文档库 最新最全的文档下载
当前位置:文档库 › 循环伏安法判断电极过程

循环伏安法判断电极过程

循环伏安法判断电极过程
循环伏安法判断电极过程

实验二十二循环伏安法判断铁氰化钾的电极反应过程

一、实验目的

1.学会使用电化学工作站进行循环伏安法的测定。

2.掌握循环伏安法的基本原理及其电极动力学过程的规律。

3.了解扫描速率和浓度对循环伏安图的影响。

二、实验原理

1.循环伏安法

循环伏安法是在电极上施加一个线性扫描电压,当到达某设定的终止电位后,再反向回扫至某设定的起始电压。进行正向扫描时若溶液中存在氧化态O,电极上将发生还原反应:

O + ne- R

反向回扫时,电极上的还原态R将发生氧化反应:

R O + ne-

图6 循环伏安法的典型激发信号

三角波电位,转换电位为 V 和- V()

2.测量原理

循环伏安图见图7。

峰电流可表示为:

i p=×105×n3/2v1/2D1/2A c

其中:i p为峰电流(A,安培);n为电子转移数;D为扩散系数(cm2·s-1);v为电压扫描速度(V·s-1);A为电极面积(cm2);c为被测物质浓度(mol·L-1)。

图7 循环伏安图

从循环伏安图可获得氧化峰电流i pa 与还原峰电流i pc ,氧化峰电位E pa 与还原峰电位E p c 。

对于可逆体系,氧化峰电流i pa 与还原峰电流i pc 绝对值的比值

i pa / i pc =1

氧化峰电位E pa 与还原峰电位E pc 电位差:

△E =E pa - E pc = RT nF ≈ 0.056n

(V ) (T = 298 K )

条件电位E o ′

: E o ′=

2pa pc E E + 铁氰化钾离子[Fe(CN)6]3-–亚铁氰化钾离子[Fe(CN)6]4-氧化还原电对的标准电极电位

为:

[Fe(CN)6]3- + e - = [Fe(CN)6]4-

E o = V (vs .SCE )

电极电位与电极表面活度的Nernst 方程式为: E = E o ′+RT nF ln o R c c ?? ???

在一定扫描速率下,从起始电位(- V )正向扫描到转折电位(+ V )期间,溶液中

[Fe(CN)6]4-被氧化生成 [Fe(CN)6]3-

,产生氧化电流;当负向扫描从转折电位(+ V )变到原起始电位(- V )期间,在指示电极表面生成的 [Fe(CN)6]3- 被还原成 [Fe(CN)6]4-,产生还原电流。为了使液相传质过程只受扩散控制,应在加入电解质和溶液处于静止下进行电解。在 mol·L -1 KNO 3溶液中 [Fe(CN)6]3- 的扩散系数为×10-5 cm 2·s -1;电子转移速率大,为可逆体系( mol·L -1 KNO 3溶液中,25 ℃时,标准反应速率常数为×10-2 cm·s -1)。

三、仪器与试剂

1.仪器:天津兰立科电化学工作站。

2.试剂:×10-3mol·L-1 K4Fe(CN)6;mol·L-1 KNO3。

四、实验步骤

1.溶液的配制

亚铁氰化钾(原始溶液的浓度为×10-3mol·L-1);KNO3(原始溶液的浓度为mol·L-1)。分别取、、、、 mL亚铁氰化钾的原始溶液和 mL KNO3原始溶液稀释至10 mL,即得到×10-4、×10-4、×10-4、×10-4、×10-3mol·L-1的 [Fe(CN)6]4-溶液和mol·L-1的KNO3溶液。

2.指示电极的预处理

金圆盘玻碳电极用Al2O3粉末(粒径μm)或牙膏将电极表面抛光,然后用蒸馏水清洗。

3.支持电解质的循环伏安图

在电解池中放入mol·L-1 KNO3溶液,插入电极,以新处理的金圆盘玻碳电极为指示电极,铂丝电极为辅助电极,饱和甘汞电极为参比电极,进行循环伏安仪设定,扫描速率为 V/s;起始电位为- V;终止电位为+ V。开始循环伏安扫描,以检验电极表面的光滑程度,记录循环伏安图(应为一条过原点的直线)。

4.K4 [Fe(CN)6] 溶液的循环伏安图

分别作×10-4、×10-4、×10-4、×10-4、×10-3mol·L-1 的 K4 [Fe(CN)6] 溶液(均含支持电解质KNO3浓度为mol·L-1)循环伏安图。

5.不同扫描速率 K4 [Fe(CN)6] 溶液的循环伏安图

在×10-4 mol·L-1 K4[Fe(CN)6] 溶液中,以、、、、 V/s,在-至+ V电位范围内扫描,分别记录循环伏安图。

五、数据处理

1.从K4 [Fe(CN)6] 溶液的循环伏安图,读出i pa、i pc、E pa、E pc的值。

2.分别以i pa、i pc对K4 [Fe(CN)6] 溶液的浓度作图,说明峰电流与浓度的关系。

3.分别以i pa、i pc对v1/2作图,说明峰电流与扫描速率间的关系。

4.计算i pa/i pc的值,E o′值和ΔE值;说明K3[Fe(CN)6]在KNO3溶液中电极过程的可逆性。

六、思考题

1.解释K4 [Fe(CN)6] 溶液的循环伏安图形状。

2.如何用循环伏安法来判断电极过程的可逆性

3.若E o’值和ΔE值的实验结果与文献值有差异,试说明其原因。

循环伏安法及应用

循环伏安法及应用 摘要:本文主要介绍了电化学研究方法中的循环伏安法实验技术的基本原理及其在电极反应的可逆性、定量分析及电极制备方面的应用。 关键词:电化学;循环伏安法;原理;应用 一、循环伏安法的概念及原理 循环伏安法(CyclicVoltammetry)是一种常用的电化学研究方法。该法 控制电极电势以不同的速率,随时间以三角波形一次或多次反复扫描,电 势范围是使电极上能交替发生不同的还原和氧化反应,并记录电流-电势曲 线。该法除了使用汞电极外,还可以用铂、金、玻璃碳、碳纤维微电极以 及化学修饰电极等。循环伏安法还可以改变电位以得到氧化还原电流方向。 循环伏安法中电压扫描速度可从每秒钟数毫伏到1伏。 若以等腰三角形的脉冲电压加在工作电极上,得到的电流—电压曲线包括两个分支,如果前半部分电位向阴极方向扫描,电活性物质在电极上还原,产生还原波,那么后半部分电位向阳极方向扫描时,还原产物又会重新在电极上氧化,产生氧化波。因此一次三角波形扫描,完成一个还原和氧化过程的循环,故该法称为循环伏安法,其电流—电压曲线称为循环伏安图。

