文档库 最新最全的文档下载
当前位置:文档库 › 垂径定理及运用精心筛选

垂径定理及运用精心筛选

垂径定理及运用精心筛选
垂径定理及运用精心筛选

1 / 4

B A

垂径定理解题应用举例

垂径定理推论一:对于一个圆和一条直线来说,如果具备下列五个条件中的任何两个,那么也具有其它三个:①垂直于弦,②过圆心,③平分弦,④平分弦所对的优弧,⑤平分弦所对的劣弧。(当以①、③为题设时,“弦”不能是直径。)

1、在半径为5cm 的⊙O 中,有一点P 满足OP =3 cm ,则过P 的整数弦有 条。

2、 (重庆市)如图1,⊙O 的直径CD 过弦EF 的中点G ,∠EOD =40°,则∠DCF 等于( )

A .80°

B . 50°

C . 40°

D . 20°

3、 (南京市)如图2,矩形ABCD 与圆心在AB 上的⊙O 交于点G 、

B 、F 、E

, GB =8cm ,AG =1cm ,DE =2cm ,则EF = cm .

变式一:圆内两条互相平行的弦AB 、CD ,其中AB =16cm ,CD =12cm ,圆的半径为10,求AB 、CD 间的距离。

4、如图,在⊙O 中,CD 是直径,AB 是弦,且CD ⊥AB ,已知CD = 20,CM = 4,求AB 。

N M O

G F E

D C B A

D

2 / 4

5、如图,AB 、CD 都是⊙O 的弦,且AB ∥CD ,求证: AC = BD 。

6、如图,在⊙O 中,AB 为⊙O 的弦,C 、D 是直线AB 上两点,且AC =BD 求证:△OCD 为等腰三角形。

7、如图,两个圆都以点O 为圆心,小圆的弦CD 与大圆的弦AB 在同一条直线上。你认为AC 与BD 的大小有什么关系?为什么?

8、如图为一圆弧形拱桥,半径OA = 10m ,拱高为4m ,求拱桥跨度AB 的长。

A B C D

O

B

3 /

4 9、如图,在⊙O 中,AB 和CD 是直径,弦CE ∥AB ,∠COE = 30°,求∠BOC 的度数。

10、 如图,已知,在□ABCD 中,以A 为圆心,AB 为半径作圆,交AD 于G , BA 的延长线

交⊙O 于E ,求证:EF = FG 。

11、如图,在⊙O 中,点O 是∠BAC 的平分线上的一点,求证:AB = AC 。

12、在⊙O 中,AB 、AC 是互相垂直的两条弦, AB =8cm ,AC =6cm ,那么⊙O 的半径OA 的长

⌒ ⌒

A D C

B A E O

4 / 4 A B C D E F

13、某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,图3是水平放置的破裂管道有水部分的截面.

(1)请你补全这个输水管道的圆形截面;

(2)若这个输水管道有水部分的水面宽AB =16cm ,水面最深地方的高度为4cm ,求这个圆形截面的半径.

14 有一座圆弧形拱桥,桥下水面AB 宽7.2m ,拱顶CD 高出水面2.4m.现有一艘宽EF 为3m ,船舱顶部为长方形并高出水面2m 的船要经过这里,此船能顺利通过这座桥吗?

4

图3

垂径定理推论证明

一、 ③AE=BE ①⌒AC = ⌒BC ④CD ⊥ AB ②⌒AD = ⌒BD ⑤CD 过圆心(即CD 是直径) 证明:∵⌒AC = ⌒BC ,⌒AD = ⌒BD ∴⌒CAD = ⌒CBD = 圆周 ∴ CD 过圆心(即CD 是直径) 连接OA ,OB ∵⌒AD = ⌒BD ∴∠AOD=∠BOD 在△AOE 和△BOE 中 OA=OB ∠AOE=∠BOE OE=OE ∴△AOE ≌△BOE (SAS ) ∴AE=BE ,∠AEO=∠BEO=90° ∴CD ⊥AB 二、 ②⌒AD = ⌒BD ①⌒AC = ⌒BC ④CD ⊥AB ③AE=BE ⑤CD 过圆心(即CD 是直径) 证明:连接OA ,OB 在△AOE 和△BOE 中 OA=OB AE=BE OE=OE ∴△AOE ≌△BOE (SSS ) ∴∠AOE=∠BOE ,∠AEO=∠BEO=90° ∵∠AOE=∠BOE ∴⌒AD = ⌒BD ∵⌒AC = ⌒BC ,⌒AD = ⌒BD ∴⌒CAD = ⌒CBD = 圆周 ∴ CD 过圆心(即CD 是直径) ∵∠AEO=∠BEO=90° ∴CD ⊥AB 21 21

三、①⌒AC = ⌒BC ②⌒AD = ⌒BD ④CD⊥AB ③AE=BE ⑤CD过圆心(即CD是直径)证明过程同上 四、 ②⌒AD = ⌒BD ①⌒AC = ⌒BC③AE=BE ④CD⊥AB⑤CD过圆心(即CD是直径) 证明:连接OA,OB ∵CD⊥AB ∴∠AEO=∠BEO=90° 在Rt△AOE和Rt△BOE中 OA=OB OE=OE ∴Rt△AOE≌Rt△BOE(HL) ∴∠AOE=∠BOE,AE=∠BE ∵∠AOE=∠BOE ∴⌒AD = ⌒BD ∵⌒AC = ⌒BC,⌒AD = ⌒BD ∴⌒ CAD= ⌒ CBD = 圆周 ∴CD过圆心(即CD是直径) 五、①⌒AC = ⌒BC ②⌒AD = ⌒BD③AE=BE ④CD⊥AB⑤CD过圆心(即CD是直径)证明过程同上 六、②⌒AD = ⌒BD ①⌒AC = ⌒BC③AE=BE ⑤CD过圆心(即CD是直径)④CD⊥AB 2 1

