文档库 最新最全的文档下载
当前位置:文档库 › 线性代数B_期末复习题

线性代数B_期末复习题

线性代数B_期末复习题
线性代数B_期末复习题

线性代数B 复习资料

(一)单项选择题

1.设A ,B 为n 阶方阵,且()E AB =2

,则下列各式中可能不成立的是( )

(A )1-=B A (B)1-=B ABA (C)1

-=A BAB (D)E BA =2)( 2.若由AB=AC 必能推出B=C (A ,B ,C 均为n 阶矩阵)则A 必须满足( ) (A)A ≠O (B)A=O (C )0≠A (D) 0≠AB 3.A 为n 阶方阵,若存在n 阶方阵B ,使AB=BA=A ,则( ) (A) B 为单位矩阵 (B) B 为零方阵 (C) A B

=-1

(D ) 不一定

4.设A 为n ×n 阶矩阵,如果r(A)

(A) A 的任意一个行(列)向量都是其余行(列)向量的线性组合 (B) A 的各行向量中至少有一个为零向量

(C )A 的行(列)向量组中必有一个行(列)向量是其余各行(列)向量的线性组合 (D)A 的行(列)向量组中必有两个行(列)向量对应元素成比例 5.已知向量组4321,,,αααα线性无关则向量组 ( ) (A) 14433221,,,αααααααα++++线性无关 (B) 14433221,,,αααααααα----线性无关

(C ) 14433221,,,αααααααα-+++线性无关 (D)

14433221,,,αααααααα--++线性无关

6.下列说法不正确的是( ) (A ) 如果r 个向量r ααα,,2,1 线性无关,则加入k 个向量k βββ,,2,1 后,

仍然线性无关 (B) 如果r 个向量r ααα,,2,1 线性无关,则在每个向量中增加k 个分量后所得向量组仍然线性无关 (C)如果r 个向量r ααα,,2,1 线性相关,则加入k 个向量后,仍然线性相关

(D)如果r 个向量r ααα,,2,

1 线性相关,

则在每个向量中去掉k 个分量后所得向量组仍然线性相关

7.设n 阶方阵A 的秩r

(B) 任意r 个行向量均可构成极大无关组 (C) 任意r 个行向量均线性无关

(D) 任一行向量均可由其他r 个行向量线性表示 8.设方阵A 的行列式0=A ,则A 中

(A) 必有一行(列)元素为零 (B) 必有两行(列)成比例

(C ) 必有一行向量是其余行(列)向量的线性组合 (D) 任一行向量是其余行(列)向量的线性组合

9.设A 是m ×n 矩阵,齐次线性方程组AX=0仅有零解的充分必要条件是( ) (A )A 的列向量线性无关 (B)A 的列向量线性相关 (C)A 的行向量线性无关 (D)A 的行向量线性相关

11.n 元线性方程组AX=b ,r (A ,b )

(A)无穷多组解 (B)有唯一解 (C)无解 (D )不确定 10.设A ,B 均为n 阶非零矩阵,且AB =0,则A 和B 的秩( ) (A) 必有一个等于零 (B)一个等于n ,一个小于n (C) 都等于n (D ) 都小于n

12.设向量组s ααα,,,21 (s>1,01≠α) 线性相关,则( )由121,,,-i ααα 线性表出。

(A)每个)1(>i i α都能 (B) 每个)1(>i i α都不能 (C ) 有一个)1(>i i α能 (D) 某一个)1(>i i α不能

13.设B B A A ,再将到的第二行加到第一行得阶矩阵,将

为3的第一列的)1(-倍加到第2列得到,记C

????

?

??=100010011P

则:

11()

B A

C P AP C PAP --==()

T T PAP C D AP

P C C ==)

()(

14. 若向量组,,αβγ线性无关;,,αβδ线性相关,则( ) (A)α必可由,,βγδ线性表示. (B)β必不可由,,αγδ线性表示

(C )δ必可由,,αβγ线性表示. (D)δ必不可由,,αβγ线性表示.

15.下列命题正确的是( )

(A) 若向量组线性相关, 则其任意一部分向量也线性相关 (B) 线性相关的向量组中必有零向量

(C) 向量组中部分向量线性无关, 则整个向量组必线性无关 (D ) 向量组中部分向量线性相关, 则整个向量组必线性相关 16.设向量组s ααα,,,21 的秩为r ,则

(A) 必定r

(B) 向量组中任意小于r 个向量部分组无关 (C) 向量组中任意r 个向量线性无关 (D ) 向量组任意r+1个向量线性相关

17.A 是m ×n 矩阵, r(A)=r 则A 中必( )

(A)没有等于零的r-1阶子式至少有一个r 阶子式不为零 (B )有不等于零的r 阶子式所有r+1阶子式全为零 (C)有等于零的r 阶子式没有不等于零的r+1阶子式 (D)任何r 阶子式都不等于零任何r+1阶子式都等于零 18.能表成向量()1,0,0,01=α,()1,1,1,02=α,()1,1,1,13=α的线性组合

