文档库 最新最全的文档下载
当前位置:文档库 › 基于GaN器件的图腾柱无桥Boost PFC电路的研究

基于GaN器件的图腾柱无桥Boost PFC电路的研究

基于GaN器件的图腾柱无桥Boost PFC电路的研究
基于GaN器件的图腾柱无桥Boost PFC电路的研究

龙源期刊网 https://www.wendangku.net/doc/da5553841.html,

基于GaN器件的图腾柱无桥Boost PFC电路的研究

作者:黄立张浩然

来源:《电子技术与软件工程》2018年第02期

摘要氮化镓技术鉴于其优良的开关特性和持续提升的品质,近年来在电力转换应用方面慢慢得到了重视。本文根据电流连续传导模式的图腾柱无桥PFC拓扑的特点,将氮化镓器件

应用于电路中以提高功率因素。利用Simulink软件对电路进行了仿真和分析,结果表明平均电流控制的无桥PFC达到了提高功率因素的目的。

【关键词】氮化镓 PFC Simulink

电力电子设备在电力系统和日常生活中的广泛使用,带来了便捷的同时也伴随着谐波污染问题。谐波污染不仅会导致输入的电流波形和电压波形不一致,而且能够产生严重的畸变。由于电压与电流波形的频率和相位不一致,会严重影响电网电能的质量,导致输入功率因数降低。同时,谐波还会对电气装置造成干扰,导致仪器仪表和系统装置产生误计量或误操作。为了提高电网供电质量,抑制谐波污染,功率因数校正(Power Factor Correction,PFC)已经成为电力电子行业中的热点。

提高功率因数校正变换器的效率与功率密度是有效途径之一,基于硅(Si)器件的Boost PFC变换器已经被广泛研究。由于Si器件性能已经被发掘接近极限,基于其的变换器特性也

很难再提高。近年来,新宽禁带半导体氮化镓(GaN)的出现,由于其优越的材料属性,使GaN开关器件具有开关速度快、导通电阻低等优点。GaN器件的逐渐普及为变换器性能提高

到一个新的等级提供了可能。

1 图腾柱无桥Boost PFC电路

如图1所示,分析电路结构可以发现,在输入电压的每半个周期内,都只有两个半导体器件处于工作状态,所以该拓扑具有开关损耗小和效率高的优点。并且在电路的工作过程中,输入端通过二极管D1或D2与输出端相连,所以输出不受开关频率的影响,共模干扰较小。此外,该拓扑主回路结构简单、器件利用率高。但图腾柱无桥升压PFC电路的两只开关管即S3和S4中的体二极管,与传统升压PFC中快速恢复二极管起着类似的作用,因此该电路一般用在断续导通模式(Discontinuous Conduction Mode,DCM)和临界导通模式(Critical Conduction Mode,CRM)下。如果电路工作于电流连续导通模式(Continuous Conduction Mode,CCM),基于目前常用的有源开关器件的体二极管反向恢复时间,大大超过独立快速恢复二极管的恢复时间,会导致其产生相当严重的反向恢复损耗,效率提高的可能性也极为有限。

图腾柱电路解析整理

再谈图腾柱驱动电路之一、之二、之三汇总 (注:根据davida的建议,觉得还是把这个三个帖子综合起来跟方便大家探讨。) 一、驱动电路之一 由于本人最近接触才saber,仿真能力有限,本想仿真,但实在是由于有关saber的基础东西还很多不会呢,所以只能请教大家了 1、问: (1)在下面电路中,VCC的选择和哪些因素有关系?VCC和后级的mos管的Vgs电压相等吗? (2) NPN、PNP管子的选取的依据?三极管的电流Ic要满足什么样的条件才能驱动后端的mos?在下帖https://www.wendangku.net/doc/da5553841.html,/bbs/2169.html 15楼胡庄主曾提到“ 1)首先要确定的是你需要多少的驱动能力?要驱动的负载(一般可认为是功率管)有多少?以MOSFET为例,驱动其实就是对MOS的门级电容的充放电,这就要考虑你有几个MOS并联,门级电容有多大?MOS的Rg 有多大,加上驱动回路寄生电感等,其实就是一个LRC串联回路。

2)驱动能力用个简化的公式来算就是I=C*Du/Dt,MOS的门级电容先确定,再来考虑你准备要几V的门级电压,然后就是这个电压建立和消除的时间,也就牵涉到MOS的开通关断速度,这会直接影响到功率管的损耗及其它问题,如应力等。这几个想好了,所要的驱动电流也就出来了。 3)得到这个所要的驱动电流,再考虑上驱动回路的一堆寄生参数等,也就可以推出你图腾柱电路需提供多少驱动电流(注意这是个脉冲电流)。” 针对上边的内容我有些疑问: 1、MOS属于单级型电压驱动器件,是栅极电压来控制漏极电流的,如果从表面理解的话,是不是只要保证栅极的电压达到Vgs就可以?和电流没有关系?? 2、MOS管的门极电容是怎么确定的?是下图这些参数吗? 二、驱动电路之二 问:1、图中的C18的作用?二极管D是否有必要加?要加的话,起作用? 2、R15、R16加与不加?

