文档库 最新最全的文档下载
当前位置:文档库 › 09_生物化学习题与解析_物质代谢的联系与调节

09_生物化学习题与解析_物质代谢的联系与调节

09_生物化学习题与解析_物质代谢的联系与调节
09_生物化学习题与解析_物质代谢的联系与调节

物质代谢的联系与调节

一、选择题

(一)A 型题

1 .关于三大营养物质代谢相互联系错误的是:

A .乙酰辅酶A 是共同中间代谢物

B .TCA 是氧化分解成H 2 O 和CO 2 的必经之路

C .糖可以转变为脂肪

D .脂肪可以转变为糖

E .蛋白质可以代替糖和脂肪供能

2 .胞浆中不能进行的反应过程是

A .糖原合成和分解

B .磷酸戊糖途径

C .脂肪酸的β - 氧化

D .脂肪酸的合成

E .糖酵解途径

3 .关于机体物质代谢特点的叙述,错误的是

A .内源或外源代谢物共同参与物质代谢

B .物质代谢不断调节以适应外界环境

C .合成代谢与分解代谢相互协调而统一

D .各组织器官有不同的功能及代谢特点

E .各种合成代谢所需还原当量是NADH

4 .在胞质内进行的代谢途径有

A .三羧酸循环

B .脂肪酸合成

C .丙酮酸羧化

D .氧化磷酸化

E .脂肪酸的β - 氧化

5 .关于糖、脂类代谢中间联系的叙述,错误的是

A .糖、脂肪分解都生成乙酰辅酶A

B .摄入的过多脂肪可转化为糖原储存

C .脂肪氧化增加可减少糖类的氧化消耗

D .糖、脂肪不能转化成蛋白质

E .糖和脂肪是正常体内重要能源物质

6 .关于肝脏代谢的特点的叙述,错误的是

A .能将氨基酸脱下的氨合成尿素

B .将糖原最终分解成葡萄糖

C .糖原合成及储存数量最多

D .是脂肪酸氧化的重要部位

E .是体内唯一进行糖异生的器官

7 .乙酰辅酶A 羧化酶的变构激活剂是

A .软脂酰辅酶A 及其他长链脂酰辅酶A

B .乙酰辅酶A

C .柠檬酸及异柠檬酸

D .丙二酰辅酶A

E .酮体

8 .在生理情况下几乎以葡萄糖为唯一能源,但长期饥饿时则主要以酮体供能的组织是

A .脑

B .红细胞

C .肝脏

D .肌肉

E .肾脏

9 .关于变构调节叙述有误的是

A .变构效应剂与酶共价结合

B .变构效应剂与酶活性中心外特定部位结合

C .代谢终产物往往是关键酶的变构抑制剂

D .变构调节属细胞水平快速调节

E .变构调节机制是变构效应剂引起酶分子构象发生改变

10 .关于酶化学修饰调节叙述不正确的是

A .酶一般都有低( 无) 活性或高( 有) 活性两种形式

B .就是指磷酸化或脱磷酸

C .酶的这两种活性形式需不同酶催化才能互变

D .一般有级联放大效应

E .催化上述互变反应的酶本身还受激素等因素的调节

11 .经磷酸化后其活性升高的酶是

A .糖原合成酶

B .丙酮酸脱氢酶

C .乙酰辅酶A 羧化酶

D .丙酮酸羧激酶

E .糖原磷酸化酶b 激酶

12 .糖与甘油代谢之间的交叉点是

A .3- 磷酸甘油醛

B .丙酮酸

C .磷酸二羟丙酮

D .乙酰辅酶A

E .草酰乙酸

13 .既在胞浆又在线粒体进行的代谢途径是

A .糖酵解

B .糖原合成

C .氧化磷酸化

D .磷脂合成

E .血红素合成

14 .下列属于膜受体激素的是

A .甲状腺素

B .类固醇激素

C .甲状旁腺素

D .1,25-(OH) 2 -D 3

E .视黄醇

15 .作用于细胞内受体的激素是

A .儿茶酚胺类激素

B .生长激素

C .胰岛素

D .类固醇激素

E .多肽类激素

16 .关于糖、脂代谢联系的叙述,错误的是

A .脂肪酸合成原料主要来自糖

B .脂肪酸不能异生成糖

C .糖不能为胆固醇合成提供原料

D .甘油可异生成糖

E .作为营养素糖是不能完全取代脂肪的

17 .糖异生、酮体生成及尿素合成都可发生于

A .肾

B .肝

C .肌肉

D .脑

E .心脏

18 .饥饿时代谢或生成减弱的是

A .肝脏糖异生

B .脂肪组织的动员

C .肌肉蛋白降解

D .胰高血糖素分泌

E .胰岛素分泌

19 .情绪激动时,机体会出现

A .血糖降低

B .血糖升高

C .蛋白质分解减少

D .脂肪动员减少

E .血中脂肪酸减少

20 .葡萄糖在体内代谢时,通常不会转变生成的化合物是

A .丙氨酸

B .乙酰乙酸

C .胆固醇

D .核糖

E .脂肪酸

21 .关于酶含量调节的叙述,错误的是

A .属于酶活性的快速调节

B .属于细胞水平的代谢调节

C .底物常可诱导酶的合成

D .产物常可阻遏酶的合成

E .属于酶活性的迟缓调节

22 .底物对酶含量的影响,通常的方式是

A .促进酶蛋白降解

B .诱导酶蛋白合成

C .阻遏酶蛋白合成

D .抑制酶蛋白降解

E .使酶蛋白磷酸化

23 .不受酶变构作用影响的是

A .酶促反应速度

B .酶促反应平衡点

C .Km 值

D .酶与底物的亲和力

E .酶的催化活性

24 .使糖酵解减弱或糖异生增强的主要调节因素是

A .ATP/ADP 比值减少

B .ATP/ADP 比值增高

C .6- 磷酸果糖浓度增高

D .柠檬酸浓度降低

E .乙酰辅酶A 水平下降

25 .为成熟的红细胞提供能量的主要途径是

A .三羧酸循环

B .糖酵解

C .磷酸戊糖途径

D .有氧氧化

E .脂肪酸β - 氧化

26 .酶的磷酸化修饰多发生于下列哪种氨基酸的- R 基团

A .半胱氨酸的巯基

B .组氨酸咪唑基

C .谷氨酸的羧基

D .赖氨酸的氨基

E .丝氨酸的羟基

27 .糖与脂肪及氨基酸三者代谢的交叉点是

A .丙酮酸

B .琥珀酸

C .延胡索酸

D .乙酰辅酶A

E .磷酸烯醇式丙酮酸

(二)B 型题

A .ATP /ADP 比值增加

B .ATP /ADP 比值降低

C .UTP 浓度增加

D .乙酰CoA/CoA 比值增大

E .乙酰CoA/CoA 比值减小

1 .使丙酮酸羧化酶活性降低

2 .促进氧化磷酸化

3 .使糖的有氧氧化减弱

4 .丙酮酸脱氢酶活性降低

A .蛋白质合成

B .核酸合成

C .尿素合成

D .糖酵解

E .脂肪酸β - 氧化

5 .在线粒体进行

6 .在细胞浆和线粒体进行

7 .在细胞核进行

8 .在细胞浆进行

A 、6 - 磷酸葡萄糖

B 、N - 乙酰谷氨酸

C 、柠檬酸

D 、PRPP

E 、乙酰CoA

9 .丙酮酸羧化酶的变构激活剂

10 .磷酸果糖激酶的变构抑制剂

11 .氨基甲酰磷酸合成酶Ⅰ的变构激活剂

12 .糖原合成酶的变构激活剂

A 、乙酰CoA

B 、AMP

C 、ADP

D 、G - 6 - P

E 、柠檬酸

13 .柠檬酸合成酶的变构激活剂

14 .丙酮酸羧化酶的变构激活剂

15 .糖原合成酶的变构激活剂

16 .乙酰CoA 羧化酶的变构激活剂

A .糖皮质激素

B .前列腺素

C .生长激素

D .胰岛素

E .肾上腺素

17 .可以降低血糖浓度

18 .氨基酸衍生物

19 .以激素- 受体复合物在胞核作用

20 .花生四烯酸衍生物

(三)X 型题

1 .关于酶变构调节的叙述正确的是

A .酶大多有调节亚基和催化亚基

B .体内代谢物可作为变构效应剂

C .酶变构调节都能使酶活性降低

D .酶变构调节都能使酶活性增高

E .通过改变酶蛋白构象而改变酶的活性

2 .酶的变构调节

A .有构型变化

B .有构象变化

C .作用物或代谢物常是变构剂

D .无共价键变化

E .酶动力学遵守米氏方程

3 .酶化学修饰的特点是

A .调节过程有放大效应

B .修饰变化是一种酶促反应

C .调节时酶蛋白发生共价变化

D .需要ATP 参与,所以耗能多

E .酶有低活性和高活性两种形式

4 .属于细胞酶活性的代谢调节方式有

A .酶的共价修饰调节

B .酶的变构调节

C .诱导酶的合成

D .通过膜受体调节

E .调节细胞内酶含量

5 .可以诱导酶合成的是

A .酶反应途径的产物

B .酶反应途径的底物

C .某些激素

D .某些药物

E .酶反应途径的中间产物

6 .作为糖和脂肪代谢交叉点的物质有

A .乙酰CoA

B .6- 磷酸果糖

C .磷酸二羟丙酮

D .3- 磷酸甘油醛

E .草酰乙酸

二、是非题

1 .凡能使酶分子发生变构作用的物质都能使酶活性增加。

2 .激素受体是细胞膜上的结构成分,一般为糖蛋白。

3 .磷酸化是最常见的酶促化学修饰反应,它的特点是将无机磷酸盐的磷酸基加到酶蛋白分子上,改变酶的活性。

4 .饥饿2-3 天,血糖主要靠肝糖原分解来维持。

5 .ATP 是磷酸果糖激酶的变构抑制剂。因此ATP 能抑制糖酵解,而促进糖的有氧氧化。

6 .在代谢途径中,关键酶催化的反应速度最慢,通常催化单向反应或非平衡反应,因此它的活性改变不仅影响整个代谢途径的总速度,而且可以决定整个代谢途径的方向。

7 .类固醇激素的受体存在于靶细胞内,激素与受体结合后引起受体构象改变,然后激素受体复合物形成二聚体,再与DNA 的激素反应元件(HRE )结合,从而对细胞代谢进行调节。

