W),按下式计算: LQ =KFΔtτ-ξ (1.1) 式中 K—传热系数,传热系数(W/㎡.℃) F—计算面积,㎡; τ—计算时刻,点钟; τ-ξ—温度波的作用时刻,即温度波作用于外墙或屋面外侧的时刻,点钟; ΔtL-ξ—作用时刻下,通过外墙或屋面的冷负荷计算温差,负荷温差,℃。 (二)、外窗的温差传热冷负荷 通过外窗温差传热形成的计算时刻冷负荷Qτ按下式计算: LQτ=KFΔtτ (2.1) 式中Δtτ—计算时刻下的负荷温差,℃; K—传热系数。 (三)、外窗太阳辐射冷负荷 透过外窗的太阳辐射形成的计算时刻冷负荷LQτ,应根据不同情况分别按下列各式计算:

1.当外窗无任何遮阳设施时 LQτ=F Cs Ca Dj,max CL (3.1) 式中Dj,max—计算时刻下太阳总辐射负荷强度,W/㎡; 2.当外窗只有内遮阳设施时 LQτ=F Cs Ca Cn Dj,max-τ CL (3.2) 式中Dj,max-τ—计算时刻下太阳总辐射负荷强度,W/㎡; 3.当外窗只有外遮阳板时 LQτ=[F1Jnτ+FJnnτ] Cs Ca (3.3) 4.当窗口既有内遮阳设施又有外遮阳板时 LQτ=[F1Jnτ+FJnnτ]CsCnCa (3.4) 式中 Dj,max-τ—计算时刻下,标准玻璃窗的直射辐射照度,W/㎡; Dj,max-τ—计算时刻下,标准玻璃窗的散热辐射照度,W/㎡; F1—窗上收太阳直射照射的面积; F—外窗面积(包括窗框、即窗的墙洞面积)㎡ CL 、CLN—冷负荷系数(CLN为北向冷负荷系数),无因次,按纬度取值; Ca—窗的有效面积系数; Cs—窗玻璃的遮挡系数; Cn—窗内遮阳设施的遮阳系数; (四)、内围护结构的传热冷负荷 1.当邻室为通风良好的非空调房间时,通过内窗的温差传热负荷,可按式( 2.1)计算。 2.当邻室为通风良好的非空调房间时,通过内墙和楼板的温差传热负荷,可按式(1.1)计算,或按式(1.2)估算。此时负荷温差Δt tpj,应按"零"朝向的数据采用。 3.当邻室有一定发热量时,通过空调房间内窗、隔墙、楼板或内门等内围护结构的温差传热负荷,按下式计算: LQ=KF(twp+Δtls-tn) (4.1) 式中 LQ—稳态冷负荷,下同,W; twp—夏季空气调节室外计算日平均温度,℃; tn—夏季空气调节室内计算温度,℃; Δtls—邻室温升,可根据邻室散热强度采用,℃。 (五)、人体冷负荷 人体显热散热形成的计算时刻冷负荷LQ,按下式计算: LQτ=n1 n2 qs CL (5.1) 式中 n1—计算时刻空调房间内的总人数;

工厂电力负荷计算示例

工厂电力负荷计算示例标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

负荷计算 2.1.1负荷计算的目的 计算负荷是确定供电系统、选择变压器容量、电气设备、导线截面和仪表量程的依据,也是整定继电保护的重要数据。计算负荷确定的是否正确合理,直接影响到电器和导线的选择是否合理。如计算负荷确定过大,将使电器和导线截面选择过大,造成投资和有色金属的浪费;如计算负荷确定过小,又将使电器和导线运行时增加电能损耗,并产生过热,引起绝缘过早老化,甚至烧毁,以至发生事故。为此,正确进行负荷计算是供电设计的前提,也是实现供电系统安全、经济运行的必要手段。 2.1.2负荷计算的方法 目前负荷计算常用需要系数法、二项式法和利用系数法、利用各种用电指标的负荷计算方法。前两种方法在国内各电气设计单位的使用最为普遍。 1.需要系数法 适用范围:当用电设备台数较多、各台设备容量相差不太悬殊时,特别在确定车间和工厂的计算负荷时,宜于采用。组成需要系数的同时系数和负荷系数都是平均的概念,若一个用电设备组中设备容量相差过于悬殊,大容量设备的投入对计算负荷投入时的实际情况不符,出现不理想的结果。 2.二项式法 当用电设备台数较少、有的设备容量相差悬殊时,特别在确定干线和分支线的计算负荷时,宜于采用。 3.利用系数法