无桥PFC电路说明

无桥P F C电路说明文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

氮化镓 (GaN)技术由于其出色的开关特性和不断提升的品质,近期逐渐得到了电力转换应 用的青睐。具有低寄生电容和零反向恢复的安全GaN可实现更高的开关频率和效率,从而 为全新应用和拓扑选项打开了大门。连续传导模式 (CCM)图腾柱PFC就是一个得益于GaN 优点的拓扑。与通常使用的双升压无桥PFC拓扑相比,CCM图腾柱无桥PFC能够使半导体 开关和升压电感器的数量减半,同时又能将峰值效率推升到95%以上。本文分析了AC交叉区域内出现电流尖峰的根本原因,并给出了相应的解决方案。一个750W图腾柱PFC原型 机被构造成具有集成栅极驱动器的安全GaN,并且展示出性能方面的提升。 关键字—GaN;PFC;图腾柱;数字控制 I.?简介 当按下智能手机上的一个按钮时,这个手机会触发一个巨大的通信网络,并且连接到数千 英里之外的数据中心。承载通信数据时的功耗是不可见的,而又大大超过了人们的想象。 世界信息通信技术 (ICT) 生态系统的总体功耗正在接近全球发电量的10% [1]。单单一个数据中心,比如说位于北卡罗来纳州的脸谱公司的数据中心,耗电量即达到40MW。另外还有两个位于美国内华达州和中国重庆的200MW数据中心正在建设当中。随着数据存储和通 信网络的快速增长,持续运行电力系统的效率变得越来越重要。现在比以前任何时候都需 要对效率进行空前的改进与提升。 几乎所有ICT生态系统的能耗都转换自AC。AC输入首先被整流,然后被升压至一个预稳 压电平。下游的DC/DC转换器将电压转换为一个隔离式48V或24V电压,作为电信无线系 统的电源,以及存储器和处理器的内核电压。随着MOSFET技术的兴起和发展,电力转换 效率在过去三十年间得到大幅提升。自2007年生效以来,Energy Star(能源之星)80 PLUS效率评价技术规范 [2] 将针对AC/DC整流器的效率等级从黄金级增加到更高的白金级,并且不断提高到钛金级。然而,由于MOSFET的性能限制,以及与钛金级效率要求有 关的重大设计挑战,效率的改进与提升正在变慢。为了达到96%的钛金级峰值效率,对于 高压线路来说,功率因数校正 (PFC) 电路效率的预算效率应该达到98.5%及以上,对于低压电路,这个值应该不低于96.4%。发展前景最好的拓扑是无桥PFC电路,它没有全波AC 整流器桥,并因此降低了相关的传导损耗。[3] 对于不同无桥PFC的性能评价进行了很好 的总结。这个性能评价的前提是,所使用的有源开关器件为MOSFET或IGBT。大多数钛金 级AC/DC整流器设计使用图6中所示的拓扑 [3],由两个电路升压组成。每个升压电路在 满功率下额定运行,不过只在一半AC线路周期内运行,而在另外周期内处于空闲状态。 这样的话,PFC转换器以材料和功率密度为代价实现了一个比较高的效率值 [4]。通常情 况下,由于MOSFET体二极管的缓慢反向恢复,一个图腾柱PFC无法在连续传导模式 (CCM) 下高效运行。然而,它能够在电压开关为零 (ZVS) 的变换模式下实现出色的效率值。数 篇论文中已经提到,PFC效率可以达到98.5%-99%。对于高功率应用来说,多个图腾柱升 压电路可以交错在一起,以提高功率水平,并且减少输入电流纹波。然而,这个方法的缺 点就是控制复杂,并且驱动器和零电流检测电路的成本较高。此外,因此而增加的功率组 件数量会产生一个低功率密度设计。因此,这个简单的图腾柱电路需要高效运行在CCM 下,以实现高功率区域,并且在轻负载时切换至具有ZVS的TM。通过使用这个方法,可以同时实现高效率和高功率密度。作为一款新兴半导体开关,氮化镓 (GaN) FET正在逐渐走向成熟,并且使此类应用成为可能。Transphorm公司已经在APEC 2013上展示了一款峰值效率达到99%的基于GaN的图腾柱CCM PFC [9]。[10-12] 还介绍了GaN器件出色的开关 特性,以及应用优势。为了更好地理解GaN特性,并且进一步解决应用中存在的顾虑,特 别是开关频率和交叉电流尖峰问题,这篇文章讨论了:II. GaN技术概述、III. 图腾柱CCM PFC控制、IV. 实验和V. 结论。 II. GaN技术概述

无桥PFC

(PFC)电路成为人们注意的焦点。设计人员去掉了转换器输入端的常规桥式整流电路,可以减少开关损耗,进一步提高效率。在这样的电路中,不存在由于导通损耗而降低效率的问题,且设计比较简单,需要的元件数量较少。 1没有使用桥式整流电路的电路 2 OCC PFC控制电路

3 常规电路和无桥式整流的电路的效率 PFC电路有一些难点。如图所示,电路的输入端没有二极管组成的桥式整流电路,而是在交流输入边有个升压电感器。在这个电路中,输出和输入并无直接的连接,于是就存在输入电压的感测、电流的感测和电磁干扰噪音等问题。特别是,由于升压电感器放在交流输入这边,因此很难感测作为输入的电网交流电压和电感器上的电流。 1所示的没有使用桥式电路的整流器的工作原理。升压电感器分成两半,形成升压电路。输出电路由个晶体管和个二极管组成。在交流电网电压的每一个半周中,其中一个起有源开关的作用,而另一个就起二极管的简单作用。在这对晶体管中,处于工作状态的那个晶体管,与一个二极管和输入电感器一起,组成升压转换器。输入电流由升压转换器来控制,随着输入电压而变化。 (OCC)方法 PFC电路,最常用的是平均电流控制和峰值电流控制,它们都是使用模拟乘法器的技术。最近,设计人员开始探讨其他的技术,其中包括单周控制的方法,如图所示。 OCC控制方法就很有优势。使用输出电压和电感器中的电流峰值来计算前后衔接的每个周期的占空比,所以,在使用方法时,需要的所有信息是从直流母线电压和电流那里得到的,不需要感测交流电网的电压,从而最大限度地提高了功率因数。而且,占空比控制着升压电路输入和输出之间的关系,电感器中的电流峰值可以自动地跟随输入电压的波形,这样就实现了功率因数校正的功能。由于所有必要的信息都是从电感器中的电流峰值和电压输出那里得到的,因此不需要感测输入电压。 (EMI)的特性一般与功率级的结构有关。对于常规的,输出的地总是通过桥式整流器与输入电网相连,引起共模噪音的唯一寄生电容是晶体管的漏极与地之间的寄生电容。对于不使用桥式整流的电路,其输出相对于作为输入的交流电网来讲是浮动的,这样就有几个寄生参数会引起晶体管漏极和地之间的共模噪音,以及地与输出端之间的共模噪音。在这种情况下,共模噪音比常规电路的共模噪音更加严重。为了解决这个问题,可以在不使用桥式整流的电路中增加两只电容器,在输入交流电网与输出电压的地之间形成一个高频通路。

