文档库 最新最全的文档下载
当前位置:文档库 › 某牵引变电所供变电工程设计

某牵引变电所供变电工程设计

某牵引变电所供变电工程设计
某牵引变电所供变电工程设计

课程设计

题目某牵引变电所供变电工程设计专业电气工程及其自动化

班级

学号

姓名

指导教师解邵锋

电气工程学院

课程设计任务书1

学生姓名学生学号

学生专业学生班级

发题日期 2014年11 月 10 日完成日期2014年12月20 日

课程名称供变电工程指导教师解绍锋

设计题目

某牵引变电所供变电工程设计

课程设计主要目的:

完成牵引变电所供变电工程设计,熟悉牵引变电所供变电工程设计步骤,掌握牵引变电所供变电工程设计方法。

课程设计任务要求:(包括原始数据、技术参数、设计条件、设计要求等)

包含有A、B两牵引变电所的供电系统示意图如图1所示。

图1牵引供电系统示意图

图1中,牵引变电所中的两台牵引变压器为一台工作,另一台备用。

电力系统1、2均为火电厂,选取基准容量Sj为500MVA,在最大运行方式下,电力系统1、2的综合电抗标幺值分别为0.10和0.12;在最小运行方式下,电力系统1、2的综合电抗标幺值分别为0.11和0.14。

对每个牵引变电所而言,110kV线路为一主一备。

图1中,L1、L2、L3长度分别30km、60km、20km。线路平均正序电抗X1为0.4Ω/km, 平均零序电抗X0为1.2Ω/km。

基本设计数据如表1所示。

表1 牵引变电所基本设计数据

项目A所

左臂负荷全日有效值(A)350

右臂负荷全日有效值(A)190

左臂短时最大负荷(A)[注] 510

右臂短时最大负荷(A)290

牵引负荷功率因数(感性) 0.8

牵引变压器接线型式Scott

牵引变压器110kV接线型式内桥

左供电臂27.5kV馈线数目 2

右供电臂27.5kV馈线数目 2

预计中期牵引负荷增长20%

[注]:供电臂短时最大负荷即为线路处于紧密运行状态下的供电臂负荷。

注:1、发题日期为每学期第9周周一,完成日期根据实际情况填写(一般不超过进度安排)。

2、页面不够可附加页

摘要:本设计主要针对牵引供电系统以及供变电工程进行设计和研究。主要的工作是对A牵引变压器进行设计以及对其他绝缘设备进行检验。其中,牵引变压器的设计主要包括变压器的容量计算和技术指标的检测,设计必须符合高(低)压侧主接线的设计要求。绝缘设备的检验主要是关于电气设备的动稳定、热稳定性、开关设备的选型和校验,以及对室内外母线,各个支持绝缘子和穿墙套管,电压、电流互感器的选型和校验。另一部分主要内容是对牵引变电所的防雷接地设计,包括避雷针、避雷线、避雷器以及接地系统的设计。

关键词:主接线热稳定性校验动稳定性校验防雷接地

目录

第1节本次设计概述.......................................... - 3 -

1.1设计方案简述................................................................................................................... - 3 -

1.2 设计原始资料.................................................................................................................. - 3 -

第2节牵引变压器容量计算......................................... - 5 -

2.1 变压器容量计算步骤...................................................................................................... - 5 -

2.2 牵引变压器容量计算...................................................................................................... - 5 -

2.3 电气化铁道中、远期运量估计...................................................................................... - 6 -

第3节牵引变压器电压损失计算..................................... - 7 -牵引变压器在短时最大负荷工况下的电压损失计算.......................................................... - 7 -第4节牵引变电所电压不平衡度计算................................. - 7 -

4.1计算电网最小运行方式下的负序电抗(-)

X.................................................................... - 8 -

s

4.2计算牵引变电所在紧密运行工况下注入110kV电网的负序电流............................... - 8 -

4.3构造归算到110kV的等值负序网络............................................................................... - 8 -

4.4 牵引变电所110kV母线电压不平衡度计算及校验...................................................... - 9 -

第5节主接线选择................................................. - 9 -第6节短路电流计算............................................... - 10 -

6.1 短路计算示意图及有关数据 ....................................................................................... - 10 -

6.2 短路电流计算 ............................................................................................................... - 11 -

第7节开关设备选型及稳定性校验.................................. - 13 -第8节室内外母线选型及校验....................................... - 15 -

8.1 室外母线选型及校验 ................................................................................................... - 16 -

8.2 室内母线的选型和校验 ............................................................................................... - 17 -

第9节支持绝缘子和穿墙套管...................................... - 18 -

9.1 支持绝缘子选型及校验................................................................................................ - 19 -

9.2 穿墙套管选型及校验.................................................................................................. - 20 -

第10节电压、电流互感器选型及校验.............................. - 20 -

10.1 110kV侧电压互感器选型及校验............................................................................. - 21 -

10.2 110kV侧电流互感器选型及校验............................................................................. - 22 -

第11节防雷接地设计............................................. - 23 -

11.1 防雷设计...................................................................................................................... - 23 -

11.2 接地设计...................................................................................................................... - 23 -

第12节总结与体会.............................................. - 24 -参考文献.......................................................... - 24 -附录 ............................................................. - 25 -

第1节 本次设计概述

1.1设计方案简述

本次课程设计较系统的阐明了牵引变电所A 主接线设计的基本方法和步骤。重点在于对牵引变压器容量的计算、运行技术指标的计算,牵引变电所电压不平衡度计算,短路电流的计算;牵引变压器的选择,开关及导线的选择;电气主接线的设计等。

1.2 设计原始资料

包含有A 、B 两牵引变电所的供电系统示意图如图1-1所示:

图1-1 牵引供电系统示意图

图1-1 牵引变电所中的两台牵引变压器为一台工作,另一台备用。

电力系统1、2均为火电厂,选取基准容量j S 为500MVA ,在最大运行方式下,电力系统1、2的综合电抗标幺值分别为0.10和0.12;在最小运行方式下,电力系统1、2的综合电抗标幺值分别为0.11和0.14。

对每个牵引变电所而言,110kV 线路为一主一备。

图1-1中,1L 、2L 、3L 长度为30km 、60km 、20km.线路平均正序电抗1X 为0.4Ω/km,平均零序电抗

0X 为1.2Ω/km 。

基本设计数据如表1-1所示

牵引变电所设计数据 表1-1

项目

A 牵引变电所 左臂负荷全日有效值(A ) 350 右臂负荷全日有效值(A )

190

[注]:供电臂短时最大负荷即为线路处于紧密运行状态下的供电臂负荷。

第2节牵引变压器容量计算

牵引变压器是牵引供电系统的重要设备,担负着将电力系统供给的110kV或220kV三相电源变换成适合电力机车使用的27.5kV的单相电。由于牵引负荷具有极度不稳定、短路故障多、谐波含量大等特点,运行环境比一般电力负荷恶劣的多,因此要求牵引变压器具有一定过负荷和抗短路冲击的能力。本设计选

择了scott接线的牵引变压器,具体型号为2SCT9-15000/110

2.1 变压器容量计算步骤

a)根据任务书中规定的运量大小确定变压器的计算容量,这是为供应牵引负荷所必须的容量。

b)根据列出紧密运行时供电臂的有效电流和充分利用变压器的过负载能力,计算校核容量,这是为

确保变压器安全运行所必须的容量。

c)根据计算容量和校核容量,再考虑其他因素,并按照实际变压器的规格选定变压器的数量和容量

称为安装容量。

2.2 牵引变压器容量计算

2.2.1 牵引变压器接线方式

线原理图这里我们采用的是三相scott的接线方式,其接如下:

2.2.2 牵引变压器的计算容量

斯科特接线变压器两副边绕组是相互独立的,又是用于AT 供电,故副边绕组的有效电流为

122

2

X TX X MX I I I I ?=??

