文档库 最新最全的文档下载
当前位置:文档库 › 开关电源变压器磁芯材料的选择 2019

开关电源变压器磁芯材料的选择 2019

开关电源变压器磁芯材料的选择 2019

开关电源变压器磁芯材料的选择

软磁铁氧体,由于其价格低、适应性能和高频性能好等特点,所以被广泛应用于开关电源中。

软磁铁氧体,常用的分为锰锌铁氧体和镍锌铁氧体两大系列,锰锌铁氧体的组成部分为Fe2O3,MnCO3,ZnO,它主要应用在1MHz以下的各类滤波器、电感器、变压器等,用途广泛。而镍锌铁氧体的组成部分为Fe2O3,NiO,ZnO等,主要用于1MHz以上的各种调感绕组、抗干扰磁珠、共模天线匹配器等。

在开关电源中应用最为广泛的是锰锌铁氧体磁芯,而且视其用途不同,材料选择也不同,用于电源输入的滤波器部分的磁芯多为高磁导率磁芯,其材料牌号多为R4K~R10K,即相对磁导率为4000~10000左右的铁氧体磁芯,而用于主变压器、输出滤波器等多为高饱和磁通密度的磁性材料,其中Bs为0.5T(即5000GS)左右。

CCM反激变压器设计

连续电流模式反激变压器的设计 Design of Flyback Transformer with Continuing Current Model 作者:深圳市核达中远通电源技术有限公司- 万必明 摘要:本文首先介绍了反激变换器(Flyback Converter)的工作原理,然后重点介绍一种连续电流模式反激变压器的设计方法以及多路输出各次级电流有效值的计算. 关键词:连续电流模式(不完全能量传递方式)、不连续电流模式(完全能量传递方式)、有效值、峰值. Keywords: Continuing Current Model、Discontinuing Current Model、virtual value 、peak value. 一.序言 反激式变换器以其电路结构简单,成本低廉而深受广大开发工程师的喜爱,它特别适合小功率电源以及各种电源适配器.但是反激式变换器的设计难点是变压器的设计,因为输入电压范围宽,特别是在低输入电压,满负载条件下变压器会工作在连续电流模式(CCM),而在高输入电压,轻负载条件下变压器又会工作在不连续电流模式(DCM);另外关于CCM模式反激变压器设计的论述文章极少,在大多数开关电源技术书籍的论述中, 反激变压器的设计均按完全能量传递方式(DCM模式)或临界模式来计算,但这样的设计并未真实反映反激变压器的实际工作情况,变压器的工作状态可能不是最佳.因此结合本人的实际调试经验和心得,讲述一下不完全能量传递方式(CCM) 反激变压器的设计.

二.反激式变换器(Flyback Converter)的工作原理 1).反激式变换器的电路结构如图一. 2).当开关管Q1导通时,其等效电路如图二(a)及在导通时初级电流连续时的波形,磁化曲线如图二(b). 图一 图二(a)

各种开关电源变压器各种高频变压器参数EEEEEEEIEI等等的参数

功率铁氧体磁芯 常用功率铁氧体材料牌号技术参数 EI型磁芯规格及参数

PQ型磁芯规格及参数 EE型磁芯规格及参数 EC、EER型磁芯规格及参数

1,磁芯向有效截面积:Ae 2,磁芯向有效磁路长度:le 3,相对幅值磁导率:μa 4,饱和磁通密度:Bs 1磁芯损耗:正弦波与矩形波比较 一般情况下,磁芯损耗曲线是按正弦波+/-交流(AC)激励绘制的,在标准的和正常的时候,是不提供极大值曲线的。涉及到开关电源电路设计的一个共同问题是正弦波和矩形波激励的磁芯损耗的关系。对于高电阻率的磁性材料如类似铁氧体,正弦波和矩形波产生的损耗几乎是相等的,但矩形波的损耗稍微小一些。材料中存在高的涡流损耗(如大 一般情况下,具有矩形波的磁芯损耗比具有正弦波的磁芯损耗低一些。但在元件存在铜损的情况下,这是不正确的。在变压器中,用矩形波激励时的铜损远远大于用正弦波激励时的铜损。高频元件的损耗在铜损方面显得更多,集肤效应损耗比矩形波激励磁芯的损耗给人们的印象更深刻。举个例子,在 20kHz、用17#美国线规导线的绕组时,矩形波激励的磁芯损耗几乎是正弦波激

励磁芯损耗的两倍。例如,对于许多开关电源来说,具有矩形波激励磁芯的 5V、20A和30A输出的电源,必须采用多股绞线或利兹(Litz)线绕制线圈,不能使用粗的单股导线。 2Q值曲线 所有磁性材料制造厂商公布的Q值曲线都是低损耗滤波器用材料的典型曲线。这些测试参数通常是用置于磁芯上的最适用的绕组完成的。对于罐形磁芯,Q值曲线指出了用作生成曲线时的绕组匝数和导线尺寸,导线是常用的利兹线,并且绕满在线圈骨架上。 对于钼坡莫合金磁粉芯同样是正确的。用最适合的绕组,并且导线绕满了磁芯窗口时测试,则Q值曲线是标准的。Q值曲线是在典型值为5高斯或更低的低交流(AC)激励电平下测量得出的。由于在磁通密度越高时磁芯的损耗越大,故人们警告,在滤波电感器工作在高磁通密度时,磁芯的Q值是较低的。3电感量、AL系数和磁导率 在正常情况下,磁芯制造厂商会发布电感器和滤波器磁芯的AL系数、电感量和磁导率等参数。这些AL的极限值建立在初始磁导率范围或者低磁通密度的基础上。对于测试AL系数,这是很重要的,测试AL系数是在低磁通密度下实施的。 某些质量管理引入检验部门,希望由他们用几匝绕组检查磁芯,并用不能控制频率或激励电压的数字电桥测试磁芯。几乎毫不例外,以几百高斯、若干