8 .糖原磷酸化酶是常见的化学修饰酶,它的活性型是脱磷酸的形式。

9 .当肾上腺素分泌增加时,它可进入细胞内: ①促进糖原合成酶磷酸化而失去活性。②共价修饰磷酸化酶,使其磷酸化,活性增加。

10 .被化学修饰的酶在细胞内有两种形式,这两种形式的转变也是通过酶促反应进行的。

11 .在糖酵解过程中,6- 磷酸果糖经磷酸果糖激酶催化转变为1 ,6- 二磷酸果糖,后者又是丙酮酸激酶的变构激活剂,这种调节也称反馈调节。

12 .高等生物三级水平代谢调节中,激素和神经对代谢的调节都是通过细胞水平的代谢调节实现的,因此,细胞水平代谢调节是基础。

13 .长期饥饿后时,糖原合成增加,脂肪动员进一步加强,酮体的生成和利用增加,蛋白质分解持续增加,负氮平衡加重。

14 .动物应激时,交感神经兴奋,糖、脂肪分解代谢增强,蛋白质合成增加,以适应应激需要。

15 .代谢组学是指对某一生物或细胞所有代谢产物进行定性和定量检测,分析活细胞中代谢物谱变化的研究领域。

三、填空题

1 .对于高等生物而言, 物质代谢调节可分为三级水平, 包括_____ 、_____ 及整体水平的调节。

2 .细胞水平的快速调节指_____ ,迟缓调节指_____ 。

3 .酶的结构调节包括酶的_____ 和_____ 两种方式。

4 .酶含量的调节通过改变酶的_____ 或_____ 速率,从而调节代谢的速率和强度。

5 .酶的化学修饰常见的方式有_____ 与_____ ,_____ 与_____ 。

6 .在酶的化学修饰调节中,被修饰酶的_____ 与_____ 两种形式的转变是通过_____ 作用来实现的。

7 .细胞水平代谢调节通过调节关键酶的______ 与______ 从而调节代谢的速度和强度。

8 .关键酶所催化的反应具有下列特点:催化反应的速度_____ ,因此又称为限速酶,催化_____ ,因此它的活性决定整个代谢途径的方向,这类酶常受多种效应剂的调节。

9 .按激素受体在细胞的部位不同,可将激素分为_____ 激素和_____ 激素两大类。

10 .糖转化为脂肪时,葡萄糖分解产生的_____ 可作为脂肪酸合成的原料,而还原当量_____ 则由磷酸戊糖途径产生。

11 .在生理情况下,大脑主要以_____ 为能源;短期饥饿时,机体的主要能量来源是_____ 和_____ ;而长期饥饿时,机体转向以保存_____ 为主,大脑则以_____ 为能源物质。

12 .饥饿可使肝内糖代谢的_____ 途径减弱;而_____ 和_____ 途径增强,

13 .肝几乎是体内合成_____ 和_____ 的唯一器官,肝通常氧化_____ 供能,因此肝是通过糖- 脂代谢与肝外组织联系最密切的核心器官。

14 .细胞内蛋白质的降解有两条途径,分别是:_____ 和_____ 。

15 .应激时,糖、脂类和蛋白质的代谢特点是_____ 增强,_____ 受到抑制。

四、名词解释

1 .细胞水平的代谢调节

2 .激素水平的代谢调节

3 .整体水平的代谢调节

4 .key enzymes

5 .rate-limiting enzymes

6 .allosteric regulation

7 .allosteric enzymes

8 .allosteric effector

9 .chemicai modification

10 .inducer

11 .repressor

五、问答题

1 .比较酶的变构调节和化学修饰调节有何异同。

2 .人体处于长期饥饿时,物质代谢有何变化?

3 .糖、脂、蛋白质三者在体内是否能相互转变?简要说明转变的途径及不能转变的原因。

4 .试述谷氨酸的代谢途径及计算ATP 的生产量。

5 .计算1mol 丙氨酸在体内彻底氧化分解成CO 2 和H 2 O 可生成多少molATP?

6 .体内脂肪酸可否转变为葡萄糖?

7 .试述乙酰CoA 在物质代谢中的作用。

8 .简述物质代谢的三个水平调节及相互关系,并比较变构调节和化学修饰调节。

参考答案

一、选择题

(一)A 型题

1 .D

2 .C

3 .E

4 .B

5 .B

6 .E

7 .C

8 .A

9 .A 10 .B 11 .E 12 .C 13 .E 14 .C 15 .D 16 .C 17 .B 18 .E

19 .B 20 .B

21 .A 22 .B 23 .B 24 .B 25 .B 26 .E

(二)B 型题

1 .E

2 .B

3 .D

4 .D

5 .E

6 .C

7 .B

8 .D

9 .E 10 .C 11 .B 12 .A 13 .C 14 .A 15 .D 16 .E 17 .D 18 .C

19 .A 20 .B

(三)X 型题

1 .ABE

2 .BCD

3 .ABCE

4 .ABD

5 .BCD

6 .AC

二、是非题

1 .B

2 .A

3 .B

4 .B

5 .B

6 .A

7 .A

8 .B

9 .B 10 .A

11 .B 12 .A 13 .B 14 .B 15 .B

三、填空题

1 .细胞水平代谢调节激素水平代谢调节

2 .酶结构调节酶含量调节

3 .变构调节化学修饰

4 .合成降解

5 .磷酸化去磷酸化乙酰化去乙酰化

6 .有活性(高活性)无活性(低活性)酶催化

7 .活性含量

8 .最慢单向反应或非平衡反应

9 .膜受体胞内受体

10 .乙酰辅酶A NADPH+H +

11 .葡萄糖蛋白质脂肪组织蛋白酮体

12 .糖原合成糖原分解糖异生

13 .酮体尿素脂酸

14 .非特异性降解蛋白的溶酶体途径特异性降解蛋白的依赖ATP 的泛素—蛋白酶体途径。

15 .分解代谢合成代谢

四、名词解释

1 .细胞水平代谢调节,单细胞生物主要通过细胞内代谢物浓度的变化对酶的活性及含量进行调节,这种调节称为原始调节或细胞水平代谢调节。

2 .激素水平代谢调节,从单细胞生物进化至高等生物,细胞水平的代谢调节发展得更为精细复杂,同时出现了专司调节功能的内分泌细胞及内分泌器官,这些器官及细胞分泌的激素可对其他细胞发挥代谢调节作用,这种调节称为激素水平代谢调节。

3 .整体水平代谢调节,在中枢神经系统的控制下,或通过神经纤维及神经递质对靶细胞直接发生影响,或通过某些激素的分泌来调节某些细胞的代谢及功能,并通过各种激素的互相协调而对机体代谢进行综合调节,这种调节称为整体水平代谢调节。

4 .关键酶,代谢途径由一系列酶催化的化学反应所组成,其速率和方向是由其中一个或几个具有调节作用的酶的活性所决定的,这些能调节代谢的酶称为调节酶或关键酶。

5 .限速酶,在由一系列酶促化学反应所组成的代谢途径中,有的酶所催化的反应速度最慢,它的活性决定整个代谢途径的地总速度,因此称为限速酶。其调节酶或关键酶常常是限速酶。

6 .变构调节,指内源或外源性小分子化合物作为变构效应剂可与酶蛋白分子活性中心以外的某一部位特异结合,引起酶蛋白分子构象变化,从而改变酶的活性,这种调节称为酶的变构调节。

7 .变构酶,代谢途径中受变构效应剂调节的酶称为变构酶或别构酶。,其往往是代谢途径的关键酶。

8 .变构(效应)剂,使酶发生变构效应的小分子化合物,称为变构(效应)剂。

9 .化学修饰,指酶蛋白肽链上某些残基在不同的催化单向反应的酶的催化下发生可逆的共价修饰,从而引起酶活性改变。这种调节称为酶的化学修饰。

10 .Inducer- 诱导剂,指能增加酶合成的化合物。

11 .repressor - 阻遏剂,指能减少酶合成的化合物。

五、问答题

1 .比较酶的变构调节和化学修饰调节有何异同。

答:变构调节指小分子化合物与酶分子活性中心以外的某一部位以非共价特异结合,引起酶蛋白分子构象变化,从而改变酶的活性。化学修饰调节指酶蛋白肽链上某些残基在酶的催化下发生可逆的共价修饰,从而引起酶活性改变。化学修饰的主要方式有磷酸化- 去磷酸、乙酰化- 脱乙酰、甲基化- 去甲基、腺苷化- 脱腺苷、-SH 与-S-S- 互变,磷酸化- 去磷酸是最常见的方式。相同点:

①均属于细胞水平调节。

②均是快速调节,即调节作用都较快,在数秒或数分钟之内即可发生。

③都是通过改变酶的分子结构,从而改变细胞已有酶的活性。

④受调节的酶都为代谢途径中的关键酶或限速酶。

不同点:

2 .人体处于长期饥饿时,物质代谢有何变化?