?=? 式中TX I 和MX I 分别为T 座和M 座绕组有效值;1X I ,2X I 为对应于T 座和M 座的供电臂1、2的有效电流。

① 正常运行方式下容量计算

由于1X I =350A ,2X I =190A,有TX I =175A>MX I =95A,所以斯科特变压器计算容量为

2TX S UI =

式中,U 为牵引变电多牵引母线额定电压,取为27.5KV 。 算得容量S=9625KV A 。 ② 紧密运行方式下容量计算

由于1X I =510A ,2X I =290A,有TX I =255A>MX I =145A,所以斯科特变压器计算容量为

max 2TX S UI =

式中,U 为牵引变电多牵引母线额定电压,取为27.5KV 。 算得容量max S =14025KV A 。

2.3 电气化铁道中、远期运量估计

为了满足铁路运输的不断发展,牵引变压器要留有一定余量,预计中期牵引负荷增长为20%。

(120%)S 11550y S KVA =+= ,max max (120%)S 16830y S KVA =+=

校核容量为:,max ,=6600KVA 1.7

y y S S =

校核

所以选择牵引变压器为2SCT9-15000/110?

第3节 牵引变压器电压损失计算

牵引变压器在短时最大负荷工况下的电压损失计算

Scott 接线牵引变压器可看成两个单相变压器,归算到27.5kV 侧,绕组阻抗为:

2

20.4971000c N

T N P U R S ?=?=Ω

2

% 3.53100d N

T N

U U X S =?=Ω

式中 %d U —变压器短路电压百分值; N U —变压器额定电压; c P ?—变压器额定铜耗 N S —变压器额定容量。

电压损失计算: max (cos sin )1282.956T T U R X I V ???=+= 式中 T R ,T X —变压器归算到次边的电阻值和电抗值; cos ?—功率因数; I —该臂负荷(最大值)。

其中,由表1-1可知,cos 0.8(?=感性)。

第4节 牵引变电所电压不平衡度计算

由于单相工频交流电气化铁道牵引负荷的特点,当三相电力系统向它供电时,它将在电力系统中引起负序电流,而负序电流会造成变压器的附加电能损失,并在变压器铁芯磁路中造成附加发热,所以通过对不平衡度的计算,来确定采取有效的措施,缩小这些影响,这是牵引供电系统设计的重要一环。

在设计中,通常按牵引变电所正常运行和紧密运行两种工况分别计算电压不平衡度。按紧密运行工况进行不平衡度考核。

4.1计算电网最小运行方式下的负序电抗(-)s X

2***

s

s l X

X X e s l j

U X L X S =+=+(-)(Ω)

2

1100.14200.4500

=?+? 11.388=Ω

已知在最小运行方式下系统2的综合电抗标么值*

s X =0.14, L =20km ,1X =0.4Ω/km 。

4.2计算牵引变电所在紧密运行工况下注入110kV 电网的负序电流

以A U 为基准相量,供电臂电压取ab bc ca U U U ?

?

?

、中任何一个。 cos 0.8?=,cos 36.87arc ??=

当负荷为ab I ?

时,原边负序电流:

73.6123.13ab

I ?

-?=

== 当负荷为bc I ?

时,原边负序电流:

41.86143.13bc

I ?-?=

== max

63.9556.66ab bc

I

I I ?

??---?∴=+=

max 63.95I A ?

-∴=

4.3构造归算到110kV 的等值负序网络

如图4-1所示:

图4-1归算到110kV ,牵引变压器、供电系统等值负序网络

4.4 牵引变电所110kV 母线电压不平衡度计算及校验

相负序电压计算:()s max X 11.38863.95728.26U

I V --==?=()

(-)

110kV 侧母线电压不平衡度计算及校验:

()1003

/110000?=

-U u α

100%11000/3

=

?

1.14%

2.5%=<

满足校验。

从牵引供电系统方面来说,采取换接相序、采用平衡牵引变压器和并联补偿装置等方法来改善负序的作用。

第5节 主接线选择

牵引变电所的电气主接线,是指由主变压器、高压电器和设备等各种电器元件和连接导线所组成的接受和分配电能的电路。,电气主接线要满足下列基本要求:

a) 首先应保证电力牵引负荷,运输用动力、信号负荷安全、可靠供电的需求和电能质量。主接线应

在变压器接线方式、谐波无功补偿和调压方面采取有效的改善电压质量措施。

b) 具有必要的运行灵活性,使检修维护安全方便。现代技术的自动装备和监控自动化系统的应用对

提高主接线的运行灵活性和可靠性都是很有利的。

c) 应有较好的经济性,力求减少投资和运行费用。在可能和充分论证的条件下,可采取按远期规划

设计主接线规模、分期实施投资、增加设备,达到最好的经济效益。 d) 应力求接线简洁明了,并有发展和扩建余地。

电气主接线从电源系统接受电能,并通过出线或馈电线路分配电能,当进、出(馈)线数量较多的时候,常设置汇流母线为中间环节,用以联系电源进线和出线,并使运行转换方便,但也可采用无母线接线形式。采用不同形式的汇流母线即构成不同的接线方式。

本次设计的馈线数目很少,只有两条。而且牵引变电所只有两条电源回路和两台主变压器,所以高压侧采用外桥型接线方式作为牵引变电所A 的主接线。桥型接线能满足牵引变电所的可靠性,具有一定得运行灵活性,使用电气少,建造费用低,在结构上便于发展为单母线或具有旁路母线的单母线结线。具有很高的经济实用性,并能达到可靠性要求。本设计采用100%完全备用,当一套设备发生故障,经过正确的倒闸操作顺序,另一设备启用,以提高供电可靠性。

第6节 短路电流计算

为了进行所选电气设备的动稳定,热稳定校验,必须进行相应的短路计算。短路计算时电网电源容量按无限大容量考虑;计算短路电流要考虑周期分量衰减时,在三相短路的暂态过程中,不同时刻短路电流周期分量的有效值的计算,所以用运算曲线法计算;计算中取用系统最大运行方式的综合电抗。

6.1 短路计算示意图及有关数据

电力系统短路中最常见的短路类型是单相接地短路,短路后最不严重的短路类型是两相不接地短路,短路电流最大的三相接地短路。

由于采用的是完全备用方式,主变压器单台运行,牵引变压器高压侧三相接地短路短路电流与1d 点的三相接地短路电流相等,最终在计算可能通过各种电气设备和母线最大电流时,计算短路点123,,d d d 的三相接地短路电流即可。