的向量是( ) (A) ()1,1,0,

0 (B )()0,1,1,2 (C)()1,0,1,3,2- (D)()0,0,0,0,0

19.已知()3,2,

11=α, ()2,1,32-=α,()x ,3,23=α 则x=

( )时321,,ααα线性相关。

(A) 1 (B)2 (C) 4 (D ) 5

20.向量组()4,2,1,

11-=α,()2,1,3,02=α,()14,7,033=α

()0,2,1,14-=α的秩为

(A )1 (B )2 (C )3 (D )4

21.设A 为n 阶方阵,且0=A ,则

(A) A 中任一行(列)向量是其余各行(列)向量的线性组合 (B) A 必有两行(列)对应元素乘比例

(C ) A 中必存在一行(列)向量是其余各行(列)向量的线性组合 (D) A 中至少有一行(列)向量为零向量

22.向量组s ααα,,,21 线性相关的充要条件是( ) (A)

s ααα,,,21 中有一零向量

(B) s ααα,,,21 中任意两个向量的分量成比例 (C ) s ααα,,,21 中有一向量是其余向量的线性组合 (D)

s ααα,,,21 中任意一个向量均是其余向量的线性组合

23.若向量β可由向量组s ααα,,,21 线性表出,则( )

(A) 存在一组不全为零的数s k k k ,,,21 ,使等式s s k k k αααβ+++= 2211成立 (B) 存在一组全为零的数s k k k ,,,21 ,使等式s s k k k αααβ+++= 2211成立 (C )向量s αααβ,,,,21 线性相关 (D) 对β的线性表示不唯一

24.对于n 元方程组,正确的命题是( ) (A)如AX=0只有零解, 则AX=b 有唯一解 (B)AX=0有非零解, 则AX=b 有无穷解 (C)AX=B 有唯一解的充要条件是0≠A

(D )如AX=b 有两个不同的解, 则AX=b 有无穷多解

25.设矩阵n m A ?的秩为r(A)=m

(C )A 通过初等变换, 必可化为(m I ,0)的形式

(D) 若矩阵B 满足0BA =,则0B =.

26.非齐次线性方程组AX=b 中未知数的个数为n ,方程个数为m ,系数矩阵A 的秩为r ,则( )

(A ) r=m 时, 方程组AX=b 有解 (B) r=n 时, 方程组AX=b 有唯一解 (C) m=n 时, 方程组AX=b 有唯一解 (D) r

27.已知321,,ααα是齐次线性方程组AX=0的基础解系,那么基础解系还可以是( ) (A) 332211αααk k k ++ (B ) 133221,,αααααα+++ (C)

,,3221αααα--

(D),,,233211αααααα-+-

28.向量组r ααα,,,21 线性无关,且可由向量组s βββ,,,21 线性表示,则 r(r ααα,,,21 )必( )r(s βββ,,,21 )

(A)大于等于 (B)大于 (C)小于 (D )小于等于

29.设n 元齐次线性方程组AX=0的通解为k (1,2,…,n )T

,那么矩阵A 的秩为( ) (A) r(A)=1 (B ) r(A)=n-1 (C) r(A)=n (D)以上都不是

30.设矩阵A =11112

1233λ?? ?

? ?+??

的秩为2,则λ=( ) A.2 B.1 C.0 D .-1

31.设n 维向量组r ααα,,,21 (Ⅰ)中每一个向量都可由向量组s βββ,,,21 (Ⅱ)线性表出,且有r>s, 则( )

(A) (Ⅱ)线性无关 (B) (Ⅱ)线性相关 (C) (Ⅰ)线性无关 (D ) (Ⅰ)线性相关 32.设n ααα,,,21 是n 个m 维向量,且n>m, 则此向量组n ααα,,,21 必定( ) (A ) 线性相关 (B) 线性无关 (C) 含有零向量 (D) 有两个向量相等 33.矩阵A 适合条件( )时,它的秩为r

(A)A 中任何r+1列线性相关 (B) A 中任何r 列线性相关

(C) A 中有r 列线性无关 (D ) A 中线性无关的列向量最多有r 个 34.若m ×n 阶矩阵A 中的n 个列线性无关 则A 的秩( ) (A)大于m (B)大于n (C )等于n (D) 等于m

35.若矩阵A 中有一个r 阶子式D ≠0,且A 中有一个含D 的r+1阶子式等于零,则一定有R (A )( )

(A ) ≥r (B)<r (C)=r (D) =r+1 36.要断言矩阵A 的秩为r ,只须条件( )满足即可 (A) A 中有r 阶子式不等于零 (B) A 中任何r+1阶子式等于零

(C) A 中不等于零的子式的阶数小于等于r (D ) A 中不等于零的子式的最高阶数等于r

37. 设m ×n 阶矩阵A ,B 的秩分别为21,r r ,则分块矩阵(A ,B )的秩适合关系式( ) (A ) 21r r r +≤ (B) 21r r r +≥ (C) 21r r r += (D) 21r r r = 38.R(A)=n 是n 元线性方程组AX=b 有唯一解( )

(A)充分必要条件 (B) 充分条件 (C ) 必要条件 (D) 无关的条件

39.矩阵A=???

?

??--1111的特征值为0,2, 则3A 的特征值为( )

(A) 2,2; (B ) 0,6; (C) 0,0; (D) 2,6;

40.A=?

??

?

??--1111, 则2

22A A I +--的特征值为( ) (A) 2,2; (B ) –2,-2; (C) 0,0; (D) –4,-4; 41.AP P B 1

-=,0λ是A,B 的一个特征值, α是A 的关于0λ的特征向量, 则B 的关于0λ的

特征向量是( ) (A)

α (B) αP (C ) α1-P (D) αP '

42.A 满足关系式O E A A =+-22

,则A 的特征值是

(A) λ=2 (B) λ= -1 (C ) λ= 1 (D) λ= -2是

43.已知-2是A=????

? ??----b x 2222220的特征值,其中b ≠0的任意常数,则x=( ) (A) 2 (B) 4 (C) -2 (D ) -4

44.已知矩阵A=???