二、循环伏安法的应用 对于一个新的电化学体系,首选的研究方法往往就是循环伏安法,可称之为“电化学的谱图”。可根据循环伏安图中曲线的形状判断电极反应的可逆程度,中间体、相界吸附或新相形成的可能性,以及偶联化学反应的性质等。常用来测量电极反应参数,判断其控制步骤和反应机理,并观察整个电势扫描范围内可发生哪些反应,及其性质如何。 (一)、判断电极反应的可逆性 循环伏安法中电压的扫描过程包括阴极与阳极两个方向,因此可从所得的循环伏安法图的氧化波和还原波的峰高和对称性中来判断电活性物质在电极表面反应的可逆程度。如黄可龙等采用循环伏安法对4LiFePO 在水溶液中的电化学行 为进行了研究,结果表明,4LiFePO 在饱和3LiNO 溶液中具有良好的电化学可逆 性;黄宝美等研究了大豆黄素在玻碳电极的电化学行为,表明大豆黄素的电极过程具有吸附性和不可逆性。 循环伏安法有两个重要的实验参数,一个是峰电流之比,即 pc pa i i ;二是峰电流之差,即pc pa i i -。 (1)可逆 a.1pc pa i i =,且与电位扫描速率、转换电位E λ和扩散系数等无关; b.58p pa pc E E E mV n =-≈ (25℃) (2)部分可逆 58p pa pc E E E mV n =->(25℃) (3)完全不可逆,无逆向反应

循环伏安法定义+原理+参数设置

一、循环伏安法(Cyclic Voltammetry) 一种常用的电化学研究方法。该法控制电极电势以不同的速率,随时间以三角波形一次 或多次反复扫描,电势范围是使电极上能交替发生不同的还原和氧化反应,并记录电流-电势 曲线。根据曲线形状可以判断电极反应的可逆程度,中间体、相界吸附或新相形成的可能性,以及偶联化学反应的性质等。常用来测量电极反应参数,判断其控制步骤和反应机理,并观 察整个电势扫描范围内可发生哪些反应,及其性质如何。对于一个新的电化学体系,首选的 研究方法往往就是循环伏安法,可称之为“电化学的谱图”。本法除了使用汞电极外,还可以 用铂、金、玻璃碳、碳纤维微电极以及化学修饰电极等。 1.基本原理 如以等腰三角形的脉冲电压加在工作电极上,得到的电流电压曲线包括两个分支,如果 前半部分电位向阴极方向扫描,电活性物质在电极上还原,产生还原波,那么后半部分电位 向阳极方向扫描时,还原产物又会重新在电极上氧化,产生氧化波。因此一次三角波扫描, 完成一个还原和氧化过程的循环,故该法称为循环伏安法,其电流—电压曲线称为循环伏安图。如果电活性物质可逆性差,则氧化波与还原波的高度就不同,对称性也较差。循环伏安 法中电压扫描速度可从每秒种数毫伏到1伏。工作电极可用悬汞电极,或铂、玻碳、石墨等 固体电极。 2.循环伏安法的应用 循环伏安法是一种很有用的电化学研究方法,可用于电极反应的性质、机理和电极过程 动力学参数的研究。但该法很少用于定量分析。 (1)电极可逆性的判断循环伏安法中电压的扫描过程包括阴极与阳极两个方向,因此从 所得的循环伏安法图的氧化波和还原波的峰高和对称性中可判断电活性物质在电极表面反应 的可逆程度。若反应是可逆的,则曲线上下对称,若反应不可逆,则曲线上下不对称。 (2)电极反应机理的判断循环伏安法还可研究电极吸附现象、电化学反应产物、电化学—化学耦联反应等,对于有机物、金属有机化合物及生物物质的氧化还原机理研究很有用。 3、循环伏安法的用途 (1)、判断电极表面微观反应过程 (2)、判断电极反应的可逆性 (3)、作为无机制备反应“摸条件”的手段 (4)、为有机合成“摸条件” (5)、前置化学反应(CE)的循环伏安特征

循环伏安法判断电极过程

实验七 循环伏安法判断电极过程 一、实验目的 1.初步掌握电化学工作站的使用方法; 2.掌握循环伏安法判断电极过程可逆性的原理和方法。 二、实验原理 循环伏安法(Cyclic Voltammetry)一种常用的电化学研究方法。在电化学、无机化学、有机化学、生物化学的研究领域广泛应用。 CV 法是将循环变化的电压施加于工作电极和参比电极,记录工作电极上得到的电流与施加电压的关系曲线,也叫循环伏安图。根据循环伏安图,可以得到相应的峰参数,进而判断电极过程。图11-9是施加电压与扫描时间的关系曲线,即是三角形波。 图11-10是典型的循环伏安曲线。该图是 2×10-3 mol/L K 3Fe(CN)6 + 0.1 mol/L KCl 溶液在玻碳电极上得到的结果。其电极反应为 可逆性。 (1) 可逆反应 (2) 准可逆反应 (3) 只有一个氧化或还原峰,电极过程为不可逆。 利用下列公式可以计算可逆反应的式电位和还原峰电流 ----→-→+36 46 4636Fe(CN) Fe(CN) Fe(CN)Fe(CN)e e n Epc Epa E Ipc Ipa 058.0,1=-=?≈,1≠Ipc Ipa n Epc Epa E 058 .0≥ -=?2'0Pc Pa E E E +=c AD n i P 2 /12/12/351069.2υ?=

三、仪器与试剂 1. CHI660A型电化学工作站(美国CHI公司); 三电极体系:工作电极为玻碳电极(d =3㎜) 参比电极为饱和甘汞电极(SCE) 辅助电极为铂丝电极; 2. 超声波清洗器(KQ218型,昆山市超声仪器有限公司)。 3. 2×10-3 mol/L K3Fe(CN)6 + 0.1 mol/L KCl 四、实验步骤 1. 工作电极预处理 2. 装溶液 3. 连接三电极 4. 选择参数(E i=0.5V, E n=-0.20V,S=1e-5A/V ),作扫描速率为0.05、0.1、0.2、0.3、 0.5V/s的循环伏安曲线。 五、结果处理 1、列表总结铁氰化钾的测量结果。 2、判断电极反应的可逆性。 3、作i pc对v1/2的关系曲线,由此判断电极反应是受扩散控制的。