电源电路图详解

电源电路图详解! 用电路元件符号表示电路连接的图,叫电路图。电路图是人们为研究、工程规划的需要,用物理电学标准化的符号绘制的一种表示各元器件组成及器件关系的原理布局图,可以得知组件间的工作原理,为分析性能、安装电子、电器产品提供规划方案。 电路图是电子工程师必学的基本技能之一,本文集合了稳压电源、DCDC转换电源、开关电源、充电电路、恒流源相关的经典电路资料,为工程师提供最新鲜的电路图参考资料,超全超详细,只能帮你到这了! 一、稳压电源 1、3~25V电压可调稳压电路图 此稳压电源可调范围在3.5V~25V之间任意调节,输出电流大,并采用可调稳压管式电路,从而得到满意平稳的输出电压。 工作原理:经整流滤波后直流电压由R1提供给调整管的基极,使调整管导通,在V1导通时电压经过RP、R2使V2导通,接着V3也导通,这时V1、V2、V3的发射极和集电极电压不再变化(其作用完全与稳压管一样)。调节RP,可得到平稳的输出电压,R1、RP、R2与R3比值决定本电路输出的电压值。 元器件选择:变压器T选用80W~100W,输入AC220V,输出双绕组AC28V。FU1选用1A,FU2选用3A~5A。VD1、VD2选用6A02。RP选用1W左右普通电位器,阻值为250K~330K,C1选用3300μF/35V电解电容,C2、C3选用0.1μF 独石电容,C4选用470μF/35V电解电容。R1选用180~220Ω/0.1W~1W,R2、R4、R5选用10KΩ、1/8W。V1选用2N3055,V2选用3DG180或2SC3953,

V3选用3CG12或3CG80。 2、10A3~15V稳压可调电源电路图 无论检修电脑还是电子制作都离不开稳压电源,下面介绍一款直流电压从3V到15V连续可调的稳压电源,最大电流可达10A,该电路用了具有温度补偿特性的,高精度的标准电压源集成电路TL431,使稳压精度更高,如果没有特殊要求,基本能满足正常维修使用,电路见下图。 其工作原理分两部分,第一部分是一路固定的5V1.5A稳压电源电路,第二部分是另一路由3至15V连续可调的高精度大电流稳压电路。

5种无桥PFC

这里有六种无桥PFC, 分别是: 标准无桥PFC 这种PFC在正负半周的时候, 两个管子一个续流一个充当高频开关 这种拓扑的优点是使用功率元件比较少, 两个管子可以一起驱动, 这简化了驱动电路的设计, 同时让直接使用传统APFC的控制芯片成为可能. 但它同时存在几个问题, 电流流向复杂而且不共地, 电流采样困难, 有较大的共模干扰因此输入滤波器要仔细设计 针对头一个问题, ST公司和IR公司的一些应用文档中已经比较详细的介绍了两种比较可行的采用互感器的方法 双Boost无桥PFC 这种拓扑由标准无桥PFC改良而来, 增加了D3和D4作为低频电流的回路, S1和S2只作为高频开关而不参与低频续流 同标准无桥PFC, S1和S2能同时驱动, 而在两个低频二极管D3和D4之后插入取样电阻又可以像普通PFC简单地传感电流 同时这种拓扑具有更低的工模电流 但是这种拓扑必须使用两个电感, 电流流向有不确定性, 低频二极管和mos的体二极管可能同时导通, 增加了不稳定因素

双向开关无桥PFC S1和S2组成了双向开关, 他们可以同时驱动, 采用电流互感器可以很容易的检测电流, D1和D3为超快恢复二极管, D2和D4可以采用低频二极管 缺点在于整个电路的电势相对于大地都在剧烈变化, 会产生比标准无桥PFC更严重的EMC问题, 输出电压无法直接采样, 需要隔离采样(使用光耦, 但是会增加复杂度) 图腾柱PFC 由标准无桥PFC演化而来, 但是原理稍微改变 D1和D2为低频二极管, S1和S2的体二极管提供高频整流开关作用 这种电路具有较低的EMI, 使用元件较少, 设计可以很紧凑 但是S1和S2需要使用不同的驱动信号, 工频周期不同信号也不一样, 增加了控制的复杂性, S2不容易驱动(可以尝试IR2110等自举驱动芯片) S1和S2如果采用mos, mos的体二极管恢复较慢(通常数百ns)会产生较大的电流倒灌脉冲, 引起很大的损耗, 足以抵消无桥低损耗的优势 S1和S2如果采用IGBT, 虽然其体二极管的性能没问题, 但是其导通压降比较大, 也会产生很高的损耗, 尤其是在低电压输入的情况下 现在有一些国外公司在研制GaN和SiC高性能开关管, 开关速度极快, 没有体二极管反向恢复问题, 这些技术尚在研发中, 现在是在市场上见不到这些产品的. 如果未来这些高性能器件能大规模普及, 图腾柱PFC将有机会成为最流行最高效

