文档库 最新最全的文档下载
当前位置:文档库 › 石墨烯

石墨烯

石墨烯
石墨烯

课程:材料工程与导论

课程老师:方海升

石墨烯

黎明娟冶金091 200910203146

1.介绍

石墨烯是考虑到sp2的杂化的二维碳层的名称。它的扩展蜂窝网络是其他同素异形体的重要的基本组成部分;它可以堆叠形成三维的石墨,卷成一维碳纳米管,并包裹形成零维富勒烯。石墨烯中的远距离π-共轭表现出非凡的热、机械和电学特性,这早已成为许多理论研究的利益,并且最近成为令实验物理学家们激动的领域。

而后石墨的研究在一段时间包括的利用层面越来越少,当geim和同事于2004年在曼彻斯特大学首次从石墨中分离出石墨单层后,使这一领域发生了巨大的震动。这引发了利益的爆炸,部分原因是二维晶体一直被认为是在有限温度下热力学性质很不稳定的。利用分子束外延(MBE)成长的准二维薄膜由基板固定,这往往在生长上起着重要作用,并且对电学性质有明显的影响。与此相反,机械剥离技术是由曼彻斯特团队采用来从立体石墨中分离二维晶体的。得到只是受范德瓦尔斯力而被固定在基板上的单层和少层小片,且它们可以通过刻蚀掉基板而脱离束缚。这使诱导效应最小化,并允许科学家探测石墨的固有性质。

对单层石墨的分离实验首要的获得了大量有趣的物理现象。最初的研究包括室温下石墨的双极场效应,量子霍尔效应的观测,极高载流子迁移率的测量,和甚至前所未有的单分子吸附现象的检测。这些特性在在投入无数的设备后从可能的实现品中能产生巨大的利益。包括今后几代高速射频逻辑器件,导热导电的增强符合材料,传感器和显示器及太阳能电池的透明电极。

尽管有着巨大的利益和不断的器件物理实验的成功,石墨烯广泛被应用的现实依然未发生。这主要是由于稳定生产高质量样品的难度,特别是在可扩展的样品中的难度。实际上,挑战是加倍的,因为性能取决于含有的层数和晶格的整体质量两方面。到目前为止,原来的自上而下的机械剥离方法已经生产出了最高质量的样品,但是这种方法既不高通量又不高收益。为了只剥落一层石墨,在第一层和第二层之间的牵引范德瓦尔斯力必须得到精确地克服,而不影响之后的层。因此,其他的一些获得单层的方法已被发现,其中一些导致了有希望的概念型器件的产生。

替代机械剥离主要包括三个基本的方法:用化学作用剥离单层石墨并在溶液中稳定,从有机前体石墨上直接自下而上的生长方法和在衬底的原来位置上催化生长的方法。这些方法都有其缺点。对于化学衍生石墨烯,在溶液中完成剥离迄今还需要对二维晶格的全面改进,它还是会降低器件性能。另外自下而上的技术还没有产生大而均匀的单层。共有有机合成规模有限,因为大分子的不溶性和副反应随着分子重量的增加而发生愈加频繁。以衬底为基板生长单层的化学气相淀积法或者碳化硅削减都依赖于一个在狭窄的热力学钢丝上行走的能力。单层成核后,条件必须严格控制,以促进晶格生长而没有播种多余的第二层或是形成晶界。

尽管替代方法有了巨大的进步,玻璃纸胶带机械剥离法还能生产出可用的高质量石墨烯薄片。这一事实不应该,不管怎样,打击化学家的兴趣。相反的是,最近的从把石墨烯当作“物理玩具”到作为一个大的碳分子的认识过渡提供了新的前途。多年对碳纳米管、富勒烯和石墨的研究得到了无数修改sp2碳结构的途径,它们都无疑适用于功能化石墨烯的基面和它的活性边缘。这不仅是发挥石墨烯的固有特性的技术,还要带来新的特性。

我们将从材料化学的立场点来讨论石墨烯领域。我们将在一段简短的关于主题的历史之后,讨论自从2004年以来无论在生产石墨烯还是器件实现方面取得的令人振奋的进展。

2石墨烯简史

为了了解石墨烯的研究轨迹,认为石墨烯只是简单的很少的有限层石墨是很有用的。由此看来,蜂窝碳的非凡特性不是真正的新特性。储量丰富和自然生成,石墨被称为石墨矿产近500年。即使在中世纪,由于它的分层形态和相邻层之间弱的分散力,被用来作标记的工具,很像我们今天以同样的方式把它用于铅笔石墨。最近,与六方氮化硼和二硫化钼的昂贵相比,具有相同的特性和相似结构的石墨成为一种作为干燥润滑剂使用的理想材料。高的平面电导率(~104Ω-1cm-1)和导热率(~3000W/mK)使石墨被用于电极和作为工业用高炉中的加热元件成为可能。拥有高的六边形网状机械刚度(1060Pa)也使它被用于碳纤维增强复合材料。这些以及其他用途带来了全世界每年超过100万吨的石墨需求。对石墨材料各向异性的研究继续吸引着科学家和技术专家。每个碳原子上的S,Px和Py原子轨道杂化形成强大的SP2共价键,从而形成120o的C-C-C键角和熟悉的鸡肉丝般的石墨层。每个碳原子上剩下的Pz轨道和与它相邻的其他三个碳的重叠形成一个充满π轨道的带——价带,和一个空π*轨道带——导带。当每个碳上四个电子中的三个形成σ(单)键时,第四个电子和与之相邻的电子形成了一个π键的三分之一,在石墨中形成了一又三分之一的碳碳键序。由于没有在c方向上的化学键,平面外的相互作用极其微弱。这包括了充电和热载体的传输,从而导致了平面外的电导率和热导率都低于平面内模型的103倍还多。

2.1石墨烯的化学性质

石墨拥有丰富的化学性质,它在参与化学反应时,不仅可以作为失去电子的主体(施主)也可以作为接受的一方(受主)。正是它的电学结构直接造成了这个结果,同时也导致了它的电子亲和力和4.6ev的电离势。

大量的关于石墨的实验集中在基面间额外化学物质的插入。Shaffault记载的第一次使用钾肥的化合物注入可以追溯到1841年。石墨层间化合物GICs)似乎是唯一的分层充分排列的化合物,能表现出“层”,其中相邻插入物间的石墨层数在可控制的方式内存在差异。石墨级是指夹层中相邻平面间石墨层的数量。层间距可以从天然石墨的0.34纳米(3.4?)增加到一些GICs的1nm,进一步放大了许多性能的各向异性。GICs中增加的层间距也意味着相邻层间范德华力的巨大减弱,这让我们想到单层石墨的剥离的可能途径。我们的团队在2003年尝试过用钾化物的插入物与各种溶液如醇类剧烈反应,但是只产生了30层厚度的亚稳薄片,它在高功率超声作用下有滚动的趋势。层间距可以通过热冲击进一步增大,从而产生“扩展”的石墨,这已作为一种新技术,包括戴坐的纳米带合成开发,的起始原料。

关于石墨的实验的第二个重点是碳的替代元素和其他元素的替代参杂。这包括在伯克利的Bartlett和同事的工作,分别用硼和氮替代碳,得到p型和n型的石墨。考虑到单层石墨烯的化学气相淀积法最新的进展,这些工作几乎肯定会被视为石墨烯为基础的电子器件中控制电学行为的开关的替代,或者形成只是石墨烯制的p-n结。

谈论几点关于碳纳米管的化学方面的进展也很重要。其中最重要的意见是在不同晶向上化学活性的不同(锯齿型或扶手椅型)。这些知识应该直接转化于“展开”的或者是“平铺的”平面石墨烯模型上。无数的技术已经被开发出来,来选择性地修改无论是碳纳米管的侧壁还是边沿。这些反应是重要的期待,因为它们做出了对石墨烯基面和边缘的修正。事实上,最近伯克利的Zettl和其他人把原位投射电镜用于石墨烯锯齿形边缘的反应研究。