电化学——循环伏安法应用

毕业设计(论文) 课题电化学分析——循环伏安法测电极性质 学院河南工业职业技术学院

专业应用化工技术 班级化工1202 姓名*** 学号********* 指导老师*** 日期****.**.** 目录 引言 电化学分析法概要 原电池与电解池 能斯特方程 电极的类型 标准电极电位与条件电极电位 循环伏安法简介

实验——循环伏安法测铁氰化钾的电极过程 循环伏安法在其他方面的应用 参考文献 附录——CHI600E电化学分析站的用户手册 引言 循环伏安法(CyclicVoltammetry)是一种常用的电化学分析方法。常用来测量电极反应参数,判断其控制步骤和反应机理,并观察整个电势扫描范围内可发生哪些反应,及其性质如何。通常利用CHI工作站进行循环伏安法测定电极反应参数。 关键词:电化学、循环伏安法、CHI工作站、电极 电分析化学法概要

一、什么是电化学分析? 定义: 应用电化学的基本原理和实验技术,利用物质的电学或电化学性质来进行分析的方法称之为电化学分析法。通常是使待分析的试样溶液构成一个化学电池(原电池或电解池),通过测量所组成电池的某些物理量(与待测物质有定量关系)来确定物质的量(See Fig.)。 二、电化学分析法的分类 利用物质的电学及电化学性质来进行分析的方法称为电分析化学法: 第一类电分析化学法是通过试液的浓度在某一特定实验条件下与化学电池中某些物理量的关系来进行分析的。 属于这类分析方法的有:电位分析法(电位),电导分析(电阻),库仑分析法(电量),伏安分析法(i—E关系曲线)等。 第二类电分析化学法是以电物理量的突变作为滴定分析中终点的指示,所以又称为电容量分析法。属于这类分析方法的有:电位滴定,电导滴定,电流滴定等。 第三类电分析化学法是将试液中某一个待测组分通过电极反应转化为固相,然后由工作电极上析出物的质量来确定该组分的量。称为电重量分析法(电子做“沉淀剂”),即电解分析法。 按照国际纯粹与应用化学协会(IUPAC)的推荐,电化学分析

循环伏安法知识小结

利用循环伏安确定反应就是否为可逆反应 1、氧化峰电流与还原峰电流绝对值相等,即二者绝对值比值始终为一,与扫描速率,换向电势,扩散系数无关。 2。氧化峰与还原峰电位差约为59mV 利用循环伏安确定反应就是否为可逆反应 1。氧化峰电流与还原峰电流之比得绝对值等于1?2.氧化峰与还原峰电位差约为(59/n)mV (25摄氏度时) 一般这两个条件即可 判断扩散反应或者就是吸附反应: 改变扫描速率,瞧峰电流就是与扫描速率还就是它得二次方根成正比,若就是与扫描速率成线性,就就是表面控制过程,与二次方根成线性,就就是扩散控制 利用循环伏安确定反应就是否可逆 1:氧化峰与还原峰得电流比就是否相等,若相等则可逆、?有时对同一体系,扫描速率不同也会在一定程度上影响其可逆性得一般而言,扫速越大其电化学反应电流也就越大。?2:氧化峰与还原峰电位差等于59/nmV,若大于,则就是准可逆体系、 这种确定onset potential得方法得依据就是什么呢?我瞧有得文献上直接就是作一条切线,但这样误差也很大,很主观随意。 以前我们老师上电极过程动力学得时候说准确得onset potential其实就是很难被确定得。只能估计大致得范围、求法可以说有好几种,据我所知就有两种,一种就是楼上说得切线法,一种就是我说

得10%或20%法哪种方法不重要,重要得只在自己得样品之间比。另外,我不知道您得样品就是什么,就我所熟知得电催化剂而言,其实评价它得好坏,起始电位固然重要,但更瞧重它得峰形以及质量单位电流密度、 、切线法就是有这个问题,所以用峰高得10%来定,人为因素要小一些啦。其实说来说去又变成了起始电位测不准啦! 循环伏安法中对电流正负得认为规定 很多书上都把还原反应电流规定为正,一般不说正电流或负电流,而说阳极电流或阴极电流。阳极反应得电流就是阳极电流,对应得峰为氧化峰,阴极反应得电流就是阴极电流,对应得峰为还原峰。 电流得正负就是人为规定得,习惯上还原峰电流规定为正,氧化峰电流为负,但就是也有相反得情况,不能按照电流得正负来区分氧化峰或还原峰,从电位上可以判断,通常氧化峰位于还原峰较正得位置上,也就说,峰电位较正得峰就是氧化峰,峰电位较负得峰就是还原峰,这就是极化造成得结果。 瞧扫描方向,由正向负方向扫出得峰就就是还原峰,由负往正方向扫就就是氧化峰,也就就是对应得负扫与正扫,我们用得就是上海辰华得工作站,也就是颠倒得,一般我们把数据导出再用ORIGIN75处理数据,把图形倒过来。习惯上,将流入电极表面得电流,定义为负,流出电极表面得电流定义为正,前者为阴极,还原,后者为氧化。 仪器得cv图,可以根据扫描电位得方向,向负电位方向扫,肯定就是先出现得还原电流峰,所以哪个先出来,就就是还原峰,不用拘泥于坐

循环伏安法原理及结果分析

循环伏安法原理及结果 分析 Revised as of 23 November 2020

循环伏安法原理及应用小结 1 电化学原理 电解池 电解池是将电能转化为化学能的一个装置,由外加电源,电解质溶液,阴阳电极构成。 阴极:与电源负极相连的电极(得电子,发生还原反应) 阳极:与电源正极相连的电极(失电子,发生氧化反应) 电解池中,电流由阳极流向阴极。 循环伏安法 1)若电极反应为O+e-→R,反应前溶液中只含有反应粒子O,且O、R在溶液均可溶,控制扫描起始电势从比体系标准平衡电势(φ平)正得多的起始电势(φi)处开始势作正向电扫描,电流响应曲线则如图0所示。 图0 CV扫描电流响应曲线 2)当电极电势逐渐负移到(φ平)附近时,O开始在电极上还原,并有法拉第电流通过。由于电势越来越负,电极表面反应物O的浓度逐渐下降,因此向电极表面的流量和电流就增加。当O的表面浓度下降到近于零,电流也增加到最大值Ipc,然后电流逐渐下降。当电势达到(φr)后,又改为反向扫描。 3)随着电极电势逐渐变正,电极附近可氧化的R粒子的浓度较大,在电势接近并通过(φ平)时,表面上的电化学平衡应当向着越来越有利于生成R的方向发展。于是R开始被氧化,并且电流增大到峰值氧化电流Ipa,随后又由于R的显着消耗而引起电流衰降。整个曲线称为“循环伏安曲线”

