文档库 最新最全的文档下载
当前位置:文档库 › 锂离子电池发展综述

锂离子电池发展综述

锂离子电池发展综述
锂离子电池发展综述

锂离子电池的研究及发展现状

张求华

(吉首大学化学化工学院,416000)

摘要:综述了电极材料、电解质和隔膜研究及发展现状,其为电池重要的组成部分,直接影响电池的性能。电池所用材料方面的研究推动着锂离子电池性能的不断提高和完善。主要分析了近年来锂离子电池材料技术动向和应用,以及对锂离子电池的未来发展趋势进行了展望。

关键词:锂离子电池;正极材料;负极材料;电解质和隔膜

Research and Development status of Lithium-ion Batteries

Zhang qiuhua

(College of chemistry and chemical engineering,jishou university,416000)

Abstract: In this paper, the research and development status of electrode materials, electrolyte and separator are summarized, which are important parts of lithium-ion batteries, which can influence the performance of battery directly. The study on electrode materials propels the improvement of lithium-ion batteries, performance. The technology trend and application of materials used in lithium -ion battery in recent years was focused in this paper and the prospect of development trend of lithium ion batteries in the future w as proposed.

Key words: lithium ion batteries; cathode materials; anode materials; electrolyte and separator

引言

由于锂离子电池具有高电压、高容量的重要优点,且循环寿命长、安全性能好,使其在便携式电子设备、电动汽车、空间技术、国防工业等多方面具有广阔的应用前景,成为近几年广为关注的研究热点。本文对锂离子电池的研究现状进行了综述,最后对锂离子电池未来的发展进行了展望。

1锂离子电池工作原理

锂离子电池( Lithium - Ion Battery, LIB)又称锂电池,是指以2种不同的能够可逆脱出和嵌入锂离子的化合物分别作为电池的正极和负极的二次电池体系[1]。锂离子电池正负极材料均采用锂离子可以自由脱出和嵌入的具有层状或隧道结构的锂离子嵌入化合物。在充电,正极材料中的锂离子脱离正极穿过隔膜向负极方向迁移,并最终嵌入负极材料中;在放电时,负极材料中的锂离子从负极脱出并穿过隔膜向正极方向迁移并嵌入正极材料中。这样,在充放电过程中,锂离子在正负极间“摇来摇去”,而无金属锂析出。因此锂离子电池被称作“摇椅电池”( Rocking Chair Battery ) 或“摇摆电池”( Swing Battery)[ 2]。

以具有石墨化结构的碳为负极,氧化钴锂为正极的锂离子电池为例,充电时其电极反应如下

正极反应:LiCoO2 →Li1- xCoO2+ xLi+ + xe-

负极反应:6C+ xLi+ + xe-→Li x C6

总的反应:LiCoO2+ 6C →Li1- x CoO2 + Li x C6

放电时上述反应逆向进行。

2锂离子电池结构

锂离子电池基本结构一般包括正极、负极、能传导锂离子的电解质及把正负极隔开的

隔膜。

2.1正极材料

锂离子正极材料直接影响锂离子动力电池的能量密度特性、比功率特性、温度特性以及安全特性。目前商业化的锂离子正极材料主要有LiCoO2、LiNi1/3Co1/3Mn1/3O2、LixMn2O4、LiFePO4[3]。

LiCoO2作为第一代商品化的锂离子正极材料具有许多优点:比能量相对较高,循环性能好,高低温工作性能好,其对应的电池产品主要应用于各种小型电子设备。但由于采用该材料的电池安全性与耐过充性差,加之Co的资源稀缺,价格高,所以难以成为大容量车用和储能锂离子电池正极材料。

LiN i1/3Co1/3Mn1/3O2是一种高容量的三元材料,可逆比容量可以达到160mAh/g以上,是非常有前途的正极材料。此材料与电解液的相容性好,循环性能优异,可用于手机电池、动力电池等多种领域。由于三元材料随着Ni,Co,Mn三种元素比例的变化显示出不同的性能,所以该类材料可以衍生出多种正极材料如LiNi0.4Co0.2 Mn0.4O2等,可以满足不同产品的需求。

尖晶石型Li x Mn2O4成本更低,热稳定性和抗过充电性能高于LiCoO2和LiNi1/3Co1/3Mn1/3O2具有三维隧道结构,比层间化合物更利于Li+的嵌入与脱出,适用于高功率动力电池[4]。但是其较低的比容量(110mAh/g),较差的循环性能(300次),特别是高温循环性差使得其应用受到了较大的限制。

LiFePO4等磷酸盐聚阴离子化合物是最近几年才快速发展起来的正极材料,其较高的安全性能,良好的耐高温性,优越的循环性能使得其作为动力电池和备用电源领域有广阔的应用前景。但是其也存一些缺点,电压平台较低(3.2V),电导率低,低温放电性差,倍率放电差。但从正极材料的发展趋势看,磷酸铁锂材料的一些问题将逐步得到解决,研究者和商家一致看好LiFePO4在车用电池领域的发展前景。

2.2负极材料

目前,对锂离子电池负极材料研究较多的有:碳材料、合金材料(硅基材料、锡基材料等)、钛酸锂和过渡金属氧化物等[3]。

2.2.1碳材料

碳材料是人们最早开始研究并应用于锂离子电池生产的负极材料。根据其结构特性可分成3类:石墨、易石墨化碳(软碳)及难石墨化碳(硬碳)。由于软碳与石墨的结晶性比较类似,一般认为它比硬碳更容易插入锂,即更容易充电,安全性也更好些。

石墨类碳材料技术比较成熟,常规锂离子电池负极材料包括天然石墨、天然石墨改性材料、中间相炭微球和石油焦类人造石墨。中间相炭微球结构特殊,呈球形片层结构且表面光滑,直径在5-40mm之间该材料独特的形貌使其在比容电量(可达到330mAh/g以上)、安全性、放电效率、循环寿命(循环次数达到2000次以上)等方面具有显著优势,但是成本有待降低。

目前,硬碳材料由于存在首效低、压实密度低、工艺不成熟等问题,因此,还没有进入大规模商品化阶段,国内相关领域仍处于试验阶段,相关文献报道很少。

2.2.2其他负极材料

除了碳类负极材料,其他负极材料主要包括锡基复合氧化物、过渡金属氧化物、碳硅复合材料和钛酸锂等,其中钛酸锂是当前的研究热点之一。

钛酸锂负极材料是一种嵌入式化合物,尖晶石结构,可以嵌入Li+,电极的理论嵌锂容量为175mAh/g。在作为锂离子动力电池用负极材料时,钛酸锂具有非常明显的优势。其循环寿命超长,钛酸锂体积变化很小,被称为“零应变”材料。钛酸锂和电解液之间的界面上不会形成SEI膜,内阻不会增加。安全性能优异,电压平台位于1.5 V附近,不易引起金属

锂析出,电压平台稳定,具有良好的耐过充性能和耐过放性能。但是钛酸锂的电极电位相对较高,压实密度、重量比能量相对较低,导电性差,大倍率性能尚需提升,产品一致性和电池加工性能也较差,这些缺陷限制了钛酸锂的广泛商业化应用。