答:长期饥饿时物质代谢的变化为:

(1 )肝脏糖异生作用加强,乳酸和甘油成为肝糖异生的主要原料;

(2 )脂肪动员进一步加强,大量酮体生成,,脑组织利用酮体增加,超过葡萄糖的利用,肌肉主要以脂酸供能;

(3 )肌肉蛋白质分解减少,负氮平衡有所改善。

3 .糖、脂、蛋白质三者在体内是否能相互转变?简要说明转变的途径及不能转变的原因。

答:( 1 )糖与脂:糖容易转变为脂类,糖→磷酸二羟丙酮→α - 磷酸甘油;糖→乙酰CoA →脂肪酸、胆固醇;α - 磷酸甘油+ 脂肪酸/ 胆固醇→甘油三酯/ 胆固醇酯。

(2 )脂类变糖可能性小,仅甘油、丙酮、丙酰CoA 可异生成糖,但其量甚微。

(3 )蛋白质与糖、脂:蛋白质可转变成糖、脂,但数量较少。生糖氨基酸→糖;生糖兼生酮氨基酸→糖或脂类。糖、脂不能转变为蛋白质,糖、脂不能转变为必需氨基酸,虽可提高非必需氨基酸的碳氢骨架,但缺乏氮源。

4 .计算1mol 丙氨酸在体内彻底氧化分解成CO 2 和H 2 O 可生成多少molATP?

答:丙氨酸———→ 丙酮酸———→乙酰Co A ———→ TCA

↓ ↓ ↓

NH 3 1NADH+H + 3NADH+H +

↓ 1FADH

2.5 ATP ↓

10ATP

1mol 丙氨酸在体内彻底氧化分解成CO 2 和H 2 O 可生成12.5molATP?

5 .体内脂肪酸可否转变为葡萄糖?为什么?

答; 在体内脂肪酸绝大部分不能转变成葡萄糖。脂肪酸分解生成的乙酰Co A 不能转变成丙酮酸,因此不能异生成葡萄糖。乙酰Co A 可在肝合成酮体,包括乙酰乙酸、β—羟丁酸合丙酮,然后被肝外组织摄取利用。前两者均生成乙酰Co A 而进入三羧酸循环彻底氧化,不能转变为葡萄糖,但丙酮可在一系列酶的作用下转变为丙酮酸或乳酸,进而异生成糖,这是脂肪酸的碳原子转变成葡萄糖的一条途径。另外,人体内和膳食中含极少量的奇数个碳原子脂肪酸,经过β氧化除生成乙酰Co A 外,还生成一分子丙二酰Co A ,丙二酰Co A 经过羧化反应和分子内重排,可转变生成琥珀酰Co A ,可进一步氧化分解,也可经草酰乙酸异生成葡萄糖。但转变成糖的量和脂肪酸分解生成的乙酰Co A 相比是非常少的,因此说,脂肪酸大部分不能转变成糖。

6 .试述乙酰CoA 在物质代谢中的作用。

乙酰CoA 是糖、脂类、氨基酸代谢共有的重要中间代谢物,也是三大营养物代谢联系的枢纽,乙酰CoA 的来源:糖有氧氧化;脂肪酸β 氧化;酮体氧化分解;氨基酸分解代谢;甘油及乳酸分解。乙酰CoA 的代谢去路:进入三羧酸循环彻底氧化分解,形成体内能量的主要来源;在肝细胞线粒体生成酮体,为缺乏糖时重要能源之一;合成脂肪酸;合成胆固醇;合成神经递质乙酰胆碱;合成N- 乙酰谷氨酸;参与生物转化和酶的化学修饰。

7 .简述物质代谢的三个水平调节及相互关系。

答:物质代谢的三个水平调节及相互关系:

物质代谢的三个水平调节指细胞水平的代谢调节、激素水平的代谢调节和整体水平的代谢调节。

① 细胞水平的代谢调节:指酶水平的调节。酶水平的调节体现在酶的隔离分布和对关键酶的调节。酶的隔离分布使各种代谢途径互不干扰、彼此协调,有利于调节物对各途径的特异调节。关键酶活性决定代谢途径的速度和方向。所以,调节关键酶活性能实现细胞水平的代谢调节。对关键酶活性的调节分为快速代谢和迟缓调节。快速代谢指通过改变酶的构象或结构而改变酶的活性,通常数秒或数分钟内即可发挥作用,包括变构调节和化学修饰调节。迟缓代谢指通过改变酶的含量而改变酶的总活性,通常数小时或几天才能发挥作用,包括酶合成的调节和酶分解的调节。

② 激素水平的代谢调节:高等生物在进化过程中,出现了专司调节功能的内分泌细胞及内分泌器官,其分泌的激素通过作用于靶细胞的特异受体发挥对靶细胞代谢的调节作用。激素作用机制:内、外环境改变→ 机体相关组织分泌激

素→ 激素与靶细胞上的受体结合→ 靶细胞内的关键酶活性改变→ 代谢途径的速度和/ 或方向改变→ 适应内外环境改变。

③ 整体水平的代谢调节:在中枢神经系统的控制下,或通过神经纤维及神经递质对靶细胞直接发生影响,或通过某些激素的分泌来调节某些细胞内的关键酶活性从而改变代谢途径的速度和/ 或方向,影响细胞的功能。整体水平的代谢调节通过各种激素的互相协调而对机体代谢进行综合调节。

综上所述,物质代谢的三个水平调节不是孤立存在的,而是彼此相互联系、相互依存。当机体内外环境改变时,必须以细胞水平代谢调节为基础,激素水平代谢调节为桥梁,经过整体水平进行综合调节才能实现对物质代谢的调节,使机体适应内外环境的改变。

生物化学糖代谢知识点总结材料

第六章糖代 糖(carbohydrates)即碳水化合物,是指多羟基醛或多羟基酮及其衍生物或多聚物。 根据其水解产物的情况,糖主要可分为以下四大类: 单糖:葡萄糖(G)、果糖(F),半乳糖(Gal),核糖 双糖:麦芽糖(G-G),蔗糖(G-F),乳糖(G-Gal) 多糖:淀粉,糖原(Gn),纤维素 结合糖: 糖脂,糖蛋白 其中一些多糖的生理功能如下: 淀粉:植物中养分的储存形式 糖原:动物体葡萄糖的储存形式 纤维素:作为植物的骨架 一、糖的生理功能 1. 氧化供能 2. 机体重要的碳源 3. 参与组成机体组织结构,调节细胞信息传递,形成生物活性物质,构成具有生理功能的糖蛋白。 二、糖代概况——分解、储存、合成

各种组织细胞 门静脉 肠粘膜上皮细胞 体循环 小肠肠腔 三、糖的消化吸收 食物中糖的存在形式以淀粉为主。 1.消化 消化部位:主要在小肠,少量在口腔。 消化过程:口腔 胃 肠腔 肠黏膜上皮细胞刷状缘 吸收部位:小肠上段 吸收形式:单糖 吸收机制:依赖Na+依赖型葡萄糖转运体(SGLT )转运。 2.吸收 吸收途径: SGLT 肝脏

过程 四、糖的无氧分解 第一阶段:糖酵解 第二阶段:乳酸生成 反应部位:胞液 产能方式:底物水平磷酸化 净生成ATP 数量:2×2-2= 2ATP E1 E2 E3 调节:糖无氧酵解代途径的调节主要是通过各种变构剂对三个关键酶进行变构 调节。 E1:己糖激酶 E2: 6-磷酸果糖激酶-1 E3: 丙酮酸激酶 NAD + 乳 酸 NADH+H +

第二阶段:丙酮酸的氧化脱羧 第三阶段:三羧酸循环 生理意义: 五、糖的有氧氧化 1、反应过程 ○1糖酵解途径(同糖酵解,略) ②丙酮酸进入线粒体,氧化脱羧为乙酰CoA (acetyl CoA)。 总反应式: 关键酶 调节方式 ? 糖无氧氧化最主要的生理意义在于迅速提供能量,这对肌收缩更为重要。 ? 是某些细胞在氧供应正常情况下的重要供能途径。 ① 无线粒体的细胞,如:红细胞 ② 代谢活跃的细胞,如:白细胞、骨髓细胞 第一阶段:糖酵解途径 G (Gn ) 丙酮酸 乙酰CoA ATP ADP 胞液 线粒体 丙酮酸 乙酰CoA NAD + , HSCoA CO 2 , NADH + H + 丙酮酸脱氢酶复合体