经典三电极体系 经典三电极体系由工作电极(WE)、对电极(CE)、参比电极(RE)组成。在电化学测试过程中,始终以工作电极为研究电极。 其电路原理如图1,附CV图(图2):扫描范围,扫描速度50mV/S,起始电位0V。 图1 原理图图2 CBZ的循环伏安扫描图图2所示CV扫描结果为研究电极上产生的电流随电位变化情况图。 1)横坐标Potential applied(电位)为图1中电压表所测,即 Potential applied=P(WE)-P(RE) 所有的电位数值都是相对于氢离子的电位值,规定在标准情况下,氢离子的电位为0。当恒电位仪向工作电极提供负的电位时,其电源连接情况如图1所示,即工作电极与电源的负极相连,作为阴极工作发生还原反应;反之则作为阳极发生氧化反应。 图3 恒电位仪电路图 图3所示为恒电位仪电路图,我没看明白,请翟老师帮我看看。 2)纵坐标所示电流为工作电极上通过的电流,电流为正(流出电极表面)则有电子流入电极CBZ失电子发生氧化反应;电流为负则电子流出电极,CBZ得电子发生还原反应。 2 电化学工作站操作 工作电极在测试之前应先用较大扫速扫描以活化电极,否则可能出现扫描曲线持续波动的现象; 3 数据挖掘

循环伏安法细则

利用循环伏安确定反应是否为可逆反应 1.氧化峰电流与还原峰电流绝对值相等,即二者绝对值比值始终为一,与扫描速率,换向电势,扩散系数无关。 2.氧化峰与还原峰电位差约为59mV 利用循环伏安确定反应是否为可逆反应 1.氧化峰电流与还原峰电流之比的绝对值等于1 2.氧化峰与还原峰电位差约为(59/n)mV (25摄氏度时) 一般这两个条件即可 判断扩散反应或者是吸附反应: 改变扫描速率,看峰电流是与扫描速率还是它的二次方根成正比~~ 若是与扫描速率成线性,就是表面控制过程~ 与二次方根成线性,就是扩散控制~~ 偶认为,,, 给6楼纠正下,是59/n,n为电子转移量(亚铁-铁,n=1)温度一般是293K下确定,但是一般我们实验时候不是在这个温度下,因此用这个算是有误差的,一般保证其值在100mv以下都算合理的误差,随着扫描速度的变大,这个值 ... 循环伏安测试的基本电位条件设定是根据你的研究电机与参比电极决定 利用循环伏安确定反应是否可逆 1:氧化峰和还原峰的电流比是否相等,若相等则可逆。 有时对同一体系,扫描速率不同也会在一定程度上影响其可逆性的

一般而言,扫速越大其电化学反应电流也就越大。 2:氧化峰和还原峰电位差等于59/nmV,若大于,则是准可逆体系。 这种确定onset potential的方法的依据是什么呢?我看有的文献上直接是作一条切线,但这样误差也很大,很主观随意。不知道Electrochimica Acta 53 (2007) 811–822这篇文献中的这种求onset potential的方法的依据是什么。 Quote: Originally posted by crossin at 2009-4-28 17:29: The onset is defined as the potential at which 10% or 20% of the current value at the peak potential was reached. (Electrochimica Acta 53 (2007) 811–822) 不是“依据(accord)”,而是“定义(define)” 以前我们老师上电极过程动力学的时候说准确的onset potential其实是很难被确定的。 只能估计大致的范围。 求法可以说有好几种,据我所知就有两种,一种是楼上说的切线法,一种是我说的10%或20%法 哪种方法不重要,重要的只在自己的样品之间比。

电化学工作站循环伏安法使用说明

电化学工作站循环伏安法使用说明 连接电极:绿夹夹工作电极(W),黄夹夹参比电极(R),红夹夹辅助电极(A)。 1.打开电脑-----打开工作站开关------双击工作站图标运行工作站程序。 点击界面工具栏 “选择电化学方法”按钮。 2.选择线性扫描循环伏安法,点击确定。 3. 点击界面工具栏, “参数设定按钮” 3.1:测试电池等能量实验 的可以在开路电位前面的 方块内点击打钩。 3.2:静止电位:对含有电 容电压的器件,电流瞬间 有变化的工作电极可给以 10秒左右的静置点位,静 置电位和起始电位相符。 一般只用第一折返做终止 电位。做电池、电容器用 到第二折返。 上面是设定的铁氰化钾在玻碳电极下的循环伏安参数 设置完成后点击“确定”。

4.点击界面工具栏“运行按钮” 下面是铁氰化钾在玻碳电极下的循环伏安扫描图 抛光好的工作电极在铁氰化钾中的峰电位差应小于80mV,电流比约等于1. 5.测量: 5.1点击界面工具栏测量按钮

5.2:如果是多圈,点击当前圈的(+)(-)调看多圈的其中某圈。 5.3:点击只显当前圈,可以屏蔽其他多圈的显示。 5.4:点击自动测量,左侧出现各个峰的电位、电流和面积。

5.5:点击自动测量可以显示各个峰的点位和电流,点击1、2、3、4、。。。。可测量各个峰的 测量值。 5.6:峰型不好的也可以采用手动测量。 5.7:只要保存原图,删除没有显示的图就可以保存每一圈的图,只是要把保存的名称改动 一下,比如后面加上1或者2等就可以了。 5.8:如果做得图是差失脉冲伏安法或者是方波伏安法,点击半峰法旁边的小三角,选中高 斯法就可以手动测量了。

循环伏安法原理及结果分析

循环伏安法原理及应用小结 1 电化学原理 1.1 电解池 电解池是将电能转化为化学能的一个装置,由外加电源,电解质溶液,阴阳电极构成。 阴极:与电源负极相连的电极(得电子,发生还原反应) 阳极:与电源正极相连的电极(失电子,发生氧化反应) 电解池中,电流由阳极流向阴极。 1.2 循环伏安法 1)若电极反应为O+e-→R,反应前溶液中只含有反应粒子O,且O、R在溶液均可溶,控制扫描起始电势从比体系标准平衡电势(φ平)正得多的起始电势(φi)处开始势作正向电扫描,电流响应曲线则如图0所示。 图0 CV扫描电流响应曲线 2)当电极电势逐渐负移到(φ平)附近时,O开始在电极上还原,并有法拉第电流通过。由于电势越来越负,电极表面反应物O的浓度逐渐下降,因此向电极表面的流量和电流就增加。当O的表面浓度下降到近于零,电流也增加到最大值Ipc,然后电流逐渐下降。当电势达到(φr)后,又改为反向扫描。 3)随着电极电势逐渐变正,电极附近可氧化的R粒子的浓度较大,在电势接近并通过(φ平)时,表面上的电化学平衡应当向着越来越有利于生成R的方向发展。于是R开始被氧化,并且电流增大到峰值氧化电流Ipa,随后又由于R的显著消耗而引起电流衰降。整个曲线称为“循环伏安曲线” 1.3 经典三电极体系 经典三电极体系由工作电极(WE)、对电极(CE)、参比电极(RE)组成。在电化学测试过程中,始终以工作电极为研究电极。 其电路原理如图1,附CV图(图2):扫描范围-0.25-1V,扫描速度50mV/S,起始电位0V。