2.3隔膜

隔膜是锂离子电池的关键材料之一。其作用是:将电池的正负极分开,防止短路,吸附电池中反应所必需的电解液,确保高的离子电导率,防止对电池反应有害物质在电极间迁移,保证电池发生异常时使电池反应停止,提高电池的安全性能。作为锂离子电池隔膜需要满足以下要求:

1)要有良好的绝缘性;

2)要有莲花的离子导电性;

3)要有足够的机械强度,拉伸强度和穿刺强度要高;

4)要有良好的吸电解液能力;

5)在电解液中要有良好的化学稳定性和电化学稳定性;

6)具有在一定温度下的热熔断性。

电池中常用的隔膜材料是纤维素纸或非织物、合成树脂的多微孔膜。锂离子电池一般采用聚烯烃系树脂隔膜,其可分为2类:单层PE膜和用聚乙烯(PE)、聚丙烯(PP)、聚乙烯( PE)3层合并成的隔膜。单层PE膜可制造超薄的(16 Lm以下)隔膜,但成本较高。第二类PP与PE夹层膜,制作工艺复杂,但具有较低的自闭温度(80~120 ℃),其安全性比只用单层膜要好。目前,复合多层隔膜已经成为目前研究开发的热点,隔膜主要向着有较高的孔隙率、较低的电阻、较高的抗撕裂强度、较好的抗酸碱能力和良好的弹性等特点的方向发展[4,5]。2.4电池电解质

电解液是电池重要的组成部分之一,在正、负极之间起到输送离子与传导电流的作用,其性能的好坏直接影响锂离子电池性能的优化和提高。电解液至少具备两个条件:1)离子电导率高;

2)电化学稳定性好,即与电极材料有好的相容性。

目前电解液的溶剂主要有碳酸二甲酯(DMC)、碳酸二乙酯( DEC)、碳酸丙烯酯(PC)、碳酸乙烯酯(EC)、碳酸甲乙酯( EMC)等几类[6]。

3锂离子电池的制造工艺流程

一般来说,锂离子电池的制造过程主要有4个工序:正、负极活性物质制造;正、负极制造、组装、化成[7,8]。

3.1正、负极活性物质制造

3.1.1正负极活性物质制造

目前,已在工业上成功使用的正极活性物质是Li-CoO2,正在开发并开始运用的正极活性物质有LiNiO2,LiMn2O4,LiFePO4等。

以下是一些正极活性物质合成条件

活性物质原料烧成条件

Li-CoO2CoCO3+Li2CO3

Co2O3+LiOH 900℃,大气中700℃,大气中

LiMn2O3电解MnO2+Li2CO3800℃

LiNiO2Ni(OH)2+LiOH

Ni(OH)2+LiNO3750℃,氧600,750℃,氧

3.1.2碳负极材料制造

以石油焦为原料制备负极材料的基本方法是将石油焦置于真空中频感应电炉加热到在指定的温度后,经保温、冷却到室温、在加热到另一指定的温度、再冷却至室温。按此步骤指定温度逐步提高,将经过高温热处理的石油焦研磨成微细炭粉。按质量比炭粉/PTFE=9/1,混匀后,碾压成厚度为0.2um的炭膜,在160℃下真空干燥24h。

3.2正、负极制造

分别将正、负极活性物质与导电剂、粘接剂、添加剂等溶解在有机溶剂中粉末状的混合,经高速搅拌均匀后,制成糊状的胶合剂,均匀地涂覆在金属箔的表面,烘干,分别制成正负极极片;

3.3组装

按正极片一隔膜一负极片一隔膜自上而下的顺序放好,经卷绕制成电池芯,再经注入电解液封口等工艺过程,即完成电池的装配过程,制成成品电池;

3.4化成

用专用的电池充放电设备对成品电池进行充放电测试,对每一只电池都进行检测,筛选出合格的成品电池,待出厂。

4锂离子电池的性能特点

4.1工作电压高,能量密度大

由于锂离子从碳材料晶格中的脱出发生在接近金属锂的电极电位(较锂电极电位略正),且锂的过渡金属氧化物( LiMn2O4、LiCoO2、LiNiO2 )正极反应的电极电位约在4.0 V左右(相对锂电极),因此这种新型蓄电池具有高的工作电压,平均工作电压高达3.6~ 3.8 V。锂离子电池的重量能量密度和体积能量密度均比较大。同重量的电池,锂离子电池提供的能量比其他电池高,同容量的电池,锂离子电池体积比其他电池小很多[9]。

4.2循环寿命长,自放电率小

锂离子电池循环寿命长,镉镍电池、镍氢电池的充放电次数一般为300~ 600次。而锂离子电池充放电次数为500~ 1 000次,固态锂离子电池则在1 000次以上。锂离子电池在首次充放电过程中会在碳负极的表面形成一层固态电解质中间相膜( SEI膜) ,阻止了许多副反应的发生,使不同荷电状态的电极活性物质处于相对稳定态,因此电池有较低的自放电率,同样环境下锂离子电池保持电荷的时间长[1,9]。

4.3无记忆效应,环保无污染

镉镍电池、镍氢电池有时使用了一半而不得不放电后再充电,锂离子电池可随时补充充电,这样锂离子电池的效能可得到充分发挥。锂离子电池的负极是嵌锂碳材料,没有毒性,正极是锂的过渡金属氧化物,毒性小,并且不含有Pd,Cd,Hg等有毒物质,同时电池被很好地密封,整个电池形成一个封闭的体系,不会对环境造成污染。

5锂离子电池的应用前景

随着近年来锂离子电池的关键技术、关键材料和产品研究取得了重大进展,世界各国政府及各大公司正在继续支持着相关研究,以进一步提高锂离子电池的性能、扩大其用途。目锂离子电池已从信息产品如移动电话、笔记本电脑等便携式电子产品扩展到能源交通如电动汽车、太阳能、风能蓄电站,充分显示出锂离子电池的巨大优势和巨大的潜能[8]。目前,锂动力电池最热门的应用是电动汽车2009年BYD公司推出E6锂动力汽车就是采用高安全性磷酸铁锂材料[9]。我国已经把新能源汽车产业列为战略性新兴产业之一,从而为锂动力电池展开了广阔的市场前景。此外我国作为自行车大国电动自行车用锂动力电池也在国内有着

非常大的市场应用前景。除了民用领域,在航天及军事应用中锂动力电池也有广阔的前景。6结论

综上所述,锂离子电池具有质量轻、无污染、无记忆效应、循环寿命长等特点,近年来锂离子电池中正负极活性材料、电解质以及隔膜的研究和开发应用相当活跃,并取得很大进展随着锂离子电池的飞速发展,电池材料的市场将会具有更好的发展前景,并且仍将会是继镉镍、氢镍电池之后发展最快的一种二次电池。随着技术的发展,锂离子电池的性能指标将会越来越高,其应用领域也将不断扩大,本文认为锂离子电池仍将朝着高能量密度,高功率密度及大型化方向发展。

参考文献

[1]邱玉凤.新型高效绿色能源:锂离子电池.化学教育.2011.8 1-2)

[2]叶伟.锂离子电池碳负极及高容量.18650型电池的工艺和性能研究.湖南大学.2006: 1

[3]张成龙.锂离子电池研究现状及展望.科技向导.2011.32:139

[4]樊孝红.锂离子电池隔膜的研究及发展现状.中国塑料.2008.22(12):12-14)

