文档库 最新最全的文档下载
当前位置:文档库 › 实验三 信号的基本运算

实验三 信号的基本运算

实验三  信号的基本运算
实验三  信号的基本运算

信号与系统

实验

学院:专业:

姓名:

教师评分:

实验三 信号的基本运算(1)

一、实验目的

1、熟悉掌握常用的用于信号与系统时域仿真分析的MATLAB 函数。

2、掌握用MATLAB 描述连续时间信号和离散时间信号的方法,能够编写MATLAB 程序进行仿真。

3、熟悉实现各种信号的时域变换和运算的原理和方法,并在MATLAB 环境下仿真。

4、利用延拓的方法将时限信号变成一个周期函数。

5、利用MATLAB 的卷积工具实现两个信号的卷积运算。

二、实验原理

1、在《信号与系统》课程中,单位阶跃信号u(t) 和单位冲激信号δ(t) 是二个非常有用的信号。它们的定义如下

0,0)(1)(≠==?∞

-∞

=t t dt

t t δδ 1.1(a)

??

?≤>=0

,

00

,

1)(t t t u 1.1(b)

这里分别给出相应的简单的产生单位冲激信号和单位阶跃信号的扩展函数。产生单位冲激信号的扩展函数为:

function y = delta(t) dt = 0.01;

y = (u(t)-u(t-dt))/dt;

产生单位阶跃信号的扩展函数为: % Unit step function function y = u(t)

y = (t>=0); % y = 1 for t > 0, else y = 0

请将这二个MA TLAB 函数分别以delta 和u 为文件名保存在work 文件夹中,以后,就可以像教材中的方法使用单位冲激信号δ(t) 和单位阶跃信号u(t)。

2、离散时间单位阶跃信号u[n]定义为

??

?<≥=0

,

00,

1][n n n u 1.2

离散时间单位阶跃信号u[n]除了也可以直接用前面给出的扩展函数来产生,还可以利用

MATLAB内部函数ones(1,N) 来实现。这个函数类似于zeros(1,N),所不同的是它产生的矩阵的所有元素都为1。

值得注意的是,利用ones(1,N) 来实现的单位阶跃序列并不是真正的单位阶跃序列,而是一个长度为N单位门(Gate)序列,也就是u[n]-u[n-N]。但是在一个有限的图形窗口中,我们看到的还是一个单位阶跃序列。

3、信号的基本加法和乘法运算

信号f1与f2之和(瞬时和)是指同一瞬时两个信号之值对应相加所构成的“和信号”即f3=f1+f2;信号f1与f2之积是指同一瞬时两信号之值对应相乘所构成的“积信号”即f3= f1*f2;离散序列相加(或相乘)可采用对应样点的值分别相加(或相乘)的方法来计算。用MA TLAB程序仿真下面运算:f1=sin(t),f2=sin(t),f3=f1+f2,f4=f1*f2;x=[0 1 1 1 1 1],h=[2 1 3 4 1 1],y=x+h,g=x.*h;

连续信号加法乘法实现程序

% Program

t=0:0.01:4*pi;

f1=sin(t);

f2= sin(t);

f3=f1+f2;

f4=f1.*f2;

subplot(221);

plot(t,f1);

title('f1 signal');

subplot(222);

plot(t,f2);

title('f2 signal');

subplot(223);

plot(t,f3);

title('f1+f2 signal');

subplot(224);

plot(t,f4);

title('f1*f2 signal');

运行后的结果:

图1-1 程序运行结果图

离散序列加法乘法实现程序

x=[0 1 1 1 1 1];

h=[2 1 3 4 1 1];

y=x+h,g=x.*h;

subplot(221);

stem(x);

title('x signal');

subplot(222);

stem(h);

title('h signal');

subplot(223);

stem(y);

title('x+h signal');

subplot(224);

stem(g);

title('x.*h signal');

运行后的结果:

图1-2 程序运行结果图

4、信号的时移

信号的时移可用下面的数学表达式来描述:

设一个连续时间信号为x(t),它的时移y(t) 表示为:

y(t) = x(t - t0) 1.3

其中,t0为位移量。若t0为正数,则y(t)等于将x(t)右移t0秒之后的结果。反之,若t0为负数,则y(t)等于将x(t)左移t0秒之后的结果。

在MA TLAB中,时移运算与数学上习惯表达方法完全相同。

对给定一个连续时间信号x(t) = e-0.5t u(t),对它分别左移2秒钟和右移2秒钟得到信号x1(t) = e-0.5(t+2)u(t+2)和x2(t) = e-0.5(t-2)u(t-2)。

实现程序:

% Program

clear,close all,

t = -5:0.01:5;

x = exp(-0.5*t).*u(t); % Generate the original signal x(t)

x1 = exp(-0.5*(t+2)).*u(t+2); % Shift x(t) to the left by 2 second to get x1(t)

x2 = exp(-0.5*(t-2)).*u(t-2); % Shift x(t) to the right by 2 second to get x2(t)

subplot(311)

plot(t,x) % Plot x(t)

grid on,

title (' x = exp(-0.5*t).*u(t)')

subplot (312)

plot (t,x1) % Plot x1(t)

grid on,

title (' x1 = exp(-0.5*(t+2)).*u(t+2) ')

subplot (313)

plot (t,x2) % Plot x2(t)

grid on,

title (' x2 = exp(-0.5*(t-2)).*u(t-2)')

xlabel ('Time t (sec)')

程序运行结果:

图1-3 程序运行结果图

注意:在运行上面的程序时,一定在所在的路径下创建u(t)的子函数:

function y = u(t)

y = (t>=0); % y = 1 for t > 0, else y = 0

保存名为u.m

5、信号的时域反褶

对一个信号x[n]的反褶运算在数学上表示为

y[n] = x[-n] 1.4 这种反褶运算,用MATLAB实现起来也是非常简单的。有多种方法可以实现信号的反褶运算。

方法一,修改绘图函数plot(t,x)和stem(n,x)中的时间变量t和n,即用-t和-n替代原来的t和n,这样绘制出来的图形,看起来就是原信号经时域反褶后的版本。