2019年中考数学复习【垂径定理的应用】专项精练卷及答案解析

2019年中考数学复习 【垂径定理的应用】专项精练卷 一.填空题 1.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积=(弦×矢+矢2).弧田(如图阴影部分面积)由圆弧和其所对弦围成,公式中“弦”指 圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为120°,半径等于4的弧田,按照上述公式计算出弧田的面积为. 2.位于黄岩西城的五洞桥桥上老街目前正在修复,其中一处中式圆形门,它的平面示意图,已知AB过圆心O,且垂直CD于点B,测得门洞高度AB为1.8米,门洞下沿CD宽为1.2米,则该圆形门洞的半径为. 3.在我国古代数学著作《九章算术》中记载了这样一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”其大意为:如图,AB为⊙O的直径,弦CD⊥AB于点E,若AE=1寸,CD=10寸,则⊙O的直径等于寸. 4.如图是一个圆环形黄花梨木摆件的残片,为求其外圆半径,小林在外圆上任取一点A,然后过点A作AB与残片的内圆相切于点D,作CD⊥AB交外圆于点C,测得CD=15cm,AB=60cm,则这个摆件的外圆半径是cm. 5.如图,某种鱼缸的主视图可视为弓形,该鱼缸装满水时的最大深度CD为18cm,半径OC为13cm,则鱼缸口的直径AB=cm.

6.如图是一块圆环形玉片的残片,作外圆的弦AB与内圆相切于点C,量得AB=8cm、点C与的中点D 的距离CD=2cm.则此圆环形玉片的外圆半径为cm. 7.如图,有一块矩形木板ABCD,AB=13dm,BC=8dm,工人师傅在该木板上锯下一块宽为xdm的矩形木板MBCN,并将其拼接在剩下的矩形木板AMND的正下方,其中M′、B′、C′、N′分别与M、B、C、N 对应.现在这个新的组合木板上画圆,要使这个圆最大,则x的取值范围是,且最大圆的面积是dm2. 8.小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm),请你帮小华算出圆盘的半径是cm. 二.选择题 9.一条排水管的截面如图所示,已知排水管的截面圆的半径OB=10dm,水面宽AB是16dm,则截面水深CD是()

垂径定理—知识讲解(提高).

垂径定理—知识讲解(提高) 【学习目标】 1.理解圆的对称性; 2.掌握垂径定理及其推论; 3.学会运用垂径定理及其推论解决有关的计算、证明和作图问题. 【要点梳理】 知识点一、垂径定理 1.垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 2.推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 要点诠释: (1)垂径定理是由两个条件推出两个结论,即 (2)这里的直径也可以是半径,也可以是过圆心的直线或线段. 知识点二、垂径定理的拓展 根据圆的对称性及垂径定理还有如下结论: (1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧. (4)圆的两条平行弦所夹的弧相等. 要点诠释: 在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径) 【典型例题】 类型一、应用垂径定理进行计算与证明 1. 如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=1,ED=3,则⊙O 的半径是.

【答案】5. 【解析】作OM⊥AB于M、ON⊥CD于N,连结OA, ∵AB=CD,CE=1,ED=3, ∴OM=EN=1,AM=2, ∴ 【点评】对于垂径定理的使用,一般多用于解决有关半径、弦长、弦心距之间的运算(配合勾股定理)问题. 举一反三: 【变式1】如图所示,⊙O两弦AB、CD垂直相交于H,AH=4,BH=6,CH=3,DH=8,求⊙O半径. 【答案】如图所示,过点O分别作OM⊥AB于M,ON⊥CD于N,则四边形MONH为矩形,连结OB, ∴ 1 2 MO HN CN CH CD CH ==-=- 11 ()(38)3 2.5 22 CH DH CH =+-=+-=, 111 ()(46)5 222 BM AB BH AH ==+=+=, ∴在Rt△BOM中,OB== 【高清ID号:356965 关联的位置名称(播放点名称):例2-例3】 【变式2】如图,AB为⊙O的弦,M是AB上一点,若AB=20cm,MB=8cm,OM=10cm,求⊙O的半径.