关于短路计算

考虑简化计算,电网电源容量按无限大考虑。 计算中,取系统最大运行方式的综合电抗。 冲击系数按表5-1选取

表5-1

各级继电保护时间配合按表7-2选取

表5-2

6.2 短路电流计算

1牵引变压器高压侧(

110kV )发生三相接地短路时,1d : 短路电路图如下所示:

取500,B B av S

MVA U U ==

电网电源为无限大功率电源,内阻抗为零120G G X X ==,**

121E E

==

线路电抗标幺值为:2*50021150.4600.90735L X =??=,2*500

31150.4200.30246L X =??= 短路点的起始次暂态电流标幺值为:*110.90735

0.30246 4.40831k I =

+=

短路点处的基准电流为:B I =

=

短路点的起始次暂态电流有名值为: 4.4083111.0658k I kA =

=

短路点的冲击电流为: 1.811.065828.169ch

ch k i I kA ==?=

2牵引变压器低压侧(27.5kV )发生三相接地短路时,2d : 短路电路图如下:

E 1

E 1

由于T T R X <<,所以T R 可以忽略,短路后在计算时,m m R X 也可以忽略不计,所以: 变压器电抗标幺值:

%

*10.5500100

10031.5 1.66667d B N

U S T S X =

?=?= 线路电抗标幺值同上,没变 电压标幺值为:**

1322

23

*

1L L L L E X E X X X E

++=

=

线路2L 和线路3L 的并联标幺值为:23//0.22684L L X X =

短路点的起始次暂态电流标幺值为:*1

1.666670.226840.5281k I +==

短路点处的基准电流为:B I =

=

短路点的起始次暂态电流有名值为:0.5281 5.5436k I kA =

短路点的冲击电流为: 1.7 5.543613.328ch ch k i I kA =?= ○

310kV 侧发生三相接地短路时的短路电流,3d : 短路电路图如下:

变压器标幺值为:'*

*

*

6.5500110021.666671

7.91667T T T X X X =+=+?= 短路点的起始次暂态电流标幺值为:*

117.916670.226840.05512k I +==

短路点处的基准电流为:B I =

=

短路点的起始次暂态电流有名值为:0.05512 1.5154k I kA =

短路点的冲击电流为: 1.55 1.5154 3.323ch ch k i I kA =?= 计算结果:

E 1

牵引变电所的设计

第1章概论 1.1 课题研究的目的意义 牵引变电所是电气化铁路牵引供电系统的心脏,它的主要任务是将电力系统输送来的三相高压电变化成适合电力机车使用的电能。而电气主接线反映牵引变电所设施的主要电气设备以及这些设备的规格、型号、技术参数以及在电气上是如何连接的,高压侧有几回进线、几台牵引变压器,有几回接触网馈电线。通过电气主接线可以了解牵引变电所等设施的规模大小、设备情况。 1.2 电气化铁路的国内外现状 变电所是对电能的电压和电流进行变换、集中和分配的场所。在电能是社会生产和生活质量中最为重要的能源和动力的今天,变电所的作用是很重要的当前我国进行的输变电建设和城乡电网的建设与改造,对未来电力工业发展有着重要的作用。因此,产品技术要先进,产品质量要过硬,应达到30~40年后也能适用的水平;而且产品必须要国产化。现阶段我过主要是使用常规变电所。常规变电所即采用传统模式进行设计、建造和管理的变电所,一般为有人值班或驻所值班,有稳定的值班队伍。继电保护为电磁型,电器就地控制,不具备四遥、远方操作功能,需要一支训练有素的运行与检修队伍和一整套相应的管理机构、制度进行管理,以满足安全运行的要求。这种模式有许多不足之处。我国的近期目标是既要充分利用原有设备,又要能够适应微机远动自动化系统;既要实现无人值班,又要满足安全经济运行的要求。 国外的变电所研究已经远远超过我国,他们在变电站的运行管理模式上, 已经能做到无人值守。 1.3 牵引变电所 1.3.1 电力牵引的电流制 电力牵引按牵引网供电电流的种类可分为三种电流制,即直流制、低频单相交流制和工频单相交流制。 (1) 直流制 即牵引网供电电流为直流的电力牵引电流制。电力系统将三相交流电送到牵引变

供配电工程课程设计-10KV变电所电气设计

供配电工程课程设计任务书 1.题目 能动学院10kV变电所电气设计 2.原始资料 2.1 课题原始资料 工程概况地下室为自行车库,地上五层,集实验室、办公室、研究室等综合性建筑。框架结构,现浇楼板,共有南北两栋楼。根据工程的总体规划,学院楼拟用两台变压器,一用一备,两路10kV电源进线引自校内10kV总配电所,变压器设在北楼一层的室内。现已建一台10/0.38kV变压器,另一台为二期工程,二级负荷的备用电源引自校内10kV总配电所。在南楼设置总配电间,电源引自北楼变电所。本工程消防负荷(如排烟风机、消防电源、应急照明、防火卷帘等)、弱电电源、客梯电力等为二级负荷,其余照明、空调、实验用电等均为三级负荷。二级负荷采用双回路(分别引自两段低压母线)供电,消防负荷采用双回路供电,两路电源末端配电箱自动切换;三级负荷采用单回路供电。 电力负荷:

2.2 供电条件 (1)供电部门110/10kV变电所位于工程附近1.5km处,10kV母线短路电流为20kA,根据需要可提供给用户1路或2路10kV专线供电。 (2)采用高供高计,要求月平均功率因数不少于0.95。不同电价负荷,计量分开。如学校用电统一执行居民电价,公共建筑执行商业照明电价、非工业动力电价,工业企业生产用电统一执行大工业电价、职工生活用电执行居民电价。 (3)供电部门要求用户变电所高压计量柜在进线主开关柜之前,且第一柜为隔离柜。 2.3 其他资料 当地最热月的日最高气温平均值为38℃,年最热月地下0.8m处最高温度平均值为25℃。当地年雷暴日数为35天。当地地质平坦,海拔高度为100m,土壤为普通粘土。 3.具体任务及技术要求 本次课程设计共1.5周时间,具体任务与日程安排如下: 第1周周一:熟悉资料及设计任务,负荷计算与无功补偿、变压器选择。 周二:供配电系统一次接线设计,设计绘制变电所高压侧主接线图。 周三:设计绘制变电所低压侧主接线图。 周四:设计绘制变电所低压侧主接线图。

变电所电气部分设计

变电所电气部分设计公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

目录 引言 (3) 第一篇任务说明书 (4) 第二篇设计说明书 (6) 1.概述 (6) 2. 电气主接线设计 (7) 电气主接线概述 (7) 主接线设计 (7) 35KV侧主接线设计 (7) 10KV侧主接线设计 (11) 3. 主变压器数量、台数和型号的选择 (12) 4.所用变的选择与设计 (14) 5.短路电流的计算 (15) 6.20 20 23 (23) 27 (31) 31 (33) 34

(37) (37) .........38 7. 无功补偿 (39) 第三篇计算书 (44) 1. 主变压器的容量计算 (44) 2. 所用变的容量计算 (44) 3. 短路电流的计算 (45) 结论 (48) 参考文献 (49) 附录 (50) 电气主接线图 (50)