方法二,直接利用原信号与其反褶信号的数学关系式来实现。这种方法最符合信号反褶运算的实际意义。

方法三,使用MATLAB内部函数fliplr()来实现信号的反褶运算。其用法如下:

y = fliplr(x):其中x为原信号x(t)或x[n],而y则为x的时域反褶。需要说明的是,函数fliplr()对信号作时域反褶,仅仅将信号中各个元素的次序作了一个反转,这种反转处理是独立于时间变量t和n的。因此,如果信号与其时间变量能够用一个数学函数来表达的话,那么建议将时间变量t和n的范围指定在一个正负对称的时间区间即可。

分别编写程序实现m=sin(t);n=sin(-t);x[n]=[1 2 3 4];x[-n],分析所画信号波形,

程序如下:

t=0:0.01:4*pi;

n=0:1:3;

m=sin(t);

x=[1 2 3 4];

subplot(222);

plot(t,m);

title('sin(t) signal');

subplot(221);

plot(-t,m);

title('sin(-t) signal');

subplot(224);

stem(n,x);

title('x[n] signal');

subplot(223);

stem(-n,x);

title('x[-n] signal');

程序运行结果:

图1-4 程序运行结果图

6、信号的时域尺度变换

信号x(t)的时域尺度变换在数学描述为

y(t) = x(at), 1.5

其中a为任意常数。根据a的不同取值,这种时域尺度变换对信号x(t)具有非常不同的影响。

当a = 1时,y(t) = x(t);

当a = -1时,y(t) = x(-t),即y(t)可以通过将x(t)反褶运算而得到;

当a > 1时,y(t) = x(at),y(t)是将x(t)在时间轴上的压缩而得到;

当0 < a < 1时,y(t) = x(at),y(t)是将x(t)在时间轴上的扩展而得到;

当-1 < a < 0时,y(t) = x(at),y(t)是将x(t)在时间轴上的扩展同时翻转而得到;

当a < -1时,y(t) = x(at),y(t)是将x(t)在时间轴上的压缩同时翻转而得到;

由此可见,信号的时域尺度变换,除了对信号进行时域压缩或扩展外,还可能包括对信号的时域反褶运算。实际上,MA TLAB完成式1.5的运算,并不需要特殊的处理,按照数学上的常规方法即能完成。

编写程序实现m=sin(t);n=sin(2t);x[n]=[1 2 3 4];x[(-1/2)n],分析所画信号波形

程序如下:

%sin(2t)通过改变图形的压缩从sin(t)得来,x[(-1/2)n]通过展坐标轴从x[n]得来。

t=0:0.01:4*pi;

k=2*t;

n=0:1:3;

g=(-2)*n;

m=sin(t);s=sin(k);

x=[1 2 3 4];

subplot(222);

plot(t,m);

title('sin(t) signal');

subplot(221);

plot(t,s);

title('sin(2t) signal');

subplot(224);

stem(n,x);

title('x[n] signal');

subplot(223);

stem(g,x);

title('x[(-1/2)n] signal');

程序运行结果:

图1-5 程序运行结果图

7、周期信号

在《信号与系统》课程中,周期信号是一类非常重要的信号。给定一个信号x(t)或x[n],如果满足

x(t) = x(t+kT) 1.6

x[n] = x[n+kN] 1.7

则该信号叫做周期信号。其中,k为任意整数,T和N为常数,通常称为信号的基本周期或最小周期。

周期信号可以看作是一个时限的非周期信号经过周期延拓之后形成的。在数字信号处理中,周期延拓这一信号处理方法非常重要。

下面的程序段,就是将一个非周期信号x1(t) = e-2t[u(t)-u(t-2)]经过周期延拓之后而得到一

个周期信号。

程序如下:

clear, close all; t = -4:0.001:4; T = 2; x = 0;

y = exp(-2*t).*(u(t)-u(t-2)); for k = -2:2;

x = x+exp(-2*(t-k*T)).*(u(t-k*T)-u(t-(k+1)*T)); end;

subplot(211); plot(t,y);

title('e-2t[u(t)-u(t-2)] signal'); subplot(212) plot(t,x);

title('e-2t[u(t)-u(t-2)]延拓后的波形');

程序运行结果:

图1-6 程序运行结果图

仔细阅读该程序,可以发现其算法就是:

-∞

=-=

k kT t x t x )()(1 1.8

由于k 无法计算到无穷,而是以有限值加以替代,反映到有限宽度图形窗口中得到的效果完全符合要求。

8、卷积的计算

卷积的计算通常可按下面的五个步骤进行(以卷积积分为例):

1. 该换两个信号波形图中的横坐标,由t 改为τ,τ变成函数的自变量;

2. 把其中一个信号反褶,如把h(τ)变成h(-τ);

3. 把反褶后的信号做移位,移位量是t ,这样t 是一个参变量。在τ坐标系中,t > 0时图形右移, t < 0时图形左移。

4. 计算两个信号重叠部分的乘积x(τ)h(t-τ);

5. 完成相乘后图形的积分。

对于两个时限信号(Time-limited signal ),按照上述的五个步骤,作卷积积分运算时,关键是正确确定不同情况下的积分限。只要正确地确定了积分限都能得到正确定积分结果。尽管如此,在时域中计算卷积积分,总体上来说是一项比较困难的工作。

程序convlution_demo 用来演示上述作卷积积分运算的五个步骤。本程序较为复杂,不建议读者读懂该程序,只需执行这个程序,观看程序执行过程中有关卷积积分的运算过程,以便于理解这五个步骤。

借助MA TLAB 的内部函数conv()可以很容易地完成两个信号的卷积积分运算。其语法为:y = conv(x,h)。其中x 和h 分别是两个作卷积运算的信号,y 为卷积结果。

为了正确地运用这个函数计算卷积,这里有必要对conv(x,h)做一个详细说明。conv(x,h)函数实际上是完成两个多项式的乘法运算。例如,两个多项式p 1和p 2分别为:

4322

3

1+++=s s

s p 和 12342

32+++=s s

s p

这两个多项式在MA TLAB 中是用它们的系数构成一个行向量来表示的,如果用x 来表示多项式p 1,h 表示多项式p 2,则x 和h 分别为 x = [1 2 3 4] h = [4 3 2 1] 在MA TLAB 命令窗口依次键入

>> x = [1 2 3 4]; >> h = [4 3 2 1]; >> y=conv(x,h)

在屏幕上得到显示结果:

y = 4 11 20 30 20 11 4 这表明,多项式p 1和p 2的乘积为:

4112030201142

34

5

6

3++++++=s s

s s

s s p

正如前所述,用MATLAB 处理连续时间信号时,独立时间变量t 的变化步长应该是很小的,假定用符号dt 表示时间变化步长,那么,用函数conv()作两个信号的卷积积分时,应该在这个函数之前乘以时间步长方能得到正确的结果。也就是说,正确的语句形式应为:y = dt*conv(x,h)。

对于定义在不同时间段的两个时限信号x(t),t 0 ≤ t ≤ t 1,和h(t),t 2 ≤ t ≤ t 3。 如果用y(t)来表示它们的卷积结果,则y(t)的持续时间范围要比x(t)或h(t)要长,其时间范围为t 0+t 2 ≤ t ≤ t 1+t 3。这个特点很重要,利用这个特点,在处理信号在时间上的位置时,可以很容易地将信号的函数值与时间轴的位置和长度关系保持一致性。

根据给定的两个连续时间信号x(t) = t[u(t)-u(t-1)]和h(t) = u(t)-u(t-1),编写程序,完成这两个信号的卷积运算,并绘制它们的波形图。范例程序如下:

% Program

t0 = -2; t1 = 4; dt = 0.01; t = t0:dt:t1; x = u(t)-u(t-1); h = t.*(u(t)-u(t-1));

y = dt*conv(x,h); % Compute the convolution of x(t) and h(t) subplot(221)

plot(t,x), grid on, title('Signal x(t)'), axis([t0,t1,-0.2,1.2]) subplot(222)

plot(t,h), grid on, title('Signal h(t)'), axis([t0,t1,-0.2,1.2])

subplot(212)

t = 2*t0:dt:2*t1; % Again specify the time range to be suitable to the

% convolution of x and h.

plot(t,y), grid on, title('The convolution of x(t) and h(t)'), axis([2*t0,2*t1,-0.1,0.6]),

xlabel('Time t sec')

程序运行结果

图1-7 程序运行结果图

在有些时候,做卷积和运算的两个序列中,可能有一个序列或者两个序列都非常长,甚至是无限长,MATLAB处理这样的序列时,总是把它看作是一个有限长序列,具体长度由编程者确定。实际上,在信号与系统分析中所遇到的无限长序列,通常都是满足绝对可和或绝对可积条件的信号。因此,对信号采取这种截短处理尽管存在误差,但是通过选择合理的信号长度,这种误差是能够减小到可以接受的程度的。若这样的一个无限长序列可以用一个数学表达式表示的话,那么,它的长度可以由编程者通过指定时间变量n的范围来确定。

例如,对于一个单边实指数序列x[n] = 0.5n u[n],通过指定n的范围为0 ≤n ≤ 100,则对应的x[n]的长度为101点,虽然指定更宽的n的范围,x[n]将与实际情况更相符合,但是,注意到,当n大于某一数时,x[n]之值已经非常接近于0了。对于序列x[n] = 0.5n u[n],当n = 7时,x[7] = 0.0078,这已经是非常小了。所以,对于这个单边实指数序列,指定更长的n 的范围是没有必要的。当然,不同的无限长序列具有不同的特殊性,在指定n的范围时,只要能够反映序列的主要特征就可以了。

9、关于MATLAB工具在信号处理中应用的补充

在绘制信号的波形图时,有时我们需要将若干个图形绘制在图一个图形窗口中,这就需要使用MA TLAB的图形分割函数subplot(),其用法是在绘图函数stem或plot之前,使用图形分割函数subplot(n1,n2,n3),其中的参数n1,n2和n3的含义是,该函数将把一个图形窗口分割成n1xn2个子图,即将绘制的图形将绘制在第n3个子图中。

常用的图形控制函数axis([xmin,xmax,ymin,ymax]):图型显示区域控制函数,其中xmin 为横轴的显示起点,xmax为横轴的显示终点,ymin为纵轴的显示起点,ymax为纵轴的显示终点。

有时,为了使图形具有可读性,需要在所绘制的图形中,加上一些网格线来反映信号的幅度

大小。MA TLAB中的grid on/grid off可以实现在你的图形中加网格线。

grid on:在图形中加网格线。

grid off:取消图形中的网格线。

x = input(‘Type in signal x(t) in closed form:’)

三、实验内容及步骤

实验前,必须首先阅读本实验原理,读懂所给出的全部范例程序。实验开始时,先在计算机上运行这些范例程序,观察所得到的信号的波形图。并结合范例程序应该完成的工作,进一步分析程序中各个语句的作用,从而真正理解这些程序。

实验前,一定要针对下面的实验项目做好相应的实验准备工作,包括事先编写好相应的实验程序等事项。

练习1:结合编写的阶跃函数编写一门函数(门宽为4幅度为1)写出程序并会出门函数信

号的波形;

练习2:结合实验原理的信号的基本运算的程序,编写程序绘制

m=sin(t);g=sin(2t-pi/2);x[n]=[1 2 5 6 3 ];x[(1/2)n-1];的四个信号的波形,并分析图形的变换过程。

练习3:根据周期函数的定义以及实验原理中延拓的方法实现脉冲函数(脉冲宽度1周期2幅度1)并绘制其图形;

练习4:利用MATLAB内部所带的卷积工具对两个门函数进行卷积,分别绘制出两个门函数和卷积后的波形,并分析门函数卷积的规律,

(一个门函数门宽为1幅度1另一个门函数门宽为2幅度为1,进行两者卷积)