?

? ??----x 44174

147有特征值12,3321===λλλ,则x=( ) (A) 2 (B) - 4 (C) -2 (D ) 4

(提示:用特征值的和等于迹的结论来做较简单,迹的向定义见计算题与填空题17) 45.设A 为三阶矩阵,已知0=+E A ,02=+E A ,03=+E A ,则=+E A 4 (A ) 6 (B) - 4 (C) -2 (D)4

46. 设A 为三阶矩阵,有特征值为1,-1,2,则下列矩阵中可逆矩阵是( ) (A) E-A (B) E+A (C) 2E-A (D ) 2E+A

(二)计算题与填空题

1.0653

=+-I A A ,则=-1

A

( ) (()

I A 56

12

--

) 2.设A 是43?矩阵,(),2=A R ???

?

? ??----=111211

120B ,则()=BA R ________ 3. 设A 为3阶矩阵,且||2A =, 则行列式1

|3|A A

*--=____ (-1/2)

4.()()()12313,05,10,T

T

T

t t t ααα=-=-=- 当0,2t ≠时, 向量组321,,ααα 线性无关.

5.设()()(),112,231,5121T

T T k

-=-==ααβ=k ( )时β可被向量

组21,αα线性表出。 (-8)

6.

3

100111100011312011001011001??????- ? ? ?= ? ? ? ? ? ???????

?

? ? ? ??

?

答案:

110349012?? ? ? ???

7. 设

()()()().111,111,111,221321T T T T -=-==-=αααβ则β是否

为向量组321,,ααα的线性组合? (是)

8. 确定b a ,为何值时,使下列非齐次线性方程组有解,并求其所有解.

??????

?=+++=+-+-=+--=+--b

x x x x x ax x x x x x x x x x x 432143214

32143217107141253032. 答: 当4,1=-=b a 时,解为

?

??????

??-+??????? ??-+???

????

?

??2017023100212121c c ,其中

21,c c 为任意非零常数; 当4,1=-≠b a 时,解为

?

?????? ??-+???

????

?

??2017002121k ,其中k 为任意常数; 方程组不存在唯一解.

9.已知11111

1111A -?? ?

=- ? ?-??

,矩阵X 满足*12A X A X -=+,其中*A 是A 的伴随矩阵,求矩阵X .

答 :11010114101X ?? ?= ? ???

10. 求下列矩阵的特征值与特征向量. (1)????? ??--102010201

(2)

????

?

??-----112202213.

答案: (1) 1231,1,3λλλ==-=,

对应于11=λ的全部特征向量是()10,1,0T

k ,01≠k ; 对应于12-=λ的全部特征向量是()21,0,1T k ,02≠k ; 对应于33=λ的全部特征向量是()31,0,1T k -,03≠k . (2) 1230,1,λλλ===

对应于01=λ的全部特征向量是????

?

??1111k ,1k 为非零常数; 对应于132==λλ的全部特征向量为

???

?

? ??-+????? ??12002132k k ,23,k k 是不同时为零的常数; 11.三阶矩阵A 的特征值为3,2,1321===λλλ,则()1

*12;,,A A

A A A --=+的特征值

为( ). (6; ;31,21,

1 ;2,3,6 2,.3

19,214)

12. 设矩阵????? ??=k k A 1012101有一个特征向量为???

?

? ??-121,求k 及A 的三个特征值.

答案:3=k ,A 的三个特征值为1,3,4. 13.已知向量组

()()()()()T T T T T a 7,4,0,3,6,,1,1,8,3,2,1,7,5,1,1,1,2,1,254321=-=-=--==ααααα

的秩为3,求a 及该向量组的一个极大无关组,并用该极大无关组表示其余向量。 答案:421,,,2ααα=a 为一个极大无关组,31240,αααα=

++

51240,αααα=++

14. 设向量组()()()k k k ,1,1,1,2,1,1,,1321-=+=-=ααα, (1) k 为何值时,21,αα线性相关?线性无关? (2) k 为何值时,321,,ααα线性相关?线性无关?

(3) 当321,,ααα线性相关时,将3α表示为21,αα的线性组合. 答案:(1) 2-=k 时线性相关,2-≠k 时线性无关;

(2) 2,1--=k 或2时线性相关;1-≠k 且2-≠k 且2≠k 时线性无关; (3) 当1-=k 时,2130ααα?+=;当2=k 时, 2134

345ααα+

-=. 15设,11221

032

1???

?

? ??--=A 使得方程组b AX =总有解的b 是( ). (????

? ??-+??

????????-+????? ??123112201321k k k )

16. 已知向量T

k )1,,1(=ξ是矩阵????

?

?????=211121112A 的逆矩阵1-A 的特征向量,求常数k

答案:1,2k =-

17.矩阵

A =

????

?

??323513123的迹为 。(7)

定义:对于n 阶方阵()ij A a =,矩对角线元素之和称为方阵A 的迹,记为trA ,即

nn a a a trA +++= 2211,

定义 2.15 如果矩阵A 经过有限次初等变换变成矩阵B , 则称矩阵A 与B 等价,记作B A →

(三)证明题:

1. 设A 为n m ?矩阵,B 为s n ?矩阵,且0=AB ,证明()()n B r A r ≤+.

证 设12(,,,)s B βββ= ,则12(,,,)s AB A A A βββ= ,由0AB =得

0,1,2,,i A i s β== ,所以矩阵B 的列向量都是方程组0=Ax 的解.