反激变压器绕制详解

反激式开关电源变压器的设计(小生我的办法,见笑) 反激式变压器是反激开关电源的核心,它决定了反激变换器一系列的重要参数,如占空比D,最大峰值电流,设计反激式变压器,就是要让反激式开关电源工作在一个合理的工作点上。这样可以让其的发热尽量小,对器件的磨损也尽量小。同样的芯片,同样的磁芯,若是变压器设计不合理,则整个开关电源的性能会有很大下降,如损耗会加大,最大输出功率也会有下降,下面我系统的说一下我算变压器的方法。 算变压器,就是要先选定一个工作点,在这个工作点上算,这个是最苛刻的一个点,这个点就是最低的交流输入电压,对应于最大的输出功率。下面我就来算了一个输入85V到265V,输出5V,2A 的电源,开关频率是100KHZ。 第一步就是选定原边感应电压VOR,这个值是由自己来设定的,这个值就决定 了电源的占空比。可能朋友们不理解什么是原边感应电压,是这样的,这要从下面看起,慢慢的来, 这是一个典型的单端反激式开关电源,大家再熟悉不过了,来分析一下一个工作周期,当开关管开通的时候,原边相当于一个电感,电感两端加上电压,其电流值不会突变,而线性的上升,有公式上升了的I=Vs*ton/L,这三项分别是原边输入电压,开关开通时间,和原边电感量.在开关管关断的时候,原边电感放电,电感电流又会下降,同样要尊守上面的公式定律,此时有下降了的I=VOR*toff/L,这三项分别是原边感应电压,即放电电压,开关管关断时间,和电感量.在经过一个周期后,原边电感电流的值会回到原来,不可能会变,所以,有VS*TON/L=VOR*TOFF/L,,上升了的,等于下降了的,懂吗,好懂吧,上式中可以用D来代替TON,用1-D来代替TOOF,移项可得,D=VOR/(VOR+VS)。此即是最大占空比了。比如说我设计的这个,我选定感应电压为80V,VS为90V ,则D=80/(*80+90)=0.47 第二步,确实原边电流波形的参数. 原边电流波形有三个参数,平均电流,有效值电流,峰值电流.,首先要知道原边电流的波形,原边电流的波形如下图所示,画的不好,但不要笑啊.这是一个梯形波横向表示时间,纵向表示电流大小,这个波形有三个值,一是平均值,二是有效值,三是其峰值,平均值就是把这个波形的面积再除以其时间.如下面那一条横线所示,首先要确定这个值,这个值是这样算的,电流平均值=输出功率/效率*VS,因为输出功率乘以效率就是输入功率,然后输入功率再除以输入电压

单端反激式开关电源磁芯尺寸和类型的选择

单端反激式开关电源磁芯尺寸和类型的选择字体大小:大|中|小2008-08-28 12:53 - 阅读:1655 - 评论:1 单端反激式开关电源磁芯尺寸和类型的选择徐丽红王佰营wbymcs51.blog.bokee .net A、InternationalRectifier 公司--56KHz 输出功率推荐磁芯型号 0---10WEFD15 SEF16 EF16 EPC17 EE19 EF(D)20 EPC25 EF(D)25 10-20WEE19 EPC19 EF(D)20 EE,EI22 EF(D)25 EPC25 20-30WEI25 EF(D)25

EPC25 EPC30 EF(D)30 ETD29 EER28(L) 30-50WEI28 EER28(L) ETD29 EF(D)30 EER35 50-70WEER28L ETD34 EER35 ETD39 70-100WETD34 EER35 ETD39 EER40 E21 摘自 InternationalRectifier,AN1018- “应用 IRIS40xx 系列单片集成开关 IC 开关电源的反激式变压器设计” B、ELYTON公司https://www.wendangku.net/doc/db13081517.html, 型号输出功率( W) <5 5-10 10-20 20-50 50-100 100-200 200-500 500-1K

EI EI12.5 EI16 EI19 EI25 EI40 -- EI50 EI60 EE EE13 EE16 EE19 EE25 EE40 EE42 EE55 EE65 EF EF12.6 EF16 EF20 EF25 EF30 EF32 EFD -- EFD12 EFD15 EFD20 EFD25 EFD30 EPC -- EPC13 EPC17 EPC19 EPC25 EPC30 EER EER9.5 EER11 EER14.5 EER28 EER35 EER42 EER49 -- ETD ETD29 ETD34 ETD44 ETD49 ETD54 -- EP EP10 EP13 EP17 EP20 -- RM RM4 RM5 RM6 RM10 RM12 POT POT1107 POT1408 POT1811 POT2213POT3019 POT3622 POT4229 -- PQ -- -- -- PQ2016 PQ2625 PQ3230 PQ3535 PQ4040 EC ---------------------------- -- EC35 EC41 EC70 摘自 PowerTransformers OFF-LINE Switch Mode APPLICATION NOTES