语音信号处理实验指导书

语音信号处理实验指导书 实验一 语音信号采集与简单处理 一、 实验目的、要求 (1)掌握语音信号采集的方法 (2)掌握一种语音信号基音周期提取方法 (3)掌握短时过零率计算方法 (4)了解Matlab 的编程方法 二、 实验原理 基本概念: (a )短时过零率: 短时内,信号跨越横轴的情况,对于连续信号,观察语音时域波形通过横轴的情况;对于离散信号,相邻的采样值具有不同的代数符号,也就是样点改变符号的次数。 对于语音信号,是宽带非平稳信号,应考察其短时平均过零率。 其中sgn[.]为符号函数 ?? ?? ?<=>=0 x(n)-1sgn(x(n))0 x(n)1sgn(x(n)) 短时平均过零的作用 1.区分清/浊音: 浊音平均过零率低,集中在低频端; 清音平均过零率高,集中在高频端。 2.从背景噪声中找出是否有语音,以及语音的起点。 (b )基音周期 基音是发浊音时声带震动所引起的周期性,而基音周期是指声带震动频率的倒数。基音周期是语音信号的重要的参数之一,它描述语音激励源的一个重要特征,基音周期信息在多个领域有着广泛的应用,如语音识别、说话人识别、语音分析与综合以及低码率语音编码,发音系统疾病诊断、听觉残障者的语音指导等。因为汉语是一种有调语言,基音的变化模式称为声调,它携带着非常重要的具有辨意作用的信息,有区别意义的功能,所以,基音的提取和估计对汉语更是一个十分重要的问题。 ∑--= -=1 )]1(sgn[)](sgn[21N m n n n m x m x Z

由于人的声道的易变性及其声道持征的因人而异,而基音周期的范围又很宽,而同—个人在不同情态下发音的基音周期也不同,加之基音周期还受到单词发音音调的影响,因而基音周期的精确检测实际上是一件比较困难的事情。基音提取的主要困难反映在:①声门激励信号并不是一个完全周期的序列,在语音的头、尾部并不具有声带振动那样的周期性,有些清音和浊音的过渡帧是很难准确地判断是周期性还是非周期性的。②声道共振峰有时会严重影响激励信号的谐波结构,所以,从语音信号中直接取出仅和声带振动有关的激励信号的信息并不容 易。③语音信号本身是准周期性的(即音调是有变化的),而且其波形的峰值点或过零点受共振峰的结构、噪声等的影响。④基音周期变化范围大,从老年男性的50Hz 到儿童和女性的450Hz ,接近三个倍频程,给基音检测带来了一定的困难。由于这些困难,所以迄今为止尚未找到一个完善的方法可以对于各类人群(包括男、女、儿童及不向语种)、各类应用领域和各种环境条件情况下都能获得满意的检测结果。 尽管基音检测有许多困难,但因为它的重要性,基音的检测提取一直是一个研究的课题,为此提出了各种各样的基音检测算法,如自相关函数(ACF)法、峰值提取算法(PPA)、平均幅度差函数(AMDF)法、并行处理技术、倒谱法、SIFT 、谱图法、小波法等等。 三、使用仪器、材料 微机(带声卡)、耳机,话筒。 四、 实验步骤 (1)语音信号的采集 利用Windows 语音采集工具采集语音信号,将数据保存wav 格式。 采集一组浊音信号和一组清音信号,信号的长度大于3s 。 (2)采用短时相关函数计算语音信号浊音基音周期,考虑窗长度对基音周期计算的影响。采用倒谱法求语音信号基音周期。 (3)计算短时过零率,清音和浊音的短时过零率有何区别。 五、实验过程原始记录(数据,图表,计算) 短时过零率 短时相关函数 P j j n s n s j R N j n n n n ,,1) ()()(1 =-=∑-= ∑--=-=10 )]1(sgn[)](sgn[21N m n n n m x m x Z

语音信号处理实验报告

语音信号处理实验 班级: 学号: 姓名:

实验一 基于MATLAB 的语音信号时域特征分析(2学时) 1) 短时能量 (1)加矩形窗 a=wavread('mike.wav'); a=a(:,1); subplot(6,1,1),plot(a); N=32; for i=2:6 h=linspace(1,1,2.^(i-2)*N);%形成一个矩形窗,长度为2.^(i-2)*N En=conv(h,a.*a);% 求短时能量函数En subplot(6,1,i),plot(En); if (i==2) ,legend('N=32'); elseif (i==3), legend('N=64'); elseif (i==4) ,legend('N=128'); elseif (i==5) ,legend('N=256'); elseif (i==6) ,legend('N=512'); end end 00.51 1.52 2.5 3 x 10 4 -1 100.5 1 1.5 2 2.5 3x 10 4 024 N=3200.5 1 1.5 2 2.5 3x 10 4 05 N=6400.5 1 1.5 2 2.5 3x 10 4 0510 N=12800.5 1 1.5 2 2.5 3x 10 4 01020 N=2560 0.5 1 1.5 2 2.5 3x 10 4 02040 N=512 (2)加汉明窗 a=wavread('mike.wav'); a=a(:,1); subplot(6,1,1),plot(a); N=32;

for i=2:6 h=hanning(2.^(i-2)*N);%形成一个汉明窗,长度为2.^(i-2)*N En=conv(h,a.*a);% 求短时能量函数En subplot(6,1,i),plot(En); if (i==2), legend('N=32'); elseif (i==3), legend('N=64'); elseif (i==4) ,legend('N=128'); elseif (i==5) ,legend('N=256'); elseif (i==6) ,legend('N=512'); end end 00.51 1.52 2.5 3 x 10 4 -1 100.5 1 1.5 2 2.5 3x 10 4 012 N=3200.5 1 1.5 2 2.5 3x 10 4 024 N=6400.5 1 1.5 2 2.5 3x 10 4 024 N=12800.5 1 1.5 2 2.5 3x 10 4 0510 N=2560 0.5 1 1.5 2 2.5 3x 10 4 01020 N=512 2) 短时平均过零率 a=wavread('mike.wav'); a=a(:,1); n=length(a); N=320; subplot(3,1,1),plot(a); h=linspace(1,1,N); En=conv(h,a.*a); %求卷积得其短时能量函数En subplot(3,1,2),plot(En); for i=1:n-1 if a(i)>=0 b(i)= 1;