设()r A r =,如0=r ,则结论显然成立. 如n r

=,则方程组0=Ax 仅有零解,故

0=B ,从而有()()n B r A r =+.

如n r <<0,则方程组0=Ax 的基础解系中有r n -个线性无关解向量.由于B 的列都能由基础解系线性表示,由定理3.12知,()r n B r -≤,所以()()n r n r B r A r =-+≤+.

2. 证明:对任意矩阵A ,有()

()T

r A A r A =.

证 设A 为n m ?矩阵,x 为n 维列向量,如果x 满足0=Ax ,则有

0=Ax A T

,即()

0=x A A T ,

反之,如果()0=x A A T ,则()

0=x A A x T T ,即()

()0=Ax Ax T

,从而0=Ax .

这说明方程组0=Ax 与0=Ax A T

同解,所以()

()A r A A r T =.

线性代数期末试题及答案

工程学院2011年度(线性代数)期末考试试卷样卷 一、填空题(每小题2分,共20分) 1.如果行列式233 32 31 232221 131211 =a a a a a a a a a ,则=---------33 32 31 232221 13 1211222222222a a a a a a a a a 。 2.设2 3 2 6219321862 131-= D ,则=+++42322212A A A A 。 3.设1 ,,4321,0121-=??? ? ??=???? ??=A E ABC C B 则且有= 。 4.设齐次线性方程组??? ?? ??=????? ??????? ??000111111321x x x a a a 的基础解系含有2个解向量,则 =a 。 、B 均为5阶矩阵,2,2 1 == B A ,则=--1A B T 。 6.设T )1,2,1(-=α,设T A αα=,则=6A 。 7.设A 为n 阶可逆矩阵,*A 为A 的伴随矩阵,若λ是矩阵A 的一个特征值,则*A 的一个特征值可表示为 。 8.若31212322 212232x x x tx x x x f -+++=为正定二次型,则t 的范围是 。

9.设向量T T )1,2,2,1(,)2,3,1,2(-=β=α,则α与β的夹角=θ 。 10. 若3阶矩阵A 的特征值分别为1,2,3,则=+E A 。

二、单项选择(每小题2分,共10分) 1.若齐次线性方程组??? ??=λ++=+λ+=++λ0 00321 321321x x x x x x x x x 有非零解,则=λ( ) A .1或2 B . -1或-2 C .1或-2 D .-1或2. 2.已知4阶矩阵A 的第三列的元素依次为2,2,3,1-,它们的余子式的值分别为 1,1,2,3-,则=A ( ) A .5 B .-5 C .-3 D .3 3.设A 、B 均为n 阶矩阵,满足O AB =,则必有( ) A .0=+ B A B .))B r A r ((= C .O A =或O B = D .0=A 或0=B 4. 设21β,β是非齐次线性方程组b X A =的两个解向量,则下列向量中仍为该方程组解的是 ( ) A .21+ββ B . ()21235 1 ββ+ C .()21221ββ+ D .21ββ- 5. 若二次型3231212 3222166255x x x x x x kx x x f -+-++=的秩为2,则=k ( ) A . 1 B .2 C . 3 D . 4 三、计算题 (每题9分,共63分) 1.计算n 阶行列式a b b b a b b b a D n Λ ΛΛΛΛΛΛ=

线性代数期末考试试题

《线性代数》重点题 一. 单项选择题 1.设A 为3阶方阵,数 = 3,|A | =2,则 | A | =( ). A .54; B .-54; C .6; D .-6. 解. .54227)3(33-=?-=-==A A A λλ 所以填: B. 2、设A 为n 阶方阵,λ为实数,则|λA |=( ) A 、λ|A |; B 、|λ||A |; C 、λn |A |; D 、|λ|n |A |. 解. |λA |=λn |A |.所以填: C. 3.设矩阵()1,2,12A B ?? ==- ??? 则AB =( ). 解. ().24121,221???? ??--=-???? ??=AB 所以填: D. A. 0; B. ()2,2-; C. 22?? ?-??; D. 2142-?? ?-?? . 4、123,,a a a 是3维列向量,矩阵123(,,)A a a a =.若|A |=4,则|-2A |=( ). A 、-32; B 、-4; C 、4; D 、32. 解. |-2A |=(-2)3A =-8?4=-32. 所以填: D. 5.以下结论正确的是( ). A .一个零向量一定线性无关; B .一个非零向量一定线性相关; C .含有零向量的向量组一定线性相关; D .不含零向量的向量组一定线性无关. 解. A .一个零向量一定线性无关;不对,应该是线性相关. B .一个非零向量一定线性相关;不对,应该是线性无关. C .含有零向量的向量组一定线性相关;对. D .不含零向量的向量组一定线性无关. 不对, 应该是:不能判断. 所以填: C. 6、 1234(1,1,0,0),(0,0,1,1),(1,0,1,0),(1,1,1,1),αααα====设则它的极 大无关组为( ) A 、 12,; αα B 、 123,, ;ααα C 、 124,, ;ααα D 、1234,, ,αααα

线性代数习题集(带答案)

第一部分专项同步练习 第一章行列式 一、单项选择题 1.下列排列是 5 阶偶排列的是( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列j1 j2 j n 的逆序数是k , 则排列j n j2 j1的逆序数是( ). n! (A) k (B) n k (C) k 2 n(n 1) (D) k 2 3. n 阶行列式的展开式中含a11a12 的项共有( )项. (A) 0 (B) n 2 (C) (n 2)! (D) (n 1)! 0 0 0 1 4. 1 1 ( ). 1 0 0 0 (A) 0 (B) 1 (C) 1 (D) 2 0 0 1 0 5.0 1 1 ( ). 1 0 0 0 (A) 0 (B) 1 (C) 1 (D) 2 2x x 1 1 6.在函数 1 x 1 2 f (x) 中 3 2 x 3 3 x 项的系数是( ). 0 0 0 1 (A) 0 (B) 1 (C) 1 (D) 2 1