电子工程师必学电路图集锦

给论坛的电子工程师或者想学习电子的朋友分享一个好资料。下文搜罗了稳压电源、DCDC转换电源、开关电源、充电电路、恒流源相关的经典电路资料,为工程师提供最新鲜的电路图参考资料,电子工程师必看、必学,他是电子工程师的智慧背囊。 一、稳压电源 1、3~25V电压可调稳压电路图 此稳压电源可调范围在3.5V~25V之间任意调节,输出电流大,并采用可调稳压管式电路,从而得到满意平稳的输出电压。 工作原理:经整流滤波后直流电压由R1提供给调整管的基极,使调整管导通,在V1导通时电压经过RP、R2使V2导通,接着V3也导通,这时V1、V2、 V3的发射极和集电极电压不再变化(其作用完全与稳压管一样)。调节RP,可得到平稳的输出电压,R1、RP、R2与R3比值决定本电路输出的电压值。 元器件选择:变压器T选用80W~100W,输入AC220V,输出双绕组AC28V。FU1选用1A,FU2选用3A~5A。VD1、 VD2选用 6A02。RP选用1W左右普通电位器,阻值为250K~330K,C1选用3300μF/35V电解电容,C2、C3选用0.1μF独石电容,C4选用470μF/35V电解电容。R1选用180~220Ω/0.1W~1W,R2、R4、R5选用10KΩ、1/8W。V1选用2N3055,V2选用 3DG180或2SC3953,V3选用3CG12或3CG80

2、10A3~15V稳压可调电源电路图 无论检修电脑还是电子制作都离不开稳压电源,下面介绍一款直流电压从3V到15V连续可调的稳压电源,最大电流可达10A,该电路用了具有温度补偿特性的,高精度的标准电压源集成电路TL431,使稳压精度更高,如果没有特殊要求,基本能满足正常维修使用,电路见下图。

图腾柱电路

这个电路看似简单,其实用起来要考虑的还比较多,简单谈谈个人的看法,先声明一下,只是随手总结,可能有不对或不足之处, 1)首先要确定的是你需要多少的驱动能力?要驱动的负载(一般可认为是功率管)有多少?以MOSFET为例,驱动其实就是对MOS的门级电容的充放电,这就要考虑你有几个MOS并联,门级电容有多大?MOS的Rg 有多大,加上驱动回路寄生电感等,其实就是一个LRC串联回路。 2)驱动能力用个简化的公式来算就是I=C*Du/Dt,MOS的门级电容先确定,再来考虑你准备要几V的门级电压,然后就是这个电压建立和消除的时间,也就牵涉到MOS的开通关断速度,这会直接影响到功率管的损耗及其它问题,如应力等。这几个想好了,所要的驱动电流也就出来了。

3)得到这个所要的驱动电流,再考虑上驱动回路的一堆寄生参数等,也就可以推出你图腾柱电路需提供多少驱动电流(注意这是个脉冲电流)。4)这个时候再考虑的就是你PCB板layout的空间,位置,准备为这个电路花多少钱选器件,用MOS还是BJT,综合考虑,然后就想办法选器件吧,当然还要考虑IC的输出信号和你选的图腾柱器件(MOS或BJT)之间也是个回路,这会不会有问题? 5) 另外要考虑的是,这个图腾柱能不能彻底关掉,这就又要考虑N在上还是P在上,正开还是负开,比如选用PMOS做关断,关断时图腾柱输出会仍有一个等于Vgs电压的电压加在你的负载MOS上,如果这个电压高于你的负载MOS门槛的话,----这就意味着你没关掉,虽然你前面关掉了。更痛苦的是,前面和后面的MOS门槛电压tolerance都会非常大,再考虑到温度系数,......这要坐下来算算了 6)还要重点考虑的是图腾柱的器件也是要损耗功率的,所以要考虑它的温度及功耗会不会有问题。 总之,具体用时要考虑的问题还真不少,单挑一个出来都非常简单,但加到一块,还真要花点时间研究计算一下。因为是做产品,所有的规格参数,寄生参数,tolerance,温度,cost, PCB空间等等等等,前前后后的一堆问题都得面对,不象写paper或仿真,抓住一点,其它都可考虑为理想状态,这样当然很快可以推出理想的结果。

无桥PFC方案应用2

无桥PFC方案,99%以上效率
PFC + LLC 原理图 效率99.4% Totem-pole PFC, bridgeless PFC Totem pole PFC, Totem pole boost
1000W 无桥PFC方案 2400W 无桥PFC方案
TPH3006PS TPH3206PS TPH3002PS TPH3202PS TPH3205WS TPH3206LD TPH3202LD

PFC的演变史
1, 传统的,整流流桥+单极PFC
功率不能太大。受限于整流桥的VF及MOSFET的开关损耗。低效
AC
2,传统的大功率方案。采用交错式PFC,
AC
采用两个电感,两个MOSFET,体积加大,功率提升但效率不高。
3,采用无桥PFC,但使用的是硅MOSFET,双电感。
由于硅MOSFET体内寄生二极管太慢Trr及MOSFET的开关损耗较大Qgd 有关。同时必须采用碳化硅二极管(价高) 双电感,体积依然大,硅MOSFET工作在高频损耗太大。
4,采用氮化镓MOSFET,无桥,只需一个电感。
利用氮化镓体内无二极管但有二极管特性特点,及氮化镓低低的开关损 耗特性。很容易实现大功率的无桥PFC,只需一个电感,同时无需用碳 化硅二极管。成本/体积上大大优化。

硅无桥PFC与氮化镓无桥PFC的区别
? ? 传统用的无桥需要2MOSFET,2电感,2碳化硅 二极管(D1,D2)才能实现高效率 采用氮化镓的图腾无桥PFC只要一个电感,2个 氮化镓MOS,另D1,D2可以用二极管也可以从等 同内阻的硅MOSFET以实现更高效率 就现阶段氮化镓无桥的方案已比传统的低了 (传统的会用上两个高碳货硅二极管及多用一 个电感) 同时因氮化镓适合高频。采用氮化镓高频化的 无桥PFC后,体积大大变小,综合成本更有优 势/效率依然很高
?
传统Dual‐boost无桥PFCPFC
?
此设计是利用氮化镓体内二极管超低的 反向恢复特性来实现高效低成本。
氮化镓的图腾无桥 PFC