数字信号处理基础实验指导书

《数字信号处理》实验指导书 光电工程学院二○○九年十月

实验一离散时间信号分析 一、实验目的 1.掌握各种常用的序列,理解其数学表达式和波形表示。 2.掌握在计算机中生成及绘制数字信号波形的方法。 3.掌握序列的相加、相乘、移位、反转等基本运算及计算机实现与作用。 4.掌握线性卷积软件实现的方法。 5.掌握计算机的使用方法和常用系统软件及应用软件的使用。 6.通过编程,上机调试程序,进一步增强使用计算机解决问题的能力。 二、实验原理 1.序列的基本概念 离散时间信号在数学上可用时间序列来表示,其中代表序列的第n个数字,n代表时间的序列,n的取值范围为的整数,n取其它值没有意义。离散时间信号可以是由模拟信号通过采样得到,例如对模拟信号进行等间隔采样,采样间隔为T,得到一个有序的数字序列就是离散时间信号,简称序列。 2.常用序列 常用序列有:单位脉冲序列(单位抽样)、单位阶跃序列、矩形序列、实指数序列、复指数序列、正弦型序列等。 3.序列的基本运算 序列的运算包括移位、反转、和、积、标乘、累加、差分运算等。 4.序列的卷积运算 上式的运算关系称为卷积运算,式中代表两个序列卷积运算。两个序列的卷积是一个序列与另一个序列反褶后逐次移位乘积之和,故称为离散卷积,也称两序列的线性卷积。其计算的过程包括以下4个步骤。 (1)反褶:先将和的变量换成,变成和,再将以纵轴为对称轴反褶成。 (2)移位:将移位,得。当为正数时,右移位;当为负数时,左

移位。 (3)相乘:将和的对应点值相乘。 (4)求和:将以上所有对应点的乘积累加起来,即得。 三、主要实验仪器及材料 微型计算机、Matlab软件6.5或更高版本。 四、实验内容 1.知识准备 认真复习以上基础理论,理解本实验所用到的实验原理。 2.离散时间信号(序列)的产生 利用MATLAB或C语言编程产生和绘制下列有限长序列: (1)单位脉冲序列 (2)单位阶跃序列 (3)矩形序列 (4)正弦型序列 (5)任意序列 3.序列的运算 利用MATLAB编程完成上述两序列的移位、反转、加法、乘法等运算,并绘制运算后序列的波形。 4.卷积运算 利用MATLAB编制一个计算两个序列线性卷积的通用程序,计算上述两序列,并绘制卷积后序列的波形。 5.上机调试并打印或记录实验结果。 6.完成实验报告。 五、实验报告要求 1. 简述实验原理及目的。 2. 给出上述序列的实验结果。 3. 列出计算卷积的公式,画出程序框图,并列出实验程序清单 (可略)(包括必要的程序说明)。 4. 记录调试运行情况及所遇问题的解决方法。 5. 给出实验结果,并对结果做出分析。 6. 简要回答思考题。 1 如何产生方波信号序列和锯齿波信号序列? 2 实验中所产生的正弦序列的频率是多少?是否是周期序列?

语音信号处理实验报告

通信与信息工程学院 信息处理综合实验报告 班级:电子信息工程1502班 指导教师: 设计时间:2018/10/22-2018/11/23 评语: 通信与信息工程学院 二〇一八年 实验题目:语音信号分析与处理 一、实验内容 1. 设计内容 利用MATLAB对采集的原始语音信号及加入人为干扰后的信号进行频谱分析,使用窗函数法设计滤波器滤除噪声、并恢复信号。 2.设计任务与要求 1. 基本部分

(1)录制语音信号并对其进行采样;画出采样后语音信号的时域波形和频谱图。 (2)对所录制的语音信号加入干扰噪声,并对加入噪声的信号进行频谱分析;画出加噪后信号的时域波形和频谱图。 (3)分别利用矩形窗、三角形窗、Hanning窗、Hamming窗及Blackman 窗几种函数设计数字滤波器滤除噪声,并画出各种函数所设计的滤波器的频率响应。 (4)画出使用几种滤波器滤波后信号时域波形和频谱,对滤波前后的信号、几种滤波器滤波后的信号进行对比,分析信号处理前后及使用不同滤波器的变化;回放语音信号。 2. 提高部分 (5)录制一段音乐信号并对其进行采样;画出采样后语音信号的时域波形和频谱图。 (6)利用MATLAB产生一个不同于以上频段的信号;画出信号频谱图。 (7)将上述两段信号叠加,并加入干扰噪声,尝试多次逐渐加大噪声功率,对加入噪声的信号进行频谱分析;画出加噪后信号的时域波形和频谱图。 (8)选用一种合适的窗函数设计数字滤波器,画出滤波后音乐信号时域波形和频谱,对滤波前后的信号进行对比,回放音乐信号。 二、实验原理 1.设计原理分析 本设计主要是对语音信号的时频进行分析,并对语音信号加噪后设计滤波器对其进行滤波处理,对语音信号加噪声前后的频谱进行比较分析,对合成语音信号滤波前后进行频谱的分析比较。 首先用PC机WINDOWS下的录音机录制一段语音信号,并保存入MATLAB软件的根目录下,再运行MATLAB仿真软件把录制好的语音信号用audioread函数加载入MATLAB仿真软件的工作环境中,输入命令对语音信号进行时域,频谱变换。 对该段合成的语音信号,分别用矩形窗、三角形窗、Hanning窗、Hamming窗及Blackman窗几种函数在MATLAB中设计滤波器对其进行滤波处理,滤波后用命令可以绘制出其频谱图,回放语音信号。对原始语音信号、合成的语音信号和经过滤波器处理的语音信号进行频谱的比较分析。 2.语音信号的时域频域分析 在Matlab软件平台下可以利用函数audioread对语音信号进行采样,得到了声音数据变量y,同时把y的采样频率Fs=44100Hz放进了MATALB的工作空间。