[5]苏金然.我国锂离子电池发展概述.中国电池行业二十年发展历程.2012:71-78)

[6]黄学杰。锂离子电池及相关材料进展[A].中国材料进展.2010 29(8):46-52)

[7]孙嘉遥.锂离子电池的制造工艺探讨.企业技术开发.2012.31(5):92

[8]郭炳焜等.化学电源--电池原理及制造技术[M].中南大学出版社.2009:504-508

[9]倪文昊.我国锂离子电池发展现状及前景探讨.中国石油和化工标准与质量.2012.(1):26

[10]王少龙等.动力电池的研究现状及发展趋势[A].云南冶金.2010 39(2):75-80)

锂离子电池开题报告

一、国内外研究动态、选题依据和意义 锂离子电池是20世纪70年代以后发展起来的一种新型储能电池。由于其具有高能量、寿命长、低能耗、无公害、无记忆效应以及自放电小、内阻小、性价比高、污染少等优点,锂离子电池在逐步应用中显示出巨大的优势,广泛应用于移动电话、笔记本电脑、摄像机、数码相机、电动汽车、储能、航天等领域。[1]锂离子电池主要由正极、负极、和电解质溶液等组成。电极材料是决定锂离子电池的整体性能水平的关键。电解质溶液的性质、组成和浓度也是决定锂离子电池充放电性能的重要因素,对于锂离子电池的制备工艺也起重要的作用。锂离子电池正极、负极和电解质材料的研究是整个锂离子电池研究领域的重点,备受世界的重视。[3] 在第215届电化学会议中,新型电极材料仍是锂离子电池的研究热点之一,与传统正极材料LiMn204、LiCoO2、LiMnPO4相比,LiFePO4正极材料所特有的安全性能引起了人们的重视。其中粘结剂作为非导电的活性材料在锂离子电池中的重要性开始逐渐被认识和接受。美国劳伦斯伯克利国家实验室研究了电极循环性能与电极片机械能的关系,发现电极的机械能与长期循环性能的关系密切,电极的损坏,特别是碳负极的损坏主要源于极片力学性能的下降,指出电极材料并不是决定电极性能的唯一因素,粘结剂的性能和极片的制备方法、工艺也是必须考虑的。[4] 近年来,许多研究者不再局限于对某一材料的制备与优化,开始着眼于整个系统的匹配,优化电极片和制备方法,瞄准动力汽车的需求设计高能量电池和高功率电池,分析电池衰退的原因,开发满足动力电池需要的3000至5000次循环寿命的长寿命锂离子电池。[7] 涉及锂离子电池的研究内容和手段不断的丰富,对于锂离子电池制备工艺的提高也有很大的促进与提高。锂离子电池的制备工艺涉及多个方面的研究与创新,本课题的学习与研究是对我们大学学习的一个重要的总结与检验。[10] 二、研究的基本内容,拟解决的主要问题 1.研究内容 本研究主要是通过对电池正极片、负极片的制备工艺(包括原料的选择和原料配比等)以及电池组装工艺的优化来制备容量和循环性能较好的扣式电池。 2.解决的问题 (1)研磨充分、搅拌均匀、浆液粘度适中以保证制得的正极片无粉末脱落。(2)涂布均匀、涂层厚度适中以获得较好的循环性能。 (3)使组装好的电池的工装紧密度适中以保证测试结构具有较好的准确性和可靠性。[1]

锂电池行业发展现状及未来发展前景预测

锂电池行业发展现状及未来发展前景预测 Revised by Chen Zhen in 2021

2017年中国锂离子电池行业发展现状分析及未来发展前景预测 核心提示:全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下,2016年中国、韩国、日本三国占据了全球锂电池电芯产值总量的98.11%。三国的竞争策略各不相同。日本竞争 全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下,2016年中国、韩国、日本三国占据了全球锂电池电芯产值总量的98.11%。三国的竞争策略各不相同。日本竞争策略上关注技术领先。韩国更偏重于消费型锂离子电池的发展。中国锂离子电池市场规模在全球市场的份额呈现逐年上升的态势。 2010-2020年中国及全球锂电产值 数据来源:公开资料整理 国内锂离子电池市场的发展处于行业的高速增长期。2010年至2016年我国锂离子电池下游应用占比呈现消费型电池占比逐年下降、动力类占比逐年提升的格局。2016年受消费电子产品增速趋缓以及电动汽车迅猛发展影响,我国锂离子电池行业发展呈现出“一快一慢”新常态。2016年,我国电动汽车产量达到51.7万辆,带动我国动力电池产量达到33.0GWh,同比增长65.83%。随着储能电站建设步伐加快,锂离子电池在移动通信基站储能电池领域逐步推广,2016年储能型锂离子电池的应用占比达到4.94%。 2010-2016年我国锂离子电池下游应用占比 数据来源:公开资料整理 业务发展方向契合政策,发展前景良好。我国锂离子电池材料及设备行业平均利润水平总体上呈现平稳波动态势,在不同应用领域及细分市场行业利润水平存在差异。一般而言,在低端负极产品和涂布机领域,门槛低,竞争充分,利润水平相对较低。而中高端负极材料、涂布机以及新兴的涂覆隔膜、铝塑包装膜,产品技术含量高,在研发、工艺改善、客户积累、资金投入等方面进入壁垒较高,附加价值较高,优质企业能够在该领域获得较好的利润率水平。 全球负极材料产业集中度极高,江西紫宸全球份额持续提升。目前锂离子电池负极材料生产企业主要在中国和日本,两国总量占全球负极材料产销量