各大厂磁芯材对照表

各大厂材质对照表 SUPPLIERS MATERIALS ACME P4 P5 N2 N4 S3 A05 A07 A10 A12 A15( 开发 中) TDK PC40 PC50 DN40 HP5 H5B2/HS72 H5C2/HS10 H5C4 H5C3 NICERA NC-2H NC-3M NC-4Y NC-5Y NC-7 NC-10H EPCOS N67/N87 N49T57/N30N48 N30 T35/T37 T38 T42 T46 FERROXCUBE 3C85/3C90 3F3 3E28 3B7 3R1 3E4/3C11 3E25/3E27 3E5 3E6 3E7 DMEGC(东磁) DMR40 R5K R7K R10K TDG (天通) TP4 TL5 TL7 TL10 TOKIN B25/BH2 B40 4000H 5000H/5000B 7000H 12001H FDK(FUJI) 6H20 7H10 2H04/H24B 2H06 2H07 2H10 2H15B 2H15 MAGNETICS R K N J W H THOMSON F1 T6/T6A T4A/T4 MMG-NEOSID F5A F9C FT7/F57 F39 TOMITA 2F8/2G82H8 2H5 2F1 2E1/2G1 2E2/2E2B 2H2 2H1 KAWA TETSU MB3 MC1 MA-055 MA-07A MA-100 MA120 MA150 SAMWHA PL-7 PL-F1 SM43T SM-23T HS1 SM-50 SM-70S SM-100 SM-150 STEWARD 36 35 37 40 KRYSTINEL K82 K86 K87 HITACHI SB-9M SB-1M MQ40D GP-5 GP-9 GP-11/MQ10T MT10T MP15T MP10T FAIR-RITE 78 83 75 76 FERRITE INT’TSF-15 FERRONICS B T

反激式变压器的设计实例

反激式变压器的设计实例 尽管在buck变换器的设计中没有用到反激式变压器,但由于反激式变压器介于电感与变压器之间,为了帮助大家进一步搞清楚这个特殊的磁性元件,在此我们给出反激式变压器的设计,并作为设计范例。介绍的内容要比直流电感简单一些,但是很多方面是一致的。说明一下,这里设计的反激式变压器是有隔离的,而非隔离反激式电感的设计除了没有副边以外,其他的几乎相同。我们的设计要求为:直流输入电压为48V(为了简便起见,假设没有线电压波动),功率输出为10W,开关频率是250kHz,允许功率损耗0.2W(根据总的损耗,可以知道变换器的效率要求),因此变换器效率为98%(0.2W/10W=2%)。效率的大小与磁芯的尺寸有关,变压器体积越小,效率越低。 (隔离、断续模式的)反激式变压器原边设计时只需要用到四个参数:输出功率、开关频率、功耗、输入电压(设计非隔离反激式电感也只需这四个参数)。这里,我们还没有提到电感量,电感量由很多参数决定,在下面的内容中我们将会介绍它们之间的关系。 我们用UC3845芯片(8脚、中等价格)提供PWM信号,其最大占空比为45%,占空比的大小是根据变换器是工作在连续状态还是断续状态来确定的,稍后的章节中将介绍如何计算占空比,在这个例子中,我们选用断续模式。 我们再增加一项设计要求:就是变压器体积要尽量小,有一定的高度限制。我们将会看到,变压器的设计与电感的设计不完全相同,变压器通常可以选用多种不同的磁芯来实现相同的电气特性。在这个例子中,还要根据其他一些要求来选择磁芯,包括尺寸、成本等因素。 1 反激式变压器的主要方程 首先,我们做一些基本的准备工作。正如这一章一开始介绍的理论内容中所说的那样,当反激式变换器原边开关器件导通时,变压器原边绕组的作用相当于一个电感。电压加在原边电感上,开关导通期间,电流持续上升: 这里,DC是占空比,f是开关频率,T=1/f是开关周期,这个方程适用于电流断续模式反激式变压器,原边电流波形如图案5-17所示。

高频变压器设计时选择磁芯的两种方法

高频变压器设计时选择磁芯的两种方法 https://www.wendangku.net/doc/db13081517.html, 2003年04月28日 03:32 高频变压器设计时选择磁芯的两种方法 Two Method for Select Core in Design of High Freguency Transformers 在高频变压器设计时,首先遇到的问题,便是选择能够满足设计要求和使用要求的磁芯。 通常可以采取下面介绍的两种方法:面积乘积法和几何尺寸参数法。这两种方法的区别在于:面积乘积法是把导线的电流密度作为设计参数,几何尺寸参数法则是把绕组线圈的损耗,即铜损作为设计参数。 1 面积乘积法 这里讲的面积乘积。是指磁芯的可绕线的窗口面积和磁芯的截面积,这两个面积的乘积。 表示形式为WaAe,有些讲义和书本上简写为Ap,单位为 。 根据法拉第定律,我们有: 窗口面积利用情况有: KWα=NAw 变压器有初级、次级两个绕组。因此有: KWα=2NAw 或 0.5KWα=NAw 我们知道: Aw= 而电流有效值 I=Ip

得到以下关系式: 0.5KWα= 即: 于是就有如下式: 由于:EδIp=Pi 又有: Pi= 最后得到如下公式: 这个公式适用于单端变压器,如正激式和反激式。 δ<0.5,Bm-T,K-0.3~0.4,η-0.8~0.9,J-A/。推挽式的公式则为: 半桥式的公式则为: 这里的δ>0.5,例如0.8~0.9。 单端变压器如正激式和反激式:Bm=△B=Bs-Br。 双端变压器如推挽式、半桥式和桥式:Bm=2Bpk。 全桥式公式与推挽式相同,但δ>0.5,例如0.8~0.9。 在J=400A/,K=0.4,η=0.8,δ=0.4(单端变压器),δ=0.8(双端变压器)。公