大学本科语音信号处理实验讲义8学时

语音信号处理实验讲义 时间:2011-12

目录 实验一语音信号生成模型分析 (3) 实验二语音信号时域特征分析 (7) 实验三语音信号频域特征分析 (12) 实验四语音信号的同态处理和倒谱分析 (16)

实验一 语音信号生成模型分析 一、实验目的 1、了解语音信号的生成机理,了解由声门产生的激励函数、由声道产生的调制函数和由嘴唇产生的辐射函数。 2、编程实现声门激励波函数波形及频谱,与理论值进行比较。 3、编程实现已知语音信号的语谱图,区分浊音信号和清音信号在语谱图上的差别。 二、实验原理 语音生成系统包含三部分:由声门产生的激励函数()G z 、由声道产生的调制函数()V z 和由嘴唇产生的辐射函数()R z 。语音生成系统的传递函数由这三个函数级联而成,即 ()()()()H z G z V z R z = 1、激励模型 发浊音时,由于声门不断开启和关闭,产生间隙的脉冲。经仪器测试它类似于斜三角波的脉冲。也就是说,这时的激励波是一个以基音周期为周期的斜三角脉冲串。单个斜三角波的频谱表现出一个低通滤波器的特性。可以把它表示成z 变换的全极点形式 12 1()(1) cT G z e z --= -? 这里c 是一个常数,T 是脉冲持续时间。周期的三角波脉冲还得跟单位脉冲串的z 变换相乘: 112 1 ()()()1(1)v cT A U z E z G z z e z ---=?= ?--? 这就是整个激励模型,v A 是一个幅值因子。 2、声道模型 当声波通过声道时,受到声腔共振的影响,在某些频率附近形成谐振。反映在信号频谱图上,在谐振频率处其谱线包络产生峰值,把它称为共振峰。 一个二阶谐振器的传输函数可以写成 12 ()1i i i i A V z B z C z --= -- 实践表明,用前3个共振峰代表一个元音足够了。对于较复杂的辅音或鼻音共振峰要到5个以上。多个()i V z 叠加可以得到声道的共振峰模型 12 1 11 ()()11R r r M M i r i N k i i i i k k b z A V z V z B z C z a z -=---======---∑∑∑ ∑ 3、辐射模型 从声道模型输出的是速度波,而语音信号是声压波。二者倒比称为辐射阻抗,它表征了

数字信号处理实验答案完整版

数字信号处理实验答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

实验一熟悉Matlab环境 一、实验目的 1.熟悉MATLAB的主要操作命令。 2.学会简单的矩阵输入和数据读写。 3.掌握简单的绘图命令。 4.用MATLAB编程并学会创建函数。 5.观察离散系统的频率响应。 二、实验内容 认真阅读本章附录,在MATLAB环境下重新做一遍附录中的例子,体会各条命令的含义。在熟悉了MATLAB基本命令的基础上,完成以下实验。 上机实验内容: (1)数组的加、减、乘、除和乘方运算。输入A=[1 2 3 4],B=[3 4 5 6],求C=A+B,D=A-B,E=A.*B,F=A./B,G=A.^B并用stem语句画出A、B、C、D、E、F、G。 clear all; a=[1 2 3 4]; b=[3 4 5 6]; c=a+b; d=a-b; e=a.*b; f=a./b; g=a.^b; n=1:4; subplot(4,2,1);stem(n,a); xlabel('n');xlim([0 5]);ylabel('A'); subplot(4,2,2);stem(n,b); xlabel('n');xlim([0 5]);ylabel('B'); subplot(4,2,3);stem(n,c); xlabel('n');xlim([0 5]);ylabel('C'); subplot(4,2,4);stem(n,d); xlabel('n');xlim([0 5]);ylabel('D'); subplot(4,2,5);stem(n,e); xlabel('n');xlim([0 5]);ylabel('E'); subplot(4,2,6);stem(n,f); xlabel('n');xlim([0 5]);ylabel('F'); subplot(4,2,7);stem(n,g); xlabel('n');xlim([0 5]);ylabel('G'); (2)用MATLAB实现下列序列: a) x(n)= 0≤n≤15 b) x(n)=e+3j)n 0≤n≤15 c) x(n)=3cosπn+π)+2sinπn+π) 0≤n≤15 d) 将c)中的x(n)扩展为以16为周期的函数x(n)=x(n+16),绘出四个周期。

《语音信号处理》实验报告材料

实用 中南大学 信息科学与工程学院 语音信号处理 实验报告 指导老师:覃爱娜 学生班级:信息0704 学生名称:阮光武 学生学好:0903070430 提交日期:2010年6月18日

实验一 语音波形文件的分析和读取 一、实验的任务、性质与目的 本实验是选修《语音信号处理》课的电子信息类专业学生的基础实验。通过实验: (1)掌握语音信号的基本特性理论:随机性,时变特性,短时平稳性,相关性等; (2)掌握语音信号的录入方式和*.WAV音波文件的存储结构; (3)使学生初步掌握语音信号处理的一般实验方法。 二、实验原理和步骤: WAV文件格式简介 WAV文件是多媒体中使用了声波文件的格式之一,它是以RIFF格式为标准。每个WAV文件的头四个字节就是“RIFF”。WAV文件由文件头和数据体两大部分组成,其中文件头又分为RIFF/WAV文件标识段和声音数据格式说明段两部分。常见的WAV声音文件有两种,分别对应于单声道(11.025KHz采样率、8Bit的采样值)和双声道(44.1KHz采样率、16Bit的采样值)。采样率是指声音信号在“模拟→数字”转换过程中,单位时间内采样的次数;采样值是指每一次采样周期内声音模拟信号的积分值。对于单声道声音文件,采样数据为8位的短整数(short int 00H-FFH);而对于双声道立体声声音文件,每次采样数据为一个16位的整数(int),高八位和低八位分别代表左右两个声道。WAV文件数据块包含以脉冲编码调制(PCM)格式表示的样本。在单声道WAV文件中,道0代表左声道,声道1代表右声道;在多声道WAV文件中,样本是交替出现的。WAV文件的格式见表1。