7. 若 a a a 11 12 13 1 D a a a ,则 21 22 23 2 a a a 31 32 33 2a a 13 a 33 a 11 a 31 2a 12 2a 32 11 D 2a a a 2a ( ). 1 21 23 21 22 2a 31 (A) 4 (B) 4 (C) 2 (D) 2 a a 11 ,则 12 8.若 a a a 21 22 a 12 a 11 ka 22 ka 21 ( ). 2 (D) k2a (A) ka (B) ka (C) k a 9.已知 4 阶行列式中第 1 行元依次是4, 0, 1, 3, 第 3 行元的余子式依次为2, 5,1, x, 则x ( ). (A) 0 (B) 3 (C) 3 (D) 2 8 7 4 3 10. 若 6 2 3 1 D ,则D 中第一行元的代数余子式的和为( ). 1 1 1 1

线性代数B复习题

线性代数B 复习资料 (一)单项选择题 1.设A ,B 为n 阶方阵,且()E AB =2 ,则下列各式中可能不成立的是( A ) (A )1-=B A (B)1-=B ABA (C)1-=A BAB (D)E BA =2 )( 2.若由AB=AC 必能推出B=C (A ,B ,C 均为n 阶矩阵)则A 必须满足( C ) (A)A ≠O (B)A=O (C )0≠A (D) 0≠AB 3.A 为n 阶方阵,若存在n 阶方阵B ,使AB=BA=A ,则( D ) (A) B 为单位矩阵 (B) B 为零方阵 (C) A B =-1 (D ) 不一定 4.设A 为n ×n 阶矩阵,如果r(A)

(完整版)线性代数期末测试题及其答案.doc

线性代数期末考试题一、填空题(将正确答案填在题中横线上。每小题 5 分,共 25 分) 1 3 1 1.若0 5 x 0 ,则__________。 1 2 2 x1 x2 x3 0 2.若齐次线性方程组x1 x2 x3 0 只有零解,则应满足。 x1x2x30 3.已知矩阵 A,B,C (c ij )s n,满足 AC CB ,则 A 与 B 分别是阶矩阵。 4.已知矩阵A 为 3 3的矩阵,且| A| 3,则| 2A|。 5.n阶方阵A满足A23A E 0 ,则A1。 二、选择题(每小题 5 分,共 25 分) 6.已知二次型 f x12 x22 5x32 2tx1x2 2x1 x3 4x2 x3,当t取何值时,该二次型为正定?() A. 4 0 B. 4 4 C. 0 t 4 4 1 t 5 t D. t 2 5 5 5 5 1 4 2 1 2 3 7.已知矩阵A 0 3 4 , B 0 x 6 ,且 A ~ B ,求x的值() 0 4 3 0 0 5 A.3 B.-2 C.5 D.-5 8 .设 A 为 n 阶可逆矩阵,则下述说法不正确的是() A. A0 B. A 1 0 C.r (A) n D.A 的行向量组线性相关 9 .过点( 0, 2, 4)且与两平面x 2z 1和 y 3z 2 的交线平行的直线方程为() 1

x y 2 z 4 A. 3 1 2 x y 2 z 4 C. 3 1 2 x y 2 z 4 B. 3 2 2 x y 2 z 4 D. 3 2 2 10 3 1 .已知矩阵 A , 其特征值为( ) 5 1 A. 1 2, 2 4 B. C. 1 2, 2 4 D. 三、解答题 (每小题 10 分,共 50 分) 1 1 2, 2, 2 2 4 4 1 1 0 0 2 1 3 4 0 2 1 3 0 1 1 0 11.设B , C 0 2 1 且 矩 阵 满足关系式 0 0 1 1 0 0 1 0 0 0 2 T X (C B) E ,求 。 a 1 1 2 2 12. 问 a 取何值时,下列向量组线性相关? 1 1 1 , 2 a , 3 。 2 1 2 1 a 2 2 x 1 x 2 x 3 3 13. 为何值时,线性方程组 x 1 x 2 x 3 2 有唯一解,无解和有无穷多解?当方 x 1 x 2 x 3 2 程组有无穷多解时求其通解。 1 2 1 3 14.设 1 4 , 2 9 , 3 0 , 4 10 . 求此向量组的秩和一个极大无关 1 1 3 7 0 3 1 7 组,并将其余向量用该极大无关组线性表示。 15. 证明:若 A 是 n 阶方阵,且 AA A1, 证明 A I 0 。其中 I 为单位矩阵 I , 2

线性代数期末考试试卷答案合集

线性代数期末考试试卷 答案合集 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=3231 2221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032=--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。 ( )

三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2 分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 12-n ③ 12+n ④ 4 2. n 维向量组 s ααα,, , 21(3 s n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示 ④ s ααα,, , 21中不含零向量 3. 下列命题中正确的是( )。 ① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关 4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。 ① 若A ,B 均可逆,则B A +可逆 ② 若A ,B 均可逆,则 A B 可逆 ③ 若B A +可逆,则 B A -可逆 ④ 若B A +可逆, 则 A ,B 均可逆 5. 若4321νννν,,,是线性方程组0=X A 的基础解系,则4321νννν+++是0=X A 的( ) ① 解向量 ② 基础解系 ③ 通解 ④ A 的行向量 四、计算题 ( 每小题9分,共63分) 1. 计算行列式 x a b c d a x b c d a b x c d a b c x d ++++。