锂离子电池和锂聚合物电池概述

18通信电源技术 761^00111?0霣打’1'枕|11|0|0#682002年10月第5期 能源技术 锂离子电池和锂聚合物电池概述 0*061^1 00 11161汕丨皿1~ !011831^30^ 1池1画沈63^ 郑如定 武汉洲际通信电源集团公司430035武汉 识1111811211011)1X61600111?0^61 811^1^ (^(^口’乙10. 摘要高比能量、长循环寿命的二次电池是电化学界专家致力研制对象。当前,安全可靠、有利于环保、高功率密度、体积小、重量轻的新型二次锂电池正被广泛应用。文中通过对新型 的锂离子电池、锂聚合物电池与铅酸电池、镍镉电池、镍氩电池等比较,突出了其优点;介绍了 新型的貍离子电池、锂聚合物电池的构成、工作原理、电极材料特性及发展前景。 关键词锂离子电池锂聚合物电池电极材料工作原理 分类号1财911 ^5511^01 7116 360011(131^ 1)^1161^ ^1111 3 名如 1)11 0&011(1 ^011^ 011^16 11(6 16 #116 0^601 1636810116|1^6160100―01161010811^0^3^8^8,111600^6111(111111111)81161^“1186(1?01 11 18 88(6 311(11^1181)16^ 60)311 811汾 12名1)1,客00(1 101-6211110111116111 ^016^11011 评I'出乂名如口0界611 ^611311^ ^『101110010^)81180115 1^61^6611 110761 11~10111)31161^,11(11111111只1)31161^如。1^9^ ~ 8011^11101561~0&011111)111161113^^81113^6 15 旧名卜衫名“鉍丄1116 8180 11111-0(111069 11)6 00111^08111011 ^0^61~311011 卩『把亡七匕0? 1)16 110^*1 11~1011 1)31(61^ 311(11|~只01^1!167 1)81161^ 311(11|16 01181-8016081108 0?山6斤6160170(16 1113161181 311(1 1116^ ^01^5 11-100 1)81161^,1!~ 00&11161 1)311衍了,61601?0^6 111816081^ 0^1811011 ^011011)16 自1859年0381011?丨抑化提出铅酸电池概念以来,化学电源界一直在研制新的髙比能量、长循环寿命的二次电池,经历了铅酸电池、键镉电池、镍氢电池、锂离子电池、锂聚合物电池几个阶段。 镍镉电池电路简单,充电速度较快I能承载较大电流。但由于镍镉电池重、储电量小、污染性强,加之具有记忆效应,此类电池正逐步退出 主流市场。 镍氢电池不含有镉金属,分解后对环境的污 染很小,是一种安全可靠、有利于环保的电池。它的贮能密度比旧式镍镉电池高一倍,比新式镍 收稿镉电池高30^~509^,用于移动电话中可使通 话时间延长30亨6。不过,这种电池和镍镉电池 一样,也有记忆功能,不过没有那么明显。镍氧电池储电量较大,待机时间长,价格适中,基本上可以满足一般用户的需求。 近年来,重量轻、能量大、自放电率低的二次锂电池在市场出现,备受广大消费者的欢迎。目前,投人市场的二次锂电池也多为锂离子电池 和裡聚合物电池。 1(液态丨锂离子电池 1.1锂离子电池基本原理 现在被广泛使用的锂离子电池是由锂电池发 展而来的。锂离子电池的正极材料是氧化钻锂

文献综述

文献综述 北京化工大学材料1001 王培2010012389 引言 收集文献资料是写好论文的前提,只有在写论文之前进行大量的资料收集,然后对资料进行综合整理、归类,才能对论文课题的研究现状有个大概的了解,使我们站在理论前沿,分析问题的原因、特点、现状及基本内容,从而为我们发现问题、解决问题打下基础。 本综述的题目是碳纳米管制备技术研究进展 摘要:碳纳米管是一种具有独特结构的一维量子材料,由石墨碳原子层卷曲而成。由于拥有潜在的优越性能,碳纳米管不管在物理、化学还是在材料学领域都将有重大发展前景。近年来,美国、日本、德国和中国等国家相继成立了纳米材料研究机构,碳纳米管的研究进展随之加快,并在制备及应用方面取得了突破性进展。本文着重从碳管的制备方法与应用前景两方面,阐述了碳纳米管的研究进展与发展潜力 关键词:碳纳米管;石墨碳;制备技术;进展; 前言 随着微电子技术的进一步发展,微细化成为器件的重要发展方向,纳米器件的研究成为近几年的热点。并出现了许多不同的纳米器件制备工艺,如,:操纵原子、模板法制备纳米材料、纳米材料选择性生长等,但还未出现材料选择性好、成本低、可批量生产的技术。目前,以纳米材料为模块,采用自下而上的构筑加工工艺(Bottom-up)制作纳米器件已成为一个亮点。碳纳米管由于具有独特的结构、电学性质,已成为制备纳米器件的首要候选材料。在催化、复合材料、储能材料和微电子器件等诸多领域表现出了很大的潜在应用前景。目前制备碳纳米管的方法有石墨电弧法、激光法、催化裂解法(CVD)等,其中前两种方法存在产量少,不易实现工业化生产的特;而CVD法以其设备简单,成本低,反应过程容易控制,产量高等优点成为目前制备碳纳米管的主流。 主题 1 碳纳米管的制备碳纳米管的制备方法主要有电弧法、激光蒸发法和有化学气相沉积法。单壁碳纳米管产量只有克量级,制备技术难度大。多壁碳纳米管的制技术则较为成熟,产量可达每小时公斤级,并可对产物直径和定向性等进控制

纳米材料文献综述

北京化工大学北方学院NORTH COLLEGE OF BEIJING UNIVERSITY OF CHEMICAL TECHNOLOGY 碳纳米管的性质与应用 姓名:赵开 专业:应用化学 班级: 0804 学号: 080105097 2011年05月

文献综述 前言 本人论题为《碳纳米管的性质与应用》。碳纳米管是一维碳基纳米材料,其径向尺寸为纳米级,轴向尺寸为微米量级,管子两端基本上都封口。碳纳米管具有尺寸小、机械强度高、比表面大、电导率高、界面效应强等力学,电磁学特点。近年来,碳纳米管在力学、电磁学、医学等方面得到了广泛应用。 本文根据众多学者对碳纳米管的研究成果,借鉴他们的成功经验,就碳纳米管的性质及其功能等方面结合最新碳纳米管的应用做一些简要介绍。本文主要查阅近几年关于碳纳米管相关研究的文献期刊。

碳纳米管(CNT)是碳的同素异形体之一,是由六元碳环构成的类石墨平面卷曲而成的纳米级中空管,其中每个碳原子通过SP2杂化与周围3个碳原子发生完全键合。碳纳米管是由一层或多层石墨按照一定方式卷曲而成的具有管状结构的纳米材料。由单层石墨平面卷曲形成单壁碳纳米管(SWNT),多层石墨平面卷曲形成多壁碳纳米管(MWNT)。自从1991年日本科学家lijima发现碳纳米管以来,其以优异的力学、热学以及光电特性受到了化学、物理、生物、医学、材料等多个领域研究者的广关注。 一、碳纳米管的性质 碳纳米管的分类 研究碳纳米管的性质首先要对其进行分类。(1)按照石墨层数分类,碳纳米管可分为单壁碳纳米管和多壁碳纳米管。(2)按照手性分类,碳纳米管可分为手性管和非手性管。其中非手性管又可分为扶手椅型管和锯齿型管。(3)按照导电性能分类,碳纳米管可分为导体管和半导体管。 碳纳米管的力学性能 碳纳米管无缝管状结构和管身良好的石墨化程度赋予了碳纳米管优异的力学性能。其拉伸强度是钢的100倍,而质量只有钢的1/ 6,并且延伸率可达到20 %,其长度和直径之比可达100~1000,远远超出一般材料的长径比,因而被称为“超强纤维”。碳纳米管具有如此优良的力学性能是一种绝好的纤维材料。它具有碳纤维的固有性质,强度及韧性均远优于其他纤维材料[1]。单壁碳纳米管的杨氏模量在1012Pa范围内,在轴向施加压力或弯曲碳纳米管时,当外力大于欧拉强度极限或弯曲强度,它不会断裂而是先发生大角度弯曲然后打卷形成麻花状物体,但是当外力释放后碳纳米管仍可以恢复原状。 碳纳米管的电磁性能