垂径定理

2 1 垂径定理 一、 圆的对称性 圆是轴对称图形,对称轴是 二、 如图是一个圆形纸片把该纸片沿直径AB 折叠,其中点A 和点是一组对称点 (1)思考∵OC=OD, ∴Δ OCE ≌ΔODE, ∠OEC= ∠OED= ∴AB 与CD 的位置关系是 (2)又∵点C 和点D 是一组对称点 ∴CE= 即点E 是CD 的中点 (3)根据折叠可得,弧AC=弧AD, 弧BC=弧BD, 结论:垂径定理及其推论 1、垂直于弦的直径 弦,并且 弦所对的两段弧 2、推论:平分弦(不是直径)的直径 并且 弦所对的两条弧 三、规律总结;垂径定理及其推论与“知二得三” 对于一个圆和一条直线,若具备: (1) 过圆心(2)垂直于弦(3)平分弦(4)平分弦所对的优弧(5)平分弦所对的劣弧上述五个 条件中的任何两个条件都可以退出其他三个结论 四、 垂径定理基本图形的四变量、两关系 四变量:弦长a,圆心到弦的距离d,半径r ,弓形高h ,这四个量知道任意两个可求其他两个。 五、垂径定理及其推论的应用 (一)、选择题: 1、已知圆内一条弦与直径相交成300角,且分直径成1CM 和5CM 两部分,则这条弦的弦心距是: A 、 B 、1 C 、2 D 、25 2、AB 、CD 是⊙O 内两条互相垂直的弦,相交于圆内P 点,圆的半径为5,两条弦的长均为8,则OP 的长为: A 、3 B 、3 C 、3 D 、2 3、⊙O 是等边三角形ABC 的外接圆,⊙O 的半径为2,则等边三角形ABC 的边长为( ) A B C . D .4、如图2,⊙O 的弦AB =6,M 是AB 上任意一点,且OM 最小值为4,则⊙O 的半径为( )A .5 B .4 C .3 D .2 5、高速公路的隧道和桥梁最多.如图是一个隧道的横截面,若它的形状是以O 为圆心的圆的一部分,路面AB =10米,净高CD =7米,则此圆的半径OA =( ) A .5 B .7 C . 375 D .377 6、如图,圆弧形桥拱的跨度AB =12米,拱高CD =4米,则拱桥的半径为( ) A .6.5米 B .9米 C .13米 D .15米 7、如图,O ⊙是ABC △的外接圆,AB 是直径.若80BOC ∠=°,则A ∠等于( ) A .60° B .50° C .40° D .30°

垂径定理练习题及答案(可编辑修改word版)

一.选择题 垂径定理 ★1.如图 1,⊙O 的直径为 10,圆心 O 到弦 AB 的距离 OM 的长为 3,那么弦 AB 的长是() A.4 B.6 C.7 D.8 答案:D ★★2.如图,⊙O的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段OM 长的最小值为() A.2 B.3 C.4 D.5 答案:B ★★3.过⊙O内一点M 的最长弦为10 cm,最短弦长为8cm,则OM 的长为() A.9cm B.6cm C.3cm 答案:C ★★4.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子 OA、OB 在 O 点钉在一起,并使它们保持垂直,在测直径时,把 O 点靠在圆周上,读得刻度 OE=8 个单位,OF=6 个单位,则圆的直径为() A.12 个单位B.10 个单位C.1 个单位D.15 个单位 答案:B ★★5.如图,⊙O 的直径AB 垂直弦CD 于P ,且P 是半径OB 的中点,CD 6cm ,则直径AB 的长是() A. 2 3cm B. 3 2cm C. 4 2cm D. 4 3cm D . 41cm

3答案:D ★★6.下列命题中,正确的是() A.平分一条直径的弦必垂直于这条直径 B.平分一条弧的直线垂直于这条弧所对的弦 C.弦的垂线必经过这条弦所在圆的圆心 D.在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心 答案:D ★★★7.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24 米,拱的半径为13 米,则拱高为( ) A.5米B.8 米C.7 米D.5 米 答案:B ★★★8.⊙O的半径为5cm,弦AB//CD,且AB=8cm,CD=6cm,则AB 与CD 之间的距离为( ) A. 1 cm B. 7cm C. 3 cm 或4 cm D. 1cm 或7cm 答案:D ★★★9.已知等腰△ABC的三个顶点都在半径为 5 的⊙O上,如果底边 BC 的长为 8,那么 BC 边上的高为( ) A.2 B.8 C.2 或8 D.3 答案:C 二.填空题 ★1.已知AB 是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为cm 答案:5 cm ★2.在直径为10cm 的圆中,弦AB 的长为8cm,则它的弦心距为cm 答案:3 cm ★3.在半径为10 的圆中有一条长为16 的弦,那么这条弦的弦心距等于 答案:6 ★★4.已知AB 是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为cm 答案:5 cm ★★5.如图,⊙O的直径 AB 垂直于弦 CD,垂足为 E,若∠COD=120°,OE=3 厘米,则CD=厘米

垂径定理练习题及答案

垂径定理 一.选择题 ★1.如图1,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,那么弦AB 的长是( ) A .4 B .6 C .7 D .8 答案:D ★★2.如图,⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段OM 长的最小值为( ) A .2 B .3 C .4 D .5 答案:B ★★3.过⊙O 内一点M 的最长弦为10 cm ,最短弦长为8cm ,则OM 的长为( ) A .9cm B .6cm C .3cm D .cm 41 答案:C ★★4.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( ) A .12个单位 B .10个单位 C .1个单位 D .15个单位 答案:B ★★5.如图,O ⊙的直径AB 垂直弦CD 于P ,且P 是半径OB 的中点,6cm CD ,则直径AB 的长是( ) A . B . C . D .

答案:D ★★6.下列命题中,正确的是() A.平分一条直径的弦必垂直于这条直径 B.平分一条弧的直线垂直于这条弧所对的弦 C.弦的垂线必经过这条弦所在圆的圆心 D.在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心 答案:D ★★★7.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( ) A.5米 B.8米 C.7米 D.53米 答案:B ★★★8.⊙O的半径为5cm,弦AB//CD,且AB=8cm,CD=6cm,则AB与CD之间的距离为( ) A. 1 cm B. 7cm C. 3 cm或4 cm D. 1cm 或7cm 答案:D ★★★9.已知等腰△ABC的三个顶点都在半径为5的⊙O上,如果底边BC的长为8,那么BC边上的高为( ) A.2 B.8 C.2或8 D.3 答案:C 二.填空题 ★1.已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为 cm 答案:5 cm ★2.在直径为10cm的圆中,弦AB的长为8cm,则它的弦心距为 cm 答案:3 cm ★3.在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于 答案:6 ★★4.已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为 cm 答案:5 cm ★★5.如图,⊙O的直径AB垂直于弦CD,垂足为E,若∠COD=120°,OE=3厘米,则CD =厘米