3.单层时的情况

有时研究人员用分层化合物的机械剥离来生产薄的样品。1999年,Ruoff的团队提出了一个用原子力显微镜作提示操作小块样品,刻蚀其成为高定向热解石墨等离子体。当时观察到的最薄的片也是超过200nm厚,相当于600层石墨烯。哥伦比亚大学的Kim的团队后来用

在SO2上转移石墨块到无针尖悬臂的方法改进了方法,使薄片厚度下降到10nm即30层厚。薄晶体上制成的电气测量预示着财富工作的来临。作为早期致力于石墨烯的团队,东京的Emoki的团队曾在2001年使用1600度的高温把HOPG顶上的纳米钻石转化为纳米级的石墨烯。

然而这些优雅的方法生产出了薄的样品,这是一个如此简单的方法,它直接导致了2004年Geim领导的曼彻斯特团队完成了单层石墨烯的剥离。其最基本的形式,“剥皮”的方法即利用普通的玻璃胶带不断地粘掉石墨片的薄层。胶带是最终压向衬底来积累一个样品。虽然胶带上的薄片比一层石墨烯要厚很多,当胶带撕掉时,对于基板的范德华吸引力会分层在一层石墨层上。这个方法需要极大的耐心,因为没有经验的科学家提出的沉积物往往是在一堆厚片中寻找单层石墨,这往往也是极难的。通过实践,技术可以实现大小超过100um的高品质的晶体。

也许第一次分离单层石墨烯最重要的部分是有能力在一些容易识别的模型中发现一个原子薄样本。排除直接目视观察,石墨烯的光吸收一直仅为2.3%。为了模拟单片,曼彻斯特团队利用Si上特别选取的SiO2(300nm)的干涉效应来加强白光照明下的视觉对比。尽管这看似是一个简单的想法,但这确实是一个重大的进步且为这一领域的进步做出了巨大的贡献.团队从此适应了在各种基板上和在非白光条件下图形化石墨烯的相同效应。

3.1石墨烯薄片特征的描述

随着2D晶体的引入,实验家们争先恐后地去验证理论早就预测的结果。在他们这样做之前,技术需要为积片的特征而发展。光学显微镜使用的干涉效应是一个很好的确定候选薄片的方法,但它无法提供确凿的证据表明给定片是单层、双层或者多层。这是一个重要的问题,因为石墨烯的一些更有趣的性质依赖于晶体厚度。最明显的例子是电子能带结构。单层石墨烯是一种零带隙半导体或半金属,其中最高占据分子轨道(HOMO)在一个单一的狄拉克点上与最低未占据分子轨道(LUMO)相接。对于较厚的片,多层的堆叠导致它们的波函数的重叠和整体特性趋近去金属。为配合理论观察,对于已给样品的层数的可靠识别成为当务之急。

3.1.1扫描探针显微镜

扫描探针显微镜也许是验证微晶厚度的最明智的选择。这种方法比较慢,但0.34纳米(3.4?)的每连续层台阶的高度完全在现代院子力显微镜的检测限内(AFMs)。由于绝缘基板和半金属石墨之间的小的吸引力/排斥力的差别,解决衬底-石墨烯高度的剖面图很难。这个问题是由周围条件中石墨烯上的一薄层水的优先吸附加剧的。有了这些复杂情况,关于衬底-石墨烯高度的扫描探针显微镜剖面图的论文一般单层介于0.6至1.0纳米。石墨烯的折边一般会为原子力显微镜测量厚度提供更可靠和精确的数据,因为在不同步骤的测量位置材料没有多大的变化。这是这样的折叠使曼彻斯特团队确认了原始报告中单层台阶的高度~0.4nm。虽然看似不可能,但折叠在机械玻璃时频繁反生,因为薄板与它本身之间的范德华吸引力是相当大的,有时甚至是加倍的,这提供了一个能量最低值。

扫描隧道显微镜被用于石墨的电学图形的观察已经很久了。在这些实验中,由于石墨是按AB堆积,六元环中只有三个可见。在这种排列下,电子密度是相当高的:3个R-碳(那些在下面一层被遮住的碳),因此,他们是唯一的在STM下可见的。这是相对于什么是对单层石墨烯的预期,即六个碳原子是完全等价的,因此他们也是以相同的强度出现。这确实已经被哥伦比亚大学的Flynn和其他人通过超真空扫面隧道显微镜成像证明了。他们的测量也给了机械剥离的高品质晶体一个证据,表明几乎没有超过十纳米的缺陷。

3.1.2拉曼光谱

而石墨烯的层状结构特性,非常适合用扫描探针显微镜对其研究,样品制备时间和衬底要求意味着其他的能可靠地确定高通量试样的实例厚度的方法被迫切需要。归根结底,这不是一个直接形状测量的技术,但是拉曼光谱的替代作为了探测机械剥离的薄片厚度的最有效

的方法。尽管看到的不多,但这有很大作用,因为石墨和石墨烯的形状直接反映在层层堆叠的电子结构的变化。对拉曼光谱逐步变化的观察可以让我们像指纹一样来推断出层数(根据甄别长度)。

石墨和石墨烯的拉曼光谱的主要特征是~1584cm-1的G带和~2700cm-1点处的G’带。G带是E2g的振动模型,G’带是第二阶双声子模型。第三个特点,在~1350cm-1处的D带,不是纯净石墨烯的拉曼活跃带,但是可以观察到石墨烯边缘或是高缺陷密度的样品的对称性被破坏。是位置的变化和G带及G’带的相对峰值高度借以显示出给定片目前的层数的。单层石墨烯的G峰的位置比原来石墨块的高3-5cm-1,而其强度却大致相同。G峰表明了在层数下降时,形状和强度的显著变化。在原来的石墨块上,G’带是由两部分组成,它们是强度分别为G峰处的1/4和1/2的低拐点和高拐点。对于单层石墨烯,G带在较低拐点是一个单一的尖峰,具有的强度为G峰处的4倍。这很适合这一趋势,终于使科学家们能可靠地确认机械剥离薄片的身份。

4.削薄的石墨烯制成的特殊器件

4.1高速电子

碳材料具有较好的导电性、宽的电位窗以及对许多氧化还原反应较高的电催化活性等特性,已经被广泛地用于电化学研究中。碳纳米材料同时结合了碳材料和纳米材料的特点, 已经被广泛用于修饰电极的制备,如 CNTs、介孔碳等都被电极的制作材料。石墨烯具有良好的导电性能,因而对一些特定电对及底物具有较高的电催化性能, 并且其具有大的比表面积和生物相容性,可用于生物蛋白质或酶等生物大分子的固定及特定生物电化学传感器的制作, 因而已引起了电化学工作者的高度关注.Sampath 等把剥离的石墨烯氧化物悬浮液涂覆到玻碳(GC)和金(Au)电极表面,分别形成了石墨烯氧化物修饰的GC和Au电极,并将这些修饰电极用于研究一些典型氧化还原电对如Fe(CN)抗坏血酸(AA)、多巴胺(DA)等的电化学反应特性.随后,多个研究组运用类似的方法制备了石墨烯修饰电极,并研究了多个常见的氧化还原电对

H2O2及 NADH 等)在石墨烯修饰电极表面的电化学反应特性。

太阳能电池:

除了显示出作为超级电容器、锂离子电池和燃料电池电极材料的巨大潜力外,石墨烯在太阳能电池应用方面也展现出独特的优势。铟锡氧化物(ITO)由于其高的电导率和光透射率已被广泛用作太阳能电池的电极材料,但由于铟资源稀缺,人们急需要寻找一些替代品来代替 ITO。石墨烯具有良好的透光性和导电性,很有潜力成为ITO的替代材料。