锂离子电池基本知识

锂离子二次电池简介 概述: 锂离子二次电池是指Li+嵌入化合物为正、负极的二次电池,正极采用锂化合 物LiCoO 2、LiMn 2 O 4 ,负极采用锂—碳层间化合物Li x C 6 ,电解质为溶解有锂盐LiPF 6 、 LiAsF 6 等的有机溶液。在充、放电过程中,Li+在两个电极之间往返嵌入和脱嵌,被形象地称为“摇椅电池”(Rocking Chair Batteries,缩写为RCB)。锂离子二次电池由于工作电压高(3.6V)、无记忆效应、无污染、自放电小、循环寿命长,在移动电话、摄相机、笔记本电脑、便携式电器上得到大量应用。 一、工作原理 1、化学反应方程式 锂离子电池正极主要成分为LiCoO 2 ,负极主要为C,充电时 正极反应:LiCoO 2 Li ( 1-x) CoO 2 + xLi+ + xe- 负极反应:C + xLi+ + xe- CLi x 电池总反应:LiCoO 2 + C Li ( 1-x) CoO 2 + CLix 放电时发生上述反应的逆反应。 2、化学反应原理图 二、命名 根据IEC61960标准二次锂电池的标识如下: 1. 电池标识组成3个字母后跟5个数字(圆柱形)或6个(方形数字); 2. 第一个字母表示电池的负极材料:I表示有内臵电池的锂离子,L表示锂金属电 极或锂合金电极; 3. 第二个字母表示电池的正极材料:C基于钴的电极,N基于镍的电极,M基于锰 的电极V基于钒的电极; 4. 第三个字母表示电池的形状:R表示圆柱形电池,P表示方形电池;

5. 数字:圆柱形电池5个数字分别表示电池的直径和高度,直径的单位为毫米,高度 的单位为十分之一毫米,直径或高度任一尺寸大于或等100mm时两个尺寸之间应加 一条斜线。方型电池6个数字分别表示电池的厚度、宽度和高度,单位均为毫米, 三个尺寸任一个大于或等于100mm时尺寸之间应加斜线,三个尺寸中若有任一小于 1mm,则在此尺寸前加字母t,此尺寸单位为十分之一毫米。 例如: ICR18650:表示一个圆柱形二次锂离子电池正极材料为钴其直径约为18mm高约为 65mm。 ICR20/1050 ICP083448:表示一个方形二次锂离子电池正极材料为钴,其厚度约为8mm,宽度约 为34mm,高约为48mm。 ICP08/34/150:表示一个方形二次锂离子电池正极材料为钴其厚度约为8mm,宽度约 为34mm,高约为150mm。 ICPt73448:表示一个方形二次锂离子电池正极材料为钴其厚度约为0.7mm,宽度约 为34mm,高约为48mm。 三、组成结构 1、正极 正极材料一般由钴酸锂、导电石墨、碳黑、粘接剂、溶剂等组成。 2、负极 负极材料一般由碳黑、粘接剂、溶剂等组成。 3、隔膜纸 隔膜纸由PP、PE复合膜组成,厚度一般为25微米,国内有些厂家也有用16 微米的,著名的生产厂家有日本UBE。 4、电解液 电解液为溶解有锂盐LiPF 6、LiAsF 6 等的有机溶液,常用的有机溶液有EC(碳 酸乙烯酯)、DEC(二乙基碳酸)、DMC(二甲基碳酸)等。 5、绝缘垫片 6、外壳 有钢壳和铝壳。 四、制造工艺

锂硫电池综述

高性能锂硫电池的研究进展 摘要:目前传统的锂离子电池在电子产品中发挥着重要作用。然而受到其较低的理论比容量的限制(约150~200Wh/kg),锂离子电池将难以满足人类发展的长远需求,例如电动汽车行业的发展。锂硫电池的理论能量密度为2600Wh/kg,是锂离子二次电池的3~5倍,是极具应用前景的电化学储能体系,近年来引起了研究人员的广泛关注。人们提高电极导电性、维持电极结构稳定性、提高硫的负载率和利用率以及加强电池循环寿命等方面开展了大量的研究工作。本文将就近几年锂硫电池的发展进行相关介绍和讨论。 关键词:锂硫电池正极材料纳米结构材料改性电解质电池结构 Research progress in High-Performance Lithium-Sulphur Batteries Ren Guodong (School of Metallurgy and Environment, Central South University,0507110402) Abstract:Lithium-ion batteries has played an important role in the electronics at present.But due to its low theoretical energy density ,which is only 150~200Wh/kg,therefore the lithium-ion batteries cannot meet the long-term needs of society in the future,just in the case of the development of electric vehicles.Lithium-sulphur battery is a promising electrochemical energy storage system which has high theoretical energy density of 2600Wh/kg,that is 3~5 times to lithium-ion battery.And it has arised more and more attentions recently.Great efforts have been made by reseachers to improve the conductivity of the electrode , the stability of electrode structure,the loading capicity of sulphur ,the utilization efficiency of sulfur in the cathode and the enhancement of cycle life of the battery.In this paper,the recent research of lithium-sulphur battery will be analyzed and discussed. Keywords:lithium-sulphur battery cathode material nano-structure modification electrolyte cell configuration 1.前言 电能储存技术和设备将会在未来社会发展中成为一项十分重要的需求。传统

锂离子电池论文:Si-SiO_x-Sn-C复合负极材料的合成及电化学性能研究

锂离子电池论文:Si-SiO_x-Sn/C复合负极材料的合成及电化学性能研究 【中文摘要】目前锂离子电池的应用越来越广泛。与其他类型的二次电池相比锂离子电池具有较多优点,比如,工作电压和能量密度高,循环寿命长,自放电率小,无记忆效应且电极材料不含有毒物质, 是现代的“绿色电池”。广泛的应用于移动电话,笔记本电脑,电动车和混合电动车中。锂电池负极材料主要采用已经商业化的碳类材料,但由于它的理论比容量较低,且由于碳材料的嵌锂电位与金属锂接近,在快速充电时存在安全隐患,所以开发高比容量和性能安全的负极材料成为必要。由于硅和锡的理论比容量高(分别为4200 mAh g-1,994 mAh g-1),成为研究热点。但由于它们在充放电过程中存在严重的体积膨胀收缩,导致容量衰减较快,循环性能较差,极大的影响了材料的实用价值。利用硅锡的复合物或其合金,可以有效地改善它们的循环性能。本论文研究了一氧化硅和二氧化锡均匀混合后在碳的作用下于高温管式炉中发生反应,合成新的具有充放电效应的电极材料。考察了温度的影响,电化学性能及交流阻抗。通过实验研究得到以下结论:1.将SiO、纳米Sn02和碳混合后湿磨,于氮气保护下在管式炉中加热到750℃,800℃,850℃,900℃,950℃和1000℃。经XRD分析得知,新合成的材料中温度在800℃及以上时,Sn02经碳 【英文摘要】Lithium-ion cells are considered presently the best choice for rechargeable batteries. Lithium-ion cells have

many advantageous compared with other secondary batteries. Lithium-ion battery has high voltage, high energy density, long cycle life, self-discharge rate is small, no memory effect and also the electrode material does not contain toxic substances, is the modern “green battery.” It is widely used in mobile phones, notebook computers, electric vehicles and hybrid electric vehicles. Since the first commercialization of Li-ion batteries by Sony in 1991, graphite carbon has been the favorable anode material for its good reversibility and stability with thousands of cycles. However since the theoretical capacity (372 mAh g-1) of graphite is limited, new anode materials with high specific capacity are searched to satisfy the requirement of advanced power sources in such applications as electric vehicles with extended range.The search for next-generation anode materials of Li-ion batteries has focused on Si- and Sn-based oxide materials that offer a considerably larger specific (4200 mAh g-1 and 994 mAh g-1) and volumetric capacity than conventional carbonaceous materials. Such studies indicate that silicone monoxide, SiO, has a large discharge specific capacity. However, due to their serious volume change when charging and discharging, leading to fast capacity fading and poor cycle performance, it is a great impact