关于生物化学脂类代谢习题答案

脂类代谢 一、问答题 1、为什么摄入糖量过多容易长胖? 答:因为脂肪酸合成的起始原料乙酰CoA主要来自糖酵解产物丙酮酸,摄入糖量过多则糖酵解产生的丙酮酸也多,进而导致合成脂肪酸的起始原料乙酰CoA也多,原料多合成的脂肪酸自然就多了,所以摄入糖量过多容易长胖。 2、比较脂肪酸β—氧化和脂肪酸的合成有哪些不同点? 答:①细胞中发生部位不同:合成发生在细胞质,氧化发生在线粒体;②酰基载体不同:合成所需载体为ACP—SH,氧化所需载体为乙酰CoA;③二碳片段的加入与裂解方式:合成是以丙二酰ACP加入二碳片段,氧化的裂解方式是乙酰CoA;④电子供体或受体:合成的供体是NADPH,氧化的受体是FAD、FAD+;⑤酶系不同:合成需7种酶,氧化需4种酶;⑥原料转运方式:合成是柠檬酸转运系统,氧化是肉碱穿梭系统;⑦能量变化:合成耗能,氧化产能。 3、试计算1mol甘油彻底氧化成CO和HO可净生成多少molATP。22答:甘油氧化产生的乙酰CoA进入三羧酸循环彻底氧化。经过4次脱氢反应生成3molNADH+H+、1molFADH2、以及2molCO2,并发生一 次底物水平磷酸化,生成1molGTP。依据生物氧化时每1molNADH+H+和1molFADH2 分别生成、的ATP,因此,1mol甘油彻底氧化成CO2和H2O生成ATP摩尔数为6×+1×+3-1=。

4、1mol硬脂酸(即18碳饱和脂肪酸)彻底氧化成CO和HO时净生成的ATP的22摩尔数。. 答:1mol硬脂酸彻底氧化需经8次循环,产生9个乙酰CoA,每摩尔乙酰CoA进入三羧酸循环产生10molATP,这样共产生90molATP。8molFADH2进入电子传递链产生12molATP,8molNADH进入电子传递链共产生20molATP。脂肪酸的活化需消耗2个高能磷酸键,这样彻底氧化1mol硬脂酸净得120molATP。 5、胆固醇在体内可转变成哪些重要物质?合成胆固醇的基本原料和关键酶各是什么? 答:转变成胆汁酸、甾类激素、维生素D; 基本原料:二甲基丙烯焦磷酸酯(DPP)、异戊烯醇焦磷酸酯 关键酶:羟甲基戊二酸单酰CoA还原酶(HMGCoA还原酶) 6、为什么在长期饥饿或糖尿病状态下,血液中酮体浓度会升高?答:由于糖供应不足或利用率降低,机体需动员大量的脂肪酸供能,同时生成大量的乙酰CoA。此时草酰乙酸进入糖异生途径,又得不到及时的回补而浓度降低,因此不能与乙酰CoA缩合成柠檬酸。在这种情况下,大量积累的乙酰CoA衍生为丙酮、乙酰乙酸、β—羟丁酸。 7、为什么在大多数情况下,真核生物仅限于合成软脂酸? 答:因为在真核生物中,β—酮脂酞—ACP缩合酶对链长有专一性,它接受14碳酸基的活力最强,所以,在大多数情况下,仅限于合成软脂酸。另外,软脂酸CoA对脂肪酸合成的限速酶乙酰CoA羧化酶

生物化学氨基酸代谢知识点汇总

生物化学氨基酸代谢知识点汇总

————————————————————————————————作者:————————————————————————————————日期:

第九章氨基酸代谢 第一节:蛋白质的生理功能和营养代谢 蛋白质重要作用 1.维持细胞、组织的生长、更新和修补 2.参与多种重要的生理活动(免疫,酶,运动,凝血,转运) 3.氧化供能 氮平衡 1.氮总平衡:摄入氮= 排出氮(正常成人) 氮正平衡:摄入氮> 排出氮(儿童、孕妇等) 氮负平衡:摄入氮< 排出氮(饥饿、消耗性疾病患者)2.意义:反映体内蛋白质代谢的慨况。 蛋白质营养价值 1.蛋白质的营养价值取决于必需氨基酸的数量、种类、量质比 2.必需氨基酸-----甲来写一本亮色书、假设梁借一本书来 3.蛋白质的互补作用,指营养价值较低的蛋白质混合食用,其必需氨 基酸可以互相补充 而提高营养价值。 第二节:蛋白质的消化、吸收与腐败 外源性蛋白消化 1.胃:壁细胞分泌的胃蛋白酶原被盐酸激活,水解蛋白为多肽和氨基

酸,主要水解芳香族氨基酸 2.小肠:胰液分泌的内、外肽酶原被肠激酶激活,水解蛋白为小肽和氨基酸;生成的寡肽继续在小肠细胞内由寡肽酶水解成氨基酸 氨基酸和寡肽的主动吸收 1.吸收部位:小肠,吸收作用在小肠近端较强 2.吸收机制:耗能的主动吸收过程 ○1通过转运蛋白(氨基酸+小肽):载体蛋白与氨基酸、Na+组成三联体,由ATP供能将氨基酸、Na+转入细胞内,Na+再由钠泵排出细胞。○2通过r-谷氨酰基循环(氨基酸):关键酶----r--谷氨酰基转移酶, 具体过程参P199图

生物化学糖代谢习题

生物化学糖代谢习题 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

糖代谢习题 一、名词解释 1.糖酵解 2.三羧酸循环 3.糖原分解 4.糖原的合成 5.糖原异生作用 6.发酵 7.糖的有氧氧化 8.糖核苷酸 9.乳酸循环 10.Q酶 二、填空题 1.α淀粉酶和β–淀粉酶只能水解淀粉的_________键,所以不能够使支链 淀粉完全水解。 2.1分子葡萄糖转化为2分子乳酸净生成______________分子ATP 3.糖酵解过程中有3个不可逆的酶促反应,这些酶是 __________、 ____________ 和_____________。 4.糖酵解抑制剂碘乙酸主要作用于___________酶。 5.调节三羧酸循环最主要的酶是____________、、 ______________。 6.2分子乳酸异升为葡萄糖要消耗_________ATP。 7.丙酮酸还原为乳酸,反应中的NADH来自于________的氧化。

8.延胡索酸在________________酶作用下,可生成苹果酸,该酶属于EC 分类中的_________酶类。 9 磷酸戊糖途径可分为______阶段,分别称为_________和 _______,其中 两种脱氢酶是_______和_________,它们的辅酶是_______。 10 ________是碳水化合物在植物体内运输的主要方式。 三、选择题 1.在厌氧条件下,下列哪一种化合物会在哺乳动物肌肉组织中积累?() A、丙酮酸 B、乙醇 C、乳酸 D、CO2 2.磷酸戊糖途径的真正意义在于产生( )的同时产生许多中间物如核糖等。 A、NADPH+H+ B、NAD+ C、ADP D、CoASH 3.磷酸戊糖途径中需要的酶有() A、异柠檬酸脱氢酶 B、6-磷酸果糖激酶 C、6-磷酸葡萄糖脱氢酶 D、转氨酶 4.下面哪种酶既在糖酵解又在葡萄糖异生作用中起作用?() A、丙酮酸激酶 B、3-磷酸甘油醛脱氢酶 C、1,6-二磷酸果糖激酶 D、已糖激酶 5.生物体内ATP最主要的来源是()

生物化学 糖代谢

糖代谢 一、多糖的代谢 1.淀粉 凡能催化淀粉分子及片段中α- 葡萄糖苷键水解的酶,统称淀粉酶(amylase)。 主要可以分为α-淀粉酶、β-淀粉酶、γ-淀粉酶、和异淀粉酶4类。 (一)α-淀粉酶 又称液化酶、淀粉-1,4-糊精酶 1)作用机制 内切酶,从淀粉分子内部随机切断α-1,4糖苷键,不能水解α-1,6-糖苷键及与非还原性末端相连的α-1,4-糖苷键。 2)水解产物 直链淀粉 大部分直链糊精、少量麦芽糖与葡萄糖 支链淀粉 大部分分支糊精、少量麦芽糖与葡萄糖,底物分子越大,水解效率越高。 (二)β-淀粉酶 又叫淀粉-1,4-麦芽糖苷酶。 1)作用机制 外切酶,从淀粉分子的非还原性末端,依次切割α-1,4-糖苷键,生成β-型的麦芽糖;作用于支链淀粉时,遇到分支点即停止作用,剩下的大分子糊精称为β-极限糊精。 2)β-淀粉酶水解产物 支链淀粉 β-麦芽糖和β-极限糊精。 直链淀粉 β-麦芽糖。 (三)γ-淀粉酶 又称糖化酶、葡萄糖淀粉酶。 1)作用方式 它是一种外切酶。从淀粉分子的非还原性末端,依次切割α-1,4-葡萄糖苷键,产生β-葡萄糖。遇α-1,6和α-1,3-糖苷键时也可缓慢水解。 2) 产物 葡萄糖。 (四)异淀粉酶 又叫脱支酶、淀粉-1,6-葡萄糖苷酶。 1)作用方式 专一性水解支链淀粉或糖原的α-1,6-糖苷键,异淀粉酶对直链淀粉不作用。 2)产物 生成长短不一的直链淀粉(糊精)。 3)现象 碘反应蓝色加深 2.糖原 (一)糖原分解 糖原的降解需要三种酶,即糖原脱支酶,磷酸葡糖变位酶和糖原磷酸化酶。 (1)糖原磷酸化酶

该酶从糖原的非还原性末端以此切下葡萄糖残基,降解后的产物为1-磷酸葡萄糖。 (2)磷酸葡糖变位酶 糖原在糖原磷酸化酶的作用下降解产生1-磷酸葡糖。1-磷酸葡萄糖必须转化为6-磷酸葡糖后方可进入糖酵解进行分解。1-磷酸葡糖到6-磷酸葡糖的转化是由磷酸葡糖变位酶催化完成的。 (3)糖原脱支酶 该酶水解糖原的α-1,6-糖苷键,切下糖原分支。糖原脱支酶具有转移酶和葡糖甘酶两种活性。在糖原脱支酶分解有分支的糖原时,首先转移酶活性使其3个葡萄糖残基从分支处转移到附近的非还原性末端,在那里它们以α-1,4-葡萄糖苷键重新连接的单个葡萄糖残基,在葡萄糖苷酶的作用下被切下,以游离的葡萄糖形式释放。 补充: 1.糖原磷酸化只催化1,4-糖苷键的磷酸解,实际上磷酸化酶的作用只到 糖原的分支点前4个葡萄糖残基处即不能再继续进行催化,这时候就 需要糖原脱支酶。磷酸吡哆醛是磷酸化酶的必需辅助因子。 2.糖原的降解采用磷酸解而不是水解,具有重要的生物意义。 (1)磷酸解使降解下来的葡萄糖分子带上磷酸基团,葡萄糖-1-磷