大功率无桥PFC研究

PFC是一种解决传统AC整流电路引起的电网污染问题的电路.常规整流滤波电路的整流桥只有在输入正弦波电压接近峰值时才会导通,因此导致了输入电流程严重非正弦性,导致输入产生了大量谐波电流成份,降低了电网的利用率同时有潜在的干扰其他电器的可能.PFC电路通过对输入AC电流进行'整形',使输入电流为近似和输入电压同相位的正弦波,达到了输入功率接近1的可能. 常用的PFC电路均为Boost升压拓扑,根据Boost拓扑在不同工作模式(DCM\BCM\CCM)下的特性不同,控制方法可以分为3种。BCM和CCM采用的较多,BCM为变频控制,可以实现零电压开启(降低开通损耗),但是较高的开关管有效电流限制了它只能在中小功率的场合,大功率场合是CCM的天下。 对于CCM的PFC,主要问题是二极管的反向恢复问题,在反向恢复期间产生的大反向电流会产生额外的损耗还有潜在干扰电路的风险.具体可以通过增加RC电路(有损)或者ZVT技术(无损,但是比较复杂)进行解决,这里暂时不进行讨论。由于PFC通常被设计成宽电压输入模式(85-265V输入),在低输入电压时输入电流会比较大,当输出功率比较大时,各功率器件尤其是输入整流桥的电流压力和散热压力尤为明显.如下图 当开关管开通时,电流会经过2个低速整流二极管,1个mos管,当开关管关闭的时候,电流会经过2个低速整流管和1个快恢复二极管。对于110V情况下输出1500W的PFC来说,整流桥损耗可达30W左右,是一个相当可观的数字,如果能通过改进拓扑取消掉整流桥,将会极大的提高效率.改进的电路如下图,它在每个正周期内和负周期内等效为1个普通的Boost拓扑:

图腾柱原理分析

图腾柱型驱动增强电路 如图所示即为图腾柱型驱动增 强电路。 图腾柱型驱动电路的作用在 于:提升电流提供能力,迅速完成 对于门极电荷的充电过程,而并不 是提供一个门极电压。所以电容C1 的电压稳态时只会到达V1,因为如 果高于V1的话,Q1的工作状态就是 变化,BE之间没有压降的话Q1就截 止了;同理,当Q2工作时,存在一 个CE导通之后,电压被迅速拉低, 但是由于Q2的工作状态要保持Q2 的BE之间必须有0.7V的压降,所 以等C1的电压到达0.7V以后Q2截止,所以C1的电压范围是0.7V(略低于)-4.3V(略低于)之间。 所以,图腾柱提升驱动能力的关键不是在于多增加级数,例如在同一个电源下面采用多级图腾柱串联,这样做是不能够提高驱动能力的,能做的只是将功率分散开,平分了电流I,用以驱动更大的IGBT或者mos管;要增加驱动能力,关键在于增加供电电源数量,多个电源供电之后电流增大,相当于提高了VDD的电压。 分析: MOS管/IGBT等驱动的原理就是给内部 的电容充电,等效为C1 充电过程:当V1为高电平时,Q1导通; Q2关断;等效电容C1由V1充电(稳态 C1电压和VDD关系不大),当C1电压高 于开关器件阀值时,开关器件导通,一 般IGBT阀值在2V左右。 此时C1充电至(V1-0.7V)(去除Q1一 个二极管压降)。此处为什么C1的稳态 电压不会VDD呢?原因在于Q1的导通 状态需要位置,则Vbe之间必须有压降, 如果C1的电压超过(V1-0.7V)那么Q1 立刻截止,所以 放电过程:当V1为低电平时,Q1关断;Q2由于C1充电至(V1-0.7V),处于高电平,此时V1拉低之后,Q2被导通,C1放电,但是由于Q2要导通的前提是C1-V1>0.7V,所以C1>0.7V时 Q2可以导通,当C1<0.7V时,Q2截止,放电停止 这一步的主要作用是给C1形成一个放电回路,快速释放C1的电荷,防止开关器件的导通电容C1无法放电而一直存在,处于高电平状态,开关器件的工作状态不明确。

电路图详解

电路图详解 一、稳压电源 1、3~25V电压可调稳压电路图 此稳压电源可调范围在3.5V~25V之间任意调节,输出电流大,并采用可调稳压管式电路,从而得到满意平稳的输出电压。 工作原理:经整流滤波后直流电压由R1提供给调整管的基极,使调整管导通,在V1导通时电压经过RP、R2使V2导通,接着V3也导通,这时V1、V2、 V3的发射极和集电极电压不再变化(其作用完全与稳压管一样)。调节RP,可得到平稳的输出电压,R1、RP、R2与R3比值决定本电路输出的电压值。 元器件选择:变压器T选用80W~100W,输入AC220V,输出双绕组AC28V。FU1选用1A,FU2选用3A~5A。VD1、VD2选用 6A02。RP选用1W左右普通电位器,阻值为250K~330K,C1选用3300μF/35V电解电容,C2、C3选用0.1μF独石电容,C4选用 470μF/35V电解电容。R1选用180~220Ω/0.1W~1W,R2、R4、R5选用10KΩ、1/8W。V1选用2N3055,V2选用 3DG180或2SC3953,V3选用3CG12或3CG80。 2、10A3~15V稳压可调电源电路图

无论检修电脑还是电子制作都离不开稳压电源,下面介绍一款直流电压从3V到15V连续可调的稳压电源,最大电流可达10A,该电路用了具有温度补偿特性的,高精度的标准电压源集成电路TL431,使稳压精度更高,如果没有特殊要求,基本能满足正常维修使用,电路见下图。 其工作原理分两部分,第一部分是一路固定的5V1.5A稳压电源电路,第二部分是另一路由3至15V连续可调的高精度大电流稳压电路。 第一路的电路非常简单,由变压器次级8V交流电压通过硅桥QL1整流后的直流电压经C1电解电容滤波后,再由5V三端稳压块LM7805不用作任何调整就可在输出端产生固定的5V1A稳压电源,这个电源在检修电脑板时完全可以当作内部电源使用。 第二部分与普通串联型稳压电源基本相同,所不同的是使用了具有温度补偿特性的,高精度的标准电压源集成电路TL431,所以使电路简化,成本降低,而稳压性能却很高。 图中电阻R4,稳压管TL431,电位器R3组成一个连续可调得恒压源,为BG2基极提供基准电压,稳压管TL431的稳压值连续可调,这个稳压值决定了稳压电源的最大输出电压,如果你想把可调电压范围扩大,可以改变R4 和R3的电阻值,当然变压器的次级电压也要提高。 变压器的功率可根据输出电流灵活掌握,次级电压15V左右。桥式整流用的整流管QL 用15-20A硅桥,结构紧凑,中间有固定螺丝,可以直接固定在机壳的铝板上,有利