2017年中国锂电池行业发展现状及未来发展前景预测

2017年中国锂离子电池行业发展现状分析及未来发展前景预测 核心提示:全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下,2016年中国、韩国、日本三国占据了全球锂电池电芯产值总量的98.11%。三国的竞争策略各不相同。日本竞争 全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下,2016年中国、韩国、日本三国占据了全球锂电池电芯产值总量的98.11%。三国的竞争策略各不相同。日本竞争策略上关注技术领先。韩国更偏重于消费型锂离子电池的发展。中国锂离子电池市场规模在全球市场的份额呈现逐年上升的态势。 2010-2020年中国及全球锂电产值 数据来源:公开资料整理 国内锂离子电池市场的发展处于行业的高速增长期。2010年至2016年我国锂离子电池下游应用占比呈现消费型电池占比逐年下降、动力类占比逐年提升的格局。2016年受消费电子产品增速趋缓以及电动汽车迅猛发展影响,我国锂离子电池行业发展呈现出“一快一慢”新常态。2016年,我国电动汽车产量达到51.7万辆,带动我国动力电池产量达到33.0GWh,同比增长65.83%。随着储能电站建设步伐加快,锂离子电池在移动通信基站储能电池领域逐步推广,2016年储能型锂离子电池的应用占比达到4.94%。 2010-2016年我国锂离子电池下游应用占比 数据来源:公开资料整理 业务发展方向契合政策,发展前景良好。我国锂离子电池材料及设备行业平均利润水平总体上呈现平稳波动态势,在不同应用领域及细分市场行业利润水平存在差异。一般而言,在低端负极产品和涂布机领域,门槛低,竞争充分,利润水平相对较低。而中高端负极材料、涂布机以及新兴的涂覆隔膜、铝塑包装膜,产品技术含量高,在研发、工艺改善、客户积累、资金投入等方面进入壁垒较高,附加价值较高,优质企业能够在该领域获得较好的利润率水平。 全球负极材料产业集中度极高,江西紫宸全球份额持续提升。目前锂离子电池负极材料生产企业主要在中国和日本,两国总量占全球负极材料产销量90%以上。负极材料产品市场呈现出明显的寡头垄断格局。2015年前五强贝特瑞、日立化成、江西紫宸、上海杉杉、三菱化学的全球市场份额分别是20%、18%、13%、10%、7%,全球前五大企业市场份额合计占比为68%。江西紫宸2016年全球份额提升至10.5%,国内份额提升至14.8%,预计2017年

锂离子电池技术发展现状与趋势

锂离子电池技术发展现状与 趋势

一、文献综述 1、前言 现阶段,日本、韩国、美国等国家引领锂离子动力电池技术的发展。日本的行业技术水平具有领先优势,韩国的动力电池制造能力处于领先地位,美国则具有引领前沿的科研能力。 2、国外发展现状 2·1日本 2·11 2009年,日本政府推出了RISING计划(创新型蓄电池尖端科学基础研究事业)和U~EAD项目(汽车用下一代高性能电池系统),并于2013年更新了动力电池技术发展路线图(RM2013),具体指标有2020年电池的续航里程实现250~350km·电池系统总电量达到25~35kW·h,电池能量密度实现250Wh· kg-1,功率密变达到1500W·kg-1,循环寿命达到1000-1500次,价格成本降低到2万日元/W·h。RM2013指明了电极材料的发展方向,正极材料要发展xLiMn03·(1~x)LiMO2(M=Ni,Co,Mn,0≤x≤1)、LizMSi0s、LiNiosMn1s04、LiCnP04、Li2MSO·F、LiMO2(M=Ni,Co,Mn);负极材料要发展Sn~CoC合金,Si基负极包括Si/C和Si0,以及Si基合金。 2·12日本具有代表性的锂离子动力电池企业为松下电池公司。松下是动力电池行业的领导者,作为Tesla最主要的动力电池供应商,凭借Tesla的发展稳居市场领导者地位,全球市场份额在20%左右。目前松下电池主要给ModelS和MndelX提供18650圆柱电池,正极采用镍钴铝三元材料(NCA),负极使用硅碳复合材料,单体能量密度可达252Wh·kg-1,而即将使用在Mode13上的21700圆柱形电池单体能量密度更是提高到300Wh·kg-1·是目前行业内能量密度最高的电池。 2·2韩国 2·21 2011年,韩国启动了包含锂离子电池关键材料、应用技术研究、评价及测试基础设施以及下一代电池研究的二次电池技术研发项目。LG化学和三星SDI是具有代表性的韩国锂离子动力电池企业,也是动力电池领域的后起之秀,两者凭借先

文献综述-电池充电管理器的设计

文献综述 电气工程及其自动化 电池充电管理器的设计 前言: 电池充电器battery charger。电池充电器是电动车、电动工具、电玩、笔记本、数码及小型便携式电子设备及电子电器所有可充电电池充电用的电子设备,一般由外壳、电源转换部分、充电检测部分、充电保护部分等组成。其输出类型为纯直流或脉动直流。按连接方式可分为插墙式和桌面式[1]。按所充电电池的类型又可分为镍镉电池充电器、镍氢电池充电器、镍锌电池充电器、铅酸电池充电器、锂电池充电器等。按充电器的功能又可分为专用充电器和通用充电器。本文通过对普通充电管理器的设计来更好的了解充电器。 正文: 电子技术的快速发展使得各种各样的电子产品都朝着便携式和小型轻量化的方向发展,也使得更多的电气化产品采用基于电池的供电系统。目前,较多使用的电池有镍镉、镍氢、铅蓄电池和锂电池。它们的各自特点决定了它们将在相当长的时期内共存发展。由于不同类型电池的充电特性不同,通常对不同类型,甚至不同电压、容量等级的电池使用不同的充电器,但这在实际使用中有诸多不便。 利用单片机设计一种锂电池充电器,在设计上,选择了简洁、高效的硬件,设计稳定可靠的软件,详细说明了系统的硬件组成,包括单片机电路、充电控制电路、电压转换及光耦隔离电路,并对本充电器的核心器件—MAX1898充电芯片、AT89C2051单片机进行了较详细的介绍。阐述了系统的软硬件设计。以C语言为开发工具,进行了详细设计和编码。实现了系统的可靠性、稳定性、安全性和经济性[3]。 该智能充电器具有检测锂离子电池的状态;自动切换充电模式以满足充电电池的充电需要;充电器短路保护功能;充电状态显示的功能。在生活中更好的维护了充电电池,延长了它的使用寿命。 当今可充电电池的材料、结构、规格种类很多。其作用原理大多是相同的它们都属反应可逆的化学能源,即充电时借助充电产生的化学反应将能量储存起来,使用时再利用逆向反应将储存的能量释放出来。二次世界大战后 ,各国为满足战争和军备竞赛的需要而开发了

锂离子电池自动充放电系统的设计开题报告

锂离子电池自动充放电系统的设计开题报告

————————————————————————————————作者:————————————————————————————————日期:

本科毕业设计开题报告 题目:锂离子电池自动充放电系统的设计专题: 院(系):电气与信息工程学院 班级:电气09-12班 姓名:徐圣男 学号: 24号 指导教师:朱显辉 教师职称:讲师

黑龙江科技学院本科毕业设计开题报告 题目锂离子电池自动充放电系统的设计来源工程应用1、研究目的和意义 随着微电子技术的快速发展,使得各种各样的电子产品不断的涌现,并朝着便携和小型轻量化的趋势发展。为了能够更加有效地使用这些电子产品,可充电电池得到快速的发展。常见的可充电电池包括镍氢电池、镍镉电池、锂电池和聚合物电池等。其中,锂电池以其高的能量密度、稳定的放电特性、无记忆效应和使用寿命长等优点得到广泛的应用。目前绝大多数的手机、数码相机等均使用锂电池。电池的使用寿命和单次循环使用时间与充电器维护过程和使用情况密切相关。一部好的充电器不但能在短时间内将电量充足,而且还可以对电池起到一定的维护作用,修复由于使用不当而造成的记忆效应,即电池活性衰退现象。 但锂电池的不足之处在于对充电器的要求比较苛刻,对保护电路的要求较高。其要求的充电方式是恒流恒压方式,为有效利用电池容量,需将锂离子电池充电至最大电压,但是过压充电会造成电池损坏,这就要求较高的控制精度(精度高于1%)。另外,对于电压过低的电池需要进行预充充电终止检测除电压检测外。还需采用其他的辅助方法作为防止过充的后备措施,如检测电池温度、限定充电时间,为电池提供附加保护等。为此,研发性能稳定、安全可靠、高效经济的锂电池智能充电器显得尤为重要。 本课题采用单片机为控制电路来制作一个能用LCD显示充电电压和电流,能够定时开关和充完自动停充的4.2V的锂电池智能充电器。采用单片机和充电集成电路进行充电器的设计,不但能够实现对锂电池进行充电,而且还能够实现相应的过压和温度保护,从而可以充分发挥锂电池的性能,并避免了充电器在充电时可能对电池造成损害的情况发生,具有一定的智能功能。该方案有效地保护了电池、缩短了充电时间并尽量延长锂电池的使用寿命,符合目前的环境保护潮流。 本课题的研究成果广泛应用于手机、MP3等便携式电子产品,为人类日常生活和生活质量的提高有着深远的意义。

锂离子电池正负极新型材料发展前沿文献综述

锂离子电池正负极新型材料发展前沿文献综述应用化学1103班2011016089 蔡雨心 引言锂离子电池是主要依靠锂离子在正极和负极之间移动来工作的充电电池。在充放电过程中,Li+ 在两个电极之间往返嵌入和脱嵌:充电池时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。一般采用含有锂元素的材料作为电极,是现代高性能电池的代表。自1991年日本SONY能源技术公司首次将锂离子二次电池成功商品化,锂离子电池发展至今已有20多年的历史,科学家一直致力于锂离子电池正负极材料的革新制备,从而提高电池性能。本篇综述力求粗略介绍锂离子电池电极材料的发展现状。 锂离子电池电极材料的发展1970年代的首个锂电池。锂电池的正极材料是二氧化锰或亚硫酰氯,负极是锂。电池组装完成后电池即有电压,无需充电且不宜充电。1982年R.R.Agarwal和J.R.Selman发现锂离子具有嵌入石墨的特性,此过程是快速的,并且可逆。1983年M.Thackeray、J.Goodenough 等人发现锰尖晶石是优良的正极材料,具有低价、稳定和优良的导电、导锂性能。1989年,A.Manthiram和J.Goodenough发现采用聚合阴离子的正极将产生更高的电压。1991年日本索尼公司发明了以炭材料为负极,以含锂的化合物作正极的锂电池,在充放电过程中,没有金属锂存在,只有锂离子,这就是锂离子电池。1996年Padhi和Goodenough 发现具有橄榄石结构的磷酸盐,如磷酸铁锂(LiFePO4),比传统的正极材料更具安全性,尤其耐高温,耐过充电性能远超过传统锂离子电池材料。因此已成为当前主流的大电流放电的动力锂电池的正极材料。 纵观电池发展的历史,可以看出当前绿色环保电池迅猛发展,包括锂离子蓄电池、氢镍电池等;一次电池向蓄电池转化,符合可持续发展战略;同时电池进一步向小、轻、薄方向发展。在商品化的可充电池中,锂离子电池的比能量最高,可以实现可充电池的薄形化,且无污染,具备当前电池工业发展的三大特点,因此在发达国家中有较快的增长。锂离子电池负极材料进展自从 P.Poizot 等报道过渡金属氧化物可以作为锂离子电 池负极材料这一研究后,金属氧化物负极便逐渐引起人们的重视。结构对于锂离子电池负极材料的性能具有重要影响,按结构分 类近年来被探索当做锂离子电池负极材料 的金属氧化物(Sn、Co、Fe、Ni、Ti、Cu、Mo、Mn 的氧化物)材料主要包括:低维度金属氧化物负极材料、核壳结构金属氧化物负极材料、多孔结构金属氧化物负极材料、微/纳米尺度金属氧化物负极材料以及特殊 形貌金属氧化物负极材料。低维度纳米结构氧化物负极材料主要包括:零维结构的纳 米颗粒、一维结构的纳米棒、纳米管、纳米线、纳米纤维等。纳米颗粒由于颗粒尺寸小,比表面积大,可以有效降低锂离子的迁移路径,缓解锂离子插入/脱出活性材料产生的 内应力。因此用纳米颗粒作为负极材料有望改善材料的循环稳定性,延长循环寿命。

锂离子电池基本知识(一)

一.电池常规知识 目录 1.什么是电池? 2.一次电池和二次电池有什么区别? 3、充电电池是怎样实现它的能量转换? 4、什么是Li-ion电池? 5、Li-ion电池的工作原理? 6、Li-ion电池的主要结构。 7、 Li-ion电池的优缺点。 8、 Li-ion电池安全特性是如何实现的? 9、什么是充电限制电压?额定容量?额定电压?终止电压? 10、Li-ion铝壳和钢壳电池比较它的区别有哪些? 11、目前常见的各种可充电电池之间有什么区别? 1、什么是电池? 电池是一种能源。当它正负极连接在用电器上时,因为正负极之间存在电势之差,电流从正极流向负极,储存在电池中的化学能直接转化成电能释放出来,一只电池必然由两种不同电化学活性的物质组成正负两极,正负极活性物质之间的电动势差形成电池的电压,根据其电化学系统的不同,各种类型的电池电压各有不同。