生物化学糖代谢知识点总结

各种组织细胞 体循环小肠肠腔 第六章糖代谢 糖(carbohydrates)即碳水化合物,是指多羟基醛或多羟基酮及其衍生物或多聚物。 根据其水解产物的情况,糖主要可分为以下四大类: 单糖:葡萄糖(G )、果糖(F ),半乳糖(Gal ),核糖 双糖:麦芽糖(G-G ),蔗糖(G-F ),乳糖(G-Gal ) 多糖:淀粉,糖原(Gn ),纤维素 结合糖: 糖脂 ,糖蛋白 其中一些多糖的生理功能如下: 淀粉:植物中养分的储存形式 糖原:动物体内葡萄糖的储存形式 纤维素:作为植物的骨架 一、糖的生理功能 1. 氧化供能 2. 机体重要的碳源 3. 参与组成机体组织结构,调节细胞信息传递,形成生物活性物质,构成具有生理功能的糖蛋白。 二、糖代谢概况——分解、储存、合成 三、糖的消化吸收 食物中糖的存在形式以淀粉为主。 1.消化 消化部位:主要在小肠,少量在口腔。 消化过程:口腔 胃 肠腔 肠黏膜上皮细胞刷状缘 吸收部位:小肠上段 吸收形式:单糖 吸收机制:依赖Na+依赖型葡萄糖转运体(SGLT )转运。 2.吸收 吸收途径:

过程 2 H 2 四、糖的无氧分解 第一阶段:糖酵解 第二阶段:乳酸生成 反应部位:胞液 产能方式:底物水平磷酸化 净生成ATP 数量:2×2-2= 2ATP E1 E2 E3 调节:糖无氧酵解代谢途径的调节主要是通过各种变构剂对三个关键酶进行变 构调节。 生理意义: 五、糖的有氧氧化 E1:己糖激酶 E2: 6-磷酸果糖激酶-1 E3: 丙酮酸激酶 NAD + 乳 酸 NADH+H + 关键酶 ① 己糖激酶 ② 6-磷酸果糖激酶-1 ③ 丙酮酸激酶 调节方式 ① 别构调节 ② 共价修饰调节 糖无氧氧化最主要的生理意义在于迅速提供能量,这对肌收缩更为重要。 是某些细胞在氧供应正常情况下的重要供能途径。 ① 无线粒体的细胞,如:红细胞 ② 第一阶段:糖酵解途径 G (Gn ) 丙酮酸胞液

生物化学试题及标准答案(糖代谢部分)

糖代谢 一、选择题 1.果糖激酶所催化的反应产物就是: A、F-1-P B、F-6-P C、F-1,6-2P D、G-6-P E、G-1-P 2.醛缩酶所催化的反应产物就是: A、G-6-P B、F-6-P C、1,3-二磷酸甘油酸 D、3-磷酸甘油酸 E、磷酸二羟丙酮 3.14C标记葡萄糖分子的第1,4碳原子上经无氧分解为乳酸,14C应标记在乳酸的: A、羧基碳上 B、羟基碳上 C、甲基碳上 D、羟基与羧基碳上 E、羧基与甲基碳上 4.哪步反应就是通过底物水平磷酸化方式生成高能化合物的? A、草酰琥珀酸→α-酮戊二酸 B、α-酮戊二酸→琥珀酰CoA C、琥珀酰CoA→琥珀酸 D、琥珀酸→延胡羧酸 E、苹果酸→草酰乙酸 5.糖无氧分解有一步不可逆反应就是下列那个酶催化的? A、3-磷酸甘油醛脱氢酶 B、丙酮酸激酶 C、醛缩酶 D、磷酸丙糖异构酶 E、乳酸脱氢酶 6.丙酮酸脱氢酶系催化的反应不需要下述那种物质? A、乙酰CoA B、硫辛酸 C、TPP D、生物素 E、NAD+ 7.三羧酸循环的限速酶就是: A、丙酮酸脱氢酶 B、顺乌头酸酶 C、琥珀酸脱氢酶 D、异柠檬酸脱氢酶 E、延胡羧酸酶 8.糖无氧氧化时,不可逆转的反应产物就是: A、乳酸 B、甘油酸-3-P C、F-6-P D、乙醇 9.三羧酸循环中催化琥珀酸形成延胡羧酸的琥珀酸脱氢酶的辅助因子就是: A、NAD+ B、CoA-SH C、FAD D、TPP E、NADP+ 10.下面哪种酶在糖酵解与糖异生作用中都起作用: A、丙酮酸激酶 B、丙酮酸羧化酶 C、3-磷酸甘油酸脱氢酶 D、己糖激酶 E、果糖-1,6-二磷酸酯酶 11.催化直链淀粉转化为支链淀粉的酶就是: A、R酶 B、D酶 C、Q酶 D、α-1,6糖苷酶 12.支链淀粉降解分支点由下列那个酶催化? A、α与β-淀粉酶 B、Q酶 C、淀粉磷酸化酶 D、R—酶 13.三羧酸循环的下列反应中非氧化还原的步骤就是: A、柠檬酸→异柠檬酸 B、异柠檬酸→α-酮戊二酸 C、α-酮戊二酸→琥珀酸 D、琥珀酸→延胡羧酸 14.一分子乙酰CoA经三羧酸循环彻底氧化后产物就是: A、草酰乙酸 B、草酰乙酸与CO2 C、CO2+H2O D、CO2,NADH与FADH2 15.关于磷酸戊糖途径的叙述错误的就是: A、6-磷酸葡萄糖转变为戊糖 B、6-磷酸葡萄糖转变为戊糖时每生成1分子CO2,同时生成1分子NADH+H C、6-磷酸葡萄糖生成磷酸戊糖需要脱羧 D、此途径生成NADPH+H+与磷酸戊糖 16.由琥珀酸→草酰乙酸时的P/O就是: A、2 B、2、5 C、3 D、3、5 E、4 17.胞浆中1mol乳酸彻底氧化后,产生的ATP数就是:

生物化学习题及答案_代谢调节

代谢调节 (一)名词解释 1.诱导酶(Inducible enzyme) 2.标兵酶(Pacemaker enzyme) 3.操纵子(Operon) 4.衰减子(Attenuator) 5.阻遏物(Repressor) 6.辅阻遏物(Corepressor) 7.降解物基因活化蛋白(Catabolic gene activator protein) 8.腺苷酸环化酶(Adenylate cyclase) 9.共价修饰(Covalent modification) 10.级联系统(Cascade system) 11.反馈抑制(Feedback inhibition) 12.交叉调节(Cross regulation) 13.前馈激活(Feedforward activation) 14.钙调蛋白(Calmodulin) (二)英文缩写符号 1. CAP(Catabolic gene activator protein): 2. PKA(Protein kinase): 3. CaM(Calmkdulin): 4. ORF(Open reading frame): (三)填空题 1. 哺乳动物的代谢调节可以在、、和四个水平上进行。 2. 酶水平的调节包括、和。其中最灵敏的调 节方式是。 3. 酶合成的调节分别在、和三个方面进行。

4. 合成诱导酶的调节基因产物是,它通过与结合起调节作用。 5. 在分解代谢阻遏中调节基因的产物是,它能与结合而 被活化,帮助与启动子结合,促进转录进行。 6. 色氨酸是一种,能激活,抑制转录过程。 7. 乳糖操纵子的结构基因包括、和。 8. 在代谢网络中最关键的三个中间代谢物是、和。 9. 酶活性的调节包括、、、、 和。 10.共价调节酶是由对酶分子进行,使其构象在和 之间相互转变。 11.真核细胞中酶的共价修饰形式主要是,原核细胞中酶共价修饰 形式主要是。 (四)选择题 1. 利用操纵子控制酶的合成属于哪一种水平的调节: A.翻译后加工 B.翻译水平 C.转录后加工 D.转录水平 2. 色氨酸操纵子调节基因产物是: A.活性阻遏蛋白 B.失活阻遏蛋白 C.cAMP受体蛋白 D.无基因产物 3. 下述关于启动子的论述错误的是: A.能专一地与阻遏蛋白结合 B.是RNA聚合酶识别部位 C.没有基因产物 D.是RNA聚合酶结合部位 4. 在酶合成调节中阻遏蛋白作用于: A.结构基因 B.调节基因 C.操纵基因 D.RNA聚合酶 5. 酶合成的调节不包括下面哪一项: A.转录过程 B.RNA加工过程 C.mRNA翻译过程 D.酶的激活作用 6. 关于共价调节酶下面哪个说法是错误的:

生物化学试题及标准答案(糖代谢部分)