利用石墨烯制作透明的导电膜并将其应用于太阳电池中也成为人们研究的热点。Becerril 等把石墨烯氧化物旋涂到石英表面,对其进行热还原处理后, 电导率为 102S·cm-1, 并且在400-1800 nm 波长范围内透光率可达80%,表明该材料可用作太阳能电池的电极. Wang 等利用热膨胀石墨氧化物作为原料,对其进行热还原处理后得到的石墨烯可制作成透明导电膜,厚度约为 10nm,电导率为 550S·cm-1,在1000-3000nm的波长范围内透光率达70%,应用于染料敏化太阳电池中,取得了较好的结果。Liu等[130]首次利用功能化的石墨烯作为光电子器件的电子受体材料, 当聚(3鄄辛基噻吩)(P3OT)和聚(3鄄己基噻吩)(P3HT)作为给体材料时, 石墨烯和 P3OT/P3HT的相互作用可以使该复合物很好地作为太阳能电池电极的活性层(图 7), 该有机太阳能电池的开路电流密度为 4.0 mA·cm-2,开路电压为0.72V,光转化率达到1.1%。该课题组还用溶液法制备了石墨烯透明导电膜[131],将其作为有机太阳电池的阳极,由于使用的石墨烯未经过有效还原, 所以电阻较大,导致得到的太阳电池的开路电流及填充因子不及氧化铟, 如果可以降低石墨烯膜的电阻,得到的结果可能会更好。Li等[132]对石墨采用剥离鄄嵌入鄄膨胀的方法,成功制备了高质量的石墨烯,其电阻为通过以氧化石墨为原料制备的石墨烯的1%,并以DMF为溶剂,成功制备了LB膜,这种透明导电膜也成为应用于太阳能电池的潜在材料。

单分子测试:

石墨烯的一些重要特性使其在传感器的制作及应用方面也有很好的发展前景,如石墨烯独特的二维层状结构使其有大的比表面积, 而这是制作高灵敏度传感器的必要因素,事实上这也是其它纳米结构材料用作传感器制作的重要原因;石墨烯用作传感器的另一个重要原因是其独特的电子结构,某些气体分子的吸附能诱导石墨烯的电子结构发生变化,从而使其导电性能快速地发生很大的变化,如当NH3分子在石墨烯表面发生物理吸附后, NH3分子能够提供电子给石墨烯,形成n鄄型掺杂的石墨烯;而吸附H2O和NO2等分子后,它们能从石墨烯接受电子,导致形成p鄄型掺杂的石墨烯。Geim等首次制备了石墨烯气体传感器,当气体分子吸附到石墨烯表面作为电子给体和受体时,石墨烯的电导率会发生改变。研究结果表明,当NO2和H2O吸附到石墨烯表面时,其作为电子受体能够有效地增加石墨烯的导电性,而NH3和CO 分子吸附到石墨烯表面时是作为电子给体的,石墨烯的导电率会减小,当把吸附有气体的石墨烯在150益下真空退火时,导电率将会恢复,利用这个原理可以实现对气体单分子(NO2、NH3、H2O和CO等)的检测。这些研究成果为石墨烯用于气体传感器的研究掀开了新的一页。但是,仍然存在一些问题限制了这类传感器的实际应用,最主要的问题是这些传感器。缺乏选择性,而基于CNTs的传感器也有类似的缺点,对CNTs的端口或者侧壁进行化学修饰可以在一定程度上克服这一缺点,不仅可以使 CNTs传感器对不同的气体有不同的响应,也可以使该传感器检测一些生物分子,可以预计该方法也适用于石墨烯传感器的研究及应用。

石墨烯的制备与表征综述

氧化石墨烯还原的评价标准 摘要还原氧化石墨烯(RGO)是一种 有趣的有潜力的能广泛应用的纳米 材料。虽然我们花了相当大的努力 一直致力于开发还原方法,但它仍然 需要进一步改善,如何选择一个合适 的一个特定的还原方法是一个棘手 的问题。在这项研究中,还原氧化石 墨烯的研究者们准备了六个典型的 方法:N2H4·H2O还原,氢氧化钠还 原,NaBH4还原,水浴还原 ,高温还原以及两步还原。我们从四个方面系统的对样品包括:分散性,还原程度、缺陷修复程度和导电性能进行比较。在比较的基础上,我们提出了一个半定量判定氧化石墨烯还原的评价标准。这种评价标准将有助于理解氧化石墨烯还原的机理和设计更理想的还原方法。 引言 单层石墨烯,因为其不寻常的电子性质和应用于各个领域的潜力,近年来吸引了巨大的研究者的关注。目前石墨烯的制备方法,包括化学气相沉积(CVD)、微机械剥离石墨,外延生长法和液相剥离法。前三种方法因为其获得的石墨烯的产品均一性和层数选择性原因而受到限制。此外,这些方法的低生产率使他们不适合大规模的应用。大部分的最有前途生产的石墨烯的路线是石墨在液相中剥离氧化然后再还原,由于它的简单性、可靠性、大规模的能力生产、相对较低的材料成本和多方面的原因适合而适合生产。这种化学方法诱发各种缺陷和含氧官能团,如羟基和环氧导致石墨烯的电子特性退化。与此同时,还原过程可能导致发生聚合、离子掺杂等等。这就使得还原方法在化学剥离法发挥至关重要的作用。 到目前为止,我们花了相当大的努力一直致力于开发还原的方法。在这里我们展示一个简单的分类:使用还原剂(对苯二酚、二甲肼、肼、硼氢化钠、含硫化合物、铝粉、维生素C、环六亚甲基四胺、乙二胺(EDA) 、聚合电解质、还原糖、蛋白质、柠檬酸钠、一氧化碳、铁、去甲肾上腺素)在不同的条件(酸/碱、热处理和其他类似微波、光催化、声化学的,激光、等离子体、细菌呼吸、溶菌酶、茶溶液)、电化学电流,两步还原等等。这些不同的还原方法生成的石墨烯具有不同的属性。例如,大型生产水分散石墨烯可以很容易在没有表面活性稳定剂的条件下地实现由水合肼还原氧化石墨烯。然而,水合肼是有毒易爆,在实际使用的过程中存在困难。水浴还原方法可以减少缺陷和氧含量的阻扰。最近,两个或更多类型的还原方法结合以进一步提高导电率或其他性能。例如,水合肼还原经过热处理得到的石墨烯通常显现良好的导电性。

石墨烯基础知识简介

1.石墨烯(Graphene)的结构 石墨烯是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢状晶格的平面薄膜,是一种只有一个原子层厚度的二维材料。如图1.1所示,石墨烯的原胞由晶格矢量a1和a2定义每个原胞内有两个原子,分别位于A和B的晶格上。C原子外层3个电子通过sp2杂化形成强σ键(蓝),相邻两个键之间的夹角120°,第4个电子为公共,形成弱π键(紫)。石墨烯的碳-碳键长约为0.142nm,每个晶格内有三个σ键,所有碳原子的p轨道均与sp2杂化平面垂直,且以肩并肩的方式形成一个离域π键,其贯穿整个石墨烯。 如图1.2所示,石墨烯是富勒烯(0维)、碳纳米管(1维)、石墨(3维)的基本组成单元,可以被视为无限大的芳香族分子。形象来说,石墨烯是由单层碳原子紧密堆积成的二维蜂巢状的晶格结构,看上去就像由六边形网格构成的平面。每个碳原子通过sp2杂化与周围碳原子构成正六边形,每一个六边形单元实际上类似一个苯环,每一个碳原子都贡献一个未成键的电子,单层石墨烯的厚度仅为0.335nm,约为头发丝直径的二十万分之一。 图 1.1(a)石墨烯中碳原子的成键形式(b)石墨烯的晶体结构。 图1.2石墨烯原子结构图及它形成富勒烯、碳纳米管和石墨示意图石墨烯按照层数划分,大致可分为单层、双层和少数层石墨烯。前两类具有

