文档库 最新最全的文档下载
当前位置:文档库 › 大规模风电并网对电力系统的影响

大规模风电并网对电力系统的影响

大规模风电并网对电力系统的影响
大规模风电并网对电力系统的影响

大规模风电并网对电力系统的影响

摘要:

由于风能具有随机性、间歇性、不稳定性的特点,当风电装机容量占总电网容量的比例较大时会对电网的稳定和安全运行带来冲击。针对这一问题,阐述了大规模风电并网后对电力系统稳定性、电能质量、发电计划与调度、系统备用容量等方面的影响。

关键词:风力发电;并网;电力系统;稳定性;电能质量

1.风电发展现状

1.1 世界风电发展现状

风能是一种蕴藏丰富、分布广泛、清洁而可再生的能源,也是最重要的替代能源之一。风力发电技术,是产业成熟度最好、市场竞争力最强、最易实现商业化的可再生能源技术。风力发电无温室气体排放,是二氧化碳减排的有效技术,几乎适用于世界各地。风力发电的全球需求巨大,并持续增长。

风力发电在截止2011年连续第六年创历史新高。这是继2008年和2009年每年安装的增长率分别为42%和35%之后,又一创纪录的结果。2011年全球总装机容量为41712兆瓦,年均增长率为6%。累计安装达21%,比2010年低4个百分点。

风电的累计增速放缓是开始于2008年9月,是全球金融和经济危机的直接后果。金融危机过去之后,美国市场逐渐有所改善,从2010年的大幅减少到安装6810兆瓦,但是比2009年时的高峰时期仍低30%。美

洲地区作为一个整体,从增加了44%的安装到2010年减少42%的安装。

欧洲保持稳定增长,已安装容量10226兆瓦,比2010年安装的数额略少,占世界市场的24.5%。欧洲仍然是迄今为止累计容量最大的大陆,达97588兆瓦,比排在第二位的南亚和东亚多约18.3GW。在两个主要的欧洲市场,西班牙为连续第二年下降(30%),而与之相比,德国到2010年实现29%的稳定增长。然而,通过新兴市场的显著增长,欧洲受到了鼓舞,尤其是罗马尼亚,波兰和瑞典的新增装机容量。但是尽管欧洲的年跌幅仅有7%,在全球市场份额中却跌到了迄今为止的最低点(40.5%)。这主要是因为在中国的持续快速增长的结果。

2011年的观察数据显示全球风能市场比2010年更加多元化。十大市场满足总需求从2010年的86.8%变为86.4%,通过这一事实就可以证明。在过去的五年时间里,世界年均装机容量增长率下降到22.7%,受2011年轻微增长的影响,去年年均增长率为27.8%。在同一时间,平均累计增长率为26%。

表一 2006-2011世界风电市场增长率

中国市场在过去5年经历了爆炸式的增长。今年的新增装机容量为17631兆瓦,比2010年低了约6.9%,但仍然使中国连续3年成为世界第

一大市场。现在的累计装机容量已经达到了62412兆瓦,比排在第二位的美国多约30%。[1]

1.2 中国风电开发特点现状

我国10m高度层的风能资源总储量为32.26亿kW,其中实际可开发利用的风能资源储量为2.53亿kW。经济增长和能源需求使中国成为世界上最具发展前景的风电市场,“建设大基地,融入大电网”的风电发展战略,对风电接入电网规划和运行带来了新的课题。总的来说,我国风电开发具有以下几个特点:大规模,高集中,远距离。

由于以上三个特点,我国风电大规模并网产生了很多急需解决的问题[2]。

2.风力发电机组的并网

风电运行有以下的特点:

1)风电出力随机性强、间歇性明显风电出力波动幅度大,动频率也无规律性,在极端情况下,风电出力可能在 0~100%范内变化。风电出力有时与电网负荷呈现明显的反调节特性。

2)风电年利用小时数偏低。根据我国部分省区 2007 年风电年利用小时数统计,风电场年利用小时数参差不齐,一般在 2000h 左右。

3)风电功率调节能力差。风机在采用不弃风方式下,只能提供系统故障状况下的有限功率调节。机组本身的运行特性和风资源的不确定性,使得风电机组不具备常规火电机组的功率调节能力。[3]

目前国内外大量采用的是交流异步发电机,其并网方式根据电机的容量不同和控制方式不同而变化。

2.1.风力发电机组并网方法

(1)直接并网。这种并网方法要求在并网发电机的相序与电网的相序相同,当发电机转速接近同步转速时,即可自动并入电网,自动并网的信号由测速装置给出,而后通过自动空气开关完成并网过程。

(2)降压并网。这种并网方法是通过在异步电机与电网之间通过串接电阻、电抗器、自耦变压器等方式,从而降低并网合闸瞬间冲击电流幅值及电网电压下降的幅度。由于电阻、电抗器等元件消耗功率,在发电机并网后,进入稳定进行状态时,必须将其迅速切除。

(3)通过晶闸管软并网。这种并网方法是在异步发电机定子与电网之间每相串入一只双向晶闸管连接起来,从而使发电机并网瞬间的冲击电流,得到一个平滑的暂态过程。

2.2风力发电机组并网运行方式

(1)恒速恒频方式。风力机组的转速不随风速的波动而变化,始终维持恒转速运转,从而输出恒定频率的交流电,但具有简单可靠的优点,但是风能利用率较低。

(2)变速恒频方式。风力发电机组的转速随风速的波动作变速运行,但输出恒定频率的交流电。这种方式提高了风能的利用率,但需增加实现恒频输出的整流逆变的电力电子设备,并会带来谐波污染。[4]

3.风电并网对电力系统稳定性影响

3.1对电网调频调峰的影响

风力发电接入电网运行对电力系统的影响是多方面的。风力发电接入

电网后,电力网络由一个放射状网络变为一个遍布电源和用户互联的网络。传统配电网中的功率方向总是由配电变压器流向用户侧,接入风电后功率就有可能反向流过变压器,这样对电力系统设计与分析时就不能采用传统的方法,从而带来不便。

另外,由于风能的随机性,风电场不利于电网的调频、调峰。在风电机达到额定转速前,其功率与风速的立方成正比,即风速增加一倍,输出功率增加8倍。由于风能的不可预测,风能分布的随机性等因素,风电的出力变化也在相当程度上不可预测和控制。同时,风电的出力变化与电网负荷变化一般都是相反的,即风电功率大时,电网的负荷往往是在下降的,尤其是在一些农灌负荷占相当比重的电网中。在风电场装机总量占全网比重不大的情况下,风电场不会对电网的调频、调峰造成太大的影响,反之就会有不利影响。

3.2对稳态电压分布的影响

稳态情况下,风电并网的一个显著特点就是引起接入点的稳态

电压上升。对于大规模分布式发电并入电网,只要其注入的功率大约小于所接入电网的整体负荷功率的20%,就可以减少线路上的功率损失,从而提升电压水平,因此风力发电并入电网总体上来说是会改善系统的稳态电压分布状态的,但其改善程度随风力发电机的类型、风电场的接入位置、风电场的容量、接入电网系统的R/比值的不同而有差别,如果选择不当会导致过电压。

一方面风电场的有功出力使负荷特性极限功率增大,增强了静态电压稳定性;另一方面风电场的无功需求则使负荷特性的极限功率减少,降低

了静态电压稳定性,但只要系统的无功供给足够多,则整体上可以认为风电场的并网增加了系统的静态电压稳定性。也就是说,风电并网对电网静态电压稳定性的影响可以是正面的也可以是负面的,它跟风力发电机的运行点是密切相关的。

3.3对保护装置的影响

为了减少风电机组的频繁投切对接触器的损害,在有风期间风电机组都保持与电网相连,当风速在起动风速附近变化时,允许风电机组短时电动机运行,因此风电场与电网之间联络线的功率流向有时是双向的。因此,风电场继电保护装置的配置和整定应充分考虑到这种运行方式。异步发电机在发生近距离三相短路故障时不能提供持续的故障电流,在不对称故障时提供的短路电流也非常有限。因此风电场保护技术的困难是如何根据有限的故障电流来检测故障的发生,使保护装置准确而快速的动作.另一方面,尽管风力发电提供的故障电流非常有限,但也有可能会影响现有配电网络保护装置的正确运行,这在最初的配电网保护配置和整定时往往没有考虑。[5]