糖代谢 一、选择题 1.果糖激酶所催化的反应产物是: A、F-1-P B、F-6-P C、F-1,6-2P D、G-6-P E、G-1-P 2.醛缩酶所催化的反应产物是: A、G-6-P B、F-6-P C、1,3-二磷酸甘油酸 D、3-磷酸甘油酸 E、磷酸二羟丙酮 3.14C标记葡萄糖分子的第1,4碳原子上经无氧分解为乳酸,14C应标记在乳酸的: A、羧基碳上 B、羟基碳上 C、甲基碳上 D、羟基和羧基碳上 E、羧基和甲基碳上 4.哪步反应是通过底物水平磷酸化方式生成高能化合物的? A、草酰琥珀酸→α-酮戊二酸 B、α-酮戊二酸→琥珀酰CoA C、琥珀酰CoA→琥珀酸 D、琥珀酸→延胡羧酸 E、苹果酸→草酰乙酸 5.糖无氧分解有一步不可逆反应是下列那个酶催化的? A、3-磷酸甘油醛脱氢酶 B、丙酮酸激酶 C、醛缩酶 D、磷酸丙糖异构酶 E、乳酸脱氢酶 6.丙酮酸脱氢酶系催化的反应不需要下述那种物质? A、乙酰CoA B、硫辛酸 C、TPP D、生物素 E、NAD+ 7.三羧酸循环的限速酶是: A、丙酮酸脱氢酶 B、顺乌头酸酶 C、琥珀酸脱氢酶 D、异柠檬酸脱氢酶 E、延胡羧酸酶 8.糖无氧氧化时,不可逆转的反应产物是: A、乳酸 B、甘油酸-3-P C、F-6-P D、乙醇 9.三羧酸循环中催化琥珀酸形成延胡羧酸的琥珀酸脱氢酶的辅助因子是: A、NAD+ B、CoA-SH C、FAD D、TPP E、NADP+ 10.下面哪种酶在糖酵解和糖异生作用中都起作用: A、丙酮酸激酶 B、丙酮酸羧化酶 C、3-磷酸甘油酸脱氢酶 D、己糖激酶 E、果糖-1,6-二磷酸酯酶 11.催化直链淀粉转化为支链淀粉的酶是: A、R酶 B、D酶 C、Q酶 D、α-1,6糖苷酶 12.支链淀粉降解分支点由下列那个酶催化? A、α和β-淀粉酶 B、Q酶 C、淀粉磷酸化酶 D、R—酶 13.三羧酸循环的下列反应中非氧化还原的步骤是: A、柠檬酸→异柠檬酸 B、异柠檬酸→α-酮戊二酸 C、α-酮戊二酸→琥珀酸 D、琥珀酸→延胡羧酸 14.一分子乙酰CoA经三羧酸循环彻底氧化后产物是: A、草酰乙酸 B、草酰乙酸和CO2 C、CO2+H2O D、CO2,NADH和FADH2 15.关于磷酸戊糖途径的叙述错误的是: A、6-磷酸葡萄糖转变为戊糖 B、6-磷酸葡萄糖转变为戊糖时每生成1分子CO2,同时生成1分子NADH+H C、6-磷酸葡萄糖生成磷酸戊糖需要脱羧 D、此途径生成NADPH+H+和磷酸戊糖 16.由琥珀酸→草酰乙酸时的P/O是: A、2 B、2.5 C、3 D、3.5 E、4 17.胞浆中1mol乳酸彻底氧化后,产生的ATP数是:

生化糖代谢练习题

糖代谢练习题 第一部分填空 1、TCA循环中有两次脱羧反应,分别是由____异柠檬酸脱氢酶____和___α- 酮戊二酸脱氢酶_____催化。 2、在糖酵解中提供高能磷酸基团,使ADP磷酸化成ATP的高能化合物是___1、3二磷酸甘油酸________ 和________磷酸烯醇式丙酮酸________ 3、糖酵解途径中的两个底物水平磷酸化反应分别由_____磷酸甘油酸激酶 ________ 和______丙酮酸激酶_______ 催化。 4、三羧酸循环在细胞____线粒体_______进行;糖酵解在细胞___细胞质(或胞液)________进行。 5、一次三羧酸循环可有____4____次脱氢过程和_____1___次底物水平磷酸化过程。 6、每一轮三羧酸循环可以产生____1个_____分子GTP,____3个_____分子NADH和____1个_____分子FADH2。 7、丙酮酸还原为乳酸,反应中的NADH+H+来自的氧化。 8、糖酵解在细胞内的中进行,该途径是将转变为,同时生成的一系列酶促反应。 9、许多非糖物质如______,______,以及某些氨基酸等能在肝脏中转变为糖原,称为___________ 10、线粒体内部的ATP是通过载体,以方式运出去的。 11、1分子葡萄糖经糖酵解代谢途径转化为_________分子乳酸净生成_________

分子ATP。

12、糖酵解在细胞_________中进行,该途径能将_________转变为丙酮酸。 13、三羧酸循环脱下的_________通过呼吸链氧化生成_________的同时还产生ATP。 14、糖酵解过程中有3 个不可逆的酶促反应,这些酶是__________、 ___________ 和_____________。 15、由非糖物质生成葡萄糖或糖元的作用,称为__________作用。 16、糖是人和动物的主要物质,它通过而放出大量,以满足生命活动的需要。 17、lmol 葡萄糖氧化生成CO2和H2O时,净生成__________mol ATP。 18、三羧酸循环的第一步反应产物是___________。 19、蔗糖是由一分子和一分子组成,它们之间通过 糖苷键相连。 1、异柠檬酸脱氢酶,α-酮戊二酸脱氢酶 2、1、3二磷酸甘油酸,磷酸烯醇式丙酮酸 3、磷酸甘油酸激酶,丙酮酸激酶 4、线粒体,细胞质(或胞液) 5、4,1 6、1个,3个,1个 7、3-磷酸甘油醛 8、细胞质,葡萄糖,丙酮酸,ATP和NADH 9、甘油,丙酮酸,糖原异生作用10、腺苷酸,交换11、2,2 12、浆,葡萄糖13、氢,水14、己糖激酶,磷酸果糖激酶,丙酮酸激酶

生物化学作业

生物化学作业 1. 基因如何决定糖蛋白中寡糖链的结构信息。 答:生物体内的糖链的合成大多需要酶的催化调节,并且糖链的结构受到某些蛋白所携带的信息的控制,而蛋白质的功能和其携带的信息取决于基因的控制,因此在由某些蛋白质和酶的协同作用下合成的糖链会由于基因中的不同信息的表达和控制而产生不同的结构。不同结构的糖链携带了不同的生物信息。 2. 组成生物膜的脂质分子主要有哪几类?分别简述其功能。 答:组成生物膜的脂质分子主要有磷脂、糖脂、胆固醇。 磷脂:主要包括甘油磷脂和鞘磷脂两大类。是重要的两亲物质,它们是生物膜的重要组分、乳化剂和表面活性剂。它是维持生命活动的基础物质,对活化细胞,维持新陈代谢,基础代谢及荷尔蒙的均衡分泌,增强人体的免疫力和再生力,都能发挥重大的作用。人体神经细胞和大脑细胞是由磷脂为主所构成的细胞薄膜包覆,磷脂不足会导致薄膜受损,造成智力减退,精神紧张。而磷脂中含的乙酰进入人体内与胆碱结合,构成乙酰胆碱。而乙酰胆碱恰恰是各种神经细胞和大脑细胞间传递信息的载体。磷脂是细胞膜的重要组成部分,肩负着细胞内外物质交换的重任。 糖脂:包括鞘糖脂和甘油糖脂两大类。细胞膜上的鞘糖脂与细胞生理状况密切相关。鞘糖脂的疏水尾部深入膜的脂双层,极性糖基露在细胞表面,它们不仅是血型抗原而且与组织和器官的特异性,细胞-细胞识别有关。同一类细胞在不同的发育阶段,鞘糖脂的组成也不同。正因为某些类型鞘糖脂是某种细胞在某个发育阶段所特有的,所以糖脂常常被作为细胞表面标志物质。糖脂又是细胞表面抗原的重要组分,某些正常细胞癌化后,表面糖脂成分有明显变化。细胞表面的糖脂还是许多胞外生理活性物质的受体,参与细胞识别和信息传递过程。 胆固醇:胆固醇的两亲性特点对生物膜中脂质的物理状态有一定的调节作用。在相变温度以上时,胆固醇阻扰脂分子脂酰链的旋转异构化运动,从而降低膜的流动性。在相变温度以下时,胆固醇的存在又会阻止磷脂脂酰链的有序排列,从而降低其相变温度,防止磷脂向凝胶态转化,保持了膜的流动性。 胆固醇还是血中脂蛋白复合体的成分,是类固醇激素和胆汁酸的前体。 3.“超级氨基酸”海选开始了!请选出你最喜爱的三种氨基酸,并分别陈述理由。 答:①甘氨酸:Glycine,是最简单的氨基酸,又名氨基乙酸,人体非必需的一种氨基酸,在分子中同时具有酸性和碱性官能团,在水溶液中为强电解质,在强极性溶剂中溶解度较大,基本不溶于非极性溶剂,而且具有较高的沸点和熔点,通过水溶液酸碱性的调节可以使甘氨酸呈现不同的分子形态。参与嘌呤类、卟啉类、肌酸和乙醛酸的合成,可与多种物质结合由胆汁或从尿中排出。作为营养增补剂广泛应用于医药、食品等领域。根据甘氨酸的制备工艺和产品的纯度可分为食品级、医药级、饲料级和工业级四种规格产品,可见甘氨酸的用途之广泛。 ②半胱氨酸cystein e:是人体常见的必需氨基酸,蛋白质中重要的“二硫键”多半出自它手。半胱氨酸是一种天然产生的氨基酸,在食品加工中具有许多用途,它主要用于焙烤制品,作为面团改良剂的必需成分。半胱氨酸是一种还原剂,它可以促进面筋的形成,减少混合所需的时间和所需药用的能量,半胱氨酸通过改变蛋白质分子之间和蛋白质分子内部的二硫键,减弱了蛋白质的结构,这样蛋白质就伸展开来。我们去美发店的烫发,那些好看的卷发也是半胱氨酸在特殊条件下改变二硫键而形成的! ③苯丙氨酸:Phenylalanine,是人体的必需氨基酸之一。苯丙氨酸系统命名为“2-氨基苯丙酸”,是α-氨基酸的一种,L-苯丙氨酸可作为抗癌药物的载体将药物分子直接导入癌瘤区,其效果是其他氨基酸的3~5倍。这样既可以抑制癌瘤生长,又可以降低药物的毒副作用。