图1 原理图图2 CBZ的循环伏安扫描图 图2所示CV扫描结果为研究电极上产生的电流随电位变化情况图。 1)横坐标Potential applied(电位)为图1中电压表所测,即 Potential applied=P(WE)-P(RE) 所有的电位数值都是相对于氢离子的电位值,规定在标准情况下,氢离子的电位为0。当恒电位仪向工作电极提供负的电位时,其电源连接情况如图1所示,即工作电极与电源的负极相连,作为阴极工作发生还原反应;反之则作为阳极发生氧化反应。 图3 恒电位仪电路图 图3所示为恒电位仪电路图,我没看明白,请翟老师帮我看看。 2)纵坐标所示电流为工作电极上通过的电流,电流为正(流出电极表面)则有电子流入电极CBZ失电子发生氧化反应;电流为负则电子流出电极,CBZ得电子发生还原反应。 2 电化学工作站操作 工作电极在测试之前应先用较大扫速扫描以活化电极,否则可能出现扫描曲

循环伏安法及应用

循环伏安法及应用

电池反应实际上是一个氧化还原 反应。反应粒子在电极表面上进 行的氧化(失去电子)反应叫阳 极反应;相应的还原(获得电子) 反应叫阴极反应。 电极电位可表示氧化还原反应的 难易程度。 由左图可知,电极反应速度一般 由以下几个因素来控制: (1)物质传递; (2)吸附与脱附过程; (3)电子传递过程 电极表面电化学反应示意图

电荷移动速度k和物质传输速度m对电流电位曲线的影响 反应慢,具有足够的传输能力 为了使反应加速必须加电压 反应快,受到传输能力限制 为了增加传输能力必须增加反应物浓 度或进行搅拌

循环伏安法 三角波电位进行扫描,所获得的电流响应与电位信号的关系,称为循环伏安扫描曲线。 开始扫描,工作电极电位电位不断变负,物质在负极还原;反向扫描时,物质在电极发生氧化反应。因此,在一个三角波扫描中可完成个还原氧化过程的循环。 原理:在电极上施加一个线性扫 描电压,以恒定的变化速度扫描, 当达到某设定的终止电位时,再 反向回归至某一设定的起始电位, 循环伏安法电位与时间的关系 (见图)

循环伏安法 若电极反应为O+e→R,反应前溶液 中只含有反应粒子O、且O、R在溶 液均可溶,控制扫描起始电势从比 体系标准平衡电势正得多的起始电 势φ 处开始势作正向电扫描,电流响 i 应曲线则如右图所示。 当电极电势逐渐负移到φ0 附近时,O开始在电极上还原,并有法拉第电流通过。 平 由于电势越来越负,电极表面反应物O的浓度逐渐下降,因此向电极表面的流量和电 ,然后电流逐渐下流就增加。当O的表面浓度下降到近于零,电流也增加到最大值I pc 降。当电势达到φ 后,又改为反向扫描。 r 随着电极电势逐渐变正,电极附近可氧化的R粒子的浓度较大,在电势接近并通 时,表面上的电化学平衡应当向着越来越有利于生成O的方向发展。于是R开过φ0 平 ,随后又由于R的显著消耗而引起电流衰始被氧化,并且电流增大到峰值氧化电流I pa 降。整个曲线称为“循环伏安曲线”。

羧基化多壁碳纳米管修饰电极循环伏安法测定过氧化氢

羧基化多壁碳纳米管修饰电极循环伏安法测 定过氧化氢 【摘要】目的:研究用羧基化多壁碳纳米管修饰电极伏安法测定过氧化氢的浓度。方法:采用涂布法制成羧基化多壁碳纳米管修饰电极;在pH=7.0 KH2PO4-Na2HPO4缓冲溶液中,采用该修饰电极伏安法测定H2O2。结果:该修饰电极对H2O2有着显著的电催化作用,与裸玻碳电极相比,其灵敏度大大提高,在 1.2×10-6~1.0×10-3 mol/L 浓度范围内,过氧化氢的氧化峰电流与其浓度呈良好的线性关系,检测限为3.1×10-7 mol/L,将该修饰电极用于医用过氧化氢的测定,相对平均偏差为1.2%,平均回收率为97.6%,结果满意。结论:该修饰电极响应快,灵敏度高,稳定性好,寿命长,适合于具有电活性生物分子的测定。 【关键词】碳纳米管学修饰电极伏安法过氧化氢 Abstract: Objective: To study a quantitative method for determination of hydrogen peroxide (H2O2) by voltammetry with multi-wall carbon nanotubes functionalized with carboxylic group modified electrode (CME). Method: The CME was fabricated, which based on the immobilization of multi-wall carbon nanotubes functionalized with carboxylic group. In a medium of KH2PO4-Na2HPO4 buffer solution with pH=7.0,the CME was

循环伏安法实验报告(有测定电极有效面积)

循环伏安法实验 【实验目的】 学习和掌握循环伏安法的原理和实验技术。 了解可逆波的循环伏安图的特性以及测算玻碳电极的有效面积的方法。 【实验原理】 循环伏安法是在固定面积的工作电极和参比电极之间加上对称的三角波扫 描电压(如图1),记录工作电极上得到的电流与施加电位的关系曲线(如图2),即循环伏安图。从伏安图的波形、氧化还原峰电流的数值及其比值、峰电位等可以判断电极反应机理。 与汞电极相比,物质在固体电极上伏安行为的重现性差,其原因与固体电极的表面状态直接有关,因而了解固体电极表面处理的方法和衡量电极表面被净化的程度,以及测算电极有效表面积的方法,是十分重要的。一般对这类问题要根据固体电极材料不同而采取适当的方法。 对于碳电极,一般以Fe(CN) 63-/4- 的氧化还原行为作电化学探针。首先,固体 电极表面的第一步处理是进行机械研磨、抛光至镜面程度。通常用于抛光电极的 材料有金钢砂、CeO 2、ZrO 2 、MgO和α-Al 2 O 3 粉及其抛光液。抛光时总是按抛 光剂粒度降低的顺序依次进行研磨,如对新的电极表面先经金钢砂纸粗研和细磨 后,再用一定粒度的α-Al 2O 3 粉在抛光布上进行抛光。抛光后先洗去表面污物, 再移入超声水浴中清洗,每次2~3分钟,重复三次,直至清洗干净。最后用乙 醇、稀酸和水彻底洗涤,得到一个平滑光洁的、新鲜的电极表面。将处理好的碳 图2:循环伏安曲线(i—E曲线)