引言 随着电力行业的不断发展,人们对电力供应的要求越来越高,特别是供稳固 性、可靠性和持续性。然而电网的稳固性、可靠性和持续性往往取决于变电所的合理设计和配置。 变电所是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。电气主接线是发电厂变电所的主要环节,电气主接线的拟定直接关系着全厂(所)电气设备的选择、配电装置的布置、继电保护和自动装置的确定,是变电站电气部分投资大小的决定性因素。 一个典型的变电站要求变电设备运行可靠、操作灵活、经济合理、扩建方便。出于这几方面的考虑,本论文设计了一个35kV降压变电站,此变电站有两个电压等级,一个是35kV,一个是10kV。同时对于变电站内的主设备进行合理的选型。本设计选择选择两台主变压器,其他设备如断路器,隔离开关,电流互感器,电压互感器,无功补偿装置和继电保护装置等等也按照具体要求进行选型、设计和配置,力求做到运行可靠,操作简单、方便,经济合理,具有扩建的可能性和改变运行方式时的灵活性。使其更加贴合实际,更具现实意义。

牵引变电所继电保护设计继电保护课程设计

课程名称:继电保护原理与运行 设计题目:牵引变电所继电保护设计 院系:电气工程系 专业:电气工程及其自动化 年级: 姓名: 指导教师: 西南交通大学峨眉校区 2012年4月1日

课程设计任务书 专业铁道电气化姓名学号 开题日期:2009年2月23日完成日期:2009年 4 月10 日题目牵引变电所继电保护设计 一、设计的目的 通过该设计,初步掌握变电所继电保护的设计步骤和方法,熟悉有关规程和设计手册的使用方法以及继电保护标准图的绘制等。 二、设计的内容及要求 (1)牵引变电所继电保护方案的讨论 (2)短路计算 (3)整定计算 (4)绘制标准图 (5)讨论说明 (6)整理成册 三、指导教师评语 四、成绩 指导教师陈丽华(签章) 2009 年 4 月10 日

继电保护设计任务书 (第2组) 一、设计目的 通过该设计,初步掌握变电站继电保护的设计步骤和方法,熟悉有关规程和设计手册的使用方法以及继电保护标准图的绘制等。 二、设计的主要内容 1、牵引变电所继电保护方案的讨论。 2、短路计算。 3、整定计算。 4、绘制标准图。 5、讨论说明。 6、整理成册。 三、原始资料 1、供电方式:复线单边 2、电气主接线:110KV侧—双T接线 27.5KV侧—单母线分段 3、变电所参数 项目电源类别主电源备用电源 系统阻抗 最大运行方式0.494 0.361 最小运行方式0.527 0.517 牵引变 容量(KV A)2×15000 LH变比(Y/Δ)30/120 牵引馈线 名称左右最大负荷电流(A)447 530 馈线长度(KM)16.13 23.67 单位阻抗(Ω/KM)0.7475 LH变比120 母线最低工作电压(KV)25

某变电所电气部分设计

本科生毕业论文(设计) 题目:某变电所电气部分设计 学习中心: 层次:专科起点本科 专业: 年级:年春/秋季 学号: 学生: 指导教师: 完成日期:年月日

I 个字符的中文摘要。 针对本题目,摘要可写成: 变电所是电力系统的重要组成部分。变电所电气一次部分设计包括变电所总体分析、主变选择、电气主接线设计、短路电流计算、电气设备选择、配电装置和总平面设计等。 第二段主要介绍本次论文设计主要的内容、方法以及得到的成果。

某变电所电气部分设计 目录 内容摘要 ...........................................................................................................................I 1 绪论 . (1) 1.1 的发展现状与趋势 (1) 1.2 的研究背景 (1) 1.3 本次论文的主要工作 (1) 2 建筑电气设计的主要内容 (2) 2.1 变电所的总体分析及主变选择 (2) 2.2 电气主接线的选择 (2) 2.3 短路电流计算 (2) 2.4 电气设备选择 (2) 2.5 设计 (2) 3 变电所的总体分析及主变选择 (3) 3.1 变电所的总体情况分析 (3) 3.2 主变压器容量的选择 (3) 3.3 主变压器台数的选择 (3) 4 电气主接线设计 (4) 4.1 引言 (4) 4.2 电气主接线设计的原则和基本要求 (4) 4.3 电气主接线设计说明 (4) 5 短路电流计算 (5) 5.1 短路计算的目的 (5) 5.2 变电所短路短路电流计算 (5) 6 结论 (6) 参考文献 (7) 附录 (8) II

牵引变电所电气主接线的设计

指导教师评语修改(40) 年月

1题目:牵引变电所电气主接线的设计 1.1选题背景 某牵引变电所位于大型编组站内,向两条复线电气化铁路干线的三个方向馈电区段供电,已知列车正常情况的计算容量为12000kV A(三相变压器),并以10kV 电压给车站电力照明机务段等地区负荷供电,容量计算为3850kV A。各电压侧馈出线数目及负荷情况如下: R 10kV回路(2路备):供电电源由系统区域变电所以双回路110KV输送线供电。算;各种方案主接线的技术经济性比较。) 这类牵引变电所的电源线路,按保证牵引符合供电的需求一般有两回,主要向牵引负荷和地区负荷供电,桥型结线的中间牵引变电所还有穿越功率通过母线,并向邻近牵引变电所或地区变电所供电。由题意知,本牵引变电所担负着重要的牵引负荷供电任务(一级负荷)、馈线数目多、影响范围广,应保证安全可靠持续性的供电。10千伏地区负荷主要为编组站自动化驼峰、信号自动闭塞、照明及其自动装置等一部分为一级负荷、其他包括机务段在内的自用电和地区三相负载等均为二级负荷,也应满足有足够安全可靠供电的要求。本变电所为终端变电所,一次侧无通过功率。 2方案论证 因没有校核容量,只考虑计算容量来选择变压器,牵引变压器计算容量为12000kV A,故选择容量为12500kV A的变压器,而地区变压器选择6300kV A变压器。 根据原始资料和各种负荷对供电可靠性要求,主变压器容量与台数的选择,可能有以下两种方案:

110kV母线,(110千伏变压器最小容量为6300kV A)。 过15%,采用电压为110/25/10.5kV A,结线为Y//两台三绕组变压器同时3主接线设计 (2)可靠性:根据变电所的性质和在系统中的地位和作用不同,对变电所的主接线可靠性提出不同的要求。主接线的可靠性是接线方式和一次、二次设备可靠性的综合。对主接线可以作定量计算,但需要各种设备的可靠性指标、各级线路、母线故障率等原始数据。通常采用定性分析来比较各种接线的可靠性。 (3)经济性:经济性是在满足接线可靠性、灵活性要求的前提下,尽可能地减少与接线方式有关的投资。 (2)变电所在电力系统中的地位和作用:电力系统中的变电所有系统枢纽变电所、地区重要变电所和一般变电所三种类型。一般系统枢纽变电所汇集多个大电源,进行系统功率交换和以中压供电,电压为330—500kV;地区重要变电所,电压为220—330kV;一般变电所多为终端和分支变电所,电压为110kV,但也有220kV。 (3)负荷大小和重要性:对于一级负荷必须有两个独立电源供电,且当任何一个电源失去后,能保证对全部一级负荷不间断供电。对于二级负荷一般要有两个独立电源供电,且当任何一个电源失去后,能保证全部或大部分二级负荷的供电。 (4)系统备用容量大小:装有两台及以上主变压器的变电所,其中一台事故断