相似的电子谱,均为零带隙结构半导体(价带和导带相较于一点的半金属),具有空穴和电子两种形式的载流子。双层石墨烯又可分为对称双层和不对称双层石墨烯,前者的价带和导带微接触,并没有改变其零带隙结构;而对于后者,其两片石墨烯之间会产生明显的带隙,但是通过设计双栅结构,能使其晶体管呈示出明显的关态。 单层石墨烯(Graphene):指由一层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子构成的一种二维碳材料。 双层石墨烯(Bilayer or double-layer graphene):指由两层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括AB堆垛,AA堆垛,AA‘堆垛等)堆垛构成的一种二维碳材料。 少层石墨烯(Few-layer or multi-layer graphene):指由3-10层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括ABC 堆垛,ABA堆垛等)堆垛构成的一种二维碳材料。 石墨烯(Graphenes):是一种二维碳材料,是单层石墨烯、双层石墨烯和少层石墨烯的统称。 由于二维晶体在热力学上的不稳定性,所以不管是以自由状态存在或是沉积在基底上的石墨烯都不是完全平整,而是在表面存在本征的微观尺度的褶皱,蒙特卡洛模拟和透射电子显微镜都证明了这一点。这种微观褶皱在横向上的尺度在8~10nm 范围内,纵向尺度大概为 0.7~1.0nm。这种三维的变化可引起静电的产生,所以使石墨单层容易聚集。同时,褶皱大小不同,石墨烯所表现出来的电学及光学性质也不同。 图1.3 单层石墨烯的典型构象 除了表面褶皱之外,在实际中石墨烯也不是完美存在的,而是会有各种形式的缺陷,包括形貌上的缺陷(如五元环,七元环等)、空洞、边缘、裂纹、杂原子等。这些缺陷会影响石墨烯的本征性能,如电学性能、力学性能等。但是通过一些人为的方法,如高能射线照射,化学处理等引入缺陷,却能有意的改变石墨烯的本征性能,从而制备出不同性能要求的石墨烯器件。 2.石墨烯的性质 2.1 力学特性

石墨烯介绍

获奖者2010年10月5日,2010年诺贝尔物理学奖被授予英国曼彻斯特大学的安德烈·海姆和康斯坦丁·诺沃肖洛夫,以表彰他们在石墨烯材料方面的研究。 PPT1安德烈·海姆,1958年10月出生于俄罗斯,拥有荷兰国籍,父母为德国人。1987 年在俄罗斯科学院固体物理学研究院获得博士学位。他于2001年加入曼彻斯特大学,现任物理学 教授和纳米科技中心主任。之前拥有此荣誉头衔的人包括卢瑟福爵士,卢瑟福于1907-1919年在曼 彻斯特大学工作。 他至今发表了超过150篇的文章,其中有发表在自然和科学杂志上的。他获得的奖项包括2007 年的Mott Prize和2008年的Europhysics Prize。2010年成为皇家学会350周年纪念荣誉研究教授。 在2000年他还获得“搞笑诺贝尔奖”——通过磁性克服重力,让一只青蛙悬浮在半空中。10年 后的2010年他获得诺贝尔物理学奖。 2010年医学奖:荷兰的两位科学家发现哮喘症可用过山车治疗。 和平奖:英国研究人员证实诅咒可以减轻疼痛。 PPT2康斯坦丁·诺沃肖洛夫,1974年出生于俄罗斯,具有英国和俄罗斯双重国籍。2004年在荷兰奈梅亨大学获得博士学位。是安德烈·海姆的博士生。 曼彻斯特大学目前任教的诺贝尔奖得主人数增加到4名,获得诺贝尔奖的历史总人数为25位。发现 石墨属于混晶,为片层结构,层内由共价键相连,层间由分子间作用力相连。共价键是比较牢固的,但分子间作用力(范德华力)小得多。因此,石墨的单层是牢固的,而层间作用力很小,极易脱落。 2004年,他们发现了一种简单易行的新途径。他们强行将石墨分离成较小的碎片,从碎片中剥离出较薄的石墨薄片,然后用一种特殊的塑料胶带粘住薄片的两侧,撕开胶带,薄片也随之一分为二。不断重复这一过程,就可以得到越来越薄的石墨薄片,而其中部分样品仅由一层碳原子构成——他们制得了石墨烯。 结构

石墨烯的制备方法与应用

石墨烯的制备方法与应用 摘要: 石墨烯是目前发现的唯一存在的二维自由态原子晶体, 它是构筑零维富勒烯、一维碳纳米管、三维体相石墨等sp2 杂化碳的基本结构单元, 具有很多奇异的电子及机械性能。因而吸引了化学、材料等其他领域科学家的高度关注。本文介绍了近几年石墨烯的研究进展, 包括石墨烯的合成、去氧化、化学修饰及应用前景等方面的内容。石墨烯由于其特殊的电学、热学、力学等性质以及在纳米电子器件、储能材料、光电材料等方面的潜在应用,引起了科学界新一轮的热潮。关键字: 石墨烯, 制备, 应用,氧化石墨烯,传感器 石墨烯的定义 石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的一种碳质新材料,厚度只有0.335纳米,仅为头发的20万分之一,是构建其它维数碳质材料(如零维富勒烯、一维纳米碳管、三维石墨)的基本单元,具有极好的结晶性、力学性能和电学质量。 石墨烯的结构 完美的石墨烯是二维的, 它只包括六角元胞(等角六边形)。 如果有五角元胞和七角元胞存在,那么他们构成石墨烯的缺陷。如果少量的五角元胞细胞会使石墨烯翘曲; 12个五角元胞的会形成富勒烯。碳纳米管也被认为是卷成圆桶的石墨烯; 可见,石墨烯是构建其它维数碳质材料(如零维富勒烯、一维纳米碳管、三维石墨)的基本单元。

单原子层石墨晶体薄膜。 每个原胞中两个碳原子,每个原子与最相邻三个碳原子形成三个σ键。 每个碳原子贡献一个多余p电子,垂直于graphene平面,形成未成键的π电子——良好的导电性。 石墨烯的性能 最薄——只有一个原子厚 强度最高——美国哥伦比亚大学的专家为了测试石墨烯的强度,先在一块硅晶体板上钻出一些直径一微米的孔,每个小孔上放置一个完好的石墨烯样本,然后用一个带有金刚石探头的工具对样本施加压力。结果显示,在石墨烯样品微粒开始断裂前,每100纳米距离上可承受的最大压力为2.9 微牛左右。按这个结果测算,要使1 米长的石墨烯断裂,需要施加相当于55 牛顿的压力,也就是说,用石墨烯制成的包装袋应该可以承受大约两吨的重量。 没有能隙——良好的半导体 良好的导热性 热稳定性——优于石墨 较大的比表面积 优秀导电性——电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度--电子的“光速”移动碳原子有四个价电子,这样每个碳原子都贡献一个未成键的π电子,这些π电子与平面成垂直的方向可形成轨道,π电子可在晶体中自由移动,赋予

石墨烯触摸屏技术应用初探

石墨烯触摸屏技术应用初探 【摘要】石墨烯凭借其高导电性、高韧度、高强度、高透明度、超大比表面积等优势成为新兴产业中的新兴材料,技术含量高,应用前景广,可以大幅提升原产品的优异性能。由石墨烯替代ITO制作而成的柔性触摸屏能够实现手机与平板电脑的完美统一,将带来消费电子领域划时代的变革。但触摸屏对石墨烯的面积要求大,目前大规模制备技术尚不成熟,且成本较高。本文分析了石墨烯的结构和性质,给出了石墨烯触摸屏的制备流程、工作机理、性能及发展现状。我们期待随着对其研究的深入,降低制备成本,提高生产效率,加快商业化进程。 【关键词】石墨烯;触摸屏;CVD;ITO;电阻式;电容式;发展现状 1.引言 人类对石墨烯的认识有一个发展变化的过程。传统理论曾一度错误地认为“石墨烯是假设性的结构,无法单独稳定地存在”。直至2004年,英国曼彻斯特大学安德烈·海姆和康斯坦丁·诺沃肖洛夫两位物理学家成功地在实验中从石墨中分离出石墨烯,而证实石墨烯可以单独存在,并非假设性的结构。两人也因此项杰出研究成果共同荣获2010年诺贝尔物理学奖。石墨烯从此进入大众视野,成为新材料家族中耀眼的明珠,甚至有人预言石墨烯将成为“改变21世纪的材料”。 近年来,众多科研人员对石墨烯的应用开展了广泛而深入的研究。由石墨烯替代ITO制作而成的柔性触摸屏能够实现手机与平板电脑的完美统一,使人机交互更加人性化。在不久的将来,如能实现石墨烯的低成本批量生产,石墨烯触摸屏将会凭借其优异的性能和适中的价格进入市场走向千家万户,将带来消费电子领域划时代的变革。 2.石墨烯概述 2.1 结构 石墨烯(Graphene)是一种由碳原子构成的单层片状结构的二维纳米新材料,是由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,看上去近似一张六边形网格构成的平面,如图1所示。 图1 2.2 机械特性 石墨烯是迄今为止世界上已知的最薄、最坚硬的二维纳米材料,比钻石还要坚硬,强度比世界上最优质的钢材还要高上百倍。石墨烯因其拥有完美的对称正六边形结构,非常稳定,而且各个碳原子之间的连接很柔韧,所以即使受到外力