数学北师大版九年级下册垂径定理的运用

2017 年青年教师赛课教案 唐波【上课课题】 解圆中的基本图形———求解线段长(一) 【授课班级】 初三(2)班 【教材分析】 本节课是初三第二轮专题复习《圆》的“圆中求解线段长”问题,在之前学习圆相关性质和定理基础上,用建模的思想分解出圆中的基本图形,进一步发展学生的推理能力。本课注重学生观察、猜想、推理论证等自主探究和合作交流,强调能从复杂图形中抽取出基本图形或基本模型,经过探究过程,培养推理能力和有条理的表达能力。 【学情分析】 学生已经出现较为严重的两极分化,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,对后进生来说,简单的基础知识还不能有效的掌握,学生仍然缺少推理的思考方法,对几何有畏难情绪,相关知识学得不很透彻。本节课基于学生的认知水平,让学生在“解模型”、“用模型”、“构模型”的探究过程中激发学生的探究欲望,增强信心。 【教学目标】 1.应用基本模型、基本定理、基本数学思想求解圆中线段长; 2.经历“解模型”、“用模型”、“构模型”的探究过程,通过学生观察猜想、推理论证等自主探究和合作交流,进一步发展学生的推理能力; 3.能应用复杂图形中抽取的基本图形和模型解决问题,提高解题能力和速度; 4.通过探究活动培养学生良好的思维品质和优秀的学习习惯。 【1+X 问题群设置】 1.主问题 怎样运用基本模型来求解线段长 2.问题群(任务群) 一、问题引入:这个基本图形,能想到什么定理? 二、问题探究: 探究一:“解模型” 1.已知AE=1,CE=2,求半径OC、弦心距OE? 2.连接半弧所对的弦AC、BC,求AC、BC 如果任意知道两个能求出其余的吗?(知二求二)

垂径定理的应用教案

课题:垂径定理的应用 一、引入:简要复习垂径定理及其推论的内容。 二、题组训练: 教学意图:通过题组训练强化学生对垂径定理及其推论的应用,在此过程中逐步渗透用方程思想来解决几何运算的问题,并介绍弓形的高的概念,目的是分解课本上例3“赵州桥问题”的难度,为下面顺利建立数学模型解决此例题做好准备。 1、已知:如图,⊙O 中, AB 为 弦,于D ,AB = 8cm ,OD = 3cm. 求 ⊙O 的半径OA. (直接应用垂径定理) 2、已知:如图,⊙O 中, AB 为 弦, OC 交AB 于D 且D 为AB 的中点,AB = 8cm ,OA = 5cm. 求CD. (应用垂径定理的推论) 3、已知:如图,⊙O 中, AB 为 弦,C 为 弧AB 的中点,OC 交 AB 于D ,AB = 6cm ,CD = 2cm. 求 ⊙O 的半径OA . (应用垂径定理的推论和方程的思想) 4、如图,在弓形ACB 中,AB =16cm ,弓形的高CD 为4cm ,求弓形所在的圆的半径。 (强化垂径定理和方程思想的运用,逐步渗透数学建模的思想。) 5、小结:对于一个圆中的弦长a 、圆心到弦的距离d 、圆半径r 、弓形高 h ,这四个量中,只要已知其中任意两个量,就可以求出另外两个量,如图有: (1)h d r +=;(2)222)2(h a r += 三、解决“赵州桥问题” 例3 1300多年前,我国隋朝建造的赵州石拱桥(如图)的桥拱是圆弧 形,它的跨度(弧所对是弦的长)为 37.4 米,拱高(弧的中点到弦的 距离,也叫弓形高)为7.2米,求桥拱的半径(精确到0.1米). 教学程序及意图说明: 1、先用图片和文字介绍赵州桥的历史和特点,激发学生学习的兴趣; 2、展示赵州桥的平面示意图,帮助学生理解题意并初步建立数学模型。 3、分析、讲解建模的过程,给出解题过程。 四、建模强化训练: 1、在直径为650mm 的圆柱形油槽内装入一些油后,截面如图所示.若油面 宽AB = 600mm ,求油的最大深度. 2、如图,某城市住宅社区,在相邻两楼之间修建一个上面是半圆,下面是矩形的仿古通道,其中半圆拱的圆心距地面2米,半径为1.3米,现有一辆高2.5米,宽2.3 米的送家具的卡车,问这辆卡车能否通过通道,请说明理由。 五、小结和布置作业。 ·A B O C D ·A B O C D A B

垂径定理练习及答案

| 垂径定理一、选择题 1. 在Rt△ABC,∠C=90°,BC=5,AB=13,D是AB的中点,以C为圆心,BC为半径作⊙C,则⊙C与点D的位置关系是( ) A. D在圆内 B.D在圆上 C.D在圆外 D.不能确定 2.下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶角的距离相等;④半径相等的两个半圆是等弧.其中正确的有( ) A.4个 B.3个 C.2个 D.1个 3.下面的四个判断中,正确的一个是( ) A.过圆内的一点的无数条弦中,有最长的弦,没有最短的弦; B.过圆内的一点的无数条弦中,有最短的弦,没有最长的弦; C. 过圆内的一点的无数条弦中,有一条且只有一条最长的弦,也有且只有一条最短的弦; D.过圆内的一点的无数条弦中,既没有最长的弦,也没有最短的弦. 4.下列说法中,正确的有( )①菱形的四个顶点在同一个圆上;②矩形的四个顶点在同一个圆上; ③正方形四条边的中点在同一个圆上;④平行四边形四条边的中点在同一个圆上. A.1个 B.2个 C.3个 D.4个 5.如图所示,在⊙0中,直径MN⊥AB,垂足为C,则下列结论中错误的是( ) A.AC=CB B. C. D. OC=CN 6.过⊙O内一点M的最长的弦长为4 cm,最短的弦长为2 c( ) A.B. C. 8 cm D.