磁芯材质对照表

ACME P4P41P42P43 P46P5P51P52 S3 TDK PC40PC44PC90PC95 PC50PC50NICERA NC-2H 2HM5 BM272M 5M EPCOS N67,N87N92N49N49FERROXCUBE 3C85,3C903C963C923C933F33F35 3R1 DMEGC DMR40DMR44DMR2KB DMR50TDG TP4TP4A TP4S TP5 TP5A TOKIN BH2BH1 B40FDK 6H207H10MAGNETICS P R K THOMSON F1TOMITA 2F8,2G8JFE(KAWTATETSU)MB3MB4MBT1 MC2 SAMWHA PL-5,PL-7PL-11PL-F1HS-1 ISU PM7PM11 BM15 PM12FM4 FM5HITACHI ML24D ML12D FAIR-RITE 7885 FERRITE INTˇTSF-7099TSF-7060 TSF-5099 KASCHKE K2008ISKRA 45G 55G 35G 75G ACME A041A043A05A07A10A101 A102 A121A151TDK DN45 DNW45 H5B H5B2H5C2H5C4H5C3NICERA NC-5Y NC-7NC-10H 10TB 12H 15H EPCOS T57N30T35/T37T38T38T42T46FERROXCUBE 3.00E+273E25/3E27 3.00E+05 3.00E+55 3.00E+06 3.00E+07DMEGC DMR4KDC DMR5K DMR7K DMR10K DMR12K DMR15K TDG TS5TS7TS10/TS10 A TH10TS13TS15TOKIN 5H 7H 10H 12H 15H FDK 2H062H07 2H102H15MAGNETICS J W H THOMSON T6,T6A T4A,T4NEOSID F-830F-860F-938F-942TOMITA 2F1 2.00E+01 2.00E+02 2H22H1JFE(KAWTATETSU)MA055MA070MA100 MA120 MA150SAMWHA SM50SM70S SM100SM150 STEWARD 36 46 353740KRVSTINEL K82K86K87HITACHI MQ53D MP70D MP10T MP15T FAIR-RITE 7576FERRITE INTˇTSF-3000 TSF-010K FERRONICS BE B T V KASCHKE K5000K10000K12000K15000ISKRA 19G 22G 12G 32G 52G ACME N10 N2N4 N42N43 TDK DN45 NICERA WT-10 2B EPCOS T57N48N45M33FERROXCUBE 3.00E+283B7 3B46,3S5 3D3 DMEGC DMR4KDC TDG TH2SAMWHA SM43T SM23T SM8T ISU BM30 STEWARD 36 HITACHI MQ25D 凝?

反激变压器计算实例

技术要求:输入电压Vin:90-253Vac 输出电压Vo:27、6V 输出电流Io:6A 输出功率Po:166W 效率η:0、85 输入功率Pin:195W 一、输入滤波电容计算过程: 上图为整流后滤波电容上电压波形,在最低输入电压下,如果我们想在滤波电容上得到得电压Vdc为115V,则从上图可以得到: Vpk=90*1.414=127V Vmin=Vdc—(Vpk—Vdc)=103V 将电源模块等效为一个电阻负载得话,相当于在T3时间内电容对恒定功率负载进行放电,电容电压降低(Vpk—Vmin)V。 Idc*T3=C*△V 其中: △V=Vpk—Vmin=127-103=24V 关键部分在T3得计算,T3=t1+t2,t1为半个波头,时间比较好算,对于50Hz得交流来说,t 1=5mS,然后就就是计算t2,其实t2也很好计算,我们知道交流输入电压得公式为 Vx=Vpksinθx,根据已知条件,Vx=103V,Vpk=127V,可以得到θx=54度,所以t2=54*10ms/180=3mS, T3=t1+t2=8mS。 C=1.7*8/24=0、57mF=570uF 二、变压器得设计过程 变压器得设计分别按照DCM、CCM、QR两种方式进行计算,其实QR也就是DCM得一种,不同得地方在于QR得工作频率就是随着输入电压输出功率得变化而变化得。 对于变压器磁芯得选择,比较常用得方法就就是AP法,但经过多次具体设计及根据公司常用型号结合,一般可以直接选择磁芯,象这个功率等级得反激,选择PQ3535得磁芯即可、磁芯得参数如下:AE=190mm2,AL=4300nH,Bmax≥0。32T 1)DCM变压器设计过程: 开关频率选择80K,最大占空比选择0.48,全范围DCM,则在最低输入电压Vdc下,占空比最大,电路工作在BCM状态,根据伏秒平衡,可以得到以下公式, Vdc*Dmax=Vor*(1-Dmax),