某110kV降压变电所电气部分初步设计_毕业设计论文

广西大学成人高等教育毕业设计(论文)任务书 题目:E县某110kV降压变电所 电气部分初步设计 学院电气工程学院 专业电气工程及其自动化

变电站是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。电气主接线是发电厂变电所的主要环节,电气主接线的拟定直接关系着全所电气设备的选择、配电装置的布置、继电保护和自动装置的确定,是变电站电气部分投资大小的决定性因素。 为了满足经济发展的需要,根据有关单位的决定修建1座110KV降压变电所。首先根据任务书上所给系统与线路及所有负荷的参数,分析负荷发展趋势。从负荷增长方面阐明了建站的必要性,然后通过对拟建变电站的概括以及出线方向来考虑,并通过对负荷资料的分析,安全,经济,及可靠性方面考虑,确定了110KV,35KV,10KV以及站用电的主接线,然后又通过负荷计算及供电范围确定了主变压器台数,容量及型号,同时也确定了站用变压器的容量及型号,最后,根据最大持续工作电流及短路计算结果,对高压熔断器,隔离开关,母线,电流互感器,电压互感器进行了选型,从而完成了110KV电气一次部分的设计。关键词:变电所主变压器短路电流计算选型

第一部分设计说明书; (2) 第1章设计说明 (2) 1.1环境条件 (2) 1.2电力系统情况 (2) 1.3设计任务 (3) 第2章电气主接线的设计 (3) 2.1电气主接线概述 (3) 2.2110KV侧主接线的设计 (4) 2.335KV侧主接线的设计 (4) 2.410KV侧主接线的设计 (4) 2.5主接线方案的比较选择 (4) 第3章短路电流的计算……………………………………………………. 3.1短路电流计算的目的及规定……………………………………… 3.2短路电流的计算结果……………………………………………… 第4章主要电气设备的选择与校验………………………………………. 4.1电气设备选择概述与校…………………………………………… 4.2主变压器的选择与校验…………………………………………… 4.3高压断路器及隔离开关的选择与校验...…………………………. 4.4母线的选择与校验………………………………………………… 4.5电流互感器的选择与校验………………………………………… 4.6电压互感器的选择与校验………………………………………… 第5章变压器、线路的继电保护…………………………………………. 5.1继电保护的作用…………………………………………………… 5.2主变压器继电保护………………………………………………… 5.335KV线路继电保护……………………………………………… 第6章防雷装置及接地装置说明…………………………………………. 6.1防雷装置的规划原则……………………………………………… 6.2防雷装置的规划结果……………………………………………… 6.3接地装置的说明……………………………………………………

110-35-10kv降压变电所电气部分设计

110-35-10kv降压变电所电气部分设计

课程设计 课程名称:发电厂电气部分 设计题目:110/35/10kv降压变电所电气部分设计

目录 摘要------------------------------------------------------------------ 2 1.变电所总体分析------------------------------------------------------ 2 1.1变电所规模 ------------------------------------------------------ 2 1.2变电所与电力系统连接情况----------------------------------------- 2 1.3负荷情况 -------------------------------------------------------- 2 1.4最小运行方式 ---------------------------------------------------- 3 1.5环境条件 -------------------------------------------------------- 3 2.主接线的设计原则---------------------------------------------------- 3 2.1运行的可靠 ------------------------------------------------------ 3 2.2具有一定的灵活性 ------------------------------------------------ 3 2.3操作应尽可能简单、方便------------------------------------------- 3 2.4经济上合理 ------------------------------------------------------ 4 3.主接线设计---------------------------------------------------------- 4 3.1 110kv侧 -------------------------------------------------------- 4 3.1.1方案一 ------------------------------------------------------ 4 3.1.2方案二 ------------------------------------------------------ 4 3.2 35kv侧(6回出线)---------------------------------------------- 5 3.3 10kv侧(10回出线)--------------------------------------------- 6 4.主变压器的选择----------------------------------------------------- 6 4.1 相数的确定------------------------------------------------------ 6 4.2绕组数的确定 ---------------------------------------------------- 7 4.3绕组接线组别的确定 ---------------------------------------------- 7 5.主接线图------------------------------------------------------------ 8 参考文献--------------------------------------------------------- 9

牵引变电所电气主接线设计教学教材

课程设计报告书 所属课程名称供变电技术课程设计 题目牵引变电所电气主接线设计分院 专业班级 学号 20 0210470 学生姓名 指导教师 20 年月日

课程设计任务书 专业电气工程及其自动化班级姓名 一、课程设计(论文)题目牵引变电所电气主接线设计 二、课程设计(论文)工作:自20年月日起至年月 1 日止。 三、课程设计(论文)的目的及内容要求: 1.设计课题:牵引变电所电气主接线设计 2.设计目的: ①通过该设计,使学生初步掌握交流电气化铁道牵引变电所电气主接线的设计步骤和方法; ②熟悉有关设计规范和设计手册的使用; ③基本掌握变电所主接线图的绘制方法; ④锻炼学生综合运用所学知识的能力,为今后进行工程设计奠定良好的基础。 3.设计要求:

①按给定供电系统和给定条件,确定牵引变电所电气主接线。 ②选择牵引变电所电气主接线中的主要设备。如:母线、绝缘子、隔离开关、熔断器、断路器、互感器等。选择时应优先考虑采用国内经鉴定的新产品、新技术。 ③提交详细的课程设计说明书和牵引变电所电气主接线图。 学生签名:( ) 20年月日

课程设计(论文)评阅意见 评阅人职称 20 年月日

目录 第一章牵引变电所主接线设计原则及要求 (6) 1.1 概述 (6) 1.2 电气主接线基本要求 (6) 1.3电气主接线设计应遵循的主要原则与步骤 (7) 第二章牵引变电所电气主接线图设计说明 (8) 第三章短路计算 (9) 3.1短路点的选取 (9) 3.2短路计算 (9) 第四章设备及选型 (12) 4.1硬母线的选取 (12) 4.2支柱绝缘子和穿墙导管的选取 (14) 4.3高压断路器的选取 (16) 4.4高压熔断器的选取 (17) 4.5隔离开关的选取 (18) 4.6电压互感器的选取 (19) 4.7电流互感器的选取 (20) 4.8避雷器的选取 (21) 第五章参考文献 (22)