MOS管电路工作原理详解

MOS管电路工作原理详解,MOS管工作原理文章-KIA MOS管 1,MOS管种类和结构 MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N 沟道共4种类型,但实际应用的只有增强型的N沟道MOS管型号和增强型的P沟道MOS管型号,所以通常提到NMOS,或者PMOS指的就是这两种。至于为什么不使用耗尽型的 MOS管,不建议刨根问底。对于这两种增强型MOS管,比较常用的是NMOS。原因是导通 电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。下面的介绍中,也多以NMOS为主。 MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由 于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但 没有办法避免,后边再详细介绍。在MOS管原理图上可以看到,漏极和源极之间有一个寄 生二极管。这个叫体二极管,在驱动感性负载,这个二极管很重要。顺便说一句,体二极管 只在单个的MOS管中存在,在集成内部通常是没有的。 2,MOS管导通特性 导通的意思是作为开关,相当于开关闭合。NMOS的特性,Vgs大于一定的值就会导通,适 合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。PMOS的 特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。但是,虽 然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在 高端驱动中,通常还是使用NMOS。 3,MOS开关管损失 不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的会减小导通损耗。现在的小功率MOS 管导通电阻一般在几十毫欧左右,几毫欧的也有。MOS在导通和截止的时候,一定不是在瞬 间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多, 而且开关频率越快,损失也越大。导通瞬间电压和电流的乘积很大,造成的损失也就很大。 缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。

无桥PFC电路说明

氮化镓 (GaN)技术由于其出色的开关特性和不断提升的品质,近期逐渐得到了电力转换应用的青睐。具有低寄生电容和零反向恢复的安全GaN可实现更高的开关频率和效率,从而为全新应用和拓扑选项打开了 大门。连续传导模式 (CCM)图腾柱PFC就是一个得益于GaN优点的拓扑。与通常使用的双升压无桥 PFC拓扑相比,CCM图腾柱无桥PFC能够使半导体开关和升压电感器的数量减半,同时又能将峰值效率推升到95%以上。本文分析了AC交叉区域内出现电流尖峰的根本原因,并给出了相应的解决方案。一个750W图腾柱PFC原型机被构造成具有集成栅极驱动器的安全GaN,并且展示出性能方面的提升。 关键字—GaN;PFC;图腾柱;数字控制 I.?简介 当按下智能手机上的一个按钮时,这个手机会触发一个巨大的通信网络,并且连接到数千英里之外的数据中心。承载通信数据时的功耗是不可见的,而又大大超过了人们的想象。世界信息通信技术 (ICT) 生态系 统的总体功耗正在接近全球发电量的10% [1]。单单一个数据中心,比如说位于北卡罗来纳州的脸谱公司 的数据中心,耗电量即达到40MW。另外还有两个位于美国内华达州和中国重庆的200MW数据中心正在建设当中。随着数据存储和通信网络的快速增长,持续运行电力系统的效率变得越来越重要。现在比以前任何时候都需要对效率进行空前的改进与提升。 几乎所有ICT生态系统的能耗都转换自AC。AC输入首先被整流,然后被升压至一个预稳压电平。下游的DC/DC转换器将电压转换为一个隔离式48V或24V电压,作为电信无线系统的电源,以及存储器和处理 器的内核电压。随着MOSFET技术的兴起和发展,电力转换效率在过去三十年间得到大幅提升。自2007年生效以来,Energy Star(能源之星)80 PLUS效率评价技术规范 [2] 将针对AC/DC整流器的效率等级 从黄金级增加到更高的白金级,并且不断提高到钛金级。然而,由于MOSFET的性能限制,以及与钛金 级效率要求有关的重大设计挑战,效率的改进与提升正在变慢。为了达到96%的钛金级峰值效率,对于高压线路来说,功率因数校正 (PFC) 电路效率的预算效率应该达到98.5%及以上,对于低压电路,这个值应该不低于96.4%。发展前景最好的拓扑是无桥PFC电路,它没有全波AC整流器桥,并因此降低了相关的传导损耗。[3] 对于不同无桥PFC的性能评价进行了很好的总结。这个性能评价的前提是,所使用的有源 开关器件为MOSFET或IGBT。大多数钛金级AC/DC整流器设计使用图6中所示的拓扑 [3],由两个电路升压组成。每个升压电路在满功率下额定运行,不过只在一半AC线路周期内运行,而在另外周期内处于 空闲状态。这样的话,PFC转换器以材料和功率密度为代价实现了一个比较高的效率值[4]。通常情况下,由于MOSFET体二极管的缓慢反向恢复,一个图腾柱PFC无法在连续传导模式 (CCM) 下高效运行。然而,它能够在电压开关为零 (ZVS) 的变换模式下实现出色的效率值。数篇论文中已经提到,PFC效率可以达到98.5%-99%。对于高功率应用来说,多个图腾柱升压电路可以交错在一起,以提高功率水平,并且减少输入电流纹波。然而,这个方法的缺点就是控制复杂,并且驱动器和零电流检测电路的成本较高。此外,因此而增加的功率组件数量会产生一个低功率密度设计。因此,这个简单的图腾柱电路需要高效运行在CCM下,以实现高功率区域,并且在轻负载时切换至具有ZVS的TM。通过使用这个方法,可以同时实 现高效率和高功率密度。作为一款新兴半导体开关,氮化镓 (GaN) FET正在逐渐走向成熟,并且使此类应用成为可能。Transphorm公司已经在APEC 2013上展示了一款峰值效率达到99%的基于GaN的图腾柱CCM PFC [9]。[10-12] 还介绍了GaN器件出色的开关特性,以及应用优势。为了更好地理解GaN特性,