4.风电并网对电能质量影响

4.1谐波

对于风电机组来说,发电机本身产生的谐波是可以忽略的,谐波电压是由电能转换系统、电力电子控制元件和电容器产生的。一台风机在运行期间产生的各种扰动的程度,主要依赖于其装备的电能转换系统的形式。对于定速风电机组来说,在连续运行过程中没有电力电子器件参与,因而也基本没有谐波产生。当机组进行投入操作时,软并网装置处于工作状态,

将产生谐波电流,但由于投入的过程较短,这时的谐波注入可以忽略H Q I。变速风电机组则采用大容量的电力电子元件,直驱永磁同步风力发电机组的交直交变频器采用整流后接DC/DC变换,在电网侧采用逆变器输出恒定频率和电压的三相交流电;双馈式异步风力发电机组定子绕组直接接入交流电网,转子绕组端接线由三只滑环引出接至一台双向功率变换器,电网侧同样采用逆变器,定子绕组端口并网后始终发出电功率,转子绕组端口电功率的流向则取决于转差率。不论是哪种变速风电机组,并网后变流器将始终处于工作状态。如果电力电子装置的切换频率恰好在产生谐波的范围内,则会产生很严重的谐波问题。不过,随着电力电子器件的不断改进,这个问题也在逐步得到解决。另外,针对变压器采用或接线,也可以采用Y/?或?/Y减少输入电网的谐波电流,阻止高次谐波从高压流向低压,危害用户,或阻止高次谐波从低压侧流向高压侧,危及整个电力系统。

4.2风电并网对系统电压的影响

4.2.1 电压波动和闪变

在并网风电机组持续运行过程中,由于受塔影效应、偏航误差和风剪切等因素的影响,并网风电机组不仅产生功率波动,同时也产生电压波动和闪变等问题。影响风电机组产生电压波动和闪变的因素很多,比如风况、发电机类型、控制系统和电网状况等等。风况对并网风电机组引起的电压波动和闪变影响最大,尤其是平均风速和湍流强度。随着风速的增大,风电机组产生的电压波动和闪变也不断增大。当风速达到额定风速并持续增大时,恒速恒频风电机组产生的电压波动和闪变继续增大而变速恒频风电机组因为能够平滑输出功率,产生的电压波动和闪变却开始减小。湍流强

度对电压波动和闪变的影响也是很大的,两者几乎成正比例增长关系。其次,并网风电机组类型和控制系统对风电机组的电压质量影响也很大。例如,恒速恒频风电机组对P和3P频率比较敏感,会产生较大的电压波动和闪变,但变速恒频风电机组却可以减轻3P频率的影响,变速恒频风电机组运行产生的电压波动和闪变水平远低于恒速恒频风电机组,几乎是恒速恒频风电机组的1/4。再者,并网风电机组公共连接点短路比和电网线路R/X比是影响风电机组引起的电压波动和闪变的重要因素。风电机组公共连接点短路比越大,风电机组引起的电压波动和闪变越小。合适的R/X比可以使有功功率引起的电压波动被无功功率引起的电压波动补偿掉,从而使整个平均闪变值有所减轻。研究表明,当线路R/X比很小时,并网风电机组引起的电压波动和闪变很大。当线路R/X比对应的线路阻抗角为60-70%时,并网风电机组引起的电压波动和闪变最小。

4.2.2电压跌落

异步发电机与电网压降

由于当前很多中型和大型的并网风机采用异步电机,风机群并网启动的时候产生的电压波动更加是不可忽视的。异步电机启动的时候通过励磁从电网吸收无功功率,从而影响到电网侧的电压,风机群并接到弱电网的时候这种效果就会被放大,导致电网侧电压的突降。从异步电机吸收无功功率与电网电压的关系图2可以看到,当电压下降向临界电压Ucr逼近时,异步机吸收的无功接近为常量。在超过Ucr以后,吸收无功Q随电压的下降反向增长,这会导致电网电压下降的加剧,使多台电机的同时投入造成电压的急剧下降,甚至引起电压崩溃。

4.2.3无功补偿装置对系统电压的影响

由于采用异步发电机,变速恒频风电系统在向电网注入功率的同时需要从电网吸收大量的无功功率。因此,为了补偿风电场的无功,每台风力发电机都配有功率因数校正装置,目前常用的是分组投切的并联电容器,电容器的投切属于离散控制,在补偿量的各个台阶中有功功率的变化引起的无功需求仍要由电网电压提供,影响电网电压。而且在电容器投切过程中势必引起电压的跳变,电容器的无功补偿量的大小与接入点电压的平方成正比,当系统电压水平较低时,并联电容器的无功补偿量迅速下降,导致风电场对电网的无功需求上升,进一步恶化电压水平,严重时会造成电压崩溃。另外,由于异步发电机的功率恢复特性,当电网发生短路故障时,若故障切除不及时,也将容易导致暂态电压失稳。

4.2.4风电场的电压特点

所有装配异步发电机的风电机组一般配备有电容器组,以减轻电网的无功负担,提高电网运行质量及降低成本。根据上面介绍的情况,在风速及风力机输出功率变化时,其注入电网的有功功率和吸收的无功功率也会有所改变,引起风电场母线及附近电网电压的波动。风力发电机组执行并

网和脱网等操作时也可能对电网电压造成冲击。研究表明,风电场电压问题有如下几点值得参考

a.风电场注入系统功率较大时,风电场母线及附近地区的电网电压升高。尤其当风电场与系统间等值阻抗数值较大时,电压升高极为严重。

b.多台风力发电机组的并网需分组进行,而且间隔时间不应小于30s,否则可能引起10%以上的电压骤降。适当的冲击电容补偿可以减小多台风力发电机并网时的电压降。

c.风电场风速增大等情况引起的脱网可能会造成风电场附近地区的电压突降。[5]

4.2.5线路阻抗比与电网压降

线路阻抗比R/X也是影响系统电压波动的主要因素R/X比值有一临界值,此时电压波动最小。当R/X小于临界值时,R/X比值越小,电压波动越大。而当R/X大于临界值时,R/X比值越大,电压波动也越大。低短路容量水平将限制风电规模的发展。并网点短路水平越高,电网电压波动越小;反之,越大。在风电机组并网起动瞬间,异步发电机剩磁电势较小,从异步发电机等值电路上看,相当于变压器副边短路,起动过程将产生大的起动电流。同时将导致电网电压大的跌落。

在风力发电系统中。风能是一个不可预测的能源。有功功率随风速变化而不断变化,如果风电场与电网联接线路的R/X比值比较低,那么在风速波动较大的情况下会使得电网电压有较大幅度的波动,严重时将危及系统的电压稳定;而在R/X比值较高的线路时,可以装设无功补偿设备来抵消随风速变化的有功功率引起的电压波动。因此选择合适的线路R/X比值

有利于风电并网系统的电压稳定。

4.2.6风电并网对电压跌落的要求

在大多数情况下,电压跌落是由于短路故障造成的。对于一个含有大量风电的电网来说,这种情况是不允许的,会影响到电网的稳定性。现在风电发展较快的国家如德国、丹麦及美国等,都已经认识到这个问题,并出台了风电并网的相关要求,对电网电压短时间内跌落情况下,做出了风力机脱网的限制。在电网电压跌落的幅值不高于85%时,风力机必须继续并在网上,发出无功。[6]

4.3电网频率的影响

风电厂对系统频率的影响取决于风电厂容量占系统总容量的比例,在我国跨区电网互联的形式下,电网规模越来越大,覆盖范围越来越广,风电厂并入系统中,其容量在电网的总容量中所占的比例甚微,对电网频率的影响很小。但是应考虑到如果风电并入到一个小的孤立的电力系统,当失去风电出力后,在常规机组经过一次、二次调频后该系统的频率的降低将有可能突破一般允许的频率偏差范围,此时应考虑增加常规机组的旋转备用。