语音信号处理实验报告实验二

通信工程学院12级1班 罗恒 2012101032 实验二 基于MATLAB 的语音信号频域特征分析 一、 实验要求 要求根据已有语音信号,自己设计程序,给出其倒谱、语谱图的分析结果,并根据频域分析方法检测所分析语音信号的基音周期或共振峰。 二、 实验目的 信号的傅立叶表示在信号的分析与处理中起着重要的作用。因为对于线性系统来说,可以很方便地确定其对正弦或复指数和的响应,所以傅立叶分析方法能完善地解决许多信号分析和处理问题。另外,傅立叶表示使信号的某些特性变得更明显,因此,它能更深入地说明信号的各项红物理现象。 由于语音信号是随着时间变化的,通常认为,语音是一个受准周期脉冲或随机噪声源激励的线性系统的输出。输出频谱是声道系统频率响应与激励源频谱的乘积。声道系统的频率响应及激励源都是随时间变化的,因此一般标准的傅立叶表示虽然适用于周期及平稳随机信号的表示,但不能直接用于语音信号。由于语音信号可以认为在短时间内,近似不变,因而可以采用短时分析法。 三、 实验设备 1.PC 机; 2.MATLAB 软件环境; 四、 实验内容 1.上机前用Matlab 语言完成程序编写工作。 2.程序应具有加窗(分帧)、绘制曲线等功能。 3.上机实验时先调试程序,通过后进行信号处理。 4.对录入的语音数据进行处理,并显示运行结果。 5.依次给出其倒谱、语谱图的分析结果。 6. 根据频域分析方法检测所分析语音信号的基音周期或共振峰。 五、 实验原理及方法 1、短时傅立叶变换 由于语音信号是短时平稳的随机信号,某一语音信号帧的短时傅立叶变换的定义为: 其中w(n -m)是实窗口函数序列,n 表示某一语音信号帧。令n -m=k',则得到 ()()()jw jwm n m X e x m w n m e ∞-=-∞= -∑

实验一 基于Matlab的数字信号处理基本

实验一 基于Matlab 的数字信号处理基本操作 一、 实验目的:学会运用MA TLAB 表示的常用离散时间信号;学会运用MA TLAB 实现离 散时间信号的基本运算。 二、 实验仪器:电脑一台,MATLAB6.5或更高级版本软件一套。 三、 实验内容: (一) 离散时间信号在MATLAB 中的表示 离散时间信号是指在离散时刻才有定义的信号,简称离散信号,或者序列。离散序列通常用)(n x 来表示,自变量必须是整数。 离散时间信号的波形绘制在MATLAB 中一般用stem 函数。stem 函数的基本用法和plot 函数一样,它绘制的波形图的每个样本点上有一个小圆圈,默认是空心的。如果要实心,需使用参数“fill ”、“filled ”,或者参数“.”。由于MATLAB 中矩阵元素的个数有限,所以MA TLAB 只能表示一定时间范围内有限长度的序列;而对于无限序列,也只能在一定时间范围内表示出来。类似于连续时间信号,离散时间信号也有一些典型的离散时间信号。 1. 单位取样序列 单位取样序列)(n δ,也称为单位冲激序列,定义为 ) 0() 0(0 1)(≠=?? ?=n n n δ 要注意,单位冲激序列不是单位冲激函数的简单离散抽样,它在n =0处是取确定的值1。在MATLAB 中,冲激序列可以通过编写以下的impDT .m 文件来实现,即 function y=impDT(n) y=(n==0); %当参数为0时冲激为1,否则为0 调用该函数时n 必须为整数或整数向量。 【实例1-1】 利用MATLAB 的impDT 函数绘出单位冲激序列的波形图。 解:MATLAB 源程序为 >>n=-3:3; >>x=impDT(n); >>stem(n,x,'fill'),xlabel('n'),grid on >>title('单位冲激序列') >>axis([-3 3 -0.1 1.1]) 程序运行结果如图1-1所示。 图1-1 单位冲激序列

语音信号处理试验教程

语音信号处理试验 实验一:语音信号时域分析 实验目的: (1)录制两段语音信号,内容是“语音信号处理”,分男女声。 (2)对语音信号进行采样,观察采样后语音信号的时域波形。 实验步骤: 1、使用window自带录音工具录制声音片段 使用windows自带录音机录制语音文件,进行数字信号的采集。启动录音机。录制一段录音,录音停止后,文件存储器的后缀默认为.Wav。将录制好文件保存,记录保存路径。男生女生各录一段保存为test1.wav和test2.wav。 图1基于PC机语音信号采集过程。 2、读取语音信号 在MATLAB软件平台下,利用wavread函数对语音信号进行采样,记住采样频率和采样点数。通过使用wavread函数,理解采样、采样频率、采样位数等概念! Wavread函数调用格式: y=wavread(file),读取file所规定的wav文件,返回采样值放在向量y中。

[y,fs,nbits]=wavread(file),采样值放在向量y中,fs表示采样频率(hz),nbits表示采样位数。 y=wavread(file,N),读取前N点的采样值放在向量y中。 y=wavread(file,[N1,N2]),读取从N1到N2点的采样值放在向量y中。 3、编程获取语音信号的抽样频率和采样位数。 语音信号为test1.wav和test2.wav,内容为“语音信号处理”,两端语音保存到工作空间work文件夹下。在M文件中分别输入以下程序,可以分两次输入便于观察。 [y1,fs1,nbits1]=wavread('test1.wav') [y2,fs2,nbits2]=wavread('test2.wav') 结果如下图所示 根据结果可知:两端语音信号的采样频率为44100HZ,采样位数为16。 4、语音信号的时域分析 语音信号的时域分析就是分析和提取语音信号的时域参数。进行语音分析时,最先接触到并且夜市最直观的是它的时域波形。语音信

数字信号处理基础实验报告_

本科生实验报告 实验课程数字信号处理基础 学院名称地球物理学院 专业名称地球物理学 学生姓名 学生学号 指导教师王山山 实验地点5417 实验成绩 二〇一四年十一月二〇一四年十二月