石墨烯及其复合材料在水处理中的研究

石墨烯及其复合材料在水处理中的研究 摘要:石墨烯作为一种新型碳纳米材料,具有巨大的比表面积、较高的机械强度和稳定的化学性质等优点,在诸多领域有广泛的应用。石墨烯因具有巨大的比表面积和高的反应活性,作为一种优异的吸附材料在水处理方向具有较好的应用前景。本文概述了石墨烯及其复合材料在水处理方面的研究进展。石墨烯及其复合材料对于处理重金属离子和有机污染物质的吸附效果好,吸附容量高。最后对其在水处理中的应用前景做了展望。关键词:石墨烯;复合材料;吸附;水处理 引言 石墨烯(graphene,GN)自2004年发现以来,由于具有独特的结构与性能,很快成为新材料研究领域的热点。石墨烯是一种sp2杂化的碳原子以六边形排列的周期性蜂窝状二维碳质新材料[1]。石墨烯具有独特的物理化学性质[2],除强度较高外,其理论比表面积竟高达2630m2/g,孔隙结构较丰富,这一点使其成为良好吸附材料的基础[3]。除此之外,还具有良好热导率和电导率[4]~[5],可在传感器、电极材料、储氢材料等应用[6]。 石墨烯作为水处理材料,在环保领域拥有广阔的应用前景。这主要是因为,它具有二维的平面结构、开放的孔结构、良好的柔韧性、稳定的化学特性、巨大的比表面积等优点;石墨烯的比表面积比碳纳米管更大,吸附能力更强。从而应用石墨烯的优异性能,可将其加工成催化材料、吸附材料和过滤材料等,可以有效吸附水中的多种污染物。同时,由于制造石墨烯的石墨来源比较广泛,且石墨烯相比碳纳米管价格比较低廉,制备过程简单,许多学者开始研究石墨烯在水处理中的应用[7]~[8]。 本文介绍了石墨烯与水处理相关的主要性能,综述了石墨烯及其复合材料在水处理中的研究进展,并对当今石墨烯材料在水处理研究中遇到的挑战和问题做了进一步分析,对今后这一领域的研究作了展望。 1石墨烯及其复合材料在水处理中的研究 1.1石墨烯 石墨烯因其吸附原理简单、费用低及处理效果好等优点广泛应用在水环境治理中。巨大的比表面积使石墨烯成为良好的吸附材料。作为吸附剂在水处中的相关研究主要集中在吸附两类污染物:有机物与无机阴离子[9]。水中的有机污染物易与石墨烯表面发生相互作用,形成稳定的复合物,进一步得到去除。因而许多学者主要研究了石墨烯吸附去除水中的有机染料。 Liu 等人研究了石墨烯在不同温度、pH值、接触时间和浓度下对亚甲基蓝的吸附,研究发现石墨烯最大吸附量高达到153.85mg/g,吸附等温线符合Langmu模型[10]。Wu 等人研究了石墨烯对丙烯腈、甲苯磺酸及甲基蓝的吸附,与其他碳纳米材料相比,石墨烯表现出较强的吸附能力,甲基蓝因为有苯环和大分子,从而使石墨烯的吸附速度更快,吸附容量更大[11]。Li等人研究了石墨烯在不同温度、pH值、反应时间下对氟化物的吸附性能,结果发现在298K下,当氟化物的初始浓度为25mg/L时,石墨烯的吸附量可达17.65 mg/g[12]。石墨烯对无机污染物的吸附研究使其在水处理领域的研究进一步扩大。

石墨烯在触摸屏领域的应用

石墨烯在触摸屏领域的应用 摘要:石墨烯实质上是一种透明、良好的导体,适合用来制造透明触摸屏、光板、太阳能电池等产品,是一种用途非常广泛地材料。这里,着重介绍替代金属铟的材料石墨烯在未来触摸屏市场的应用前景,并提出杭州驰飞超声波设备有限公司(以下简称“驰飞超声波”)的新型石墨烯制备方法。 关键词:驰飞超声波;超声波纳米制备装置;石墨烯;触摸屏 随着全球电子设备触摸屏总面积的不断增长,生产触摸屏的稀有金属铟材料将被耗尽。因为现代触摸屏的表面都会用到一层铟锡氧化物,具有较好的透明性和导电性,所以广泛应用于显示产业领域。然而铟金属属于稀有金属,全球存量非常稀少,随着智能手机、平板电脑和其他现代电子设备需求量大增,未来铟金属将会告罄,而目前寻找铟金属的替代性材料成为全球各地热门的研发项目。 在未来几年内,全球触摸屏市场或许将出现铟金属的替代材料和技术,由于石墨烯具有极好的电导性和透光性,作为透明导电电极材料,在触摸屏、液晶显示等方面有很好的应用。故此,石墨烯被认为是触摸屏制造中最有潜力替代氧化铟锡的材料。 石墨烯的制成需要有尖端的制备工艺,目前业内主要有四种制备方法,分别是机械剥离法、外延生长法、氧化石墨还原法、和气相沉积法。从制造工艺来看,目前业内的四种方法均有各自的优势和缺陷;从实际情况看来,这四种方法制造工艺不稳定、成本居高不下,仍是石墨烯走向产业化最需要解决的问题。 驰飞超声波提出将超声波技术引入石墨烯制备过程中,研发超声波纳米制备装置。在石墨液体中,当声波的功率相当大,液体受到的负压力足够强时,石墨分子间的平均距离就会增大并超过极限距离。而超声波在石墨液体中会产生空化作用,使石墨粒子运动速度大大加快,达到剥离石墨形成单层或多层石墨烯。

石墨烯与水制氢开发项目简介

石墨烯与水制氢开发项目简介 目前主要开发建设的石墨烯与水制氢,二氢斛皮素,桦树茸菌项目有6个,分别介绍如下: 一、石墨烯润滑油项目 本项目最早于2011年由俄罗斯引进,最初在国家科技部立项名称为:“军民两用陶瓷基金属磨损自修复技术”,经改进后称为:“石墨烯基金属磨损智能修复材料”,但从其功能老说:称为“石墨烯润滑油”比较易懂易记。 经黑龙江省环保局实际检测,对选定的13台柴油载重车添加本品前后对比,得出以下结论:平均污染颗粒物降低10.9倍;CH(碳氢化和物)排放污染物平均下降2.18倍;CO(一氧化碳)排放污染物平均降低35%;NO(一氧化氮)排放污染平均降低1.88倍。 同时对添加本品后发动机缸压变化结果进行对比,得出:单行程缸压提高41%、四行程缸压提高48%、多行程缸压提高42%的结果。 缸压的提高说明发动机的密封性和动力性明显改善,达到了减排增效的目的。 本品实际上最大的功能是:新车、新机械的磨合。早在1964年苏联学者就提出:磨合程度不同,磨合工况不同,车辆、机械的寿命也不同。而本项目生产的产品具有相当好的修复功能,可以使纳米级石墨烯颗粒,在润滑油中稳定分散,根据不同工况自调节沉积,促进