5.对发电计划与调度的影响

传统的发电计划基于电源的可靠性以及负荷的可预测性,以这2点为基础,发电计划的制定和实施有了可靠的保证。如果电力系统内含有风电场,由于风电场的出力具有极大的随机性,因此会对发电计划的制定和实施产生较大的影响。风电场如果参与调度计划,则需预测未来24h的发电曲线。在日交易计划的实施过程中,由于负荷的非预期变化和发电机组的

非计划停运等,电网调度中心还要进行在线校正发电计划,而校正计划一般需要提前30min下发给电厂和供电公司,如果并网风电场能够预测未来1~3h的出力,则对电网的调度也是有意义的。

6.对系统备用容量的影响

如果风电功率的波动特性与电网负荷的波动特性一致,那么风电就有自然调峰的作用,反之,将会使电网的调峰问题变得更加突出。风电场并网后,电网的可用调峰容量减去用于平衡负荷波动的备用容量后,剩余的可用调峰容量都能够用于为风电调峰。如果整个电网可用于风电的调峰容量有限,无法完全平衡风电场的功率波动时,就需要限制注入电网的风电功率。因为风电功率的波动对于电网而言完全是随机的,最严重的情况就等于整个风电装机容量大小的风电功率在短时间内的波动,这种情况发生的概率很小,但是在实际运行中无法排除这种可能性。因此,系统要有与风电场额定容量相当的备用容量,以保证电网的安全稳定运行。[7]

7.结束语

风电作为一种绿色能源,有着经济、环保等方面的显著优势。但在未来一段时间内,风力发电要具备与传统发电技术相当的竞争力,还需进一步改善其并网性能,以降低或者消除风电并网对电力系统运行的负面影响。本文总结了大规模风电并网对电力系统的影响因素,同时提出减小这些影响的一些对策,了解这些影响因素和抑制对策有助于提高大型风电并网运行的安全性,形成更加成熟的风力发电技术。但大型风电场并网对电网的影响是一个很复杂的问题,需要进行更深入的探索和研究。

参考文献:

[1] International Wind Energy Development World Market

Update2011

[2] 张丽英,叶廷路,辛耀中,韩丰,范高锋. 大规模风电接入电网的相

关问题及措施[J].电机工程学报,2010(9):1-9

[3]黄德琥,陈继军,张岚. 大规模风电并网对电力系统的影响[J]. 广东

电力,2010(11):27-30

[4]田妍,王洁,田松. 浅谈风电并网对电力系统电能质量的影响[J]. 中

国电力教育,2009:277-279

[5] 郭健.大规模风电并入电网对电力系统的影响[J]. 电气自动化,

2010:47-50

[6] 石恒初, 剡文林, 刘和森 . 风电并网对电力系统的影响初探[J].云

南电力技术,2009,(2):8-12

[7] 余洋,陈盈今,刘立卿,田海峰. 大规模风电接入对电网电压稳定性影

响的研究[J]. 2010(4):1-4

风电并网对电力系统的影响及改善措施标准版本

文件编号:RHD-QB-K4609 (解决方案范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 风电并网对电力系统的影响及改善措施标准版 本

风电并网对电力系统的影响及改善 措施标准版本 操作指导:该解决方案文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 [摘要]:由于风电场是一种依赖于自然能源的分散电源,同时目前大多采用恒速恒频异步风力发电系统,其并网运行降低了电网的稳定性和电能质量。着眼于并网风电场与电网之间的相互影响,特别是对系统稳定性以及电能质量的影响,对大型风电场并网运行中的一些基础性的技术问题进行了研究。 [关键词]:风电场;并网;现状分析。 一、引言 风力发电作为一种重要的可再生能源形式,越来越受到人们的广泛关注,并网型风力发电以其独特的

能源、环保优势和规模化效益,得到长足发展,随着风电设备制造技术的日益成熟和风电价格的逐步降低,近些年来,无论是发达国家还是发展中国家都在大力发展风力发电。 风力发电之所以在全世界范围获得快速发展,除了能源和环保方面的优势外,还因为风电场本身所具有的独特优点:(1)风能资源丰富,属于清洁的可再生能源;(2)施工周期短,实际占地少,对土地要求低;(3)投资少,投资灵活,投资回收快;(4)风电场运行简单,风力发电具有经济性;(5)风力发电技术相对成熟。 自20世纪80年代以来,大、中型风电场并网容量发展最为迅猛,对常规电力系统运行造成的影响逐步明显和加大,随着风电场规模的不断扩大,风电特性对电网的负面影响愈加显著,成为制约风电场建

风电并网对电网的影响及其策略

风电并网对电网的影响及其策略-机电论文 风电并网对电网的影响及其策略 李梦云 (武汉理工大学自动化学院,湖北武汉430070) 【摘要】目前,中国风电已超核电成为第三大主力电源。但风力电场等分布式电源对电力网络的日益渗透的同时,给现代电力系统带来了很多方面的影响,比如改变了电力网络中能量传递的单向性,对现有配电网的稳定性产生较大的影响(尤其是对电网电压稳定性的影响)。因此,对风电并入配电网后产生的影响及其应对策略进行相关的研究是非常具有现实意义的。介绍了风力发电目前的发展状况和风电接入电网后对电力系统带来的影响,尤其是针对风电场并网后对电网的稳态电压的稳定性,以风速和风电机组的功率因数作为影响因素,从原理上,分别分析其对含风电场的电网的稳态电压的影响。最后在此基础上,提出初步的应对策略。 关键词风力发电;电网;稳态电压;影响;策略 0 前言 随着日益增长的电力负荷、能源的短缺、环境恶化的愈发严重,以及用户要求电能质量的提高,大家越来越关注DG(分布式发电)。研究表明,分布式发电的发展可以反映能源的综合运用、电力行业的服务程度和环境保护的提升。尤其是其中的风力资源,因为其是可再生能源、开发潜力大、环境和经济效益好,因此得到了广泛的应用,使风力发电成为分布式发电中重要的发展方向,同时也使其成为一种当今新型能源中发展迅速的发电方式。 1 风电并网对电力系统的影响

风电场并入配电网,使输电网对部分地区的电力输送压力得到缓解和电力系统的网损得到改善的同时,也对电力系统产生了许多不好的影响如电压波动、闪变等。 同时由于风具有随机性,其输入电网的有功和无功有很大的波动性。风速的不可预测这一特性,使我们不能对风电进行准确而又可靠地出力预测,我们需要更加注重负荷跟踪、备用容量等,提高了风电场的运行成本。 风电并网增加电力系统调峰调频的难度,不仅需要风电场容量,而且需要风电场快速响应负荷变化;风电机组并网时,会不可避免的对电网有冲击电流。风电场与电网的联络线的潮流的双向性,使并网后的电网的继电保护的保护配置提高了要求。 2 风电并网对电网电压的影响 配电网的电压分布情况由电力系统的潮流所决定,当电力网络中电源功率和负荷发生变化时,将会引发电力网络各个母线的节点产生变化。对风电并网的配电网来说,风电场的功率的波动会影响电网电压出现偏移。由于风电场接入配电网后,风电场的接入点的变化、有功功率和无功功率的不平衡等,会导致无功功率从无功源流向负荷。风电场的电压偏移会影响风电场的接入容量和风电并网后电力系统的安全运行。 2.1 风速变化对配电网电压的影响 将接入风电场的配电网系统的供电线路作等值电路,则风电场并网点至无限大系统两端的电压降落为: U1-U2=I(R1+R2+jX1+ jX2) (1) 上式中,U1为风电场的输出电压,U2为电网电压,R1、X1表示风电场的电