7.如图所示,AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm, AP:PB=1:5,那么⊙O的半径等于( ) A.6 cm B. C.8 cm D. 8.如果⊙O中弦AB与直径CD垂直,垂足为E,AE=4,CE=2,那么⊙O 的半径等于( )A. 5 B. C. D. 9. 如图所示,AB是⊙O的一固定直径,它把⊙O分成上、下两个半 圆,自上半圆上一点C作弦CD⊥AB.∠OCD的平分线交⊙O于点P,当点C 在上半圆(不包括A、B两点)上移动时,点P( )A.到CD的距离保持不变 B.位置不变 C. 等分D.随C点的移动而移动 10. 如图所示,同心圆中,大圆的弦AB交小圆于C、D两点,且AC=CD,AB的弦心距等于CD的一半。则这两个同心圆的大小圆的半径之比( ) A. 3:1 B. C. D. 二、填空题 11.半径为5 cm的定圆O中,长度为6 cm的弦的中点的集合是______. 12.平面内一点到圆上点的最小距离是2cm,最大距离是8 cm.那么这个圆的半径________. 13.在半径为5 cm的圆内有两条平行弦。分别为6 cm和8 cm.则两弦之间的距离是______. 14.在圆中,垂直平分一条半径的弦长为,则此圆的半径等于_________.

垂径定理在实际问题中的应用举例

- 1 - 垂径定理在实际问题中的应用 “数学源于生活,生活中充满着数学”,我们刚刚学过的垂经定理在生活中就有着广泛的应用,中考中也常常体现这一点,现采撷几例,以飨读者. 例1小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图1所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是( ) A .第①块 B .第②块 C .第③块 D .第④块 析解:显然,小明带到商店去的应是一块能确定其圆心和半径的玻璃碎片,观察图中的玻璃碎片,根据垂径定理可知,由第②块可确定出圆心和半径(如图2所示),故选答案B. 例2高速公路的隧道和桥梁最多.如图3是一个隧道的横截面,若它的形状是以O 为圆心的圆的一部分,路面AB =10米,净高CD =7米,则此圆的半径OA =( ) A.5 B.7 C. 537 D. 7 37 析解:本题主要考查垂径定理与勾股定理的知识.设圆的半径为r ,有(7-r)2+52=r 2. 解之得,r= 7 37 .故选D. 例3兴隆蔬菜基地建圆弧形蔬菜大棚的剖面如图4所示,已知 AB =16m ,半径 OA =10m ,高度CD 为_____m . 析解:考查垂径定理及其应用,如图根据垂径定理,三角形ADO 是Rt △,所以OD=2 2 1610()62 -=,CD=10-6=4,填4. 例4如图是“明清影视城”的圆弧形门,黄红同学到影视城游玩,很想知道这扇门的相关数据,于是她从景点管理人员处打听到:这个圆弧形门所在的圆与水平地面是相切的,AB=CD=20 cm ,且AB ,CD 与水平地面都是垂直的.根 O D A B C 图3 D B A O C 图 4 O M N G 图5 图1

圆心角和垂径定理练习题含答案

2017年01月07日圆心角,垂径定理 一.选择题(共50小题) 1.如图,⊙O的直径BD=4,∠A=60°,则BC的长度为() A.B.2 C.2D.4 2.如图,已知AB、AD是⊙O的弦,∠B=30°,点C在弦AB上,连接CO并延长CO交于⊙O于点D,∠D=20°,则∠BAD的度数是() A.30°B.40°C.50°D.60° 3.如图,A,B,P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为() A.2 B.4 C.D.2 4.如图,⊙O是△ABC的外接圆,弦AC的长为3,sinB=,则⊙O的半径为() A.4 B.3 C.2 D. 5.如图,△ABC为⊙O的内接三角形,∠AOB=100°,则∠ACB的度数为() A.100°B.130°C.150°D.160° 6.如图,△ABC内接于⊙O,若∠AOB=100°,则∠ACB的度数是() A.40°B.50°C.60°D.80° 7.如图,已知点A,B,C在⊙O上,且∠BAC=25°,则∠OCB的度数是() A.70°B.65°C.55°D.50° 8.如图,AB是⊙O直径,∠AOC=140°,则∠D为() A.40°B.30°C.20°D.70° 9.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则∠AED的正弦值是() A.B.C.D. 10.如图,在⊙O中,弦AC与半径OB平行,若∠BOC=50°,则∠B的大小为() A.25°B.30°C.50°D.60° 11.如图,AB是⊙O的直径,C,D为圆上两点,若∠AOC=130°,则∠D等于() A.20°B.25°C.35°D.50° 12.如图,⊙O中,劣弧AB所对的圆心角∠AOB=120°,点C在劣弧AB上,则圆周角∠ACB=() A.60°B.120°C.135°D.150°