线性代数试题及答案。。

第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ? ? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2η1+1 2 η2是Ax=b的一个解 C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b的一个解 9.设n阶方阵A不可逆,则必有()

线性代数试题B

线性代数试题(B ) 一.选择或填空(3’x10) 1. 已知 2231 =l n m c b a ,则 =+++c l b n a m c b a 231222 2. 若 ??? ? ??=-11541A , 则 =A 3. 2)(,11111 111=???? ? ??---=A r t A , 则=t 4. 设A 为3阶方阵,且3=A ,则*1A A -+=_____________。 5.设向量组321,,ααα线性无关,11αβ=,212ααβ+=,3213αααβ++=, 则321,,βββ为 (填线性相关,或线性无关) 6.已知矩阵B A , 且n m ij c C ?=)(满足CB AC = 则B 是( )阶矩阵。 A. m m ? B. n m ? C. m n ? D. n n ? 7.若A 为n 阶方阵且2=A , 则 ()=-*1A ( ) A. A 2 B. 2A C. A n 12- D. 12 -n A 8. 一个n 维向量组 )1(.......,21>m m ααα,线性相关的充要条件为 ( ) A. 含有零向量 B. 有两个向量相应成比例 C. 向量组中至少有一向量可由其余向量线性表示 D. 向量组中任一个向量均可由其余向量线性表示 9.设21,ηη是某个齐次线性方程组的一个基础解系,则下列结论不成立的是( ) A. 211,ηηη+ 也是其基础解系 B. 2121,ηηηη-+ 也是其基础解系 C. 213,2ηη 也是其基础解系 D. 212122,ηηηη++ 也是其基础解系

10. 若 1001002000 01000 -=-a a ,则 =a ( ) A. 2 1- B. 21 C. 1- D. 1 二.计算题(6x10’) 1.设 3 111131 1113 1111 3----=A 求: 14131211A A A A +++ 2. ()2121=A ,而A A B T = (1)求 B, (2) 求 B (3) 求5B 3.设n 阶方阵A 和X 满足条件E AX A =-2,且已知???? ? ??--=100110111A 求矩阵X 。 4. 求向量组的最大无关组,并求出剩余向量用最大无关组的线性表示 ??????? ??=34121α, ??????? ??--=12102α, ??????? ??--=63213α, ?????? ? ??=41014α 5. 求齐次方程的一组基础解向量,并求出通解 ??? ????=++=+++=-+-=+++02062220204324324321 3314321x x x x x x x x x x x x x x 6. 方程组 ?????-=-+-=-+=+-121321 321321x x x x x x x x x λλ 问λ为何值时,方程组 (1)有唯一解? (2)无解? (3)有无穷多解?并解出通解。

线性代数期末考试试卷答案合集

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1A 。 二、判断正误(正确的在括号填“√”,错误的在括号填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,, 21(3 £ s £ n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示

线性代数期末复习题

线性代数 一. 单项选择题 1。设A 、B 均为n 阶方阵,则下列结论正确的是 . (a)若A 和B 都是对称矩阵,则AB 也是对称矩阵 (b )若A ≠0且B ≠0,则AB ≠0 (c)若AB 是奇异矩阵,则A 和B 都是奇异矩阵 (d )若AB 是可逆矩阵,则A 和B 都是可逆矩阵 2. 设A 、B 是两个n 阶可逆方阵,则()1-?? ????'AB 等于( ) (a )()1-'A ()1-'B (b ) ()1-'B ()1-'A (c )() '-1B )(1'-A (d )() ' -1B ()1-'A 3.n m ?型线性方程组AX=b,当r(A )=m 时,则方程组 。 (a ) 可能无解 (b)有唯一解 (c)有无穷多解 (d )有解 4.矩阵A 与对角阵相似的充要条件是 。 (a )A 可逆 (b)A 有n 个特征值 (c) A 的特征多项式无重根 (d) A 有n 个线性无关特征向量 5。A 为n 阶方阵,若02 =A ,则以下说法正确的是 。 (a ) A 可逆 (b ) A 合同于单位矩阵 (c ) A =0 (d ) 0=AX 有无穷多解 6.设A ,B ,C 都是n 阶矩阵,且满足关系式ABC E =,其中E 是n 阶单位矩阵, 则必有( ) (A )ACB E = (B)CBA E = (C )BAC E = (D ) BCA E = 7.若233 32 31 232221 131211 ==a a a a a a a a a D ,则=------=33 32 3131 2322 212113 1211111434343a a a a a a a a a a a a D ( ) (A )6- (B )6 (C )24 (D )24- 二、填空题 1.A 为n 阶矩阵,|A |=3,则|AA '|= ,| 1 2A A -* -|= . 2.设???? ??????=300120211A ,则A 的伴随矩阵=*A ; 3.设A =? ? ?? ??--1112,则1 -A = 。

线性代数期末考试试题(含答案)

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. A.B 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( ) (A )任意r 个列向量线性无关