风电并网对电力系统稳定性的影响

风电并网对电力系统稳定性的影响 【摘要】风电作为一种重要的新能源,若能实现大规模利用对于解决当前全球性的能源危机有着重要意义。风电本身的波动性和间隙性给风电并网带来了很大的难度,本文将深入探究风电并网对电力系统的影响,旨在为同行进一步解决风电的合理并网问题提供一个有益的参考。 【关键词】风电并网;风电特性;电力系统稳定性 引言 保证电力系统的稳定性是电能生产、运输和利用的基本要求。风电作为一种新型能源,可控性较差,其本身的很多特性具有高度的随机性,因此,风电的大规模并网会对电力系统的安全运行产生很大的影响[1],风电并网已经成为制约风电发展的重要因素。 1.风电特性 风电特性是研究风电并网的基础。风电特性主要包括波动性和间歇性。波动性,又称脉动性,是指风电功率在时间尺度上具有沿某条均线不断上下跳变的特性,其特性可以通过波动幅值和波动频率表征。间歇性是指风电功率在时间尺度上具有不连续性。风电的这两个特性具有高度的随机性,从而是风电的可控性较差。风电功率的这些特性是由风力本身决定的,如风速,风向等。 2.风电并网对电力系统的影响 风电并网会使风电场对电力系统的安全稳定运行产生很大的影响。本文认为其主要影响包括以下几个方面: (1)对电压稳定的影响 由于风电功率具有波动性和间歇性,进而会导致电压出现波动和闪变。文献[2]详细研究了风电功率的间歇性对电力系统电压稳定性的影响,指出保证电压稳定性的关键问题是对风力发电机组的速度增量进行有效控制,对电压稳定性影响最大的区域分布在风电场及其附近的节点区域。 (2)对频率稳定的影响 风电的发电功率不稳定,具有间歇性和波动性,从而使其发电量也不稳定,输出功率不是恒定值。风速发生变化时其输出有功功率就会波动,进而导致电网内的有功也发生变化,有功会影响电网的频率。如果一个地区的风电所占份额过大,某一时刻有功频率变动过大将会导致频率崩溃,甚至会使得整个电网瘫痪。

关于印发风电并网运行反事故措施要点的通知

国家电网公司文件 国家电网调〔2011〕974号 关于印发风电并网运行反事故措施要点的通知 各分部,华北电网有限公司,各省(自治区、直辖市)电力公司,中国电科院,国网电科院,国网经研院: 为落实《国家能源局关于加强风电场并网运行管理的通知》(国能新能〔2011〕182号),公司在总结分析风电并网运行故障原因和存在问题的基础上,组织制定了《风电并网运行反事故措施要点》,现予印发,请各单位严格执行。 风电机组低电压穿越能力缺失是当前风电大规模脱网故障频发的主要原因。为防止类似故障再次发生,各单位要督促网内风力发电企业对风电机组低电压穿越性能进行改造、调试,并通过国家有关部门授权的有资质的检测机构按《风电机组并网检测 管理暂行办法》(国能新能〔2010〕433号)要求进行的检测验证。对此,特别强调: 1. 新建风电机组必须满足《风电场接入电网技术规定》等相关技术标准要求,并通过按国家能源局《风电机组并网检测管理暂行办法》(国能新能〔2010〕433号)要求进行的并网检测,不符合要求的不予并网。 2. 对已并网且承诺具备合格低电压穿越能力的风电机组,风电场应在半年内完成调试和现场检测,并提交检测验证合格报告。同一型号的机组应至少检测一台。逾期未交者,场内同一型号的机组不予并网。 3. 对已并网但不具备合格低电压穿越能力的容量为1MW及以上的风电机组,风电场应在一年内完成改造和现场检测,并提交检测验证合格报告。报告提交前,场内同一型号的机组不予优先调度。逾期未交者,场内同一型号的机组不予并网。 附件:风电并网运行反事故措施要点

二○一一年七月六日 主题词:综合风电反事故措施通知 国家电网公司办公厅2011年7月6日印发

风电并网技术标准(word版)

ICS 备案号: DL 中华人民共和国电力行业标准 P DL/Txxxx-200x 风电并网技术标准 Regulations for Wind Power Connecting to the System (征求意见稿) 200x-xx-xx发布200x-xx-xx实施中华人民共和国国家发展和改革委员会发布

DL/T —20 中华人民共和国电力行业标准 P DL/Txxxx-2QQx 风电并网技术标准 Regulations for Wind Power Connecting to the System 主编单位:中国电力工程顾问集团公司 批准部门:中华人民共和国国家能源局 批准文号:

前言 根据国家能源局文件国能电力「2009]167号《国家能源局关于委托开展风电并网技术标准编制工作的函》,编制风电并网技术标准。《风电场接入电力系统技术规定》GB/Z 19963- 2005于2005年发布实施,对接入我国电力系统的风电场提出了技术要求。该规定主要考虑了我国风电尚处于发展初期,风电机组制造产业处于起步阶段,风电在电力系统中所占的比例较小,接入比较分散的实际情况,对风电场的技术要求较低。根据我国风电发展的实际情况,各地区风电装机规模和建设进度不断加快,风电在电网中的比重不断提高,原有规定已不能适应需要。为解决大规模风电的并网问题,在风电大规模发展的情况下实现风电与电网的协调发展,特编制本标准。 本标准土要针对大规模风电场接入电网提出技术要求,由风电场技术规定、风电机组技术规定组成。 本标准由国家能源局提出并归口。 本标准主编单位:中国电力工程顾问集团公司 参编单位:中国电力科学研究院 本标准主要起草人:徐小东宋漩坤张琳郭佳李炜李冰寒韩晓琪饶建业佘晓平

风电接入对电力系统的影响及控制措施

风电接入对电力系统的影响及控制措施 互联网环境下,电力网络日趋复杂,使电网维护和管理难度增加,很容易出现电网瘫痪情况,造成严重的经济损失。在电力系统中接入风电,能够减少停电损失和故障发生率,使电力网络管理效率得到明显提升。文章简要论述风电场特点及风力发电机组故障情况,分析风电接入对电力系统的影响,提出具体控制方法。 标签:风电接入;电力系统;保护装置 前言: 风力发电属于可再生能源发电技术,应用日益普遍。风力资源丰富,但开发难度大。一些地区虽然适合风电大规模开发,但都处于电网末端,网架结构简单,一旦把风电接入电网,不仅影响电能质量、继电保护等,还会导致电网稳定性差。明确风电接入对电力系统的影响,采取专业技术手段加以控制,优化电力系统性能,为客户提供优质电力服务。 1风电场及风力发电机组故障 1.1风电场特点 风能具备随机性和不可控性,也不能够存储,很难像常规火电厂一样,通过调节汽轮机汽门,对出力进行有效控制,故而,风电机组发出的电能具备波动性和随机性特征。因风能具备不可控特征,无法依据负荷调度风力发电,使调度难度增加。当前,风电机组以异步发电机为主,尽管把无功补偿电容器组装设在机端出口,有功功率输出过程中,发电机会以系统为载体,对无功功率进行吸收,而无功需求受有功输出变化影响。 1.2风力发电机组故障特征 风力发电机组应用时间并不是很长,尚存在诸多技术桎梏,其故障特征主要表现在以下方面。具体而言,将控制技术和运行特征作为划分依据,可把风力发电机细分为变速恒频和衡速衡频两类。前者有双馈式风力发电机、永磁直驱式风力发电机等,后者则以鼠笼式感应风力发电机为主[1]。在风电故障点、接入点位置已知,且保持不变时,短路电流会受接入的风电机组类型影响,表明不同类型风电机组故障特征存在差异。 2风电接入对电力系统的影响 在电力系统中接入风电,会对继电保护产生影响,还容易干扰电网稳定性、电能质量等,甚至影响电流保护。具体如下:

风力发电对电力系统的影响学习资料

风力发电对电力系统 的影响

风力发电对电力系统的影响 摘要 风力发电总是依赖于气象条件,并逐渐以大规模风电场的形式并入电网,给电网带来各种影响。因此,电网并未专门设计用来接入风电,如果要保持现有的电力供应标准,不可避免地需要进行一些相应的调整。本论文依据正常条例讨论了风电设计和设备网络的开发所遇到的一些问题和解决风电场并网时遇到的各种问题。由于风力发电具有大容量、动态和随机性的特性,它给电力系统的有功/无功潮流、电压、系统稳定性、电能质量、短路容量、频率和保护等方面带来影响,针对这些问题提出了相应的对策,以期待更好地利用风力发电。 关键词:风力发电;电力系统;影响;风电场 1. 引言 人们普遍接受,可再生能源发电是未来电力的供应。由于电力需求快速增长,对以化石燃料为基础的发电是不可持续的。相反的,风电作为一种有发展前景的可再生能源备受人们关注。当由于工业发展和世界大部分地区经济的增长而引起电力的需求稳步增长时,它有抑制排放和降低不可替代燃料储备消耗的潜力。 当大型风电场(几百兆瓦)成为一个主流时,风力发电越来越受欢迎。2006年间,包括世界上超过70个国家在内的风能发展,装机容量从2005年的59091兆瓦达到74223兆瓦。2006年的巨大增长表明,决策者们开始重视风能