车辆机械的最佳磨合,延长使用寿命。 石墨烯润滑油可以减少环境污染、提高设备的寿命,是绿色、环保、节能、增效,促进社会稳定发展的好产品。 目前全世界每年消耗润滑油4000多万吨,中国每年消耗润滑油在600万吨左右,但大多数生产厂家生产的是低档次润滑油,采用石墨烯润滑油的仅万吨左右,因此市场前景良好。 本项目预计建设万吨石墨烯润滑油的生产企业需要投资2亿元左右,投资回收期在2-3年左右。 二、石墨烯防霾口罩项目 利用石墨烯过滤性好,热传导性能好的特点进行开发,以满足人们对在雾霾天气下使用的需求。 本项目利用石墨烯纳米纤维纺纱技术,通过该技术制作的口罩,可有效过滤99%纳米以下的微观物质。防霾石墨烯口罩用料轻薄,就像餐巾纸一样,在高效过滤有害物质的同时,令穿戴者呼吸轻松。 三、石墨烯创伤敷料: 利用石墨烯吸附力强的特点,可以对创伤或者手术刀口使用的敷料采用石墨烯,(经高温灭菌消毒)可以较空的吸取伤口的渗液,达到创伤表面干燥,促进医疗康复的作用。 四、水制氢清洁能源 用电解的方法,将水分解成氢气和氧气,这是一个众所周知的原

石墨烯

石墨烯问题释疑II 已有 589 次阅读2011-1-17 10:01|个人分类:石墨烯|系统分类:论文交流|关键词:科学家大尺度半导体六边形诺贝尔 因为与多位老师讨论,他们提出了疑问,为了更清楚解释,对原文作了修改,再次发表。我要强调这只是我们研究结果的一个推论,2009年长沙纳米会议上就提出了相关研究结论。在2010年诺贝尔物理奖的公告发表前就已经有定论的东西,只是当时并未拿起人们重视。诺奖公告中很多对于石墨稀的宏观应用预测,如石墨稀吊床等是不真实的,应该打假;但对于石墨稀微观性能研究还应继续深入,比如半导体器件等研究。 广为传播的网上石墨烯由多个正六边形组成的图案,是想当然的图案,因为边界处碳原子与两个碳原子连接,键长短强度大,而石墨烯内部碳原子与三个碳原子连接,键长长强度小,两者以现有试验数据,就可知化学键能差距约在40%左右(注意有误差,但差距明显不容否认),石墨烯边界处碳碳之间和内部碳碳之间,是不同的化学键在相互连接。这点得到了包括前诺奖得主在内的多位科学家认同。 石墨烯的特异性是依靠其边界而存在的,我们提出边界碳原子的色散作用导致石墨烯可以存在的微观结构本质原因。我们认为其悬浮态下,很难制备更大尺度超过数十微米的稳定的单层悬浮石墨烯。若石墨稀附着载体上,其尺寸会达到几十厘米级别,但是大尺寸石墨稀与微米级以下的石墨烯性质已经不同,此时若石墨稀悬浮,它会极不稳定而发生破裂或者褶皱(注意这也形成了新的边界,此时化学键的键角发生了变化)。诺奖公告中的与此相关的很多宏观应用的结论是不真实的。 打个比方就象两种不同强度的弹簧联接着碳原子,而边界处的碳原子受到短而更高强度的弹簧来连接,那么其结果是对于内的较弱强度长的弹簧会起到收紧的作用。而在表观上起到了限制石墨烯内部碳原子自由振动的作用,石墨烯才在现实中可以稳定存在,所以二维石墨烯才能有制备分离出来的可能。 因为键长键角不同,边界处石墨烯六边形结构会变形,而因为原子和原子间结构的紧密性,保持六边形必然使得相邻碳原子电子云受到色散应力,这一应力作用范围有限,但是它会想接力赛一样,将这一应力一级一级传递下去,而在微观尺度下,传递效率会很高,受不同角度和方向边界传递过来的这一色散应力作用,会发生抵消衰减的,石墨烯内部的就会难以稳定存在,所以石墨烯(我强调单一完整的悬浮)不可能获得尺寸无限增大。而且即使增大到数百微米的石墨烯与一微米大小的石墨烯相比,因为上述原因,其性质也会有差异,而且具体可以获得的石墨烯最大尺寸与制备时大气环境下的温度和压力也相关。 实际能稳定存在的石墨烯其内部每个碳碳化学键的电子云分布都要受到边界不同碳碳键导致的色散应力的影响,而达到一个动态均化的平衡,这是悬浮石墨稀能够存在的动力学基础。2010年诺奖得主应当是对此认识不清,诺奖委员会对

石墨烯

题目:石墨烯的结构性能以及研究现状 院(部)系材料科学与工程学院 所学专业材料工程 年级、班级2014级 学号2014730056 完成人姓名卫明

摘要 采用对氧化石墨进行高温还原获得石墨烯,通过高速剪切分散法将石墨烯分散到聚二甲基硅氧烷中,固化后得到石墨烯/室温硫化( RTV) 硅橡胶复合材料。对石墨烯和复合材料的微观形貌进行了表征,并考察了复合材料的性能。结果表明,所制备石墨烯的厚度为1 ~3 nm,为具有较少层数的石墨烯片层结构;复合材料断面呈微相分离结构,但其差示扫描量热曲线只有1个玻璃化转变温度( Tg ) 。随着石墨烯用量的增加,复合材料的Tg 升高,结晶熔点降低。 关键词:石墨烯;复合材料;力学性能 Abstract Graphene was prepared by reducing graphite oxide with hydrazine hydrate as reductant. Graphenewasdispersed in -polydimethylsiloxane by high-speed shearing dispersion method.The graphene /room temperature vulcanized (RTV) silicone rubber composites were obtained after curing. The micro morphology of graphene and the composites were characterized and the properties of the composites were analyzed. The results showed that the as-prepared graphene nanosheet had fewer layers and its thickness was 1-3 nm. The composites had a microphase separation structure, but its differential scanning calorimetry curve exhibited only one glass transition temperature (Tg) and one crystalline melting point(Tm). With the increase of the content of graphene, Tg increased and Tm decreased. Key words: graphene; composite; mechanical property

大面积无支撑石墨烯复合纸的印刷制备及其储能性能研究_张哲野

大面积无支撑石墨烯复合纸的印刷制备及其储能性能研究 张哲野,肖菲,奚江波,王帅* 华中科技大学化学与化工学院,湖北武汉,430074 *Email: chmsamuel@https://www.wendangku.net/doc/db1858386.html, 近年来,将石墨烯纳米片层组装成宏观结构(如石墨烯纸等)已经取得了显著的突破[1]。我们开发了一种新型的柔性石墨烯/聚苯胺复合纸的制备工艺,首先采用滚筒印刷法在普通商业A4纸上打印一层氧化石墨烯纸,然后以石墨烯水凝胶为基底,通过吸附和原位聚合的方法制备石墨烯/聚苯胺水凝胶,再通过球磨处理制得稳定分散的石墨烯/聚苯胺浆料,最后采取喷墨打印的方法将石墨烯/聚苯胺浆料打印在柔性的氧化石墨烯纸上,并通过氢碘酸一步还原和剥离处理即得柔性石墨烯/聚苯胺复合纸,这种新型石墨烯复合纸的比电容高达864 F/g。以该复合纸为电极材料,选择固态电解质,研制开发柔性全固态超级电容器,该器件具有较高的能量密度、良好的循环稳定性和机械性能,使其在柔性能源器件和可穿戴电子产品行业具有广泛的应用前景。 Fig.1 The photograph of graphene nanocomposite paper and the electrochemcial performance of all-solid-state device 关键词:印刷法;聚苯胺;无支撑石墨烯复合纸;柔性全固态超级电容器 参考文献 [1] El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Science2012, 335: 1326. Scalable synthesis of freestanding graphene nanocomposite paper by printing method and its energy storage characteristics Zheye Zhang, Fei Xiao, Jiangbo Xi, Shuai Wang* School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 Nowadays, remarkable progress has been made in self-assembly of graphene nanosheets into macroscopic structure such as graphene paper. Here we demonstrate the fabrication of a new type of flexible graphene/polyaniline nanocomposite paper, which was fabricated by spreading graphene oxide (GO) solution on a piece of standard commercial A4 paper, followed by modified the GO paper with the home-made graphene/polyaniline ink by inkject printing method. Then, the resultant GO-based nanohybrid paper was chemically reduced using hydroiodic acid solution and simultaneously peeled off from A4 paper via a bubbling delamination method to form a freestanding graphene/polyaniline paper, which has a high specific capacitance of 864 F/g. The flexible and lightweight all-solid-state symmetric supercapacitor fabricated by graphene nanohybrid paper electrodes and polymer gel electrolyte exhibited high energy density, remarkable mechanical flexibility and reasonable cycling performance. These observations substantially demonstrate its extensive potential applications for flexible energy-related device and wearable electronics.