(文章)垂径定理在实际问题中的应用

垂径定理在实际问题中的应用 “数学源于生活,生活中充满着数学”,我们刚刚学过的垂经定理在生活中就有着广泛的应用,中考中也常常体现这一点,现采撷几例,以飨读者. 例1小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图1所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是( ) A .第①块 B .第②块 C .第③块 D .第④块 析解:显然,小明带到商店去的应是一块能确定其 圆心和半径的玻璃碎片,观察图中的玻璃碎片,根据垂径定理 可知,由第②块可确定出圆心和半径(如图2所示),故选答案B. 例2高速公路的隧道和桥梁最多.如图3是一个隧道的横截面,若它的形状是以O 为圆心的圆的一部分,路面AB =10米,净高C D =7米,则此圆的半径O A =( ) A.5 B.7 C. 5 37 D. 7 37 析解:本题主要考查垂径定理与勾股定理的知识.设圆的半径为r ,有(7-r)2+52=r 2. 解之得,r= 7 37.故选D. 例3兴隆蔬菜基地建圆弧形蔬菜大棚的剖面如图4所示,已知AB =16m ,半径 OA =10m ,高度CD 为_____m . 析解:考查垂径定理及其应用,如图根据垂径定理,三角形ADO 是Rt △,所以 6=,CD=10-6=4,填4. 例4如图是“明清影视城”的圆弧形门,黄红同学到影视城游玩,很想知道这扇门的相关数据,于是她从景点管理人员处打听到:这个圆弧形门所在的圆与水平地面是相切的,AB=CD=20 cm ,且AB ,CD 与水平地面都是垂直的.根据以上数据,请你帮助黄红同学计算出这个圆弧形门的最高点离地面的高度是多少? 析解:本题解决的关键是利用垂径定理构造直角三角形,进行运用勾股定理求出圆弧形门所在圆的半径. 如图5,连接AC ,作AC 的中垂线交AC 于G ,交BD 于N ,交圆的另一点为M ,由垂径定理可知:MN 为圆弧形的所在的圆与地面的切点,取MN 的中点O ,则O 为圆心,连接OA 、OC , ∵AB ⊥BD ,CD ⊥BD , ∴AB ∥CD . ∵AB=CD,∴四边形ABCD 为矩形, ∴AC=BD=200cm,GN=AB=CD=20 cm, 图3 图 4 O M N G 图1

10.中考数学垂径定理的应用 原卷版

计算力专训四十三、垂径定理的应用 1.(2020·杭州市实验外国语学校初三月考)如图,AB 是O 的直径,弦CD 交AB 于点P ,4AP =,8BP =,45APC ∠=?,则CD 的长为( ) A B .C . D .12 2.(2020·江苏江都·初三月考)如图,O 过点B 、C ,圆心O 在等腰Rt ABC ?的内部,BAC 90?∠=, OA 1=,BC 8=.则O 的半径为( ) A .5 B C .D 3.(2020·无锡市东北塘中学月考)下列语句,错误的是( ) A .直径是弦 B .相等的圆心角所对的弧相等 C .弦的垂直平分线一定经过圆心 D .平分弧的半径垂直于弧所对的弦 4.(2020·江苏南京·文昌初级中学月考)如图为一半径为3m 的圆形会议室区域,其中放有4个宽为1m 的长方形会议桌,这些会议桌均有两个顶点在圆形边上,另两个顶点紧靠相邻桌子的顶点,则每个会议桌的长

为_________. 5.(2020·常州市武进区遥观初级中学初三月考)如图,⊙O 的半径为10,弦AB 的长为12,OD⊙AB ,交AB 于点D ,交⊙O 于点C ,则CD=______. 6.(2020·兰溪市实验中学初三月考)已知O 的半径为5,弦6AB =,M 是AB 上任意一点,则线段OM 的最小值为_____. 7.(2020·北京市三帆中学初三月考)如图,AB 是O 的弦,C 是AB 的中点,连接OC 并延长交O 于点D .若1,4CD AB ==,则O 的半径是_________.

8.(2020·滨海县滨淮初级中学初三月考)如图,AB 是⊙O 的直径,点C 在⊙O 上,CD AB ⊥,垂足为D ,且4CD =,2BD =,则直径AB 的长为__________. 9.(2020·浙江温州·初三月考)如图,D 是O 弦BC 的中点,A 是BC 上一点,OA 与BC 交于点E ,已 知8AO =,12BC =. (1)求线段OD 的长. (2)当EO =时,求ED ,EO 的长. 10.(2020·杭州市实验外国语学校初三月考)如图,在O 中,DE 是O 的直径,AB 是O 的弦,AB 的中点C 在直径DE 上.已知8AB cm =,2CD cm =. (1)求O 的半径; (2)连接AE ,过圆心O 向AE 作垂线,垂足为F ,求OF 的长.

垂径定理及其推论

垂径定理及其推论 一、 复习旧知 复习前面学习的圆的基本元素,重点复习圆心角、弧、弦之间的关系;强调圆是旋转对称图形、轴对称图形和中心对称图形。 二、 情境导入(出示赵州桥图片) 问题:你知道赵州桥吗? 它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37.4m, 拱高(弧的中点到弦的距离)为7.2m ,你能求出赵州桥主桥拱的半径吗?现在同学们不会求,但是学了这节课你们就能把主桥拱的半径求出来了。 三、 出示学习目标 1、 利用圆的轴对称性探究垂径定理 2、 理清垂径定理及其推论的题设和结论。 3、 运用垂径定理及其推论进行有关的计算和证明。 4、 学会与垂径定理有关的添加辅助线的方法 四、 自学探究 1、如图,在纸上画⊙O ,AB 是⊙O 的一条弦, 作直径CD ⊥AB, 垂足为E.沿CD 折叠,你能发现图中有那些相等的线段和弧? 你能发现什么结论? 线段: AE=BE 弧: AC=BC, AD=BD 2、得出猜想 垂直于弦的直径平分弦,并且平分弦所对的两条弧 D