2、一次电池和充电电池有什么区别? ?电池内部的电化学设计决定了该类型的电池是否可充。根据它 们的电化学成分和电极的结构可知,可充电电池的内部结构之 间所发生的反应是可逆的。 ?理论上,这种可逆性是不会受循环次数的影响,既然充放电会 在电极的体积和结构上引起可逆的变化,那么可充电电池的内 部设计就支持这种变化。而一次电池在给定的电池环境中两个 电极之间的电化学反应是不可逆的,因此,不可以将一次电池 拿来充电,这种做法很危险也很不经济。如果需要反复使用, 应选择真正的循环次数在1000次左右的充电电池,这种电池又 称为二次电池。 ?另一明显的区别就是它们具有较高的比能量和负载能力,以及 自放电率。一次电池能量密度远比一次电池高。然而他们的负 载能力相对要小。 ?二次电池具有相对较高的负载能力,可充电电池Li-ion,随着近 几年的发展,具有高能量容量。 ?不管何种一次电池的电化学系统属于哪种,所有的一次电池的 自放电率都很小。 3、充电电池是怎样实现它的能量转换? ?每种电池都具有电化学转换的能力,即将储存的化学能直接转 换成电能。就二次电池而言(另一术语也称可充电便携式电池),在放电过程中,是将化学能转换成电能;而在充电过程中,又

锂离子电池的现状及发展趋势

锂离子电池的现状与发展趋势 新能源技术被公认为21 世纪的高新技术,电池行业作为新能源领域的重要组成部分,已成为全球经济发展的一个新热点。目前锂离子电池已经作为一种重要的能量源被人们大范围的使用,无论是在电子通讯领域,还是在交通运输领域等,它都担当着极为重要的角色,有着广泛的应用前景。 锂离子电池是一种二次电池,是在锂电池的基础上发展起来的一种新型电池,它主要依靠锂离子在正极和负极之间移动来工作。自20世纪70年代以来,以金属锂为负极的各种高比能量锂原电池分别问世,并得以广泛应用。 锂离子电池工作电压高、比能量高、容量大、自放电小、循环性好、使用寿命长、重量轻、体积小,是现代高性能电池的代表,是移动电话、笔记本电脑等便携式电子设备的理想电源,并有望成为未来电动汽车、无绳电动工具等的主要动力来源之一。 我国锂离子电池产业发展历史不长,但发展很快,2012年我国锂离子电池的总产量达41.8亿只。在国际锂离子电池市场上,中国、日本和韩国形成了三足鼎立的态势,但总体而言,我国锂离子电池产业在技术先进程度和市场竞争力方面和日本、韩国还有较大差距。我国锂离子电池产业的技术发展是从模仿国外成熟技术开始的,在此过程中,工艺创新是我国锂离子电池产业早期发展的主要成绩,最近几年,随着技术创新投入不断加大,我国锂离子电池产业在技术创新方面发展很快,并形成了基本的产业核心竞争力,在某些领域积累了一定的技术优势。 锂离子电池材料的研究现状及发展趋势 锂离子电池的主要构造有正极、负极、能传导锂离子的电解质以及把正负极隔开的隔离膜。锂离子电池的电化学性能主要取决于所用电极材料和电介质材料的结构与性能,尤其是电极材料的选择和质量直接决定着锂离子电池的特性和价格。 目前锂离子电池正极材料的研究主要集中于钴酸锂、镍酸锂等,同时,一些新型正极材料(如Li-Mn-O系材料、导电高聚物)的兴起也为锂离子电池正极材料的发展注入了新的活力,寻找开发具有高电压、高比容量和良好循环性能的锂离子二次电池正极材料新体系是该领域的重要研究内容。目前,锂离子电池的正极材料仍为LiCoO2、LiNiO2、LiMn2O4等过渡金属氧化物及其复合材料,2005-2010年,高能量密度的聚合物正极材料和有机硫化物、无机硫化物成为锂离子电池的新一代正极材料。锂离子电池的负极材料主要有碳材料、锂金属合金、金属氧化物、金属氮化物、纳米硅等,其中碳材料是目前商业应用的主要负极材料,而锂金属合金、纳米硅已成为研发热点。锂离子电池的电解质材料目前主要是用液态电解其溶剂为无水有机物,多数采用混合溶剂,如EC-DMC和PC-DMC 等,LiPF6是应用最为普遍的导电盐。 就锂离子电池正极材料来说,钴酸锂正极材料在今后仍然具有强劲的生命力,在目前商品化应用的锂离子电池体系中,钴酸锂电池凭借其高充电截止电压和高压实密度双重优势,仍是目前高档3C产品类电池首选电池体系;而层状LiNixCo1–x–yMnyO2正极材料不仅具有较高的能量密度,而且材料的安全性、循环稳定性、高低温性能、制备成本等性能均比较优异,在全球正极材料使用量比重逐年增加,不仅逐步替代了钴酸锂材料的部分应用,而且在新能源汽车动力

纳米材料文献综述资料

北京化工大学北方学院 NORTH COLLEGE OF BEIJING UNIVERSITY OF CHEMICAL TECHNOLOGY 碳纳米管的性质与应用 姓名:赵开 专业:应用化学 班级: 0804 学号: 080105097 2011年05月

文献综述 前言 本人论题为《碳纳米管的性质与应用》。碳纳米管是一维碳基纳米材料,其径向尺寸为纳米级,轴向尺寸为微米量级,管子两端基本上都封口。碳纳米管具有尺寸小、机械强度高、比表面大、电导率高、界面效应强等力学,电磁学特点。近年来,碳纳米管在力学、电磁学、医学等方面得到了广泛应用。 本文根据众多学者对碳纳米管的研究成果,借鉴他们的成功经验,就碳纳米管的性质及其功能等方面结合最新碳纳米管的应用做一些简要介绍。本文主要查阅近几年关于碳纳米管相关研究的文献期刊。

碳纳米管(CNT)是碳的同素异形体之一,是由六元碳环构成的类石墨平面卷曲而成的纳米级中空管,其中每个碳原子通过SP2杂化与周围3个碳原子发生完全键合。碳纳米管是由一层或多层石墨按照一定方式卷曲而成的具有管状结构的纳米材料。由单层石墨平面卷曲形成单壁碳纳米管(SWNT),多层石墨平面卷曲形成多壁碳纳米管(MWNT)。自从1991年日本科学家lijima发现碳纳米管以来,其以优异的力学、热学以及光电特性受到了化学、物理、生物、医学、材料等多个领域研究者的广关注。 一、碳纳米管的性质 碳纳米管的分类 研究碳纳米管的性质首先要对其进行分类。(1)按照石墨层数分类,碳纳米管可分为单壁碳纳米管和多壁碳纳米管。(2)按照手性分类,碳纳米管可分为手性管和非手性管。其中非手性管又可分为扶手椅型管和锯齿型管。(3)按照导电性能分类,碳纳米管可分为导体管和半导体管。 碳纳米管的力学性能 碳纳米管无缝管状结构和管身良好的石墨化程度赋予了碳纳米管优异的力学性能。其拉伸强度是钢的100倍,而质量只有钢的1/ 6,并且延伸率可达到20 %,其长度和直径之比可达100~1000,远远超出一般材料的长径比,因而被称为“超强纤维”。碳纳米管具有如此优良的力学性能是一种绝好的纤维材料。它具有碳纤维的固有性质,强度及韧性均远优于其他纤维材料[1]。单壁碳纳米管的杨氏模量在1012Pa范围内,在轴向施加压力或弯曲碳纳米管时,当外力大于欧拉强度极限或弯曲强度,它不会断裂而是先发生大角度弯曲然后打卷形成麻花状物体,但是当外力释放后碳纳米管仍可以恢复原状。

相关文档
相关文档 最新文档