10~0.4kV变电所供配电系统初步设计

10~0.4kV变电所供配电系统初步设计 摘要:从负荷计算、无功补偿、站址选择、主接线选用、短路电流、设备选型、继保配置、防雷接地、照明、配网自动 化等方面论述了10kV变电站设计的主要内容和设计程序. 关键词: 10kV变电站; 设计; 负荷计算; 无功补偿 10kV配电网属中压配电网,它延伸至用电负荷的中心或居民小区内,直接面对工矿企业和居民等广 大用户的供电需要,起着承上启下确保用户供电的作用,因此10kV配电网所处的地位十分重要. 在配电 工程中,能否保证系统安全、经济、可靠地运行,工程的设计质量是一个重要条件. 本文就10kV变电站的 设计思路进行探讨. 1 负荷计算及负荷分级 计算负荷是确定供电系统,选择主变容量、电气设备、导线截面和仪表量程的依据,也是整定继电保护 的重要数据. 因此,正确进行负荷计算及负荷分类是设计的前题,也是实现供电系统安全、经济运行的必要 手段. 此阶段需要的原始资料有: ①供电区域的总平面图; ②供电区域逐年及最终规模的最大负荷、年耗电 量、功率因数值及项目投产日期; ③每回出线的名称、负荷值、各负荷的性质及对供电可靠性或其它方面的 特殊要求; ④供电部门对电源电压、供电方式、电源路数及继电保护、自动装置等方面的相关意见; ⑤用户 对变电站设置方面的数量、容量、位置等的设想及资金准备情况等. 计算负荷的方法多种多样,如需用系数法、二项式法、利用系数法等. 目前多数采用需用系数法与二项 式法相结合的方法,部分采用利用系数法. 但是由于利用系数法其理论依据是概率论和数理统计,计算结

果比较接近实际,因此也适用于各类的负荷,在以后的负荷计算工作中将占主导地位. 负荷根据其对供电可靠性的要求可划分为一、二、三级负荷. 对于一级负荷,如医院的手术室等必须有 两个独立的电源供电,如同时具备两个条件的发电厂或变电所的不同母线段等,且当两个独立电源中任一 电源失去后,另一电源能保证对全部一级负荷的不间断供电. 对于一级负荷中的特别重要负荷,也称保安 负荷. 如用于银行主要业务的电子计算机及其外部设备、防盗信号等必须备有应急电源,应由两个独立的 电源点供电. 如两个发电厂、一个发电厂和一个地区电网或一个电力系统中的两个区域性变电所等. 独立 于正常电源的发电机同样可作为应急电源,实行先断后通. 对于二级负荷一般需有两个独立电源供电,且 当任一电源失去后,另一电源能保证对全部或部分的二级负荷供电. 对于三级负荷,通常只需一个电源供 电. 在各类负荷中,除了保安负荷外,都不应按一个电源系统检修或故障的同时另一电源又发生故障进行 设计. 2 无功补偿的确定 在电力系统中,存在着广泛的、大量的感性负荷,在系统运行中消耗大量的无功功率,降低了系统的功率因数,增大了线路的电压损失,电能损耗也增高. 因此,国家供用电规则规定:无功电力应就地平衡,用户 应在提高用电自然功率的基础上设计和装置无功补偿设备,并做到随其负荷和电压变动及时投入或切除, 防止无功倒送. 目前广泛采用并联电容器作为无功补偿装置,分集中补偿和分散补偿两种. 在确定无功补 偿方案时应注意如下问题: 2. 1 补偿方式问题

【精品】牵引变电所接地防雷系统的设计

齐鲁工业大学 毕业设计 题目:牵引变电所接地防雷系统的设计 系别: 专业: 班级: 学生姓名: 指导教师: 完成日期:

摘要 牵引变电所是铁路供电系统的枢纽,它担负着电网供电的重要任务。雷电具有很强的危害性,因此应该重视牵引变电所的雷电的防护。 综合运用高电压技术、电力系统过电压、接地系统及供防雷接地的设计方法,对110kV牵引变电所进行防雷接地设计.引变电所雷击的配电技术等相关的专业知识,采用理论和实践相结合的方法,研究牵,基于常用的形式及防雷接地的几种措施,研究接地装置的类型和降阻方式 关键词雷电放电防雷保护装置防雷接地装置牵引变电所

目录 1绪论.............................................. 错误!未指定书签。2雷................................................ 错误!未指定书签。 2。1雷电........................................ 错误!未指定书签。 2。1。1雷电的发生机理....................... 错误!未指定书签。 2.1。2雷电放电.............................. 错误!未指定书签。 2。1.3雷电放电的过程........................ 错误!未指定书签。 2.1。4雷电放电的基本形式.................... 错误!未指定书签。 2.1.5雷电放电的选择性....................... 错误!未指定书签。 2.1.6我国雷电活动分布的规律................. 错误!未指定书签。 2.1.7雷电的危害............................. 错误!未指定书签。 2.1.8雷电的防护措施......................... 错误!未指定书签。 2.2雷电参数..................................... 错误!未指定书签。

110kv牵引变电所设计

课程设计报告 课程电气化铁道供电系统与设计 题目牵引变电所B主接线及变压器容量计算学院电气工程学院 年级专业电气工程及其自动化 班级学号 学生姓名 指导教师

目录 1 概述 (1) 2 设计方案简述 (2) 3 牵引变压器容量计算 (2) 3.1牵引变压器容量的计算 (2) 3.1.1牵引变压器计算容量 (2) 3.1.2牵引变压器过负荷能力校验 (3) 3.2牵引变压器功率损耗计算 (3) 3.3牵引变电所电压不平衡度计算 (4) 3.3.1计算电网最小运行方式下的负序电抗 X(-) (4) s 3.3.2计算牵引变电所在紧密运行工况下注入110kV电网的负序电流 (4) 3.3.3构造归算到110kV的等值负序网络 (4) 3.3.4牵引变电所110kV母线电压不平衡度计算及校验 (4) 4 导线选择 (5) 4.1软母线选择 (5) 4.1.1室外110kV进线侧的母线选择 (6) 4.1.2室外27.5kV侧的母线选型及校验 (7) 4.1.3室外10kV馈线侧的母线选型及校验。 (7) 5 主接线选择 (8) 总结 (9) 附录一牵引变压器主要技术数据表 (10) 附录二牵引变电所B主接线图 (11) 参考文献 (12)

1 概述 包含有A、B两牵引变电所的供电系统示意图如图1-1所示: L3 L2 L1 B A S Y S T E M 1 S Y S T E M 2 图1-1牵引供电系统示意图 表1-1 设计基本数据 图1-1牵引变电所中的两台牵引变压器为一台工作,另一台备用。 电力系统1、2均为火电厂。其中,电力系统容量分别为250MV A和200MVA。选取基准容量 j S为200MV A,在最大运行方式下,电力系统1、2的综合电抗标幺值分别为0.13和0.15;在最小运行方式下,电力系统的综合标幺值分别为0.15和0.17。 对每个牵引变电所而言,110kV线路为一主一备。图1-1中, 1 L、2L、3L长度为25km、 40km、20km.线路平均正序电抗 1 X为0.4Ω/km,平均零序电抗0X为1.2Ω/km。

牵引变电所毕业设计

黑龙江交通职业技术学院毕业设计(论文) 题目:牵引变电所常见故障判断及处理方案指导教师:郭婺 专业电气自动化 班级0936班 姓名张彦庆 2011年 05 月 10 日