发展能够带来的好处。由于到2020年12%的供电来于1250Gw的安装风电装机,将积累节约10771百万吨的二氧化碳,这个报道是人类减少温室气体排放的一个重要手段。 大型风电场的电力系统具有很高的容量、动态随机性能,这将会挑战系统的安全性和可靠性。而提供电力系统清洁能源的同时,风电场也会带来一些对电力系统不利的因素。随着风力发电的膨胀和风电在电力系统中比重的增加,影响将很可能成为风力集成的技术性壁垒。因此,应该探讨其影响并提出解决这些问题的对策。 风能已经从25年前的原型中走了很长的路,而且在未来的二十年里它也会继续前进。有一系列的问题与风电系统的运作和发展。虽然风力发电的渗透可能会取代传统的植物产生大量的能量,关注的重点是风力发电和电网之间的相互作用。本文提供了一个概述风力发电对电力系统的影响,并建议相应的对策来处理这些问题,以适应电力系统中的风力发电。 根据上述问题,本文从总体上讨论了风力发电项目开发过程中遇到的问题,以及在处理项目时,将风电场与电力系统相结合的问题。由于风力发电具有容量大、动态、随机性等特点,其影响主要包括有功、无功功率流、电压、系统稳定性、电能质量、短路容量、系统备用、频率和保护。针对这些问题,提出相应的对策建议,以适应电力系统的风力发电。 本文的组织如下。第2节给出了风力发电的发展情况。在第3节介绍了风力发电的特点。在4节中,详细讨论了风力发电对电力系统的影响。在第5节中,提出了减少风力发电的影响的对策。最后,第6节总结本文。

风电光伏技术标准清单

风力发电工程 序号专用标准名称标准编号备注 一综合管理 1 风力发电工程质量监督检查大纲国能安全[2016]102号2016-04-05实施 2 风力发电工程建设监理规范NB/T 31084-2016 2016-06-01实施 3 风力发电工程施工组织设计规范DL/T 5384-2007 4 风电场工程劳动安全与工业卫生验收规范NB/T 31073-20152015-09-01实施 5 风力发电企业科技文件归档与整理规范NB/T 31021-2012 二社会监督 1 电力业务许可证管理规定国家电监会令第9号2005-10-13实施 关于印发风电场工程竣工验收管理暂行办法和风电场项目后评 2 国能新能[2012]310号 价管理暂行办法的通知 三消防工程 1 风力发电机组消防系统技术规程CECS 391:20142015-05-01实施四风电工程专用标准 1 设计标准 风电场工程勘察设计收费标准NB/T 31007-2011 风电场工程可行性研究报告设计概算经编制办法及计算标准FD 001-2007 风电场工程等级划分及安全标准(试行)FD 002-2007 风电机组地基基础设计规定(试行)FD 003-2007 风电场工程概算定额FD 004-2007 风力发电场设计规范GB 51096-20152015-11-01实施风力发电厂设计技术规范DL/T 5383-2007 风电场设计防火规范NB 31089-20162016-06-01实施风力发电机组雷电防护系统技术规范NB/T 31039-2012 风电机组低电压穿越能力测试规程NB/T 31051-2014 风电机组电网适应性测试规程NB/T 31054-2014 风力发电机组接地技术规范NB/T 31056-2014 风力发电场集电系统过电压保护技术规范NB/T 31057-2014

风电大规模并网对电网的影响

由于风能具有随机性、间歇性、不稳 定性的特点,当风电装机容量占总电网容量的比例较大时会对电网的稳定和安全运行带来冲击。本文针对这一问题,阐述了大规模风电并网后对电力系统稳定性、电能质量、发电计划与调度、系统备用容量等方面的影响。并对风电的经济性进行了分析。 风电并网对电网影响主要表现为以下几方面: 1.电压闪变 风力发电机组大多采用软并网方式,但是在启动时仍然会产生较大的冲击电流。当风速超过切出风速时,风机会从额定出力状态自动退出运行。如果整个风电场所有风机几乎同时动作,这种冲击对配电网的影响十分明显。不但如此,风速的变化和风机的塔影效应都会导致风机出力的波动,而其波动正好处在能够产生电压闪变的频率范围之内(低于25Hz),因此,风机在正常运行时也会给电网带来闪变问题,影响电能质量。已有的研究成果表明,闪变对并网点的短路电流水平和电网的阻抗比(也有说是阻抗角)十分敏感。 2.谐波污染 风电给系统带来谐波的途径主要有两种:一种是风力发电机本身配备的电力电子装置,可能带来谐波问题。对于直接和电网相连的恒速风力发电机,软启动阶段要通过电力电子装置与电网相连,因此会产生一定的谐波,不过因为过程很短,发生的次数也不多,通常可以忽略。但是对于变速风力发电机则不然,因为变速风力发电机通过整流和逆变装置接入系统,如果电力电子装置的切换频率恰好在产生谐波的范围内,则会产生很严重的谐波问题,不过随着电力电子器件的不断改进,这一问题也在逐步得到解决。另一种是风力发电机的并联补偿电容器可能和线路电抗发生谐振,在实际运行中,曾经观测到在风电场出口变压器的低压侧产生大量谐波的现象。与电压闪变问题相比,风电并网带来的谐波问题不是很严重。 3.电压稳定性 大型风电场及其周围地区,常常会有电压波动大的情况。主要是因为以下三种情况。风力发电机组启动时仍然会产生较大的冲击电流。单台风力发电机组并网对电网电压的冲击相对较小,但并网过程至少持续一段时间后(约为几十秒)才基本消失,多台风力发电机组同时直接并网会造成电网电压骤降。 因此多台风力发电机组的并网需分组进行,且要有一定的间隔时间。当风速超过切出风速或发生故障时,风力发电机会从额定出力状态自动退出并网状态,风力发电机组的脱网会产生电网电压的突降,而机端较多的电容补偿由于抬高了脱网前风电场的运行电压,从而引起了更大的电网电压的下降。

风力发电对电力系统的影响

风力发电对电力系统的影响 摘要 风力发电总是依赖于气象条件,并逐渐以大规模风电场的形式并入电网,给电网带来各种影响。因此,电网并未专门设计用来接入风电,如果要保持现有的电力供应标准,不可避免地需要进行一些相应的调整。本论文依据正常条例讨论了风电设计和设备网络的开发所遇到的一些问题和解决风电场并网时遇到的各种问题。由于风力发电具有大容量、动态和随机性的特性,它给电力系统的有功/无功潮流、电压、系统稳定性、电能质量、短路容量、频率和保护等方面带来影响,针对这些问题提出了相应的对策,以期待更好地利用风力发电。 关键词:风力发电;电力系统;影响;风电场 1. 引言 人们普遍接受,可再生能源发电是未来电力的供应。由于电力需求快速增长,对以化石燃料为基础的发电是不可持续的。相反的,风电作为一种有发展前景的可再生能源备受人们关注。当由于工业发展和世界大部分地区经济的增长而引起电力的需求稳步增长时,它有抑制排放和降低不可替代燃料储备消耗的潜力。 当大型风电场(几百兆瓦)成为一个主流时,风力发电越来越受欢迎。2006年间,包括世界上超过70个国家在内的风能发展,装机容量从2005年的59091兆瓦达到74223兆瓦。2006年的巨大增长表明,决策者们开始重视风能发展能够带来的好处。由于到2020年12%的供电来于1250Gw的安装风电装机,将积累节约10771百万吨的二氧化碳,这个报道是人类减少温室气体排放的一个重要手段。 大型风电场的电力系统具有很高的容量、动态随机性能,这将会挑战系统的安全性和可靠性。而提供电力系统清洁能源的同时,风电场也会带来一些对电力系统不利的因素。随着风力发电的膨胀和风电在电力系统中比重的增加,影响将很可能成为风力集成的技术性壁垒。因此,应该探讨其影响并提出解决这些问题的对策。 风能已经从25年前的原型中走了很长的路,而且在未来的二十年里它也会继续前进。有一系列的问题与风电系统的运作和发展。虽然风力发电的渗透可能会取代传统的植物产生大量的能量,关注的重点是风力发电和电网之间的相互作用。本文提供了一个概述风力发电对电力系统的影响,并建议相应的对策来处理这些问题,以适应电力系统中的风力发电。 根据上述问题,本文从总体上讨论了风力发电项目开发过程中遇到的问题,以及在处理项目时,将风电场与电力系统相结合的问题。由于风力发电具有容量大、动态、随机性等特点,其影响主要包括有功、无功功率流、电压、系统稳定性、电能质量、短路容量、系统备用、频率和保护。针对这些问题,提出相应的对策建议,以适应电力系统的风力发电。 本文的组织如下。第2节给出了风力发电的发展情况。在第3节介绍了风力发电的特点。在4节中,详细讨论了风力发电对电力系统的影响。在第5节中,提出了减少风力发电的影响的对策。最后,第6节总结本文。