生物化学糖代谢习题 ()

糖代谢习题 一、名词解释 1.糖酵解 2.三羧酸循环 3.糖原分解 4.糖原的合成 5.糖原异生作用 6.发酵 7.糖的有氧氧化 8.糖核苷酸 9.乳酸循环 10.Q酶 二、填空题 1.α淀粉酶和β–淀粉酶只能水解淀粉的_________键,所以不能够使支链 淀粉完全水解。 2.1分子葡萄糖转化为2分子乳酸净生成______________分子ATP 3.糖酵解过程中有3个不可逆的酶促反应,这些酶是 __________、 ____________ 和_____________。 4.糖酵解抑制剂碘乙酸主要作用于___________酶。 5.调节三羧酸循环最主要的酶是____________、、 ______________。 6.2分子乳酸异升为葡萄糖要消耗_________ATP。

7.丙酮酸还原为乳酸,反应中的NADH来自于________的氧化。8.延胡索酸在________________酶作用下,可生成苹果酸,该酶属于EC 分类中的_________酶类。 9 磷酸戊糖途径可分为______阶段,分别称为_________和 _______,其中 两种脱氢酶是_______和_________,它们的辅酶是_______。 10 ________是碳水化合物在植物体内运输的主要方式。 三、选择题 1.在厌氧条件下,下列哪一种化合物会在哺乳动物肌肉组织中积累?() A、丙酮酸 B、乙醇 C、乳酸 D、CO2 2.磷酸戊糖途径的真正意义在于产生( )的同时产生许多中间物 如核糖等。 A、NADPH+H+ B、NAD+ C、ADP D、CoASH 3.磷酸戊糖途径中需要的酶有() A、异柠檬酸脱氢酶 B、6-磷酸果糖激酶 C、6-磷酸葡萄糖脱氢酶 D、转氨酶

最新生物化学复习资料重点试题第十一章代谢调节解读

第十一章代谢调节 一、知识要点 代谢调节是生物在长期进化过程中,为适应外界条件而形成的一种复杂的生理机能。通过调节作用细胞内的各种物质及能量代谢得到协调和统一,使生物体能更好地利用环境条件来完成复杂的生命活动。根据生物的进化程度不同,代谢调节作用可在不同水平上进行:低等的单细胞生物是通过细胞内酶的调节而起作用的;多细胞生物则有更复杂的激素调节和神经调节。因为生物体内的各种代谢反应都是通过酶的催化作用完成的,所以,细胞内酶的调节是最基本的调节方式。酶的调节是从酶的区域化、酶的数量和酶的活性三个方面对代谢进行调节的。 细胞是一个高效而复杂的代谢机器,每时每刻都在进行着物质代谢和能量的转化。细胞内的四大类物质糖类、脂类、蛋白质和核酸,在功能上虽各不相同,但在代谢途径上却有明显的交叉和联系,它们共同构成了生命存在的物质基础。代谢的复杂性要求细胞有数量庞大、功能各异和分工明确的酶系统,它们往往分布在细胞的不同区域。例如参与糖酵解、磷酸戊糖途径和脂肪酸合成的酶主要存在胞浆中;参与三羧酸循环、脂肪酸β-氧化和氧化磷酸化的酶主要存在于线粒体中;与核酸生物合成有关的酶大多在细胞核中;与蛋白质生物合成有关的酶主要在颗粒型内质网膜上。细胞内酶的区域化为酶水平的调节创造了有利条件。 生物体内酶数量的变化可以通过酶合成速度和酶降解速度进行调节。酶合成主要来自转录和翻译过程,因此,可以分别在转录水平、转录后加工与运输和翻译水平上进行调节。在转录水平上,调节基因感受外界刺激所产生的诱导物和辅阻遏物可以调节基因的开闭,这是一种负调控作用。而分解代谢阻遏作用通过调节基因产生的降解物基因活化蛋白(CAP促进转录进行,是一种正调控作用,它们都可以用操纵子模型进行解释。操纵子是在转录水平上控制基因表达的协调单位,由启动子(P、操纵基因(O和在功能上相关的几个结构基因组成;转录后的调节包括,真核生物mRNA 转录后的加工,转录产物的运输和在细胞中的定位等;翻译水平上的调节包括,mRNA 本身核苷酸组成和排列(如SD序列,反义RNA的调节,mRNA 的稳定性等方面。

生物化学 糖代谢小结

糖代谢知识要点 (一)糖酵解途径: 糖酵解途径中,葡萄糖在一系列酶的催化下,经10 步反应降解为2 分子丙酮酸,同时产生2 分子NADH+H+与2 分子ATP。主要步骤为:(1)葡萄糖磷酸化形成二磷酸果糖;(2)二磷酸果糖分解成为磷酸甘油醛与磷酸二羟丙酮,二者可以互变;(3)磷酸甘油醛脱去2H 及磷酸变成丙酮酸, 脱去的2H 被NAD+所接受,形成NADH+H+。 (二)丙酮酸的去路: (1)有氧条件下,丙酮酸进入线粒体氧化脱羧转变为乙酰辅酶A,同时产生1 分子NADH+H+。乙酰辅酶 A 进入三羧酸循环,最后氧化为CO2 与H2O。 (2)在厌氧条件下,可生成乳酸与乙醇。同时NAD+得到再生,使酵解过程持续进行。 (三)三羧酸循环: 在线粒体基质中,丙酮酸氧化脱羧生成的乙酰辅酶A,再与草酰乙酸缩合成柠檬酸,进入三羧酸循环。柠檬酸经脱水加水转变成异柠檬酸,异柠檬酸经连续两次脱羧与脱羧生成琥珀酰CoA;琥珀酰CoA 发生底物水平磷酸化产生1 分子GTP 与琥珀酸;琥珀酸再脱氢,加水及再脱氢作用依次变成延胡索酸,苹果酸及循环开始的草酰乙酸。三羧酸循环每循环一次放出2 分子CO2,产生3 分子NADH+H+,与一分子FADH2。 (四)磷酸戊糖途径: 在胞质中,在磷酸戊糖途径中磷酸葡萄糖经氧化阶段与非氧化阶段被氧化分解为 CO2,同时产生NADPH + H+。其主要过程就是G-6-P 脱氧生成6-磷酸葡萄糖酸,再脱氢,脱羧生成核酮糖-5-磷酸。6 分子核酮糖-5-磷酸经转酮反应与转醛反应生成5 分子6-磷酸葡萄糖。中间产 物甘油醛-3-磷酸,果糖-6-磷酸与糖酵解相衔接;核糖-5-磷酸就是合成核酸的原料,4-磷酸赤藓糖参 与芳香族氨基酸的合成;NADPH+H+提供各种合成代谢所需要的还原力。 (五)糖异生作用: 非糖物质如丙酮酸,草酰乙酸与乳酸等在一系列酶的作用下合成糖的过程,称为糖异生作用。糖异生作用不就是糖酵解的逆反应,因为要克服糖酵解的三个不可逆反应,且反应过程就是在线粒体与细 胞液中进行的。2 分子乳酸经糖异生转变为1 分子葡萄糖需消耗4 分子ATP 与2 分子GTP。 (六)糖原与淀粉的降解与生物合成 糖原磷酸化酶与脱枝酶就是糖元降解过程的主要酶类,糖原磷酸化酶作用于糖原的直链部分,从 糖原的非还原端分解末端葡萄糖残基,生成1- 磷酸葡萄糖与少一个葡萄糖分子的糖原,脱枝酶就是具有双重功能的酶,一种起转移葡萄糖残基作用的酶,称糖基转移酶。另一种就是水解葡萄糖α-1,6-糖苷键作用的酶,称糖原脱枝酶,又称α-1,6-糖苷酶。 淀粉则在α-淀粉酶、β-淀粉酶、葡萄糖淀粉酶、α-1,6-糖苷酶的作用下淀粉切断成分子量较小的糊精、麦芽糖或葡萄糖。 在蔗糖与多糖合成代谢中糖核苷酸起重要作用,糖核苷酸就是单糖与核苷酸通过磷酸酯键结合所形成的化合物。在植物体中主要以UDPG 为葡萄糖供体,由蔗糖磷酸合酶催化蔗糖的合成;淀粉的合成以ADPG 或UDPG 为葡萄糖供体,小分子寡糖引物为葡萄糖受体,淀粉合酶催化直链淀粉合成,Q 酶催化分枝淀粉合成。 糖代谢中有很多变构酶可以调节代谢的速度。酵解途径中的调控酶就是己糖激酶,6-磷酸果糖激酶与丙酮酸激酶,其中6-磷酸果糖激酶就是关键反应的限速酶;三羧酸反应的调控酶就是柠檬酸合酶,柠檬酸脱氢酶与α-酮戊二酸脱氢酶,柠檬酸合酶就是关键的限速酶。糖异生作用的调控酶有丙酮酸羧激酶,二磷酸果糖磷酸酯酶,6-磷酸葡萄糖酶。 磷酸戊糖途径的调控酶就是6-磷酸葡萄糖脱氢酶;它们受可逆共价修饰、变构调控及能荷的调控。二、习题