目录 引言................................................................ - 2 -一牵引变电所基本概念................................................. - 2 - (一)牵引变电所概述 (2) (二)牵引变电所主要电气元件 (3) (三)牵引变电所供变电系统 (5) (四)牵引变电所 (5) 二互感器的常见故障与分析............................................ - 11 - (一)互感器的作用 (11) (二)互感器分类 (11) (三)电流互感器常见故障分析处理 (12) (四)电压互感器常见故障分析处理 (12) (五)电压互感器故障案例分析- 12 - 三断路器常见故障分析................................................ - 19 - (一)断路器工作原理 (19) (二)短路器的分类 (20) (三)真空断路器的故障分析及设备管理 (20) (四)断路器跳闸拒动的原因及防止措施 (24) 四牵引变电所运行与检修重要规程与规则................................ - 24 -总结.. (33) 致谢 (33) 参考文献 (33)

摘要 电力牵引的专用变电所。牵引变电所把区域电力系统送来的电能,根据电力牵引对电流和电压的不同要求,转变为适用于电力牵引的电能,然后分别送到沿铁路线上空架设的接触网,为电力机车供电,或者送到地下铁道等城市交通所需的供电系统,为地铁电动车辆或电车供电。一条电气化铁路沿线设有多个牵引变电所,相邻变电所间的距离约为40~50公里。在长的电气化铁路中,为了把高压输电线分段以缩小故障范围,一般每隔200~250公里还设有支柱牵引变电所,它除了完成一般变电所的功能外,还把高压电网送来的电能,通过它的母线和输电线分配给其他中间变电所。 牵引变电所的任务是将电力系统三相电压降低,同时以单相方式馈出。降低电压是由牵引变压器来实现的,将三相变为单相是通过变电所的电气接线来达到的。 牵引供电回路是由牵引变电所——馈电线——接触网——电力机车——钢轨——回流联接——(牵引变电所)接地网组成的闭合回路,其中流通的电流称牵引电流,闭合或断开牵引供电回路会产生强烈的电弧,处理不当会造成严重的后果。通常将接触网、钢轨回路(包括大地)、馈电线和回流线统称为牵引网。 牵引变电所(包括分区亭、开闭所,AT所等),为了完成接受电能,高压和分配电能的工作,其电气接线可分为两大部分:一次接线(主接线)和二次接线。 主接线是指牵引变电所内一次主设备(即高压、强电流设备)的联接方式,也是变电所接受电能、变压和分配电能的通路。它反映了牵引变电所的基本结构和功能。 二次接线是指牵引变电所内二次设备(即低电压、弱电流的设备)的联接方式。其作用是对主接线中的设备工作状态进行控制,监察、测量以及实现继电保护与运动化等。二次接线对一次主设备的安全可靠运行起着重要作用。 主接线是根据变电所的容量规模、性能要求、电源条件及配电出线的要求确定的,其基本主接线型式有:单母线分段接线、劳旁路母线的单母线分段接线、双母线接线、桥式接线、双T式(即分支式)接线等。 关键词:电气设备故障电力系统分析诊断

[某工厂变电所设计]某工厂车间变电所供配电设计

[某工厂变电所设计]某工厂车间变电所供配电设计 第一章绪论 1.1.1机械工厂供电的意义和特点 工厂是工业生产的主要动力能源。工厂供电设计的任务是从电力系统取得电源,经过合理的传输,变换,分配到工厂车间中的每一个用电设备上。随着工业电气自动化技术的发展,工厂用电量的迅速增长,对电能的质量,供电的可靠行以及技术经济指标等的要求也日益提高。供电设计是否完善,不仅影响工厂的基本建设投资,运行费用和有色金属的消耗量,而且也反映到工厂供电的可靠性和工厂的安全生产上,他与企业的经济效益,设备和人身安全等是密切相关的。 供电设计的任务是从厂区以外的电网取得电源,并通过厂内的变配电中心分配到下厂的各个供电点。它是工程建设施下的依抓,也是日后进行验收及运行维修的依据。供电设计首先要确定供电系统并进行用电负荷计算,然后将设计的供电系统图及用电容量向供电部门申请。申请用电容量的大小应满足生产需要,也要考虑到节省投资和节约能源,这就要求设计者对对工艺专业和公用专业用电负荷系数有足够的把握。在设计计算中除了查找外,还必须借助于设计者在中长期积累的经验数据。由于机械工厂车间组成类型多,产品、工艺日新月异,对供电要求各不相同,非专业设计院或个体设计者一不了解机械

生产工艺和生产规律,要作出好的设计,相对来说要困难些。比如机加工车间,从设备明细表中看出用电电量颇大,大小设备用电量相差较大,用电特点是短时下作制的设备多,机加工设备辅助传动电机一般仅工作几秒钟,而停歇时间却达几分钟、甚至几小时。在作负荷计算时对设备下作时间要了解, 并把不同的用电设备按组划分确定其 计算功率。 工厂供电工作要很好地为工业生产服务,切实保证工厂生产和生活用电的需要,并做好节能工作,就必须达到下列基本要求: ①安全在电能的供应,分配和使用中,不应发生人身事故和设备事故②可靠应满足电能用户对供电可靠性即连续供电的要求③优质应满足电能用户对电压和频率等质量的要求 ④经济供电系统的投资要省,运行费用要低,并尽可能节约电能和减少有色金属的消耗量 此外,在供电工作中,应合理的处理局部和全局,当前和长远等关系,既要照顾全局和当前的利益,又要有全局观点,能顾全大局,适当发展。

110 35 10KV降压变电所电气部分设计

第一章电气主接线的设计 一、原始资料分析 本设计的变电站为降压变电站,有三个电压等级:高压侧电压为110kv,有二回线路;中压侧电压为35kv,有六回出线;其中有四回出线是双回路供电。低压侧电压为10kv,有八回出线,其中有六回是双回路供电。从以上资料可知本变电站为配电变电站。 二、主接线的设计 配电变电站多为终端或分支变电站,降压供给附近用户或一个企业,其接线应尽可能采用断路器数目较少的接线,以节省投资和减少占地面积。随着出线数的不同,可采用桥形、单母分段等。低压侧采用单母线和单母线分段。可按一下几个原则来选: 1 运行的可靠 断路器检修时是否影响供电;设备和线路故障检修时,停电数目的多少和停电时间的长短,以及能否保证对重要用户的供电。 2 具有一定的灵活性 主接线正常运行时可以根据调度的要求灵活的改变运行方式,达到调度的目的,而且在各种事故或设备检修时,能尽快地退出设备。切除故障停电时间最短、影响范围最小,并且再检修在检修时可以保证检修人员的安全。 3 操作应尽可能简单、方便 主接线应简单清晰、操作方便,尽可能使操作步骤简单,便于运行人员掌握。复杂的接线不仅不便于操作,还往往会造成运行人员的误操作而发生事故。但接线过于简单,可能又不能满足运行方式的需要,而且也会给运行造成不便或造成不必要的停电。 4 经济上合理 主接线在保证安全可靠、操作灵活方便的基础上,还应使投资和年运行费用小,占地面积最少,使其尽地发挥经济效益。 5应具有扩建的可能性 由于我国工农业的高速发展,电力负荷增加很快。因此,在选择主接线时还要考