风电相关国家标准整理

国家相关标准 风力发电机组功率特性测试 主要依照IEC61400-12-1:2005风电机组功率特性测试是目前唯一一个正式版本电流互感器级别应满足IEC 60044-1 电压互感器级别应满足IEC 60186 功率变送器准确度应满足GB/T 13850-1998要求,级别为0.5级或更高 IEC 61400-12-1 功率曲线 IEC 61400-12-1 带有场地标定的功率曲线 IEC 61400-12-2 机舱功率曲线 IEC 61400-12 新旧版本区别 对于垂直轴风电机组,气象桅杆的位置不同 改变了周围区域的环境要求 改变了障碍物和临近风电机组影响的估算方法 使用具有余弦相应的风速计 根据场地条件将风速计分为A、B、S三个等级 根据高风速切入和并网信号可以得到两条功率曲线 风速计校准要符合MEASNET规定 风速计需要分级 电网频率偏差不超过2HZ 场地标定只能通过测量,不能用数值模拟 场地标定的每一扇区分段至少为10° 可以同步校准风速计 改进了对风速计安装的描述 通过计算确定横杆长度 增加针对小型风机的额外章节 MEASNET标准和旧版IEC61400-12标准区别 使用全部可用的测量扇区,否则在报告中说明 不允许使用数值场地标定 场地标定更详细的描述,包括不确定度分析 只允许将风速计置于顶部 风速计的校准必须符合MEASNET准则 不使用AEP不完整标准 轮毂高度、风轮直径、桨角只能通过测量来判定,不能按照制造商提供的判定报告中必须提供全方位的照片 IEC61400-12-1:Power performance measurement for electricity producing wind turbine(2005)风电机组功率特性测试 可选择:场地标定 IEC61400-12-2:Power curve verification of individual wind turbine,单台风电机组功率曲线验证(未完成)

风电并网稳定性开题报告

南京工程学院 毕业设计开题报告 课题名称:风力发电场并网运行稳定性研究 学生姓名:李金鹏 指导教师:陈刚 所在院部:电力工程学院 专业名称:电气工程及其自动化 南京工程学院 2012年3月5日

说明 1.根据南京工程学院《毕业设计(论文)工作管理规定》,学生必须撰写《毕业设计(论文)开题报告》,由指导教师签署意见、教研室审查,系教学主任批准后实施。 2.开题报告是毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。学生应当在毕业设计(论文)工作前期内完成,开题报告不合格者不得参加答辩。 3.毕业设计开题报告各项内容要实事求是,逐条认真填写。其中的文字表达要明确、严谨,语言通顺,外来语要同时用原文和中文表达。第一次出现缩写词,须注出全称。 4.本报告中,由学生本人撰写的对课题和研究工作的分析及描述,应不少于2000字,没有经过整理归纳,缺乏个人见解仅仅从网上下载材料拼凑而成的开题报告按不合格论。 5.开题报告检查原则上在第2~4周完成,各系完成毕业设计开题检查后,应写一份开题情况总结报告。

毕业设计(论文)开题报告 学生姓名李金鹏学号206080923 专业电气工程及其自动化指导教师姓名陈刚职称讲师所在院部电力工程学院课题来源自拟课题课题性质工程研究课题名称风力发电场并网运行稳定性研究 毕业设计的内容和意义 内容: 早期风电的单机容量较小,大多采用结构简单、并网方便的异步发电机,直接和配电网相连,对系统影响不大。但随着风电场的容量越来越大,对系统的影响也越来越明显,而风电场所在地区往往人口稀少,处于供电网络的末端,承受冲击的能力很弱,给配电网带来谐波污染、电压波动及闪变等问题。 因此以恒速恒频异步风力发电机组成的风电场为研究对象,建立风力发电系统的线性化状态方程。研究包含风电场的电力系统潮流算法,利用MATLAB及其仿真平台实现电力系统潮流计算以及机电暂态仿真。分析比较各种潮流算法的优缺点。建立简单系统的小干扰稳定分析线性化状态方程,得出了状态矩阵元素的参数表示形式。用特征值分析方法研究大型风电场接入电网后的系统小干扰稳定问题。分析风电场改变对系统小干扰稳定性的影响。采用时域仿真方法研究大型风电场接入电网后的系统暂态稳定问题。 意义: 据国际能源署统计,全球风力发电机总装机容量1999年的2000兆瓦增加到2005年的60000兆瓦,世界风能市场装机资金达450亿欧元,提供50万个就业岗位。风能这种清洁能源每年可以减少2.04亿吨的二氧化碳排放量。 随着风电装机容量的增加,在电网中所占比例的增大,风能的随机性、间隙性特点,和风电场采用异步发电机的一些特性,使稳态电压值上升、过电流、保护装置的动作误差,电压闪变、谐波、浪涌电流造成的电压降落,从而使得风电的并网运行对电网的安全,稳定运行带来重大的影响。其中最为突出的问题就是使风电系统的电能质量严重下降,甚至导致电压崩溃。风电场脱网事故频发,对电网安全运行构成威胁,所以进行风力发电并网运行稳定性研究是非常必要的。