无桥PFC的优势及解决方案

无桥PFC的优势及解决方案 无桥PFC 的优势及解决方案 传统有源PFC 中,交流输入经过EMI 滤波后会经过二极管桥整流器,但在整流过程中存在功率耗散,其中既包括前端整流桥中两个二极管导通压降 带来的损耗,也包括升压转换器中功率开关管或续流二极管的导通损耗。据测算,在低压市电应用(@90 Vrms)中,二极管桥会浪费大约2%的能效。有鉴于此,近年来业界提出了无桥PFC 拓扑结构。实际上,如果去掉二极管整流桥,由此带来的能效提升效果很明显。这种PFC 电路采用1 只电感、两只功率MOSFET 和两只快恢复二极管组成。对于工频交流输入的正负半周期而言,这种无桥升压电路可以等效为两个电源电压相反的升压电路的组合。其中左边 的蓝色方框是PH1 为高电平、MOSFET 开关管M2 关闭时的开关单元,右边的橙色方框是PH2 为高电平、MOSFET 开关管M1 关闭时的开关单元。当PH1 为高电平、PH2 为低电平时,电路工作在正半周期,这时M2 相当于体二极管(body diode),PH2 通过M2 接地;而当PH1 为低电平、PH2 为高电平时,电路工作在负半周期,这时M1 相当于体二极管,PH1 通过M1 接地。 图:传统的无桥PFC 结构示意图。 相对于传统PFC 段而言,这种无桥PFC 节省了由二极管整流桥导致的 损耗,但不工作MOSFET 的体二极管传递线圈电流。最终,这种结构消除了 线路电流通道中一个二极管的压降,提升了能效。但实际上,这种架构也存在 几处不便,因为交流线路电压不像传统PFC 那样对地参考,而是相对于PFC 段接地而浮动,这就需要特定的PFC 控制器来感测交流输入电压,而这种结构中的简单电路并不能完成这项任务。这种架构也不能方便地监测线圈电流。此

NMOS PMOS管驱动电路图

NMOS PMOS管驱动电路图 Vl和Vh分别是低端和高端的电源,两个电压可以是相同的,但是Vl不应该超过Vh。 Q1和Q2组成了一个反置的图腾柱,用来实现隔离,同时确保两只驱动管Q3和Q4不会同时导通。 R2和R3提供了PWM电压基准,通过改变这个基准,可以让电路工作在PWM信号波形比较陡直的位置。 Q3和Q4用来提供驱动电流,由于导通的时候,Q3和Q4相对Vh和GND最低都只有一个Vce的压降,这个压降通常只有0.3V左右,大大低于0.7V的Vce。 R5和R6是反馈电阻,用于对gate电压进行采样,采样后的电压通过Q5对Q1和Q2的基极产生一个强烈的负反馈,从而把gate电压限制在一个有限的数值。这个数值可以通过R5和R6来调节。 最后,R1提供了对Q3和Q4的基极电流限制,R4提供了对MOS管的gate电流限制,也就是Q3和Q4的Ice的限制。必要的时候可以在R4上面并联加速电容。 图1 用于NMOS的驱动电路 这个电路提供了如下的特性: 1,用低端电压和PWM驱动高端MOS管。 2,用小幅度的PWM信号驱动高gate电压需求的MOS管。 3,gate电压的峰值限制 4,输入和输出的电流限制 5,通过使用合适的电阻,可以达到很低的功耗。 6,PWM信号反相。NMOS并不需要这个特性,可以通过前置一个反相器来解决。

在设计便携式设备和无线产品时,提高产品性能、延长电池工作时间是设计人员需要面对的两个问题。DC-DC转换器具有效率高、输出电流大、静态电流小等优点,非常适用于为便携式设备供电。目前DC-DC转换器设计技术发展主要趋势有:(1)高频化技术:随着开关频率的提高,开关变换器的体积也随之减小,功率密度也得到大幅提升,动态响应得到改善。小功率DC-DC转换器的开关频率将上升到兆赫级。(2)低输出电压技术:随着半导体制造技术的不断发展,微处理器和便携式电子设备的工作电压越来越低,这就要求未来的DC-DC变换器能够提供低输出电压以适应微处理器和便携式电子设备的要求。 这些技术的发展对电源芯片电路的设计提出了更高的要求。首先,随着开关频率的不断提高,对于开关元件的性能提出了很高的要求,同时必须具有相应的开关元件驱动电路以保证开关元件在高达兆赫级的开关频率下正常工作。其次,对于电池供电的便携式电子设备来说,电路的工作电压低(以锂电池为例,工作电压2.5~3.6V),因此,电源芯片的工作电压较低。 MOS管具有很低的导通电阻,消耗能量较低,在目前流行的高效DC-DC芯片中多采用MOS管作为功率开关。但是由于MOS管的寄生电容大,一般情况下NMOS开关管的栅极电容高达几十皮法。这对于设计高工作频率DC-DC转换器开关管驱动电路的设计提出了更高的要求。 在低电压ULSI设计中有多种CMOS、BiCMOS采用自举升压结构的逻辑电路和作为大容性负载的驱动电路。这些电路能够在低于1V电压供电条件下正常工作,并且能够在负载电容1~2pF的条件下工作频率能够达到几十兆甚至上百兆赫兹。本文正是采用了自举升压电路,设计了一种具有大负载电容驱动能力的,适合于低电压、高开关频率升压型DC-DC 转换器的驱动电路。电路基于Samsung AHP615 BiCMOS工艺设计并经过Hspice仿真验证,在供电电压1.5V ,负载电容为60pF时,工作频率能够达到5MHz以上。