石墨烯的应用领域

第二章石墨烯应用领域 石墨烯因其独特的电学性能、力学性能、热性能、光学性能和高比表面积,近年来受到化学、物理、材料、能源、环境等领域的极大重视,应用前景广阔,被公认为21世纪的“未来材料”和“革命性材料”。具体在五个应用领域:一是储能领域。石墨烯可用于制造超级电容器、超级锂电池等。二是光电器件领域。石墨烯可用于制造太阳能电池、晶体管、电脑芯片、触摸屏、电子纸等。三是材料领域。石墨烯可作为新的添加剂,用于制造新型涂料以及制作防静电材料。四是生物医药领域。石墨烯良好的阻隔性能和生物相容性,可用于药物载体、生物诊断、荧光成像、生物监测等。五是散热领域。石墨烯散热薄膜可广泛应用于超薄大功耗电子产品,比如当前全球热销的智能手机、IPAD 电脑、半导体照明和液晶电视等。 中国科学院预计,到2024年前后,石墨烯器件有望替代互补金属氧化物半导体(CMOS)器件,在纳米电子器件、光电化学电池、超轻型飞机材料等研究领域得到应用。目前,全球范围内仅电子行业每年需消耗大约2500吨半导体晶硅,纯石墨烯的市场价格约为人民币1000元/g ,其若能替代晶硅市场份额的10%,就可以获得5000亿元以上的经济利益;全球每年对负极材料的需求量在2.5万吨以上,并保持了20%以上的增长,石墨烯若能作为负极材料获得锂离子电池市场份额的10%,就可以获得2500吨的市场规模。可见,石墨烯具有广阔的应用空间和巨大的经济效益。

正是在这一背景下,目前国内外对石墨烯技术的应用研究如火如荼,具体应用如下: 2.1 石墨烯锂离子电池 锂离子电池具有容量大、循环寿命长、无记忆性等优点,目前已成为全球消费类电子产品的首选电池以及新能源汽车的主流电池。高能量密度、快速充电是锂电池产品发展的必然趋势,在正极材料中添加导电剂是一种有效改善锂电性能的途径,可大大增加正负极的导电性能、提高电池体积能量密度、降低电阻,增加锂离子脱嵌及嵌入速度,显著提升电池的倍率充放电等性能,提高电动车的快充性能。 所谓石墨烯电池并非整个电池都用石墨烯材料制作,而是在电池的电

【CN209730391U】一种带石墨烯屏蔽的HDMI线【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920553019.7 (22)申请日 2019.04.23 (73)专利权人 东莞市仓盛通讯科技有限公司 地址 523000 广东省东莞市黄江镇田美工 业北区盛业路永泰一街2号 (72)发明人 龚华明  (74)专利代理机构 东莞市浩宇专利代理事务所 (普通合伙) 44460 代理人 陈凯玉 (51)Int.Cl. H01R 31/06(2006.01) H01B 7/17(2006.01) H01B 7/04(2006.01) H01B 11/06(2006.01) (54)实用新型名称 一种带石墨烯屏蔽的HDMI线 (57)摘要 本实用新型公开了一种带石墨烯屏蔽的 HDMI线,包括线体和位于该线体两端的接线端 子,所述线体包括外护套、 信号线和控制线,所述信号线共设置有5根,所述控制线共设置有4根, 所述信号线和所述控制线均设置于所述外护套 内,所述外护套内壁设置有石墨烯导电膜,所述 外护套内侧还设置有总地线。有益效果在于:通 过将传统的屏蔽层替换为石墨烯导电膜,提高了 HDMI线的电磁屏蔽性能,降低HDMI线线材的线 径、降低线材重量,并且提高线材的弯曲性能,提 高HDMI线的柔韧性,从而延长HDMI线的使用寿 命。权利要求书1页 说明书2页 附图2页CN 209730391 U 2019.12.03 C N 209730391 U

权 利 要 求 书1/1页CN 209730391 U 1.一种带石墨烯屏蔽的HDMI线,其特征在于,包括线体(7)和位于该线体(7)两端的接线端子(8),所述线体(7)包括外护套(2)、信号线(4)和控制线(5),所述信号线(4)共设置有5根,所述控制线(5)共设置有4根,所述信号线(4)和所述控制线(5)均设置于所述外护套(2)内,所述外护套(2)内壁设置有石墨烯导电膜(3),所述外护套(2)内侧还设置有总地线 (1)。 2.根据权利要求1所述一种带石墨烯屏蔽的HDMI线,其特征在于:所述外护套(2)内设置有填充线(6),所述信号线(4)和所述控制线(5)均设置于所述填充线(6)外围。 3.根据权利要求1所述一种带石墨烯屏蔽的HDMI线,其特征在于:所述信号线(4)由导线、绝缘套和地线组成,所述地线和所述导线包裹在所述绝缘套内侧。 4.根据权利要求1所述一种带石墨烯屏蔽的HDMI线,其特征在于:所述石墨烯导电膜(3)厚度为10nm-20nm。 2

石墨烯疏水性能研究

文章编号:1001G9731(2018)09G09156G04 石墨烯疏水性能研究? 洪一跃1,李多生1,叶一寅1,Q i n g h u aQ i n2,邹一伟1,林奎鑫1 (1.南昌航空大学材料科学与工程学院,南昌330063; 2.R e s e a r c hS c h o o l o fE n g i n e e r i n g,A u s t r a l i a nN a t i o n a lU n i v e r s i t y,A c t o nA C T2601,A u s t r a l i a) 摘一要:一通过化学气相沉积(C V D)方法在蓝宝石衬底表面生长石墨烯,探究生长时间对石墨烯疏水性能和微结构的影响.利用接触角测量仪二傅里叶红外光谱仪二拉曼光谱仪二场发射扫描电镜研究石墨烯的疏水性能和微结构.发现生长时间是30m i n时,石墨烯的接触角最大,为129.96?,表现出疏水性,红外测试表明只有C C,拉曼分析发现在10~30m i n的生长时间下,石墨烯都出现了3个特征峰.较大的接触角使石墨烯有望作为疏水材料,甚至可以通过对其疏水改性让它在超疏水领域存在潜在应用. 关键词:一石墨烯;疏水性;接触角;半高宽 中图分类号:一O647文献标识码:A D O I:10.3969/j.i s s n.1001G9731.2018.09.029 0一引一言 1966年,M e r m i n和W a g n e r提出的M e r m i nGW a g n e r理论,指出二维晶体材料不能稳定存在[1],导致二维碳材料的研究一直处于空白阶段.2004年,英国曼彻斯特大学N o v o s e l o v和G e i m等[2]用机械剥离的方法制备石墨烯,打破了二维晶体材料在常温中无法稳定存在的预言.石墨烯具有优良的导电性二机械性能二电化学性能和催化性能,在电容材料二电极材料二催化剂二生物传感器和润滑添加剂等方面具有很高的应用价值[3G6].但是到目前为止,人们的研究主要集中在石墨烯的光学二电学性质,对其表面性质研究较少.根据W e n z e l[7]和C a s s i e[8]理论,石墨烯薄膜的表面浸润性质由两个因素决定:薄膜表面粗糙度和表面自由能.L e e n a e r t s等[9]用密度泛函理论计算得出:石墨烯薄膜表面的水分子之间的结合能大于其与石墨烯的吸附能,使得水分子团聚为水滴,石墨烯表现为疏水性. Y o u n g等[10]制备的外延石墨烯薄膜的接触角为92?, S h i n等[11]制备的还原石墨烯薄膜的接触角为127?.当材料的接触角>150?时,材料表现为超疏水,此时材料可以通过超疏水表面的构建实现表面自清洁效应.因此,石墨烯的疏水性有望在不久的将来用于疏水甚至超疏水材料的领域[12G13].蓝宝石作为一种窗口材料,在其表面制备出疏水性较高的石墨烯有利于窗口表面的清洁和光的透过,增强了窗口的光学性能.石墨烯在金属衬底[14G15]上的生长相较于绝缘衬底[16G17]上的生长来说更为容易一些,在目前制备石墨烯的众多方法中,化学气相沉积[18](C V D)法是制备石墨烯的一种重要的生长方法.因此本文采用C V D法在蓝宝石衬底上制备石墨烯,研究生长时间对石墨烯接触角和石墨烯生长质量的影响. 1一实一验 1.1一石墨烯的制备 以尺寸为10mm?10mm的蓝宝石(0001)作为生长的衬底材料,然后经丙酮二无水乙醇二去离子水超声清洗20m i n,待衬底吹干后通过推杆将衬底送入刚玉管中心区域,最后将刚玉反应室抽至真空,检查气密性,开启装置加热程序进行实验,石墨烯C V D生长过程示意图如图1所示.在实验中采用C H4作为碳源气体,H2作为刻蚀气体,A r作为载气,C H4流量为6m L/m i n,H2流量为40m L/m i n,A r流量为100m L/m i n,生长温度为1300?,生长压力约为10T o r r,生长时间为10~30m i n,生长完成后,关闭加热程序,待衬底冷却至室温,关闭气体流量. 图1一C V D生长过程示意图 F i g1C V D g r o w t h p r o c e s s d i a g r a m 6519 02018年第9期(49)卷 ?基金项目:国家自然科学基金资助项目(51562027,11772145);江苏省精密与微细制造技术重点实验室基金资助项目(J K L2015001) 收到初稿日期:2018G02G27收到修改稿日期:2018G04G26通讯作者:李多生,EGm a i l:d u o s h e n g.l i@n c h u.e d u.c n 作者简介:洪一跃一(1993-),男,安徽安庆人,在读硕士,师承李多生副教授,从事石墨烯材料研究.