生物化学下册作业

第八和九章.DNA和RNA的生物合成练习题 一、名词解释 1.DNA半保留半连续复制 2. 前导链、滞后链、岗崎片断 3. 中心法则 4. 复制叉与复制子 5. 限制性核酸内切酶 6.模板链(或反义链即负链)与编码链(或有义链即正链) 7. 转录、逆转录、不对称转录8. 外显子与内含子 9. 单顺反子与多顺反子10. 基因、结构基因、调节基因 11. 操纵子11. 启动子、终止子、转录因子 13. 顺式作用元件与反式作用元件14. 衰减子与增强子 15. RNA加工与RNA剪切16. 光复活 二、问答题 1.试述DNA的半保留半连续的复制过程。(以原核生物为例) 2.试述逆转录病毒的逆转录过程。 3.试述原核生物DNA的转录过程。 4.试述四类RNA病毒的复制过程。 5.简述复制叉上进行的基本活动及参与的酶(以原核生物为例说明)。 6.由RNA聚合酶Ⅱ合成的初始转录物(mRNA前体)需经过哪些加工过程才能成为成熟的mRNA. 第十章.蛋白质的生物合成练习题 一、名词解释 1. 密码子与反密码子 2. 翻译与翻译后加工 3. 多聚核糖体

二、问答题 1.三种RNA在蛋白质生物合成中的作用? 2.以原核生物为例说明蛋白质的生物合成过程? 3.何谓‘‘转译后加工”,蛋白质生物合成的加工修饰方式有哪些?(以真核生物 为例)。 4.保证准确翻译的关键是什么? 5.图示并简述中心法则。 三、计算题 DNA的MW(分子量)=1.3×108(双链)。(注:DNA分子中脱氧核苷酸1. 噬菌体T 4 对的平均分子量是640,核苷酸残基平均分子量为320) 可为多少个AA编码? 1)T 4 2)T DNA可为多少MW=55000的蛋白质编码?(注:多肽链中平均每个AA残 4 基的分子量为110) 2.合成一个九肽需要多少个ATP?如果这个九肽含有起止AA残基(Met)至少需要 多少个ATP? 3. 按下列DNA单链 5’ TCGTCGACGATGATCATCGGCTACTCG 3’ 试写出: 1) DNA复制时另一条单链的序列。 2) 以此链为摸板转录的mRNA的序列。 3) 合成的多肽的序列。 (注:三题答案均须注明方向。) 四、论述题 1.围绕中心法则论述遗传的稳定性(注:DNA、RNA复制)以及基因表达中如何实现遗信息碱基序列到蛋白质AA序列的转变?

生物化学三大代谢重点总结

第八章生物氧化 1.生物氧化:物质在生物体内进行氧化称生物氧化,主要指糖、脂肪、蛋白质等在体内彻底分解时逐步释放能量,最终生成CO2 和 H2O的过程。 2.生物氧化中的主要氧化方式:加氧、脱氢、失电子 3.CO2的生成方式:体内有机酸脱羧 4.呼吸链:代谢物脱下的成对氢原子通过位于线粒体内膜上的多种酶和辅酶所催化的连锁反应逐步传递,最终与氧结合生成水,这一系列酶和辅酶称为呼吸链,又称电子传递链。 NADH →复合物I→ CoQ →复合物III →Cyt c →复合物IV →O 产2.5个ATP (2)琥珀酸氧化呼吸链:3-磷酸甘油穿梭 琥珀酸→复合物II→ CoQ →复合物III → Cyt c →复合物IV →O 产1.5个ATP 含血红素的辅基:血红蛋白、肌红蛋白、细胞色素、过氧化物酶、过氧化氢酶 5.细胞质NADH的氧化:胞液中NADH必须经一定转运机制进入线粒体,再经呼吸链进行氧化磷酸化。 转运机制 (1)3-磷酸甘油穿梭:主要存在于脑和骨骼肌的快肌,产生1.5个ATP (2)苹果酸-天冬氨酸穿梭:主要存在于肝、心和肾细胞;产生2.5个ATP 6.ATP的合成方式: (1)氧化磷酸化:是指在呼吸链电子传递过程中偶联ADP磷酸化,生成ATP,又称为偶联磷酸化。 偶联部位:复合体Ⅰ、III、IV (2)底物磷酸化:是底物分子内部能量重新分布,通过高能基团转移合成ATP。 磷/氧比:氧化磷酸化过程中每消耗1摩尔氧原子(0.5摩尔氧分子)所消耗磷酸的摩尔数或合成ATP的摩尔数。 7.磷酸肌酸作为肌肉中能量的一种贮存形式 第九章糖代谢 一、糖的生理功能:(1)氧化供能 (2)提供合成体内其它物质的原料 (3)作为机体组织细胞的组成成分 吸收速率最快的为-半乳糖 二、血糖

生物化学 复习资料 重点+试题 第五章 糖代谢

第五章糖代谢 一、知识要点 (一)糖酵解途径: 糖酵解途径中,葡萄糖在一系列酶的催化下,经10步反应降解为2分子丙酮酸,同时产生2分子NADH+H+与2分子ATP。 主要步骤为(1)葡萄糖磷酸化形成二磷酸果糖;(2)二磷酸果糖分解成为磷酸甘油醛与磷酸二 羟丙酮,二者可以互变;(3)磷酸甘油醛脱去2H及磷酸变成丙酮酸,脱去的2H被NAD+所接受,形成NADH+H+。 (二)丙酮酸的去路: (1)有氧条件下,丙酮酸进入线粒体氧化脱羧转变为乙酰辅酶A,同时产生1分子NADH+H+。 乙酰辅酶A进入三羧酸循环,最后氧化为CO2与H2O。 (2)在厌氧条件下,可生成乳酸与乙醇。同时NAD+得到再生,使酵解过程持续进行。 (三)三羧酸循环: 在线粒体基质中,丙酮酸氧化脱羧生成的乙酰辅酶A,再与草酰乙酸缩合成柠檬酸,进入三羧酸循环。柠檬酸经脱水加水转变成异柠檬酸,异柠檬酸经连续两次脱羧与脱羧生成琥珀酰CoA; 琥珀酰CoA发生底物水平磷酸化产生1分子GTP与琥珀酸;琥珀酸再脱氢,加水及再脱氢作用依次变成延胡索酸,苹果酸及循环开始的草酰乙酸。三羧酸循环每循环一次放出2分子CO2, 产生3分子NADH+H+,与一分子FADH2。 (四)磷酸戊糖途径: 在胞质中,在磷酸戊糖途径中磷酸葡萄糖经氧化阶段与非氧化阶段被氧化分解为CO2,同时产 生NADPH + H+。 其主要过程就是G-6-P脱氧生成6-磷酸葡萄糖酸,再脱氢,脱羧生成核酮糖-5-磷酸。6分子核酮糖-5-磷酸经转酮反应与转醛反应生成5分子6-磷酸葡萄糖。中间产物甘油醛-3-磷酸,果糖-6-磷酸与糖酵解相衔接;核糖-5-磷酸就是合成核酸的原料,4-磷酸赤藓糖参与芳香族氨基酸的合成;NADPH+H+提供各种合成代谢所需要的还原力。 (五)糖异生作用: 非糖物质如丙酮酸,草酰乙酸与乳酸等在一系列酶的作用下合成糖的过程,称为糖异生作用。 糖异生作用不就是糖酵解的逆反应,因为要克服糖酵解的三个不可逆反应,且反应过程就是在 线粒体与细胞液中进行的。2分子乳酸经糖异生转变为1分子葡萄糖需消耗4分子ATP与2 分子GTP。 (六)蔗糖与淀粉的生物合成 在蔗糖与多糖合成代谢中糖核苷酸起重要作用,糖核苷酸就是单糖与核苷酸通过磷酸酯键结合所形成的化合物。在植物体中主要以UDPG为葡萄糖供体,由蔗糖磷酸合酶催化蔗糖的 合成;淀粉的合成以ADPG或UDPG为葡萄糖供体,小分子寡糖引物为葡萄糖受体,淀粉合酶催化直链淀粉合成,Q酶催化分枝淀粉合成。 糖代谢中有很多变构酶可以调节代谢的速度。酵解途径中的调控酶就是己糖激酶,6-磷酸果糖激酶与丙酮酸激酶,其中6-磷酸果糖激酶就是关键反应的限速酶;三羧酸反应的调控酶就是柠檬酸合酶,柠檬酸脱氢酶与α-酮戊二酸脱氢酶,柠檬酸合酶就是关键的限速酶。糖异生作用的调控酶有丙酮酸羧激酶,二磷酸果糖磷酸酯酶,磷酸葡萄糖磷酸酯酶。磷酸戊糖途径的调控酶 就是6-磷酸葡萄糖脱氢酶;它们受可逆共价修饰、变构调控及能荷的调控。 二、习题 (一)名词解释: 1.糖异生 (glycogenolysis) 2.Q酶 (Q-enzyme) 3.乳酸循环 (lactate cycle) 4.发酵 (fermentation) 5.变构调节 (allosteric regulation)

相关文档
相关文档 最新文档