无桥PFC电路的EMI分析

无桥Boost PFC电路的EMI分析(转) 默认分类2010-01-15 12:09:51 阅读250 评论1 字号:大中小订阅 摘要:系统地介绍了目前出现的无桥Boost PFC主电路结构,对它们各自导通路径﹑EMI进行了对比分析。采用两种比较有代表性的无桥拓扑作为主电路结构,控制电路采用单周控制芯片IR1150,设计了试验样机,并对两种PFC电路的EMI进行了 测试分析。 关键词:功率因数校正(PFC :Power Factor Correction)无桥EMI 1 引言 目前,功率因数校正一直在朝着效率高﹑结构简单﹑控制容易实现﹑减小EMI等方向发展,所以无桥Boost PFC电路[1]作 为一种提高效率的有效方式越来越受到人们的关注。 无桥Boost PFC电路省略了传统Boost PFC电路的整流桥,在任一时刻都比传统Boost PFC电路少导通一个二极管,所以降低了导通损耗,效率得到很大提高,本文就常见的几种无桥Boost PFC电路[2]进行了对比分析,并且对两种比较有代表性的无 桥电路进行了实验验证和EMI测试分析。 2 开关变换器电路的传导EMI分析 电磁干扰(EMI)可分为传导干扰和辐射干扰两种,当开关变换器电路的谐波电平在高频段(频率范围30 MHz以上)时,表现为辐射干扰,而当开关变换器电路的谐波电平在低频段(频率范围0.15~30 MHz)表现为传导干扰,所以开关变换器电路中主要是传导干扰。传导干扰电流按照其流动路径可以分为两类:一类是差模干扰电流,另一类是共模干扰电流。 以图1所示的Boost电路为例对开关变换器电路的EMI进行分析,该电路整流时产生的脉动电流给电路系统引入了大量的谐波,虽然在整流输出侧有一个电解电容C能滤除一些谐波,但是由于电解电容有较大的等效串联电感和等效串联电阻,所以电解电容不可能完全吸收这些谐波电流,有相当一部分谐波电流要与电解电容的等效串联电感和等效串联电阻相互作用,形成差模电流Idm返回交流电源侧,差模电流的传播路径如图1中带箭头的实线所示。开关管的高频通断产生很高的d v/d t,它与功率管和散热器之间的寄生电容Cp相互作用形成共模电流Icm,此共模电流通过散热器到达地,地线的共模电流又通过寄生电容Cg1和Cg2耦合到交流侧的相线和中线,从而形成共模电流回路,共模电流的传播路径如图1中带箭头的虚线所示。 图1 开关变换器的传导EMI传播路径 在主电路参数完全相同的情况下,各种常见无桥Boost PFC电路中形成的差模电流是相同的。而不同的是因开关管的位置以及二极管加入等原因造成的共模电流。所以本文主要分析的的是各种电路结构中共模干扰的情况,各点的寄生电容大小以各点到输入侧零线之间的电位变化大小和频率变化快慢来代替分析[3]。 3 常见无桥Boost PFC电路介绍 最基本的无桥PFC主电路结构如图2所示,由两个快恢复二极管(D1、D2)、两个开关管(S1、S2)电感(L1、L2)等组

常见mos管及其应用讲解

电调常见的烧毁问题,可通过更换烧坏的MOS管来解决,如未买到相应电流的,可用更多大额定电流的代替。注意,焊接MOS管应防止静电。 TO-220 TO-252 TO-3

附SO-8(贴片8脚)封装MOS管IRF7805Z的引脚图。 上图中有小圆点的为1脚 注:下表按电流降序排列(如有未列出的,可回帖,我尽量补充) 封装形式极性型号电流(A)耐压(V)导通电阻(mΩ) SO-8N型SI43362230 4.2 SO-8N型IRF78312130 3.6

SO-8N型IRF78221830 SO-8N型IRF78361730 5.7 SO-8N型IRF81131730 5.6 SO-8N型SI440417308 SO-8N型FDS668816306 SO-8N型IRF7805Z1630 6.8 SO-8N型IRF747714308.5 SO-8N型IRF872114308.5 SO-8N型IRF78051330 SO-8N型IRF7805Q133011 SO-8N型IRF7413123018 SO-8N型TPC800312306 SO-8N型IRF7477113020 SO-8N型IRF7811113012 SO-8N型IRF7466103015 SO-8N型SI4410103014 SO-8N型SI4420103010 SO-8N型A27009307.3 SO-8N型IRF78078.330 SO-8N型SI48127.33028 SO-8N型SI9410 6.93050 SO-8N型IRF731363029 SO-8P型SI440517307.5 SO-8P型STM4439A143018 SO-8P型FDS667913309 SO-8P型SI441113308 SO-8P型SI446312.32016 SO-8P型SI44071230 SO-8P型IRF7424113013.5 SO-8P型IRF7416103020 SO-8P型IRF7416Q103020 SO-8P型SI442593019 SO-8P型IRF74248.83022 SO-8P型SI443583020 SO-8P型SI4435DY83020 SO-8P型A271673011.3 SO-8P型IRF7406 5.83045 SO-8P型SI9435 5.33050 SO-8P型IRF7205 4.63070 TO-252N型FDD668884305 TO-3N型IRF1504010055 TO-220N型IRF370321030 2.8

MOS管驱动电路详解要点

MOS管驱动电路综述连载(一) 时间:2009-07-06 8756次阅读【网友评论2条我要评论】收藏 在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS 的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。 1、MOS管种类和结构 MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P 沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。 至于为什么不使用耗尽型的MOS管,不建议刨根问底。 对于这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。下面的介绍中,也多以NMOS为主。 MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。 在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。 2、MOS管导通特性 导通的意思是作为开关,相当于开关闭合。 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。 PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。 3、MOS开关管损失 不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率MOS管导通电阻一般在几十毫欧左右,几毫欧的也有。 MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越快,损失也越大。

相关文档