电极放入含一定浓度的K 3Fe(CN)6和支持电解质的水溶液中,观察其伏安曲线。如得到如图2所示的曲线,其阴、阳极峰对称,两峰的电流值相等(i pc / i pa =1),峰峰电位差ΔE p 约为70 mV (理论值约59/n mV ),即说明电极表面已处理好,否则需重新抛光,直到达到要求。 有关电极有效表面积的计算,可根据Randles-Sevcik 公式: 在25°C 时,i p =(2.69×105 )n 3/2 AD o 1/2ν1/2 C o 其中A 为电极的有效面积(cm 2 ),D o 为反应物的扩散系数(cm 2 /s),n 为电极反应的电子转移数,ν为扫速(V/s ),C o 为反应物的浓度(mol/cm 3 ),i p 为峰电流(A )。 【仪器和试剂】 1. CHI 660D 电化学系统,玻碳电极(d = 4mm ) 为工作电极,银/氯化银电极为参比电极,铂片电极为辅助电极; 2. 固体铁氰化钾、H 2SO 4 溶液、高纯水; 3. 100 mL 容量瓶、50 mL 烧杯、玻棒。 【实验内容】 1. 配制5 mM K 3Fe(CN)6 溶液(含0.5 M H 2SO 4),倒适量溶液至电解杯中; 2. 将玻碳电极在麂皮上用抛光粉抛光后,再用蒸馏水清洗干净; 3. 依次接上工作电极(绿)、参比电极(白)和辅助电极(红); 4. 开启电化学系统及计算机电源开关,启动电化学程序,在菜单中依次选择Setup 、Technique 、CV 、Parameter ,输入以下参数: 5. 点击Run 开始扫描,将实验图存盘后,记录氧化还原峰电位E pc 、E pa 及峰电流I pc 、I pa ; 6. 改变扫速为0.05、0.1 和0.2 V/s ,分别作循环伏安图; 7. 将4个循环伏安图叠加比较; Init E (V) 0.8 V Segment 2 High E (V) 0.8 V Smpl Interval (V) 0.001 Low E (V) ?0.2 V Quiet Time (s) 2 Scan Rate (V/s) 0.02 V Sensitivity (A/V) 5e?5

实验十 循环伏安法分析

实验十循环伏安法分析 一、实验目的 1.仔细阅读理解本讲义和相关资料,掌握循环伏安法的基本原理。 2.熟练使用循环伏安法分析的实验技术。 二、实验原理 循环伏安法(Cyclic Voltammetry, 简称CV)往往是首选的电化学分析测试技术,非常重要,已被广泛地应用于化学、生命科学、能源科学、材料科学和环境科学等领域中相关体系的测试表征。 现代电化学仪器均使用计算机控制仪器和处理数据。CV测试比较简便,所获信息量大。采用三电极系统的常规CV实验中,工作电极(The Working Electrode, 简称WE)相对于参比电极(the Reference Electrode,简称RE)的电位在设定的电位区间内随时间进行循环的线

表1. 图1的实验条件和一些重要解释

零,所以RE的电位在CV实验中几乎不变,因此RE是实验中WE电位测控过程中的稳定参比。若忽略流过RE上的微弱电流,则实验体系的电解电流全部流过由WE和对电极(The Counter Electrode,简称CE)组成的串联回路。WE和CE间的电位差可能很大,以保证能成功地施加上所设定的WE电位(相对于RE)。CE也常称为辅助电极(The Auxiliary Electrode, 简称AE)。 分析CV实验所得到的电流-电位曲线(伏安曲线)可以获得溶液中或固定在电极表面的组分的氧化和还原信息,电极|溶液界面上电子转移(电极反应)的热力学和动力学信息,和电极反应所伴随的溶液中或电极表面组分的化学反应的热力学和动力学信息。与只进行电位单向扫描(电位正扫或负扫)的线性扫描伏安法(Linear Scan Voltammetry,简称LSV)相比,循环伏安法是一种控制电位的电位反向扫描技术,所以,只需要做1个循环伏安实验,就可既对溶液中或电极表面组分电对的氧化反应进行测试和研究,又可测试和研究其还原反应。 循环伏安法也可以进行多达100圈以上的反复多圈电位扫描。多圈电位扫描的循环伏安实验常可用于电化学合成导电高分子。 图1为3 mmol L-1 K4Fe(CN)6 + 0.5 mol L-1 Na2SO4水溶液中金电极上的CV实验结果。实验条件和一些重要的解释列于表1中。 三、仪器和试剂 仪器:CHI400电化学工作站 磁力搅拌器 铂片工作电极 铅笔芯对电极 KCl饱和甘汞电极 试剂:K3Fe(CN)6(分析纯或优级纯) KNO3(分析纯或优级纯) 溶液及其浓度:1.0 mol L-1 KNO3水溶液。实验中每组学员使用30.0 mL。 0.100 mol L-1 K3Fe(CN)6水溶液储备液。实验中每组学员使用100 L微量注射 器依次注射适量体积的0.100 mol L-1 K3Fe(CN)6水溶液到30 mL的1.0 mol L-1 KNO3水溶液中,详见如下4.3.节。