开关电源磁芯主要参数

第5章开关电源磁芯主要参数 5.1 概述 5.1.1 在开关电源中磁性元件的作用 这里讨论的磁性元件是指绕组和磁心。绕组可以是一个绕组,也可以是两个或多个绕组。它是储能、转换和/或隔离所必备的元件,常把它作为变压器或电感器使用。 作为变压器用,其作用是:电气隔离;变比不同,达到电压升、降;大功率整流副边相移不同,有利于纹波系数减小;磁耦合传送能量;测量电压、电流。 作为电感器用,其作用是:储能、平波、滤波;抑制尖峰电压或电流,保护易受电压、电流损坏的电子元件;与电容器构成谐振,产生方向交变的电压或电流。 5.1.2 掌握磁性元件对设计的重要意义 磁性元件是开关变换器中必备的元件,但又不易透彻掌握其工作情况(包括磁材料特性的非线性,特性与温度、频率、气隙的依赖性和不易测量性)。在选用磁性元件时,不像电子元件可以有现成品选择。为何磁性元件绝大多数都要自行设计呢?主要是变压器和电感器涉及的参数太多,例如:电压、电流、频率、温度、能量、电感量、变比、漏电感、磁材料参数、铜损耗、铁损耗等等。磁材料参数测量困难,也增加了人们的困惑感。就以Magnetics公司生产的其中一种MPP铁心材料来说,它有10种μ值,26种尺寸,能在5种温升限额下稳定工作。这样,便有10×26×5= 1300种组合,再加上前述电压、电流等电参数不同额定值的组合,将有不计其数的规格,厂家为用户备好现货是不可能的。果真有现货供应,介绍磁元件的特性、参数、使用条件的数据会非常繁琐,也将使挑选者无从下手。因此,绝大多数磁元件要自行设计或提供参数委托设计、加工。 本章将介绍磁元件的一般特性,针对使用介绍设计方法。结合线性的具体形式的设计方法,以后还将进一步的介绍。 5.1.3 磁性材料基本特性的描述 磁性材料的特性首先用B-H平面上的一条磁化曲线来描述。以μ表示B/H,数学上称为斜率,表示为tanθ=B/h;电工上称为磁导率,如图5.1所示。由于整条曲线多处弯曲,因此有多个μ值称呼。另外,从不同角度考查也有不同称呼。

电感和反激变压器设计

电感和反激变压器设计 滤波电感,升压电感和反激变压器都是“功率电感”家族的成员。它们的功能是从源取得能量,存储在磁场中,然后将这些能量(减去损耗)传输到负载。反激变压器实际上是一个多绕组的耦合电感。与上一章变压器不同,变压器不希望存储能量,而反激变压器首先要存储能量,再将磁能转化为电能传输出去。耦合滤波电感不同于反激变压器,反激变压器先储能后释放;而耦合滤波电感同时储能,同时释放。 8.1 应用场合 应用电路拓扑、工作频率以及纹波电流等不同,电感设计考虑的因素也不同。用于开关电源(参看图8-1)的电感有: ①单线圈电感-输出滤波电感(Buck )、升压电感(Boost )、反激电感(Buck-Boost )和输入滤波电感。 ②多线圈电感-耦合输出滤波电感、反激变压器。 ③EMI 共模滤波电感。电路中,电感有两个工作模式(图8-2): ①电感电流断续模式-瞬时安匝(在所有线圈中)在每个开关周期内有一部分时间停留在零状态。②电感电流连续模式-在一个周期内,电感电流尽管可以过零(如倍流电路中滤波电感),电感的安匝(磁势) 没有停留在零的时间。 在电流连续模式中,纹波电流通常非常小(同步整流除外), 线圈交流损耗和磁芯交流损耗一般不重要,尽可能选择较大的磁 通密度以便减少电感的体积,饱和是限制选择磁通密度大小的主 要因素。但在电流断续模式中交流损耗占主导地位,磁芯和线圈 设计与第7章正激变压器相似,主要考虑的是磁芯损耗和线圈的交直流损耗引起的温升和对效率的影响。 8.1.1输出滤波电感(Buck ) 正激类输出滤波电感和Buck 变换器输出电感(图8-1(a))相同, 一般工作在电流连续模式(图8-2(b))。电感量为 L U T I U T kI U D D kfI o of o of o i o ≥== ??212() (8-1) 式中 U i -电感输入端电压(V); D -T on /T -占空度; U o =DU i -输出电压(V); f =1/T -开关频率(Hz ); I o -输出电流(A ); T on , T of =T - T on -输入电压的高电平(导通)时间和低电平(截止)时间。k =ΔI /2I o 。 允许的纹波电流ΔI 越小,即k 越小,电感L 越大,电流纹波越小,可以选择较小的滤波电容; U o U o U o o (d)反激变压器 图8-1 电感应用 I (b)连续模式图8-2 电感电流模式

经验谈:写给新手的反激变压器KRP详解

经验谈:写给新手的反激变压器KRP详解

————————————————————————————————作者: ————————————————————————————————日期: ?

反激变压器的优点自是不必多说,很多新手都通过反激电源的制作来熟悉电源设计,目前网络上关于反激变压器的学习资料五花八门且比较零散,本文就将对反激变压器的设计进行从头到尾的梳理,将零散的知识进行整合,并配上相应的分析,帮助大家尽快掌握。 今天将进行一个较为完整的分析,KRP作为反激变压器中的灵魂参数,该如何对其进行取舍,值得我们深入探讨。 首先先对文章当中的将要提到的一些名词进行解释。 工作模式:即电感电流工作状态,一般分DCM、CCM、BCM三种(定性分析)。 KRP:描述电感电流工作状态的一个量(定量计算); KRP定义: KRP的意义:只要原边电感电流处于连续状态,都称之为CCM模式。而深度CCM模式(较小纹波电流)与浅度CCM模式(较大纹波电流)相比较,电感量相差好几倍,而浅度CCM模式与BCM、DCM模式的各种性能、特点可能更为相似。显然需要一个合适的参数来描述所有电感电流的工作状态。通过设置KRP值,可以把变压器的电感电流状态与磁性材料、环路特性等紧密联系起来。我们也可以更加合理的评估产品设计方案,例如: KRP较大时(特别是DCM模式),磁芯损耗一般较大(NP较小),气隙较小(无气隙要求,仅满足LP值),LP较小,漏感会较大,纹波电流较大(电流有效值较高);