虑到具有扩建的可能性。 变电站电气主接线的选择,主要决定于变电站在电力系统中的地位、环境、负荷的性质、出线数目的多少、电网的结构等。 1.110KV侧 根据原始资料,待设变电站110kv侧有两回线路。按照《发电厂电气部分课程设计参考资料》规定:在110~220kv配电装置中,当出线为2回时,一般采用桥形接线;当出线不超过4回时,一般采用分段单母线接线。待设变电所可考虑以下几个方案,并进行经济和技术比较。 方案1:采用单母线分段带旁路接线 其优缺点:⑴对重要用户可采用从不同母线分段引出双回线供电电源。 ⑵当母线发生故障或检修时,仅断开该段电源和变压器,非故障段仍 可继续工作,但需限制一部分用户的供电。 ⑶单母线分段任一回路断路器检修时,该回路必须停止工作。 ⑷单母线分段便于过渡为双母线接线。 ⑸采用的开关、刀闸较多,某一开关检修时,对有穿越电流的环网线 路有影响。 〔6〕开关检修时,可用旁路代路运行,无需停电。 〔7〕易于扩建,利于以后规划。 方案2:采用内桥接线 其优缺点:⑴两台断路器1DL和2DL接在电源出线上,线路的切除和投入是比较方便。 ⑵当线路发生故障时,仅故障线路的断路器断开,其它回路仍可 继续工作。 ⑶当变压器故障时,如变压器1B故障,和变压器1B连接的两台 断路器1DL和3DL都将断开,当切除和投入变压器时,操作也 比较复杂。 ⑷较容易影响有穿越功率的环网系统,内桥接线适用于故障较多 的长线路,且变压器不需要经常切换运行方式的变电所。 方案3:采用外桥接线 其优缺点:⑴当变压器发生故障或运行中需要切除时,只断开本回路的断路器即可。 ⑵当线路故障时,例如引出线1X故障,断路器1DL和3DL都将 断开,因而变压器1B也被切除。 ⑶外桥接线适用于线路较短、变压器按经济运行需要经常切换且

牵引变电所设计的课程设计

电力牵引供电系统课程设计评语: 考勤(10) 守纪 (10) 设计过程 (40) 设计报告 (30) 小组答辩 (10) 总成绩 (100) 专业: 班级: 姓名: 学号: 指导教师:

目录 1 设计原始题目 (1) 1.1具体题目 (1) 1.2要完成的内容 (2) 2 设计课题的计算与分析 (2) 2.1计算的意义 (2) 2.2详细计算 (2) 2.2.1 牵引变压器容量计算 (2) 2.2.2 牵引变压器过负荷能力校验 (3) 2.2.3 牵引变压器功率损耗计算 (3) 2.2.4 牵引变压器在短时最大负荷下的电压损失 (3) 2.2.5 牵引变电所电压不平衡度 (3) 2.2.6 牵引变电所主接线设计 (4) 3 小结 (5) 参考文献 (6) 附录 (7)

1 设计原始题目 1.1 具体题目 《供变电工程课程设计指导书》的牵引变电所B。包含有A、B两牵引变电所的供电系统示意图如图1所示。设计基本数据如表1所示。 SYSTEM2SYSTEM1 L1L2L3 B A 图1 牵引供电系统示意图 表1设计基本数据 项目B牵引变电所 左臂负荷全日有效值(A)320 右臂负荷全日有效值(A)290 左臂短时最大负荷(A)410 右臂短时最大负荷(A)360 牵引负荷功率因数0.85(感性) 10kV地区负荷容量(kVA)2*1200 10kV地区负荷功率因数0.83(感性) 牵引变压器接线型式YN,d11 牵引变压器110kV接线型式简单(双T)接线 左供电臂27.5kV馈线数目 2 右供电臂27.5kV馈线数目 2 10kV地区负荷馈线数2回路工作,一回路备用 预计中期牵引负荷增长40%

住宅建筑变电房及供配电设计要点教学文案

住宅建筑变电所及供配电设计要点总结 变电所及供配电设计是住宅设计的重要内容之一,由于各地供电局对变电所及供配电设计又有一些特殊的规定,这些特殊规定反过来又会影响着设计院对建筑、电气、结构、暖通等专业的设计;为避免当地供电局对变电所及供配电设计与设计院的设计不一致,而造成后期各专业的返工,结合融科海阔天空和融科橡树澜湾变电所及供配电设计,总结了一些设计要点。 一、供电局对供配电系统总的要求 1、住宅建筑供配电实行公用和专用配电的方式,居民住宅生活用电属于公用用电,该部分资产无偿划拨给当地供电局,并由其管理、维护,专用配电的资产属于建设单位,由建设单位或委托其他单位管理、维护。 2、在一个规划小区建筑(或单体建筑)内,若专用配电用电负荷小于50KW,其负荷电源可在公用变压器搭接,可不设专用变压器。 3、计量方式:公用配电采用住宅分表计量到户(又称“一户一表”),专用供配电采用高压侧设总计量方式,低压侧设分表计量。 二、变电所设计要点 1、变电所位置选择要点 1)、要求变电所相对位于负荷中心,且低压供电半径不宜超过200 m; 2)、要求变电所正上方或侧上方不能是如厨房、卫生间、浴室、泳池等经常积水的场所; 3)、要求变电所不得设在有爆炸危险环境或火灾危险环境的正上方或正下方; 4)、要求变电所周围(包括正上方和正下方)不得紧邻住宅的卧室、书房、起居室等要求安静的场所,若紧邻上述场所,则要求变电所做隔音处理,变电所内壁采用防火隔音棉等复合材料,要求噪音衰减30分贝以上;

5)、要求变电所的位置方便设备运输及搬运;不宜采用吊装口作为搬运通道; 6)、要求变电所的位置方便高压电缆进线和低压电缆出线。 2、变电所对建筑专业设计要点 1)、变电所面积要求:单台变压器变电所面积为60-80 m 2,两台变压器变电所面积为120-150 m 2;当变电所的形状不规则或变电所内有结构柱时,要求适当加大变电所的面积; 2)、层高要求:变电所室内净高(室内地坪至梁下口)不小于3 m; 3)、门窗要求:变电所长度大于7米,要求设置不少于2个独立向外开启的钢质甲级或乙级防火门,门要求设置在两端;长度大于60米时,要求增设1个独立向外开启的钢质甲级或乙级防火门(变电所位于地下室时,其门要求为甲级防火门,变电所位于地上时,通向相邻房间的门为甲级防火门,通向过道或室外,要求为乙级防火门),门宽要求1 . 8 m,高度为2 . 4 m; 4)、室内墙面、天棚装饰要求:白色内墙涂料要求 5)、室内地面装饰要求:地坪要求做防潮防水处理,室内地面铺设300×600浅灰色仿古地砖; 6)、室内电缆沟要求:要求做防潮防水处理,电缆沟尺寸600×600—800 m m (宽×深,单排支架为600 m m深,两排支架为800 m m深);沟盖板荷载不小于2KN/ m 2) 7)、室外通道要求:要求室外运输通道宽度不小于3 . 5 m,净空高度不小于3 . 5 m,搬运通道宽度不小于2 . 0 m,净空高度不宜小于2 . 5 m;当变电所室内外存在高差时,不能利用台阶的形式进行处理,应采用小于12°的斜坡处理,并满足搬运通道要求。 3、变电所对结构专业设计要点

相关文档