循环伏安法

循环伏安法(Cyclic Voltammetry) 一种常用的电化学研究方法。该法控制电极电势以不同的速率,随时间以三角波形一次或多次反复扫描,电势范围是使电极上能交替发生不同的还原和氧化反应,并记录电流-电势曲线。根据曲线形状可以判断电极反应的可逆程度,中间体、相界吸附或新相形成的可能性,以及偶联化学反应的性质等。常用来测量电极反应参数,判断其控制步骤和反应机理,并观察整个电势扫描范围内可发生哪些反应,及其性质如何。 对于一个新的电化学体系,首选的研究方法往往就是循环伏安法,可称之为“电化学的谱图”。本法除了使用汞电极外,还可以用铂、金、玻璃碳、碳纤维微电极以及化学修饰电极等。 1.基本原理 如以等腰三角形的脉冲电压加在工作电极上,得到的电流电压曲线包括两个分支,如果前半部分电位向阴极方向扫描,电活性物质在电极上还原,产生还原波,那么后半部分电位向阳极方向扫描时,还原产物又会重新在电极上氧化,产生氧化波。因此一次三角波扫描,完成一个还原和氧化过程的循环,故该法称为循环伏安法,其电流—电压曲线称为循环伏安图。如果电活性物质可逆性差,则氧化波与还原波的高度就不同,对称性也较差。循环伏安法中电压扫描速度可从每秒种数毫伏到1伏。工作电极可用悬汞电极,或铂、玻碳、石墨等固体电极。 理想状态下得到的,当电极反应中存在其他影响因素时,得到的循环伏安图会有较大变化。此外当在溶液中有其他电活性物质时,在扫描电压作用下也会有其他的氧化还原反应发生,这时得到的循环伏安图形也会有很大不同。从这些不同中可以得到很多相关信息。 2.循环伏安法的应用 循环伏安法是一种很有用的电化学研究方法,可用于电极反应的性质、机理和电极过程动力学参数的研究。但该法很少用于定量分析。 (1)电极可逆性的判断循环伏安法中电压的扫描过程包括阴极与阳极两个方向,因此从所得的循环伏安法图的氧化波和还原波的峰高和对称性中可判断电活性物质在电极表面反应的可逆程度。若反应是可逆的,则曲线上下对称,若反应不可逆,则曲线上下不对称。 (1) 判断电极过程的可逆性 利用式(5.55)、(5.56)、(5.57)和(5.58),可以判断电极过程的可逆性。对于不可逆电极过程,以上四个关系不适用,两峰电位差比式(5.57)预期的大,反扫时阳极峰电流减小甚至消失。 用循环伏安法研究吸附现象可以得到清晰的结果。对于可逆电极反应,若反应物或产物在电极表面仅有弱吸附,循环伏安图形的变化不大,如图5-29中的(a)、(b)只是电流略有增加。若吸附作用强烈,反应物吸附在电极上将使自由能变得很负,则在主峰后产生一个小的吸附后峰,如图5-29(c);若反应产物强吸附,则在主峰前出现一

循环伏安法在测定电极反应性质方面的应用

循环伏安法在测定电极反应性质方面的应用 聂凯斌 (环境与化学工程学院应用化学ys1310202011) 摘要:本文主要利用电化学工作站进行循环伏安法(Cyclic Voltammetry)在测定电极反应性质方面的应用的研究,循环伏安法是一种常用的电化学研究方法,该法控制电极电势以不同的速率,随时间以三角波形一次或多次反复扫描,电势范围是使电极上能交替发生不同的还原和氧化反应,并记录电流-电势曲线。本文主要介绍循环伏安法的基本原理,以及通过循环伏安法,对电极反应进行电化学分析,根据曲线形状可以判断电极反应的可逆程度,中间体、相界吸附或新相形成的可能性,以及偶联化学反应的性质等。常用来测量电极反应参数,判断其控制步骤和反应机理,并观察整个电势扫描范围内可发生哪些反应,及其性质如何。对于一个新的电化学体系,首选的研究方法往往就是循环伏安法,可称之为“电化学的谱图”。本法除了使用汞电极外,还可以用铂、金、玻璃碳、碳纤维微电极以及化学修饰电极等。 关键词:循环伏安法,电极,可逆

1 循环伏安法的基本原理及研究进展 如以竿腰三角形的脉冲电压(如图1)加在工作电极上,得到的电流- 电压曲线包括两个分支,如果前半部分电位向阴极方向扫描,电活性物质在电极上还原,产生还原波,那么后半部分电位向阳极方向扫描时,还原产物又会重新在电极上氧化,产生氧化被。因此一次三角波扫描,完成一个还原和氧化过程的循环,故该法称为循环伏安法,其电流一电压曲线称为循环伏安图(如图2)。 图1 三角波电压图2循环伏安极化曲线循环伏安法(Cyclic V oltammetry)一种常用的电化学研究方法。该法控制电极电势以不同的速率,随时间以三角波形可以判断电极反应的可逆程度,中间体、相界吸附或新相形成的可能性,以及偶联化学反应的性质等。常用来测量电极反应参数,判断其控制步骤和反应机理,并观察整个电势扫描范围内可发生哪些反应,及其性质如何。对于一个新的电化学体系,首选的研究方法往往就是循环伏安法,可称之为“电化学的谱图”。实验中使用的工作电极除了使用汞电极外,还可以用铂电极、金电极、玻璃电极、悬汞、汞膜电极、碳纤维微电极以及化学修饰电极等。 2 循环伏安法的运用 2.1 循环伏安法分析系统的三电极体系 ①工作电极:指在测试过程中可引起试液中待测组分浓度明显变化的电极,又称研究电极,是指所研究的反应在该电极上发生。一般来讲,对工作电极的基本要求是:工作电极可以是固体,也可以是液体,各式各样的能导电的固体材料均能用作电极。(1)所研究的电化学反应不会因电极自身所发生的反应而受到影响,并且能够在较大的电位区域中进行测定;(2)电极必须不与溶剂或电解液组分发生反应;(3)电极面积不宜太大,电极表面最好应是均一平滑的,且能够通过简单的方法进行表面净化等等。 工作电极的选择:通常根据研究的性质来预先确定电极材料,但最普通的“惰性”固体电极材料是玻碳(铂、金、银、铅和导电玻璃)等。采用固体电极时,为了保证实验的重现性,必须注意建立合适的电极预处理步骤,以保证氧化还原、表面形貌和不存在吸附杂质的可重现状态。在液体电极中,汞和汞齐是最常用的工作电极,它们都是液体,都有可重现的均相表面,制备和保持清洁都较容易,同时电极上高的氢析出超电势提高了在负电位下的工作窗口记被广泛用于电化学分析中。