KRP较小时(特别是深度CCM模式),磁芯损耗一般较小(NP较大),气隙较大(有气隙要求,平衡直流磁通),LP较大,漏感会较小,纹波电流较小(电流有效值较低); 注:KRP较小时,气隙也是可以做到较小,但这需要更大的磁芯和技巧; KRP较大时,磁芯损耗也是可以做的较小,但这同样需要更大的磁芯和技巧; 这里说一点题外话,大部分人通常认为,相同磁芯、开关频率,DMAX,DCM模式比CCM 模式下的输出功率更大;其实这是不完全对的(至少不符合实际,因为需要限制DMAX,导致空载容易异常),原因在于DCM模式下磁芯损耗会超出你的想象(电应力也会如此);DCM模式下,如果想大幅度降低磁芯损耗,唯一的方法是增大NP,而过大的NP会与LP形成现实冲突(DCM模式下,LP一般较小),造成磁芯气隙超出你的想象(漏感也会如此);有没有方法解决这种现实矛盾?答案应该是肯定的,即选择合适的磁芯结构,如长宽比小且AE大的磁芯(PQ、POT系列),或许会比长宽比大且AE小的磁芯(EER、EEL系列)更加有优势。(补充:在DCM模式下,如果限制DMAX,则会比CCM模式下输出更大的功率) KRP较大时,增大DMAX可以在一定程度上降低原边的纹波电流及有效电流值,但是次级的电流应力会更加恶劣,这种方法(增大/减小DMAX)只适合平衡初次级的电压、电流应力,应该不是一种很好的设计手段。 KRP较大时,空载启动困难,特别是低压大电流输出,且空载无跳频(宽范围AC输入时尤其如此,如3.3V10A,特别是超低压输入); KRP较小时,开关损耗较大,特别是高压小电流输出,且开关频率较高(窄范围AC输入时尤其如此,如100V0.5A,特别是超高压输入); 注:非低压大电流产品(如12V5A),KRP较大时,DMAX不能设计的过小,否则空载也会启动困难,且空载无跳频(宽范围AC输入时尤其如此); 超低压输入产品(如12V输入),KRP应该较小,且开关频率也不能过高,否则LP过小(漏感过大)无法正常工作(或者效率极低)。 KRP较大时,动态响应较快,环路补偿比较容易(特别是采用电流模式控制); KRP较小时,动态响应较慢,环路补偿相对困难(特别是采用电压模式控制); KRP较大时,电感电流斜率较急,CS采样端对噪声影响不明显;

开关电源磁芯尺寸功率等参数

开关电源磁芯尺寸功率等参数

————————————————————————————————作者:————————————————————————————————日期:

开关电源磁芯尺寸功率等参数 MnZn 功率铁氧体 EPC功率磁芯 特点:具有热阻小、衰耗小、功率大、工作频率宽、重量 轻、结构合理、易表面贴装、屏蔽效果好等优点,但散热 性能稍差。 用途:广泛应用于体积小而功率大且有屏蔽和电磁兼容要 求的变压器,如精密仪器、程控交换机模块电源、导航设 备等。 EPC型功率磁芯尺寸规格 磁芯型号Type 尺寸Dimensions(mm) A B C D Emin F G Hmin EPC10/8 10.20±0.20 4.05±0.30 3.40±0.20 5.00±0.20 7.60 2.65±0.20 1.90±0.20 5.30 EPC13/13 13.30±0.30 6.60±0.30 4.60±0.20 5.60±0.20 10.50 4.50±0.30 2.05±0.20 8.30 EPC17/17 17.60±0.50 8.55±0.30 6.00±0.30 7.70±0.30 14.30 6.05±0.30 2.80±0.20 11.50 EPC19/20 19.60±0.50 9.75±0.30 6.00±0.30 8.50±0.30 15.80 7.25±0.30 2.50±0.20 13.10 EPC25/25 25.10±0.50 12.50±0.30 8.00±0.30 11.50±0.30 20.65 9.00±0.30 4.00±0.20 17.00 EPC27/32 27.10±0.50 16.00±0.30 8.00±0.30 13.00±0.30 21.60 12.00±0.30 4.00±0.20 18.50 EPC30/35 30.10±0.50 17.50±0.30 8.00±0.30 15.00±0.30 23.60 13.00±0.30 4.00±0.20 19.50 EPC39/39 39.00±0.50 19.60±0.30 15.60±0.30 18.00±0.30 30.70 14.00±0.30 10.00±0.30 24.50 EPC42/44 42.40±1.00 22.00±0.30 15.00±0.40 17.00±0.30 33.50 16.00±0.30 7.40±0.30 26.50

高频变压器设计时选择磁芯的两种方法

高频变压器设计时选择磁芯的两种方法 通常可以采取下面介绍的两种方法:面积乘积法和几何尺寸参数法。这两种方法的区别在于:面积乘积法是把导线的电流密度作为设计参数,几何尺寸参数法则是把绕组线圈的损耗,即铜损作为设计参数。 1 面积乘积法 这里讲的面积乘积。是指磁芯的可绕线的窗口面积和磁芯的截面积,这两个面积的乘积。 表示形式为WaAe,有些讲义和书本上简写为Ap,单位为 而电流有效值 I=Ip