线性代数B期末试题

线性代数B 期末试题 一、判断题(正确填T ,错误填F 。每小题2分,共10分) 1. A 是n 阶方阵,R ∈λ,则有A A λλ=。 ( ) 2. A ,B 是同阶方阵,且0≠AB ,则111)(---=A B AB 。 ( ) 3.如果A 与B 等价,则A 的行向量组与B 的行向量组等价。 ( ) 4.若B A ,均为n 阶方阵,则当B A >时,B A ,一定不相似。 ( ) 5.n 维向量组{}4321,,,αααα线性相关,则{}321,,ααα也线性相关。 ( ) 二、单项选择题(每小题3分,共15分) 1.下列矩阵中,( )不是初等矩阵。 (A )001010100????????? ? (B)100000010?????????? (C) 100020001??????????(D) 100012001????-?????? 2.设向量组123,,ααα线性无关,则下列向量组中线性无关的是( )。 (A )122331,,αααααα--- (B )1231,,αααα+ (C )1212,,23αααα- (D )2323,,2αααα+ 3.设A 为n 阶方阵,且250A A E +-=。则 1(2)A E -+=( ) (A) A E - (B) E A + (C) 1()3A E - (D) 1()3A E + 4.设A 为n m ?矩阵,则有( )。 (A )若n m <,则b Ax =有无穷多解; (B )若n m <,则0=Ax 有非零解,且基础解系含有m n -个线性无关解向量; (C )若A 有n 阶子式不为零,则b Ax =有唯一解; (D )若A 有n 阶子式不为零,则0=Ax 仅有零解。 5.若n 阶矩阵A ,B 有共同的特征值,且各有n 个线性无关的特征向量,则( ) (A )A 与B 相似 (B )A B ≠,但|A-B |=0

线性代数期末考试试题含答案

线性代数期末考试试题含 答案 The final edition was revised on December 14th, 2020.

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( )

线性代数B期末试卷及答案

2008 – 2009学年第二学期《线性代数B 》试卷 2009年6月22日 1、 设?? ??? ?? ?? ???-=* 8030010000100001A ,则A = 、 2、 A 为n 阶方阵,T AA =E 且=+

二、单项选择题(共6小题,每小题3分,满分18分) 1、设D n为n阶行列式,则D n=0的必要条件就是[ ]、 (A) D n中有两行元素对应成比例; (B) D n中各行元素之与为零; (C) D n中有一行元素全为零; (D)以D n为系数行列式的齐次线性方程组有非零解. 2.若向量组α,β,γ线性无关,α,β,σ线性相关,则[ ]、 (A)α必可由β,γ,σ线性表示; (B) β必可由α,γ,σ线性表示; (C)σ必可由β,γ,α线性表示; (D)γ必可由β,α,σ线性表示、 3.设3阶方阵A有特征值0,-1,1,其对应的特征向量为P1,P2,P3,令P=(P1,P2,P3),则P-1AP=[ ]、 (A) 100 010 000 ?? ?? - ?? ?? ?? ; (B) 000 010 001 ?? ?? - ?? ?? ?? ; (C) 000 010 001 ?? ?? ?? ?? ?? - ; (D) 100 000 001 ?? ?? ?? ?? ?? - . 4.设α1,α2,α3线性无关,则下列向量组线性相关的就是[ ]、 (A)α1,α2,α3 - α1; (B)α1,α1+α2,α1+α3; (C)α1+α2,α2+α3,α3+α1; (D)α1-α2,α2-α3,α3-α1、 5.若矩阵A3×4有一个3阶子式不为0,则A的秩R(A) =[ ]、 (A) 1; (B)2; (C)3; (D) 4. 6.实二次型f=x T Ax为正定的充分必要条件就是[ ]、 (A) A的特征值全大于零; (B) A的负惯性指数为零; (C) |A| > 0 ; (D) R(A) = n、 三、解答题(共5小题,每道题8分,满分40分)

(完整版)线性代数试卷及答案详解

《线性代数A 》试题(A 卷) 试卷类别:闭卷考试时间:120分钟考试科目:线性代数考试时间:学号:姓名:

《线性代数A》参考答案(A卷)一、单项选择题(每小题3分,共30分) 二、填空题(每小题3分,共18分)

1、 256; 2、 132465798?? ? --- ? ???; 3、112 2 112 21122 000?? ?- ? ?-?? ; 4、 ; 5、 4; 6、 2 。 三. 解:因为矩阵A 的行列式不为零,则A 可逆,因此1X A B -=.为了求1A B -,可利用下列初等行变换的方法: 2312112 01012 010******* 12101 141103311033102321102721 002781 002780 11410 101440 10144001103001103001103---?????? ? ? ? -??→-??→-- ? ? ? ? ? ?--? ?? ?? ?-?????? ? ? ? ??→--??→-??→-- ? ? ? ? ? ??????? ―――――(6分) 所以1 278144103X A B -?? ?==-- ? ??? .―――――(8分) 四.解:对向量组12345,,,,ααααα作如下的初等行变换可得: 12345111 4 3111431132102262(,,,,)21355011313156702262ααααα--???? ? ? ----- ? ? = → ? ? --- ? ? ? ?---???? 11 1 431 2 12011310 1131000000 0000000000 0000--???? ? ? ---- ? ? →→ ? ? ? ? ? ?? ???――――(5分) 从而12345,,,,ααααα的一个极大线性无关组为12,αα,故秩 12345{,,,,}ααααα=2(8分)

2011线性代数期末试题(B)