通过平均负荷来求计算负荷,计算依据是概率论和数理统计,但就算过程较为复杂。 4.利用各种用电指标的负荷计算方法 适用于在工厂的初步设计中估算符合、在各类建筑的初步设计中估算照明负荷用。根据计算法的特点和适用范围我们选取需要系数法来计算负荷。 2.1.3计算负荷的公式 按需要系数法确定计算负荷的公式 有功(Kw) P= K·P(2-1) 无功(Kvar) Q= P·tanφ (2-2) 视在(KVA) S= (2-3) 电流(A) = (2-4) 式中 K——该用电设备组的需用系数; P——该用电设备组的设备容量总和,但不包括备用设备容量(kW); PQS——该用电设备组的有功、无功和视在计算负荷(kW); U——额定电压(kW); tanφ ——与运行功率因数角相对应的正切值; ——该用电设备组的计算电流(A);

电力负荷计算公式

电力负荷及计算 (electrical load and load calculation) 用电设备在运行时消耗的功率及其计算。电力负荷包括基本负荷和冲击负荷。基本负荷是生产过程中比较平稳、幅值变化不大的电力负荷,冲击负荷是在较短的时间内幅值变化大的突加、突减负荷。冲击负荷的负荷曲线有较规则的,如带钢连轧机的负荷曲线,也有不规则的,如炼钢电弧炉的负荷曲线。在开展设计时,根据用电设备容量(或耗电量)和工作制度进行负荷计算。 冶金工厂电力负荷特点主要为:(1)生产规模大,单体设备容量和总用电量都比较大。在中国,一个年产量为300万t的钢铁联合企业,用电最大负荷在250Mw左右,一个年产量为10万t的铝厂,用电最大负荷在230Mw左右。吨钢耗电量在450~650kw.h之间,吨铝耗电量在15000~17000kwh之间。150t超高功率炼钢电弧炉变压器容量为90MVA,大型电解整流变压器容量为58MVA。(2)冶金工厂是连续生产部门,供电不能间断,一般采用多电源供电。(3)大功率炼钢电弧炉、大型轧钢机主传动晶闸管变流装置,电diarl在生产过程中产生有功和无功冲击负荷,引起电网周波变化、电压波动、电压闪变及波形畸变,均须采取抑制措施。 电力负荷分级及供电要求冶金工厂电力负荷按用电设备对供电可靠性的不同要求,可划分为三个等级: (1)一级负荷。突然停电将造成人身伤亡或重大设备损坏,且难以修复者,或在经济上造成重大损失者。如炼铁高炉的泥炮机、开口机、热风炉助燃风机、鼓风机站、水泵站;炼钢转炉吹氧管升降机构、烟罩升降机构、炉体倾动机构;大型连续轧钢机;铝电解装置;焦炉推焦车、消火车、拦焦车、煤气加压站和氧气站等的电力负荷。 (2)二级负荷。突然停电将产生大量废品、引起大量减产、企业内运输停顿等,在经济上造成较大损失者。如高炉上料系统、转炉上料系统、电炉电极升降机构、倾动机构、电磁搅拌机、连铸机、轧钢机和金属制品生产系统等的电力负荷。 (3)三级负荷。所有不属于一级和二级的电力负荷。如机械修理设施、电气修理设施等的电力负荷。 各级电力负荷的供电要求,一般不低于以下所列:1)一级负荷由两个独立电源供电,对特殊重要的一级负荷应由两个独立电源点供电(见供电电源)2)二级负荷由两回线路供电,该两回线路应尽可能引自不同的变压器和母线段。3)三级负荷按实际需要容量供电。 负荷计算冶金工厂电力负荷分为最大负荷、尖峰负荷和最大负荷班的平均负荷。最大负荷是30min的最大平均负荷。最大负荷分别乘以适当系数,便可求得尖峰负荷和最大负荷班的平均负荷。它们又分别作为选择供配电设备、计算电压降、选择保护装置、计算电能消耗和选择补偿装置的依据。 在进行负荷计算时,要根据供配电系统由最下级分支馈线逐级向总变电所推算。在生产车间内专门用于检修的电焊机或备用设备可不参与计算。要将不同工作制下的用电设备