风电并网对电力系统的影响

风电并网对电力系统的影响 发表时间:2017-12-11T17:26:36.300Z 来源:《电力设备》2017年第23期作者:崔强谷岩刘志明[导读] 摘要:由于风速具有波动性和间歇性,风力发电具有较强的不确定性。为了确保电力系统的安全、稳定运行,研究风电并网对电力系统的影响是非常必要的。 (新疆新能源(集团)有限公司 830011) 摘要:由于风速具有波动性和间歇性,风力发电具有较强的不确定性。为了确保电力系统的安全、稳定运行,研究风电并网对电力系统的影响是非常必要的。本文分析了风电并网对电力系统的影响,之后提出了解决问题的措施,以供参考。关键词:风电并网;电力系统;影响;措施 随着现代工业的飞速发展和化石能源的日趋枯竭,能源和环境问题日益严峻,风电作为一种可再生的绿色能源,已成为世界上发展最快的可再生能源。我国风力发电建设进入了一个快速发展的时期,大规模的风力发电必须要实现并网运行。风电场接入电力系统的分析是风电场规划设计和运行中不可缺少的内容,是风力发电技术的三大课题之一。随着风电场容量在系统中所占比例的增加,风电场对系统的影响越来越显著。因此,必须深入研究这些影响,确保电力系统的安全、稳定运行。 1 风电并网对电力系统的影响 1.1 风电并网对系统稳定性的影响 一方面,风电并网引起的稳定问题主要是电压稳定问题。风力发电随风速大小等因素而变化,同时由于风能资源分布的限制,风电厂大多建设在电网的末端,网架结构比较薄弱,所以在风电并网运行时必然会影响电网的电压质量和电网的电压稳定性。同时大型风电厂的风力发电机几乎都是异步发电机,在其并网运行时需从电力系统吸收大量无功功率,增加电网的无功负担,有可能导致小型电网的电压失稳。 另一方面,风电并网改变了配电网的功率流向和潮流分布,这是既有的电网在规划和设计时未曾考虑的。因此,随着风电注入功率的增加,风电场附近局部电网的电压和联络线功率将超出安全运行范围,影响系统的稳定性。随着各地风力发电的蓬勃发展,风电场的规模不断扩大,风电装机容量在系统中所占的比例不断增加,风电输出的不稳定性对电网的功率冲击效应也不断增大,对系统稳定性的影响就更加明显。情况严重时,将会使系统失去动态稳定性,导致整个系统瓦解。 1.2 风电并网对系统运行成本的影响 风力发电的运行成本与火电机组相比很低,甚至可以忽略不计。但是风力发电的波动性和间歇性使风电场的功率输出具有很强的随机性,目前的预报水平难以满足电力系统实际的运行需要。为了保证风电并网后系统运行的可靠性,需要在原有运行方式基础上,额外安排一定容量的旋转备用,以维持电力系统的功率平衡与稳定。可见风电并网对整个电力系统具有双重影响:一方面分担了传统机组的部分负荷,降低了电力系统的燃料成本,另一方面又增加了电力系统的可靠性成本。 1.3 风电并网对电网频率的影响 当风速大于切入风速时,风电机组启动挂网运行;当风速低于切入风速时,风电机组停机并与电网解列。当风速大于切出风速时,为保证安全,风电机组必须停机。因此,受风速变化的影响,风电机组的出力也随时变化,一天内可能有多次启动并网和停机解列。风电场不稳定的功率输出会给电网的运行带来许多问题。如果风电容量在电网总装机容量中所占比例很小,风电功率的注入对电网频率影响甚微。但是,当风电场与其他发电方式的电源组成一个小型的孤立电网时,可能会对孤立系统的频率造成较大影响。随着电网中风力发电装机容量所占的比例逐步提高,大量风电功率的波动增大了系统调频的难度,而系统频率的变化又会对风电机组的运行状态产生影响。 1.4 风电并网对电能质量的影响 风能资源的不确定性和风电机组本身的运行特性使风电机组的输出功率是波动的,可能影响电网的电能质量,如电压波动和闪变、电压偏差以及谐波等。 电压波动及闪变,源于波动的功率输出。由风速动力特性诱发的有功功率波动取决于当地的风况和湍流强度,频率不定;风电机组输出功率的波动主要由风速快变、塔影效应、风剪切、偏航误差等因素引起,其波动频率与风力机的转速有关。固定转速风电机组引起的闪变问题相对较为严重,某些情况下已经成为制约风电场装机容量的关键因素。风电给系统带来谐波的途径主要有两种:一种是风力发电机本身配备的电力电子装置可能带来谐波问题;另外一种是风力发电机的并联补偿电容器可能和线路电抗发生谐振。电压偏差问题属于电网的稳态问题。大幅度波动的风速引起风电机组出力波动较大,所以风电功率的波动导致电网内某些节点电压偏差超出国家标准规定的限值。 发电机本身产生的谐波是可以忽略的,谐波电流的真正来源是风电机组中的电力电子元件,谐波干扰的程度取决于变流装置以及滤波系统的结构状况,而且与风速大小相关。对于固定转速风电机组,在持续运行过程中没有电力电子元件的参与,几乎不会产生谐波电流。实际需要考虑谐波十扰的是变速恒频风电机组,就是因为运行过程中变速恒频风电机组的变流器始终处于工作状态。 2 改善风电并网影响的措施 2.1 利用静止无功补偿器和超导储能装置改善系统稳定性 静止无功补偿器可以快速平滑地调节无功补偿功率的大小,提供动态的电压支撑,改善系统的运行性能。将静止无功补偿器安装在风电场的出口,根据风电场接入点的电压偏差量来控制静止无功补偿器补偿的无功功率,能够稳定风电场节点电压,降低风电功率波动对电网电压的影响。 具有有功和无功功率综合调节能力的超导储能装置,代表了柔性交流输电系统的新技术方向,将超导储能装置用于风力发电可实现对电压和频率的同时控制。超导储能装置能灵活地调节有功和无功功率,为系统提供功率补偿,跟踪电气量的波动。在风电场出口安装超导储能装置装置可充分利用其综合调节能力,降低风电场输出功率的波动,稳定风电场电压。超导储能装置是一种有源的补偿装置,与静止无功补偿器相比,其无功功率补偿量对接入点电压的依赖程度小,在低电压时补偿效果更好。 2.2 利用源滤波器、动态电压恢复器改善电能质量 源滤波器、动态电压恢复器装置的主要功能是抑制电压波动和闪变。

风电接入对电网的影响

风电的接入对电网的影响 1.对电网频率的影响 风电出力波动将会产生严重的有功功率平衡问题。风电比例大小对系统调频影响严重,当电力系统中风电装机容量达到一定规模时,风电功率波动或者风电场因故整体退出运行,可能会导致系统有功出力和负荷之间的动态不平衡,当电网其他发电机组不能够快速响应风电功率波动时,则有可能造成系统频率偏差,严重时可能导致系统频率越限,进而危及电网安全运行[1]。因此,始终保持电力系统频率在允许的很小范围内波动,是电力系统运行控制的最基本目标,也是电力调度自动化系统的最重要任务。电力系统正常运行时,频率始终保持在50Hz±0.2Hz 的范围内,当采用现代自动调频装置时,误差可以不超过0.05~0.15Hz。 2.对电网电压的影响 风电场并入电网后,由于风电具有间歇性和随机性的特点,使得当风电功率变化时,电网电压也将随之发生波动。随着风电注入功率的增加,风电场附近局部电网的电压和联络线功率将会超出安全范围,严重时会导致电压崩溃。影响电压波动有很多因素,例如风电机组类型、风况、所接入电网的状况和策略等,但最根本的原因是风速的波动带来的并网风电机组输出功率的变化。系统要求节点电压与额定值的偏差不允许超过一定的范围。因此,必须釆取适当的措施来防止偏差过大,维持系统的节点电压在限定的范围之内,防止与额定值的偏差超过允许范围。风电接入系统的所带来的电压与无功功率问题亟待解决。 综上所述,为保证大规模风电接入后电网的安全稳定运行,风电接入后的电网运行控制技术越来越重要,电网的稳定控制技术、运行控制技术、优化调度技术以及风电与电网的协调控制技术将成为风电并网控制技术中的关键技术[2,3]。 [1] 计崔. 大型风力发电场并网接入运行问题综述[J]. 华东电力, 2008, 36(10): 71-73. [2] 耿华, 杨耕, 马小亮. 并网型风力发电机组的控制技术综述[J]. 电力电子技术, 2007, 40(6): 33-36. [3] 王伟胜, 范高锋, 赵海翔. 风电场并网技术规定比较及其综合控制系统初探 [J]. 电网技术, 2007, 31(18): 73-77.