中山大学软件学院2011级软件工程专业(2011学年秋季学期) 《S E -103+线性代数》期末试题(B 卷) (考试形式:闭 卷 考试时间: 2小时 ) 《中山大学授予学士学位工作细则》第六条 考试作弊不授予学士学位 方向: 姓名: ______ 学号: 出卷: 伍丽华 复核: 高成英 1. Fill in the blank (5×4=20 Pts ) (1) If T is the linear transformation from to whose matrix relative to is 2P 2P },t t ,1{2B = , then =_________________________________. ???? ????????=421130012][B T )(2210t a t a a T ++ (2) If the row space of a 4×7 matrix is 4-dimentional, then the dimension of the null space of is _______________. Is ?__________________ (Yes or No). A A 4 Col R A = (3) Let ,,and be eigenvectors of a 3×3 matrix , with corresponding eigenvalues 3, 2, and 1. Compute . =_______________________. ??????????=0221v ??????????=2222v ???? ??????=2203v A A A (4) Determine the value(s) of a such that the system is inconsistent. =_____________________________________. ???? ??????=?????????????????????+03121232121321x x x a a a (5) For x in 3R , Let , this quadratic form as is _________________________________________________________. 32212221853)(x x x x x x x Q +?+=Ax x T

《线性代数》模拟试卷B及答案

《线性代数》模拟试卷B 及答案 一、选择题(每小题3分,共30分) (1)若A 为4阶矩阵,则3A =( ) (A) 4A (B) 43A (C) 34A (D)3A (2)设A ,B 为n 阶方阵,0A ≠且0AB =,则( ) (A)0B = (B)0BA = (C)222()A B A B +=+ (D)00A B ==或 (3)A ,B ,C 均为n 阶方阵,则下列命题正确的是( ) (A) AB BA = (B)0,00A B AB ≠≠≠则 (C) AB A B = (D) ,AB AC B C ==若则 (4)222()2A B A AB B +=++成立的充要条件是( ) (A)AB BA = (B) A E = (C)B E = (D)A B = (5)线性方程组(1)22(1)k x y a x k y b -+=?? +-=?有唯一解,则k 为( ) (A)任意实数 (B) 不等于等于不等于0 (6)若A 为可逆阵,则1()A *-=( )

(A)A A (B)A A * (C)1 A A - (D)1 A A -* (7)含有4个未知数的齐次方程组0AX =,如果()1R A =,则它的每个基础解系中解向量的个数为( ) (A) 0 (B) 1 (C) 2 (D) 3 (8)设A 为m n ?矩阵,齐次方程组0AX =仅有零解的充要条件是A 的( ) (A) 列向量线性无关 (B) 列向量线性相关 (C) 行向量线性无关 (D) 行向量线性相关 (9)已知矩阵A=3111?? ?-?? ,下列向量是A 的特征向量的是( ) (A)10?? ??? (B)12?? ??? (C)12-?? ??? (D) 11-?? ??? (10)二次型222123123121323(,,)44224f x x x x x x x x x x x x λ=+++-+为正定二次型,则λ 的取值范围是( ) (A)21λ-<< (B)12λ<< (C)32λ-<<- (D)2λ>

线性代数期末试题(同济大学第五版)(附答案)

线性代数试题(附答案) 一、填空题(每题2分,共20分) 1.行列式0 005002304324321= 。 2.若齐次线性方程组?? ? ??=++=++=-+00202kz y kx z ky x z y kx 有非零解,且12≠k ,则k 的值为 。 3.若4×4阶矩阵A 的行列式*=A A ,3是A 的伴随矩阵则*A = 。 4.A 为n n ?阶矩阵,且ο=+-E A A 232,则1-A 。 5. 321,,ξξξ和321,,ηηη是3R 的两组基,且 32133212321122,2,23ξξξηξξξηξξξη++=++=++=,若由基321,,ξξξ到基321,,ηηη的基变换公式为(321,,ηηη)=(321,,ξξξ)A ,则A= 6.向量其内积为),1,0,2,4(),5,3,0,1(-=--=βa 。 7.设=?? ?? ? ?????---=??????????)(,111012111,321212113AB tr AB B A 之迹则 。 8.若的特征值分别为则的特征值分别为阶矩阵1,3,2,133--?A A 。 9.二次型x x x x x x f 2 32 22 132123),,(--=的正惯性指数为 。 10.矩阵?? ?? ? ?????1042024λλA 为正定矩阵,则λ的取值范围是 。 二、单项选择(每小题2分,共12分)

1.矩阵()==≠≠???? ? ???????=)(,4,3,2,1,0,0,44342414433323134232221241312111A r i b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a A i i 则其中。 A 、1 B 、2 C 、3 D 、4 2. 齐次线性方程组???=--=++-020 23214321x x x x x x x 的基础解系中含有解向量的个数是( ) A 、1 B 、2 C 、3 D 、4 3.已知向量组=====k a a k a a 则线性相关,)1,2,0,0(),1,0,2,2(),1,0,,0(),0,1,1,1(4321 ( ) A 、-1 B 、-2 C 、0 D 、1 4. A 、B 则必有且阶矩阵均为,))((,22B A B A B A n -=-+( ) A 、B=E B 、A=E C 、A=B D 、AB=BA 5.已知=?? ?? ? ?????==k A k a T 则的特征向量是矩阵,211121112)1,,1(( ) A 、1或2 B 、-1或-2 C 、1或-2 D 、-1或2 6.下列矩阵中与矩阵合同的是??? ? ???? ? ?-50 00210 002 ( ) A 、??????????---200020001 B 、?? ??? ?????-500020003 C 、?? ?? ??????--100010001 D ????? ?????100020002 三、计算题(每小题9分,共63分) 1.计算行列式),2,1,0(00000 022 11 210n i a a c a c a c b b b a i n n n ΛΛ ΛΛΛΛΛΛΛΛ=≠其中

相关文档
相关文档 最新文档