用电负荷公式计算方法

用电负荷公式怎么算 问:用电负荷公式是怎么算的.比如说:一个2000W的电热水器.你怎么样去算出来他是用4平方.还是6平 方的电线.还有插座是用多少安的? 答:导线截面积与载流量的计算 一、一般铜导线载流量导线的安全载流量是根据所允许的线芯最高温度、冷却条件、敷设条件来确定的。一般铜导线的安全载流量为5~8A/mm2,铝导线的安全载流量为3~5A/mm2。< 关键点> 一般铜导线的安全载流量为5~8A/mm2,铝导线的安全载流量为3~5A/mm2。如:2.5 mm2 BVV铜导线安全载流量的推荐值×8A/mm2=20A 4 mm2 BVV铜导线安全载流量的推荐值4×8A/mm2=32A 二、计算铜导线截面积利用铜导线的安全载流量的推荐值5~8A/mm2,计算出所选取铜导线截面积S的上 下范围:S=< I /(5~8)> = I ~ I(mm2)S-----铜导线截面积(mm2)I-----负载电流(A) 三、功率计算一般负载(也可以成为用电器,如点灯、冰箱等等)分为两种,一种式电阻性负载,一种是电感性负载。对于电阻性负载的计算公式:P=UI 对于日光灯负载的计算公式:P=UIcosф,其中日光灯负载的功率因数cosф=。不同电感性负载功率因数不同,统一计算家庭用电器时可以将功率因数cosф取。也就是说如果一个家庭所有用电器加上总功率为6000瓦,则最大电流是I=P/Ucosф=6000/220*=34(A) 但是,一般情况下,家里的电器不可能同时使用,所以加上一个公用系数,公用系数一般。所以,上面的计算应该改写成I=P*公用系数/Ucosф=6000*220*=17(A) 也就是说,这个家庭总的电流值为17A。则总闸空 气开关不能使用16A,应该用大于17A的。 估算口诀: 二点五下乘以九,往上减一顺号走。 三十五乘三点五,双双成组减点五。 条件有变加折算,高温九折铜升级。 穿管根数二三四,八七六折满载流。 说明: (1)本节口诀对各种绝缘线(橡皮和塑料绝缘线)的载流量(安全电流)不是直接指出,而是“截面乘上一定的倍 数”来表示,通过心算而得。由表5 3可以看出:倍数随截面的增大而减小。 “二点五下乘以九,往上减一顺号走”说的是2.5mm’及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。如2.5mm’导线,载流量为2.5×9=22.5(A)。从4mm’及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍数逐次减l,即4×8、6×7、10×6、16×5、25×4。 “三十五乘三点五,双双成组减点五”,说的是35mm”的导线载流量为截面数的3.5倍,即35×3.5=122.5(A)。从50mm’及以上的导线,其载流量与截面数之间的倍数关系变为两个两个线号成一组,倍数依次减0.5。即50、70mm’导线的载流量为截面数的3倍;95、120mm”导线载流量是其截面积数的2.5 倍,依次类推。 “条件有变加折算,高温九折铜升级”。上述口诀是铝芯绝缘线、明敷在环境温度25℃的条件下而定的。若铝芯绝缘线明敷在环境温度长期高于25℃的地区,导线载流量可按上述口诀计算方法算出,然后再打九折即可;当使用的不是铝线而是铜芯绝缘线,它的载流量要比同规格铝线略大一些,可按上述口诀方法算出比铝线加大一个线号的载流量。如16mm’铜线的载流量,可按25mm2铝线计算.

相关文档