即如果CD⊥AB,那么AE=BE,弧AC=弧BC,弧AD=弧BD 3、请根据猜想写出命题的已知、求证,并写出证明过程 4、得出结论经过证明,以上命题是真命题。即垂直于弦的直径平分弦,并且平分弦所对的两条弧是成立的,我们把这个真命题叫做垂径定理 四、检测 1、(出示图形)检查下列图形是否具备应用垂径定理的条件? 五、例题讲解 已知:如图在⊙O中,弦AB的长是8cm,圆心O到AB的距离为3cm,求⊙半径 技巧总结:从例题看出圆的半径OA,弦心距OE及半弦长AE构成Rt△AOE.把垂径定理和勾股定理结合起来,解决问题。 六、练习 如图,OE⊥AB于E,若⊙O的半径为10cm,OE=6cm,则AB= cm。 七、思考 将垂径定理的题设和结论调换,命题还成立吗? 1、如果圆的一条直径平分弦(不是直径),那么它垂直于弦,并且平分弦所对的 两条弧 写出此命题的已知求证,并进行证明。 2、经验证,命题是正确的,由此得出垂径定理的推论1:平分弦(不是直径)的 直径垂直于弦,并且平分弦所对的两条弧。

圆的垂径定理习题及答案

圆的垂径定理习题 一. 选择题 1. 如 图1,00的直径为10,圆心0到弦AB 的距离0M 的长为3,那么弦AB 的长是( ) 2. 如图,O 0的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段0M 长的最小值为( ) 3. 过O 0内一点M 的最长弦为10cm 最短弦长为8cm 则0M 的长为( ) A* 9cm E, 5cm 4. 如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子 0A 0B 在 0点钉在一起,并使 它们保持垂直,在测直径时,把 0点靠在圆周上,读得刻度0E=8个单位,0F=6个单位,则圆的直 位 D. 15个单位 5. 如图,00的直径AB 垂直弦CD 于 P,且P 是半径0B 的中点,6cmCD ,则直径AB 的长是( ) 6. 下列命题中,正确的是( A .平分一条直径的弦必垂直于这条直径 B .平分一条弧的直线垂直于这条弧所对的弦 C .弦的垂线必经过这条弦所在圆的圆心 D .在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心 7. 如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为 A.4 B. 6 C. 7 D. 8 B. 3 C. 4 D. 5 B . 10个单位 C. 1个单 A . 2 12个单位

E & 5米B, 8米C. 7米D,出米D

8.0O 的半径为5cm 弦AB//CD ,且AB=8cm,CD=6cn 则AB 与CD 之间的距离为( ) A . 1 cm B. 7cm C. 3 cm 或 4 cm D. 1cm 或 7cm 9?已知等腰△ ABC 的三个顶点都在半径为5的0 0上,如果底边BC 的长为8,那么BC 边上的高为 ( ) A . 2 B. 8 C. 2 或 8 D. 3 二、填空题 1. _________________________________________________________________________ 已知AB 是O 0的弦,AB= 8cm, OCL AB 与C, 0C=3cm 则O 0的半径为 __________________________ c m 2. ____________________________________________________________________ 在直径为10cm 的圆中,弦 AB 的长为8cm,则它的弦心距为 _______________________________ cm 3. 在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于 _____________________ 4. 已知AB 是O 0的弦,AB= 8cm, OC L AB 与C, 0C=3cm 则O O 的半径为 ________________ cm 5. ______________________________________________________________________________ 如图,O 0的直径AB 垂直于弦CD ,垂足为E ,若/C0氐120°, 0E= 3厘米,贝U CD= ___________ 厘 6. _____________________________________________________________ 半径为6cm 的圆中,垂直平分半径 0A 的弦长为 _______________________________________________ c m 7. 过O 0内一点M 的最长的弦长为6cm,最短的弦长为4cm,则0M 勺长等于 cm 8. 已知AB 是O 0的直径,弦CD L AB E 为垂足,CD=8 0E=1则AB= __________ 9. 如图,AB 为O 0的弦,O 0的半径为5, OC L AB 于点D,交O 0于点C,且CD= l ,则弦AB 的长 11. __________________________ 如图,在直角坐标系中,以点P 为圆心的圆弧与轴交于 A 、B 两点,已知P(4, 2)和A(2, 0), 贝卩点B 的坐标是 12. ____________________________________________________________ 如图,AB 是O 0的直径,ODL AC 于点D, BC=6cm 则0D ________________________________ cm 10. 某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知 AB= 16m 半径04 10m 则中间柱 CD 的高度为

练3_垂径定理的应用(苏科版)(解析版)

练习3 垂径定理的应用 1.如图,某石拱桥的桥拱是圆弧形,拱的跨度AB为24m,点O是AB ?所在圆的圆心,⊙O的半径为13m,求桥拱的高度.(弧的中点到弦的距离) 【分析】由垂径定理得AD=BD=1 2 ×24=12(m),设CD=xm,则OD=(13﹣x)m,在Rt△AOD中, 根据勾股定理得出方程,解方程即可. 【解答】解:如图所示:过O作OD⊥AB交AB ?于C,垂足为D, 则AD=BD=1 2 ×24=12(m), 设CD=xm,则OD=(13﹣x)m, 根据勾股定理得:122+(13﹣x)2=132, 解得:x=8, 即桥拱的高度为8m. 【点评】本题考查了垂径定理和勾股定理等知识;熟练掌握垂径定理,由勾股定理得出方程是解题的关键. 2.如图是输水管的切面,阴影部分是有水部分,其中水面AB宽10cm,水最深3cm,求输水管的半径.