循环伏安法与线性扫描伏安法

循环伏安法 原理: 循环伏安法(CV )是最重要的电分析化学研究方法之一。该方法使用的仪器简单,操作方便,图谱解析直观,在电化学、无机化学、有机化学、生物化学等许多 研究领域被广泛应用。 循环伏安法通常采用三电极系统,一支工作电极(被研究物质起反应的电极),一支参比电极(监测工作电极的电势),一支辅助(对)电极。外加电压加在工作电极与辅助电极之间,反应电流通过工作电极与辅助电极。 对可逆电极过程(电荷交换速度很快),如一定条件下的Fe(CN)63-/4-氧化还原体系,当电压负向扫描时,Fe(CN)63- 在电极上还原,反应为: Fe(CN)63-+e - → Fe(CN)64- 得到一个还原电流峰。当电压正向扫描时,Fe(CN)64-在电极上氧化,反应为: Fe(CN)64- - e - → Fe(CN)63- 得到一个氧化电流峰。所以,电压完成一次循环扫描后,将记录出一个如图2所示 的氧化还原曲线。扫描电压呈等腰三角形。如果前半部扫描(电压上升部分)为去极 化剂在电极上被还原的阴极过程,则后半部扫描(电压下降部分)为还原产物重新被氧化的阳极过程。因此.一次三角波扫描完成一个还原过程和氧化过程的循环,故称为循环伏安法。 应用领域: 循环伏安法能迅速提供电活性物质电极反应的可逆性,化学反应历程,电活性物质的吸附等许多信息。循环伏安法可用于研究化合物电极过程的机理、双电层、吸附现象和电极反应动力学.成为最有用的电化学方法之一。 如通过对未知研究体系的CV 研究,可以获研究对象的反应电位或和平衡电位, 估算反应物种的量,以及判断反应的可逆性。 电化学反应中物种反应的量可以依据Faraday 定律估算,, 其中m 为反应的摩尔量, n 为电极反应中的得失电子数,F 为 图2 氧化还原cv 曲线图 图1 cv 图中电势~时间关系

循环伏安技术的原理及应用---电化学基础..

循环伏安技术 摘要:简单介绍了电化学测试的一些基本知识,并重点介绍了一种最常见、最重要的电化学测试技术-循环伏安技术。分别从循环伏安技术的发展、原理及应用方面对其进行了介绍。 关键词:电化学测试,循环伏安,原理,应用 1 电化学测试的基本知识 电极电势、通过电极的电流是表征复杂的微观电极过程特点的宏观物理量。电化学测量的主要任务是通过测量包含电极过程各种动力学信息的电势、电流两个物理量,研究它们在各种极化信号激励下的变化关系,从而研究电极过程的各个基本过程。 基于电化学的测量规律、按照对应出现的时间顺序,电化学测量大致可以分为三类。第一类是电化学热力学性质的测量方法,基于Nernst方程、电势-pH图、法拉第定律等热力学规律;第二类是依靠单纯电极电势、极化电流的控制和测量进行的动力学性质的测量方法,研究电极过程的反应机理,测定过程的动力学参数;第三类是在电极电势、极化电流的控制和测量的同时,结合光谱波谱技术、扫描探针显微技术,引入光学信号等其他参量的测量,研究体系电化学性质的测量方法。 在电化学反应过程中,电极中包括四个基本过程: 1)电荷传递过程(charge transfer process):电化学步骤。

2)扩散传质过程(diffusion process):主要是指反应物和产物在电极界面静止液层中的扩散过程。 3)电极界面双电层的充电过程(charging process of electric double layer):非法拉第过程。 4)电荷迁移过程(migration process):主要是溶液中离子的电迁移过程,也称为离子导电过程。 另外,还可能有电极表面的吸脱附过程、电结晶过程、伴随电化学反应的均相化学反应过程。 因此,要进行电化学测量,研究某一个基本过程,就必须控制实验条件,突出主要矛盾,使该过程在电极总过程中占据主导地位,降低或消除其它基本过程的影响,通过研究总的电极过程研究这一基本过程,这就是电化学测量的基本原则。 电化学测量的主要分为三个步骤:1)实验条件控制;2)实验结果的测量;3)实验结果解析。在电化学测试中,一般采用三电极体系进行测量。 图1 三电极体系电路示意图

循环伏安法

循环伏安法原理 班级:09化工一班姓名:杨龙学号:20090600 循环伏安法一种常用的电化学研究方法。该法控制电极电势以不同的速率,随时间以三角波形一次或多次反复扫描,电势范围是使电极上能交替发生不同的还原和氧化反应,并记录电流-电势曲线。根据曲线形状可以判断电极反应的可逆程度,中间体、相界吸附或新相形成的可能性,以及偶联化学反应的性质等。常用来测量电极反应参数,判断其控制步骤和反应机理,并观察整个电势扫描范围内可发生哪些反应,及其性质如何。对于一个新的电化学体系,首选的研究方法往往就是循环伏安法,可称之为“电化学的谱图”。本法除了使用汞电极外,还可以用铂、金、玻璃碳、碳纤维微电极以及化学修饰电极等。 1.基本原理 如以等腰三角形的脉冲电压加在工作电极上,得到的电流电压曲线包括两个分支,如果前半部分电位向阴极方向扫描,电活性物质在电极上还原,产生还原波,那么后半部分电位向阳极方向扫描时,还原产物又会重新在电极上氧化,产生氧化波。因此一次三角波扫描,完成一个还原和氧化过程的循环,故该法称为循环伏安法,其电流—电压曲线称为循环伏安图。如果电活性物质可逆性差,则氧化波与还原波的高度就不同,对称性也较差。循环伏安法中电压扫描速度可从每秒种数毫伏到1伏。工作电极可用悬汞电极,或铂、玻碳、石墨等固体电极。

2.循环伏安法的应用 循环伏安法是一种很有用的电化学研究方法,可用于电极反应的性质、机理和电极过程动力学参数的研究。但该法很少用于定量分析。 (1)电极可逆性的判断循环伏安法中电压的扫描过程包括阴极与阳极两个方向,因此从所得的循环伏安法图的氧化波和还原波的峰高和对称性中可判断电活性物质在电极表面反应的可逆程度。若反应是可逆的,则曲线上下对称,若反应不可逆,则曲线上下不对称。 (2)电极反应机理的判断循环伏安法还可研究电极吸附现象、电化学反应产物、电化学—化学耦联反应等,对于有机物、金属有机化合物及生物物质的氧化还原机理研究很有用。 循环伏安法的用途 1、判断电极表面微观反应过程 2、判断电极反应的可逆性 3、作为无机制备反应“摸条件”的手段 4、为有机合成“摸条件” 5、前置化学反应(CE)的循环伏安特征 6、后置化学反应(EC)的循环伏安特征 7、催化反应的循环伏安特征 3、两种伏安法的比较 1.线性扫描伏安法。线性扫描伏安法是在电极上施加一个线性变化的电压,即电极电位是随外加电压线性变化记录 工作电极上的电解电流的方法。记录的电流随电极电位变化

相关文档