即: 于是就有如下式: 由于:EδIp=Pi 又有:Pi=

双端变压器如推挽式、半桥式和桥式:Bm=2Bpk。 全桥式公式与推挽式相同,但δ>0.5,例如0.8~0.9。 在J=400A/ 。变压器有两个绕组 这里为初级绕组电阻,为次级绕组电阻。

每个绕组各占一半窗口面积,全部绕组线圈的铜损的公式: 公式简化: 变换两个参数的位置,公式变成: 初级安匝与次级安匝相等的关系,以及电流有效值同峰值的关系。 上式进一步演化成: 同理(见面积乘积法)有: 将两个式子代入,得出公式:

与面积乘积法的形式相一致,公式成为如下形式: 此公式适合各种电路形式。Bm取值同面积乘积法。 3 实际举例 单端反激式电路。输出功率Po=34W,输入最小直流电压Vi(min)=230V,输入电流峰值1.18A,占空比

EI33磁芯的WaAe=1.47。 由此可见,两种方法的结果,选EI33磁芯较合适。 EI33磁芯的Wa=1.24。下面核算一下,几个绕组是否绕得下。 初级绕组Ip=1.18A,Irms=1.18× 来源:网络更新时间:2008-11-6 10:42:27点击数:17 的导线,其最大直径为 0.51mm=0.051cm。占有窗口面积为Wa=65× 。采用Aw=0.1257 =0.0317

磁芯规格对照表

Dimensions (mm)Ap Ae Aw A L Le Ve Wt P CL 100kHz 200mT Pt 100kHz 幅寬mm 窗口面积mm 2 PIN A * B * C ( cm 4 ) ( mm 2 )( mm 2 )(nH/N 2) ( mm ) ( mm 3 ) ( g ) @100℃(W) (W) 可配合BOBBIN EC353C8535.3*17.3*9.5 1.374184.30163.002100.077.406530.038.0021.5 8H EC413C8541.6*19.5*11.6 2.5894121.00214.002700.089.3010800.060.0024.58H EC523C8552.2*24.2*13.4 5.5980180.00311.003600.0105.0018800.0112.0028.312H EC703C8571.7*34.5*16.417.8281279.00639.003900.0144.0040100.0254.0041.412/34H EE05PC40 5.25*2.65*1.950.0013 2.63 5.00285.012.6033.10.160.02 1.1 2.76-8H EE6.3PC40 6.1*2.85*7.950.0015 3.31 4.46405.012.2040.40.240.02 2.76H EE8PC408.3*4.0*3.60.00917.0013.05590.019.47139.00.700.06 1.9 4.78 5.36H EE10/11PC4010.2*5.5*4.750.028712.1023.70850.02 6.60302.0 1.500.16 6.612.28V EE13PC4013.0*6.0*6.150.05701 7.1033.351130.030.20517.0 2.700.2357.422.210V EE16PC4016*7.2*4.80.076519.2039.851140.035.00672.0 3.300.31 8.527.36-10V H EE19PC401 9.1*7.95*5.00.124323.0054.041250.039.40900.0 4.800.42933.16-8V H EE19/16PC4019.29*8.1*4.750.119122.4053.151350.039.10882.0 4.800.41933.16-8V H EE20/20/5PC4020.15*10*5.10.119131.0050.701460.043.001340.07.500.51EE22PC4022*9.35*5.750.119141.0038.792180.039.401610.08.800.618.45208 V EE2329S PC4023*14.7*6 0.119135.80122.001250.064.902320.012.00 1.16EE25/19PC4025.4*9.46*6.290.119140.0078.202000.048.701940.09.100.99.842.5EE25.4PC4025.4*9.66*6.350.119140.3078.732000.048.701963.010.000.9EE2825PC4028*12.75*10.60.119186.9098.103300.057.705010.026.00 2.519.639.410V EE30 PC4030*13.15*10.70.1191109.0073.354690.057.706310.032.00 2.913.743.210-12V EE30/30/7PC4030.1*15*7.050.119159.70124.872100.066.904000.022.00 1.51EE3528PC4034.6*14.3*9.30.119184.80158.002600.069.705910.029.00 2.9615.788.712V EE40PC4040*17*10.70.1191127.00173.234150.077.009810.050.00 4.217.3 108 12 V EE4133PC4041.5*17*12.70.1191157.00180.004200.079.0012470.064.00 6.25EE42/21/15PC4042*21.2*150.1191178.00278.003800.097.9019510.088.008.8EE42/21/20PC4042*21.2*20 0.1191235.00275.005000.097.8023000.0116.0011.6EE47/39PC4047.12*19.63*15.620.1191242.00196.406660.090.6021930.0108.009.7EE50 PC4050*21.3*14.60.1191226.00253.736110.095.8021600.0116.009.421.317012V EE55/55/21PC4055.15*27.5*20.70.1191354.00386.347100.0123.0043700.0234.0011.0(150MT) EE57/47PC4056.57*23.6*18.80.1191344.00282.368530.0102.0035100.0190.008.5EE60PC4060*22.3*15.60.1191247.00399.025670.0110.0027100.0135.0012.523.829412V EE50.3 PC4050.3*25.6*6.10.1191120.85152.642900.0104.9012676.068.00 5.8328.2596.0512H EE62.3/62/6PC4062.3*31*6.10.1191153.01198.223100.0125.7419240.0102.008.8533.85115.0912H EE65/32/27 PC40 65.15*32.5*27 0.1191 535.00 575.00 8000.0 147.0078700.0 399.00 5.9(100MT) EC EE CORE参数对照表 形狀 TYPE MATE-RIAL