【分析】设圆形切面的半径为r ,过点O 作OD ⊥AB 于点D ,交⊙O 于点E ,由垂径定理可求出BD 的长,再根据最深地方的高度是3cm 得出OD 的长,根据勾股定理即可求出OB 的长. 【解答】解:设圆形切面的半径为r ,过点O 作OD ⊥AB 于点D ,交⊙O 于点E , 则AD =BD =12AB =12×10=5cm , ∵最深地方的高度是3cm , ∴OD =r ﹣3, 在Rt △OBD 中, OB 2=BD 2+OD 2,即r 2=52+(r ﹣3)2, 解得r =173(cm ), ∴输水管的半径为173cm . 【点评】此题考查的是垂径定理的应用,解答此类问题的关键是作出辅助线,构造出直角三角形,利用垂径定理及勾股定理进行解答. 3.“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”.这是《九章算术》中的问题,用数学语言可表述为:如图,CD 为⊙O 的直径,弦AB ⊥CD 于点E ,CE =1寸,AB =10寸,求直径CD 的长. 【分析】根据垂径定理和勾股定理求解. 【解答】解:连接OA ,如图所示,

九年级《圆》垂径定理练习及答案资料

九年级《圆》垂径定理练习及答案

九年级《圆》垂径定理练习 一、选择题 1. 在Rt△ABC,∠C=90°,BC=5,AB=13,D是AB的中点,以C为圆心,BC 为半径作⊙C,则⊙C与点D的位置关系是( ) A. D在圆内 B.D在圆上 C.D 在圆外 D.不能确定 2.下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶角的距离相等;④半径相等的两个半圆是等 弧.其中正确的有( ) A.4个 B.3个 C.2个 D.1个 3.下面的四个判断中,正确的一个是( ) A.过圆内的一点的无数条弦中,有最长的弦,没有最短的弦; B.过圆内的一点的无数条弦中,有最短的弦,没有最长的弦; C. 过圆内的一点的无数条弦中,有一条且只有一条最长的弦,也有且只有一条最短的弦; D.过圆内的一点的无数条弦中,既没有最长的弦,也没有最短的弦.

4.下列说法中,正确的有( )①菱形的四个顶点在同一个圆上;②矩形的四个顶点在同一个圆上; ③正方形四条边的中点在同一个圆上;④平行四边形四条边的中点在同一个圆上. A.1个 B.2个 C.3个 D.4个 5.如图所示,在⊙0中,直径MN⊥AB,垂足为C,则下列结论中错误的是( ) A.AC=CB B. C. D. OC=CN 6.过⊙O内一点M的最长的弦长为4 cm,最短的弦长为2 c( ) A.B. C. 8 cm D. 7.如图所示,AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,AP:PB=1:5,那么⊙O的半径等于( ) A.6 cm B. C.8 cm D. 8.如果⊙O中弦AB与直径CD垂直,垂足为E,AE=4, CE=2,那么⊙O的半径等于( )A. 5 B. C.

专训2 垂径定理的四种应用技巧

专训2垂径定理的四种应用技巧 名师点金:垂径定理的巧用主要体现在求点的坐标、解决最值问题、解决实际问题等.解题时,巧用弦的一半、圆的半径和圆心到弦的垂线段三条线段组成的直角三角形,然后借助勾股定理,在这三个量中知道任意两个,可求出第三个. 巧用垂径定理求点的坐标 1.如图所示,在平面直角坐标系中,点A的坐标是(10,0),点B的坐标是(8,0),点C,D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,求点C的坐标. (第1题) 巧用垂径定理解决最值问题(对称思想) 2.如图,AB,CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为直线EF上的任意一点,求PA+PC的最小值. (第2题)

巧用垂径定理计算 3.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为E,BC=23. (1)求AB的长; (2)求⊙O的半径. (第3题) 巧用垂径定理解决实际问题(建模思想) 4.某地有一座拱桥,它的桥拱是圆弧形,桥下的水面宽度为7.2米,拱顶高出水面2.4米,现有一艘宽3米,船舱顶部为长方形并高出水面2米的货船要经过这里,此货船能顺利通过这座拱桥吗?

答案 1.解:如图,连接CM ,作MN ⊥CD 于N ,CH ⊥OA 于H. ∵四边形OCDB 为平行四边形,B 点的坐标是(8,0), ∴CD =OB =8,CN =MH ,CH =MN. 又∵MN ⊥CD , ∴CN =DN =12 CD =4.易知OA =10,∴MO =MC =5. 在Rt △MNC 中,MN =CM 2-CN 2=52-42=3. ∴CH =3,又OH =OM -MH =5-4=1. ∴点C 的坐标为(1,3). (第1题) (第2题) 2.解:如图,易知点C 关于MN 的对称点为点D ,连接AD ,交MN 于点P ,连接PC ,易知此时PA +PC 最小且PA +PC =AD.过点D 作DH ⊥AB 于点H ,连接OA ,OC.易知AE =4,CF =3,由勾股定理易得OE =3,OF =4,∴DH =EF =7,又AH =AE +EH =4+3=7.∴AD =72.即PA +PC 的最小值为72. 点拨:本题运用了转化思想,将分散的线段转化为同一直线上的一条线段,然后运用勾股定理求出线段的长度. 3.解:(1)连接AC , ∵CD 为⊙的直径,CD ⊥AB , ∴AF =BF , ∴AC =BC.延长AO 交⊙O 于G ,则AG 为⊙O 的直径,又AO ⊥BC , ∴BE =CE , ∴AC =AB. ∴AB =BC =2 3. (2)由(1)知AB =BC =AC ,

相关文档
相关文档 最新文档