石墨烯散热片

石墨烯散热片的应用及介绍 摘要:石墨烯材料因其辐射水平优于绝大数散热材料,配合纳米碳粉有特别好的散热作用,因此广泛用于解决电子器件因功耗增大导致的热问题。本文 重点介绍了石墨烯散热片的基本知识,散热原理,应用案例。 关键词:石墨烯,散热片,导热系数 1.石墨烯散热片 1.1 石墨烯散热片概述 导热石墨片(TCGS-S)也称石墨烯散热片,是一种全新的导热散热材料,具有独特的晶粒取向,沿两个方向均匀导热,平面内具有150-1500 W/m.K 范围内的超高导热性能,片层状结构可很好地适应任何表面,屏蔽热源与组件的同时改进消费类电子产品的性能。其分子结构示意图如下: 石墨散热片( TCGS-S : Thermal Flexible Graphite sheet)的化学成分主要是单一的碳(C)元素,是一种自然元素矿物。薄膜高分子化合物可以通过化学方法高温高压下得到(TCGS-S)石墨化薄膜,因为碳元素是非金属元素,但却有金属材料的导电、导热性能,还具有象有机塑料一样的可塑性,并且还有特殊的热性能,化学稳定性,润滑和能涂敷在固体表面的等一些良好的工艺性能,因此,在电子、通信、照明、航空及国防军工等许多领域都得到了广泛的应用。 1.2 石墨烯散热片的组成 界面导热材料是由基体材料和导热填料组成的复合材料。?

A.基体材料? 石墨烯散热片的基体主要有硅油、矿物油、硅橡胶、环氧树脂、聚丙烯酸酯、聚乙烯、聚氨酯等。石墨烯基散热片的关键点是石墨烯与环氧树脂基体的复合。目前,行业内的供应商将环氧树脂和石墨烯材料采取分层剥离和喷涂,导热系数可达到80w/m.k. B.导热填料 石墨烯散热片以石墨烯或石墨烯与碳纳米管,金属等混合作为导热填料。现有技术很难大量制备高质量的单层石墨烯,而少层或多层石墨烯相对容易制备和较便宜,?且其可保持热传导性质,石墨层可自然地连接到散热片上,?避免了?应用中接触热阻的问题,导热效率较常规的纳米散热片提升20%以上。 1.3.石墨烯散热片的散热原理。 典型的热学管理系统是由外部冷却装置,散热器和热力截面组成。而散热片的重要功能是创造出最大的有效表面积,在这个表面上热力被转移并有外界冷却媒介带走。石墨散热片就是通过将热量均匀的分布在二维平面从而有效的将热量转移,保证组件在所承受的温度下工作。 图 1 TCGS-S 石墨散热片热扩散示意图 2.石墨散热片的应用: 石墨散热片通过在减轻器件重量的情况下提供更优异的导热散热性能,能有效的解决电子设备的热设计难题,广泛的应用于PDP、LCDTV 、Notebook PC、UMPC、Flat Panel Display 、MPU 、Projector 、Power Supply、LED 等电子产品。 目前石墨散热片已大量应用于通讯工业、医疗设备、SONY/DELL/Samsung 笔记本、中

石墨烯的制备方法概述

石墨烯的制备方法概述 1物理法制备石墨烯 物理方法通常是以廉价的石墨或膨胀石墨为原料,通过机械剥离法、取向附生法、液相或气相直接剥离法来制备单层或多层石墨烯。这些方法原料易得,操作相对简单,合成的石墨烯的纯度高、缺陷较少。 1.1机械剥离法 机械剥离法或微机械剥离法是最简单的一种方法,即直接将石墨烯薄片从较大的晶体上剥离下来。Novoselovt等于2004年用一种极为简单的微机械剥离法成功地从高定向热 解石墨上剥离并观测到单层石墨烯,验证了单层石墨烯的独立存在。具体工艺如下:首先利用氧等离子在1mm厚的高 定向热解石墨表面进行离子刻蚀,当在表面刻蚀出宽20μm —2mm、5μm的微槽后,用光刻胶将其粘到玻璃衬底上, 再用透明胶带反复撕揭,然后将多余的高定向热解石墨去除并将粘有微片的玻璃衬底放入丙酮溶液中进行超声,最后将单晶硅片放入丙酮溶剂中,利用范德华力或毛细管力将单层石墨烯“捞出”。 但是这种方法存在一些缺点,如所获得的产物尺寸不易控制,无法可靠地制备出长度足够的石墨烯,因此不能满足工业化需求。

1.2取向附生法—晶膜生长 PeterW.Sutter等使用稀有金属钌作为生长基质,利用基质的原子结构“种”出了石墨烯。首先在1150°C下让C原子渗入钌中,然后冷却至850°C,之前吸收的大量碳原子就会浮到钌表面,在整个基质表面形成镜片形状的单层碳原子“孤岛”,“孤岛”逐渐长大,最终长成一层完整的石墨烯。第一层覆盖率达80%后,第二层开始生长,底层的石墨烯与基质间存在强烈的交互作用,第二层形成后就前一层与基质几乎完全分离,只剩下弱电耦合,这样制得了单层石墨烯薄片。但采用这种方法生产的石墨烯薄片往往厚度不均匀,且石墨烯和基质之间的黏合会影响制得的石墨烯薄片的特性。 1.3液相和气相直接剥离法 液相和气相直接剥离法指的是直接把石墨或膨胀石墨(EG)(一般通过快速升温至1000°C以上把表面含氧基团除去来获取)加在某种有机溶剂或水中,借助超声波、加热或气流的作用制备一定浓度的单层或多层石墨烯溶液。Coleman等参照液相剥离碳纳米管的方式将墨分散在N-甲基-吡咯烷酮(NMP)中,超声1h后单层石墨烯的产率为1%,而长时间的 超声(462h)可使石墨烯浓度高达1.2mg/mL。研究表明,当溶剂与石墨烯的表面能相匹配时,溶剂与石墨烯之间的相互作用可以平衡剥离石墨烯所需的能量,能够较好地剥离石墨烯

相关文档