如何选择磁芯

MAGNETICS :能提供最大的选择余地。 铁氧体磁芯:用于功率变压器和电感器的高频材料(10kHz - 2Mhz),用于电磁干扰滤波器、ISDN变压器和宽带变压器的高磁导率材料(高达15,000μ);以及用于电信应用的温度稳定材料。 磁粉芯:(钼坡莫合金、高磁通材料和铁硅铝(Kool Mμ?)):用于串联滤波器、输出扼流圈和反激变压器。 带绕磁芯:(带绕磁芯、切割 c 型磁芯、骨架磁芯和叠片式磁芯)用于大功率变压器、音频变压器、磁放大器、接地故障断路器和电流互感器。 频率范围内阻抗很高,所以可抑制高频开关电源产生的高频噪声。 开关电源会产生以下两类噪声:共模和差模。差模噪声(图1a)的传播途径和输入电流相同。共模噪声(1b)表现为彼此相等且同相的噪声,其传播途径经绕组与地线相连。 为抑制电磁干扰,典型滤波器应包含共模电感器、差模电感器和X及Y电容器。Y电容器和共模电感器用于衰减共模噪声。电感器对高频噪声显示高阻抗,并反射或吸收噪声,同时,电容器成为到地的低阻抗路径,使噪声从主电路中分流出去(图2)。为了实现以上功能,共模电感器必须在开关频率范围内提供合适的阻抗。 共模电感器由两组匝数相同的绕组构成。这两个绕组使每个绕组中的线路电流所产生的磁通大小相等,而相位相反。所以这两组绕组产生的磁通相互抵消使磁芯处于未偏置状态。差模电感器仅有一个绕组,磁芯需要承受全部线路电流,并且在工作状态下不能饱和。 所以共模电感器和差模电感器有很大差异。为防止磁芯饱和,差模电感器磁芯的有效磁导率必须低(间隙铁氧体或磁粉芯)。但是共模电感器可使用高磁导率材料,并可用较小的磁芯获得非常大的电感。 选择材料

磁芯参数理解

z变压器基础知识 1、变压器组成: 原边(初级primary side ) 绕组 副边绕组(次级secondary side ) 原边电感(励磁电感)‐‐magnetizing inductance 漏感‐‐‐leakage inductance 副边开路或者短路测量原边 电感分别得励磁电感和漏感 匝数比:K=Np/Ns=V1/V2 2、变压器的构成以及作用: 1)电气隔离 2)储能 3)变压 4)变流 ●高频变压器设计程序: 1.磁芯材料 2.磁芯结构 3.磁芯参数 4.线圈参数 5.组装结构 6.温升校核 1.磁芯材料 软磁铁氧体由于自身的特点在开关电源中应用很广泛。 其优点是电阻率高、交流涡流损耗小,价格便宜,易加 工成各种形状的磁芯。缺点是工作磁通密度低,磁导率 不高,磁致伸缩大,对温度变化比较敏感。选择哪一类 软磁铁氧体材料更能全面满足高频变压器的设计要求, 进行认真考虑,才可以使设计出来的变压器达到比较理 想的性能价格比。 2.磁芯结构 选择磁芯结构时考虑的因数有:降低漏磁和漏感, 增加线圈散热面积,有利于屏蔽,线圈绕线容易,装配 接线方便等。 漏磁和漏感与磁芯结构有直接关系。如果磁芯不需 要气隙,则尽可能采用封闭的环形和方框型结构磁芯。 3.磁芯参数: 磁芯参数设计中,要特别注意工作磁通密度不只是受磁化曲线限制,还要受损耗的限制,同时还与功率传送的工作方式有关。 磁通单方向变化时:ΔB=Bs‐Br,既受饱和磁通密度限制,又更主要是受损耗限制,(损耗引起温升,温升又会影响磁通密度)。工作磁通密度Bm=0.6~0.7ΔB 开气隙可以降低Br,以增大磁通密度变化值ΔB,开气隙后,励磁电流有所增加,但是可以减小磁芯体积。对于磁通双向工作而言: 最大的工作磁通密度Bm,ΔB=2Bm。在双方向变化工作模式时,还要注意由于各种原因造成励磁的正负变化的伏秒面积不相等,而出现直流偏磁问题。可以在磁芯中加一个小气隙,或者在电路设计时加隔直流电容。 4.线圈参数: 线圈参数包括:匝数,导线截面(直径),导线形式,绕组排列和绝缘安排。 导线截面(直径)决定于绕组的电流密度。通常取J为2.5~4A/mm2。导线直径的选择还要考虑趋肤效应。如必要,还要经过变压器温升校核后进行必要的调整。 4.线圈参数: 一般用的绕组排列方式:原绕组靠近磁芯,副绕组反馈绕组逐渐向外排列。下面推荐两种绕组排列形式: 1)如果原绕组电压高(例如220V),副绕组电压低,可以采用副绕组靠近磁芯,接着绕反馈绕组,原绕组在最外层的绕组排列形式,这样有利于原绕组对磁芯的绝缘安排; 2)如果要增加原副绕组之间的耦合,可以采用一半原绕组靠近磁芯,接着绕反馈绕组和副绕组,最外层再绕一半原绕组的排列形式,这样有利于减小漏感。 5.组装结构:

相关文档