文献综述:风电并网存在问题分析

风电并网的不利影响及分析 一、风电并网的不利影响案例分析 1、加拿大阿尔塔特电力系统 截至2008 年,加拿大的阿尔伯塔电力系统(AIES)共有装机约280 台,总容量12 368 MW。其中,煤电5 893 MW,燃气发电4 895 MW(热电联产约3 000MW),水电869 MW,风电523 MW,生物质等其他可再生能源214 MW。阿尔伯塔的风电开发意向已达到11 000 MW,几乎与目前系统的装机容量相当,这在给AIES 带来巨大机遇的同时也带来了挑战。因为,大规模的风电接入会增加系统发电出力的不稳定性,降低系统维持供需平衡的能力。AIES 的装机以火电为主,且调节能力有限,系统备用容量也有限,电力市场的可调发电出力的灵活性不高,对外联络线的潮流交换能力相对有限。因此,系统需要增强调节及平衡能力和事故响应能力,否则难以应对风电出力变化给系统带来的巨大压力。 电力生产和使用必须同时完成的特点决定了系统运行必须维持每时每刻的供需平衡。供需失衡会引起发输电设备跳闸、负荷跳闸甚至系统崩溃等事故。因此,维持系统的实时平衡是一个非常艰巨的任务,而大规模的风电并网,会从以下4 个方面影响系统供需平衡:(1)能否准确预测供需走势。预测是实施供需平衡调节的基础。供需差可能来源于负荷、潮流交换、间歇性电源等的变化。供需走势的预测对于系统运行至关重要。预测越准确,相关的运行决策越准确,运行人员越容易维持系统稳定。而目前的风电预测,远不能达到系统运行对预测精度的要求,给大规模风电并网的系统运行带来很大隐患。 (2)需要足够的系统调节平衡资源来提升系统应对风电出力变化和不确定的能力。系统调节平衡资源是指能被随时调度的、能维持系统平衡的调节备用容量、负荷跟踪服务等运行备用。由于风电出力变化和不确定,导致系统必须维持很高的系统调节资源以作备用,降低了系统资源的利用率。否则,系统将无法应对风电出力变化和不确定性,影响系统的安全可靠运行。 (3)亟须建立相关的系统运行操作规程。为了保持系统的有效运行,必须提前研究并制定相关的系统运行操作规程,并纳入已有的运行规程以指导调度人员。由于人们对风电出力变化和不确定的了解还处于起步阶段,所以相关的运行规程还属空白。 (4)调度人员要学习并掌握应对风电出力变化和不确定影响的能力。拥有充足的系统调节平衡资源、建立相关的规程、具有可操作性的预测结果,加上操作人员多年的经验积累,在对系统特性有足够了解的基础上,才能准确地判断并作出正确决策,实现系统操作安全、可靠、及时。面对大规模的风电并网给系统运行带来的巨大挑战,调度人员需要学习如何应对风电出力变化和不确定给系统运行带来的复杂局势。 对于一个独立系统,供需不平衡可能导致系统出现频率偏差的情况,对于一个互联系统,供需不平衡可能导致系统从主网解列。特别是,阿尔伯塔系统的风电开发意向已远远大于其承受范围,所以面临的问题更加严峻。 胡明:阿尔伯塔风电并网对系统运行的影响和对策;电力技术经济;2009[4] 2、辽宁电网 预计在2010年底,辽宁电网的风电装机容量达到340万kW, 2015年风电装机容量达到787万kW。风电的大规模集中并网将给辽宁电网的调峰调频、联络线控制、系统暂态稳定、无功调压及电能质量等诸多方面带来直接影响,给电力系统的安全稳定运行带来新的挑战。 (1)导致系统调峰难度增加

风力发电对电力系统运行的影响

风力发电对电力系统运行的影响 摘要:风力发电作为一种绿色能源有着改善能源结构,经济环保等方而的优势,也是未来能源电力发展的一个趋势,但风力发电技术要具备与传统发电技术相当的竞争力,还存在一些问题有待解决,本文从风力发电对电力系统的影响入手,总结了风电网并入电网主要面临的一些技术问题,如风力发电场的规模问题,对电能质量的影响,对稳定性的影响,对保护装置的影响等;然后针对这此技术问题,综合比较了各国研究和工程技术人员在理论和实际运行方面的相关解决方案,指出各方案的优缺点,期待更加成熟的风力发电技术的形成,以建设我国具有自主产权的风电产业。 关键词:风力发电,电能质量,稳定性,解决方案 0引言能源是推动社会进步和人类赖以生存的物质基础。目前,全球能源消耗速度逐年递增,大量能源的消耗,已带来十分严重的环境问题,如气候变暖、生态破坏、大气污染等,并且传统的化石能源储量有限,过度的开采利用将加速其耗竭的速度。在中国由于长期发电结构不合理,火电所占比例过大,由此带来了日益严重的燃料资源缺乏和环境污染问题。对于可再生能源的开发和利用变得颇为急切。 在各种可再生能源利用中,风能具有很强的竟争力。风能发电在技术上日趋成熟,商业化应用不断提高,是近期内最具有大规模开发利用前景的可再生资源。经济性方面,风力发电成本不断降低,同时常规能源发电由于环保要求增高使得成本进一步增加;而且随着技术的进步,风力发电的成本将有进一步降低的巨大潜力。 我国的海洋和陆地风能资源很丰富,江苏位于东南沿海,海上风能资源有很大的开发潜力。江苏省如东县建设了我国第一个风电场特许权示范项目。该项目是国内迄今为止最大的风电场项目,其一期建设规模为100MW,单机容量1MW,100台风机,全部采用双馈感应发电机。江苏省盐城也正在准备建风电场,但目前江苏乃至全国的风力发电技术都还不成熟。 大规模的风力发电必须要实现并网运行。风电场接入电力系统的分析是风电场规划设计和运行中不可缺少的内容,是风力发电技术的三大课题之一(其余两项为风能储量调查与风力发电机组技术)。尽管欧美的风电大国对风力发电的建设和运行已经有一些实际经验和技术规定,但由于和我国电网结构的实际情祝差别很大,并不能完全适合我国的情况。本文主要介绍风力风电并网对电力系统的影响。 1风力发电对电力系统的影响 风力发电在电力中的比例逐年增加,而在风力资源丰富地区,电网往往较弱,风力发电对电网间的影响也是应该考虑的问题。风电场并入电网主要会面临以下一些技术问题:风力发电场的规模问题,对电能质量的影响,对稳定性的影响,对保护装置的影响等。 1.1风力发电场的规模问题 目前,我国正在进行全国电网互联,电网规模日益增大。对于接入到大电网的风电场,其容量在电网总装机容量中占的比例很小,风电功率的注入对电网频率影响甚微,不是制约风电场规模的主要问题。然而,风能资源丰富的地区人口稀少,负荷量小,电网结构相对薄弱,风电功率的注入改变了电网的潮流分布,对局部电网的节点电压产生较大的影响,成为制约风电场规模的重要问题。 风力发电的原动力是自然风,因此风电场的选址主要受风资源分布的限制,在规划建设风电场时,首先要考虑风能储量和地理条件。然而风力资源较好的地区往往人口稀少,负荷量小,电网结构相对薄弱,风电功率的注入改变了局部电网的潮流分布,对局部电网的电压质量和稳定性有很大影响,限制了风电场接入系统的方式和规模。 另外风力发电的原动力是不可控的,它是否处于发电状态以及出力的大小都决定于风速的状况,风速的不稳定性和间歇性决定了风电机组的出力也具有波动性和间歇性的特点。在现有的技术水平下风力发电还无法准确预报,因此风电基木上是不可调度的。从电网的角度看,并网运行的风电场相当于一个具有随机性的扰动源,对电网的可靠运行造成一定的影响。由此可见,确定一个给定电网最大能够承受的风电注入功率成为风电场规划设计阶段迫切需要解决的问题。 1.2对电能质量的影响 风资源的不确定性和风电机组本身的运行特性使风电机组的输出功率是波动的,可能影响电网的电能质量,如电压偏差、电压波动和闪变、谐波以及周期性电压脉动等。电压波动和闪变是风力发电对电网电能质量的主要负面影响之一。电压波动的危害表现在照明灯光闪烁、电视机画面质量下降、电动机转速不均匀和影响电子仪器、计算机、自动控制设备的正常工况等。影响风力发电产生波动和闪变的因素有很多:随着风速的增大,风电机组产生的电压波动和闪变也不断增大。并网风电机组在启动、停止和发电机切换过程中也产生电压波动和闪变。风电机组公共连接点短路比越大,风电机组引起的电压波动和闪变越小。另外,风电机组中的电力电子控制装置如果设计不当,将会向电网注入谐波电流,引起电压波形发生不可接受的畸变,并可能引发由谐振带来的潜在问题。 异步电机作为发电机运行时,没有独立的励磁装置,并网前发电机本身没有电压,因此并网时必然伴随一个过渡过程,流过5~6倍额定电流的冲击电流,一般经过几百毫秒后转入稳态。风力发电机组与大电网并联时,合闸瞬间的冲击电流对发电机及电网系统安全运行不会有太大影响。但对小容量的电网而言,风电场并网瞬间将会造成电网电压的大幅度下跌,从而影响接在同一电网上的其他电器设备的正常运行,甚至会影响到整个电网的稳定与安全。 1.3对稳定性的影响 风力发电通常接入到电网的末端,改变了配电网功率单向流动的特点,使潮流流向和分布发生改变,这在原有电网的规划和设计时是没有预先考虑的。因此,随着风电注入功率的增加,风电场附近局部电网的电压和联络线功率将会超出安全范

相关文档
相关文档 最新文档