填写说明 1、适用于本科生所有的实验报告(印制实验报告册除外); 2、专业填写为专业全称,有专业方向的用小括号标明; 3、格式要求: ①用A4纸双面打印(封面双面打印)或在A4大小纸上用蓝黑色水笔书写。 ②打印排版:正文用宋体小四号,1.5倍行距,页边距采取默认形式(上下2.54cm, 左右2.54cm,页眉1.5cm,页脚1.75cm)。字符间距为默认值(缩放100%,间距:标准);页码用小五号字底端居中。 ③具体要求: 题目(二号黑体居中); 摘要(“摘要”二字用小二号黑体居中,隔行书写摘要的文字部分,小4号宋体); 关键词(隔行顶格书写“关键词”三字,提炼3-5个关键词,用分号隔开,小4号黑体); 正文部分采用三级标题; 第1章××(小二号黑体居中,段前0.5行) 1.1 ×××××小三号黑体×××××(段前、段后0.5行) 1.1.1小四号黑体(段前、段后0.5行) 参考文献(黑体小二号居中,段前0.5行),参考文献用五号宋体,参照《参考文献著录规则(GB/T 7714-2005)》。

实验一生成离散信号并计算其振幅谱 并将信号进行奇偶分解 一、实验原理 单位脉冲响应h(t)=exp(-a*t*t)*sin(2*3.14*f*t)进行离散抽样,分别得到t=0.002s,0.009s,0.011s采样的结果。用Excel软件绘图显示计算结果。并将信号进行奇偶分解,分别得到奇对称信号h(n)-h(-n)与偶对称信号h(n)+h(-n)。用Excel 软件绘图显示计算结果。 二、实验程序代码 (1)离散抽样 double a,t; a=2*f*f*log(m); int i; for(i=0;i

数字语音信号处理实验报告

语音信号处理实验报告 专业班级电子信息1203 学生姓名钟英爽 指导教师覃爱娜 完成日期2015年4月28日 电子信息工程系 信息科学与工程学院

实验一语音波形文件的分析和读取 一、实验学时:2 学时 二、实验的任务、性质与目的: 本实验是选修《语音信号处理》课的电子信息类专业学生的基础实验。通过实验 (1)掌握语音信号的基本特性理论:随机性,时变特性,短时平稳性,相关性等; (2)掌握语音信号的录入方式和*.WAV音波文件的存储结构; (3)使学生初步掌握语音信号处理的一般实验方法。 三、实验原理和步骤: WAV 文件格式简介 WAV 文件是多媒体中使用了声波文件的格式之一,它是以RIFF格式为标准。每个WAV 文件的头四个字节就是“RIFF”。WAV 文件由文件头和数据体两大部分组成,其中文件头又分为RIFF/WAV 文件标识段和声音数据格式说明段两部分。常见的WAV 声音文件有两种,分别对应于单声道(11.025KHz 采样率、8Bit 的采样值)和双声道(44.1KHz 采样率、16Bit 的采样值)。采样率是指声音信号在“模拟→数字”转换过程中,单位时间内采样的次数;采样值是指每一次采样周期内声音模拟信号的积分值。对于单声道声音文件,采样数据为8 位的短整数(short int 00H-FFH);而对于双声道立体声声音文件,每次采样数据为一个16 位的整数(int),高八位和低八位分别代表左右两个声道。WAV 文件数据块包含以脉冲编码调制(PCM)格式表示的样本。在单声道WAV 文件中,道0 代表左声道,声道1 代表右声道;在多声道WAV 文件中,样本是交替出现的。WAV 文件的格式 表1 wav文件格式说明表

语音信号处理实验报告11

实验一 语音信号的时域分析 一、 实验目的、要求 (1)掌握语音信号采集的方法 (2)掌握一种语音信号基音周期提取方法 (3)掌握语音信号短时能量和短时过零率计算方法 (4)了解Matlab 的编程方法 二、 实验原理 语音是一时变的、非平稳的随机过程,但由于一段时间内(10-30ms)人的声带和声道形状的相对稳定性,可认为其特征是不变的,因而语音的短时谱具有相对稳定性。在语音分析中可以利用短时谱的这种平稳性,将语音信号分帧。 10~30ms 相对平稳,分析帧长一般为20ms 。 语音信号的分帧是通过可移动的有限长度窗口进行加权的方法来实现的。几种典型的窗函数有:矩形窗、汉明窗、哈宁窗、布莱克曼窗。 语音信号的能量分析是基于语音信号能量随时间有相当大的变化,特别是清音段的能量一般比浊音段的小得多。定义短时平均能量 [][]∑∑+-=∞-∞=-=-= n N n m m n m n w m x m n w m x E 122)()()()( 下图说明了短时能量序列的计算方法,其中窗口采用的是直角窗。 过零就是信号通过零值。对于连续语音信号,可以考察其时域波形通过时间轴的情况。而对于离散时间信号,如果相邻的取样值改变符号则称为过零。由此可以计算过零数,过零数就是样本改变符号的次数。单位时间内的过零数称为平

均过零数。 语音信号x (n )的短时平均过零数定义为 ()[]()[]()()[]()[]() n w n x n x m n w m x m x Z m n *--=---= ∑∞ -∞=1sgn sgn 1sgn sgn 式中,[]?sgn 是符号函数,即 ()[]()()()()???<-≥=01 01sgn n x n x n x 短时平均过零数可应用于语音信号分析中。发浊音时,尽管声道有若干个共振峰,但由于声门波引起了谱的高频跌落,所以其语音能量约集中干3kHz 以下。而发清音时.多数能量出现在较高频率上。既然高频率意味着高的平均过零数,低频率意味着低的平均过零数,那么可以认为浊音时具有较低的平均过零数,而清音时具有较高的平均过零数。然而这种高低仅是相对而言,没有精确的数值关系。 短时平均过零的作用 1.区分清/浊音: 浊音平均过零率低,集中在低频端; 清音平均过零率高,集中在高频端。 2.从背景噪声中找出是否有语音,以及语音的起点。 基音是发浊音时声带震动所引起的周期性,而基音周期是指声带震动频率的倒数。基音周期是语音信号的重要的参数之一,它描述语音激励源的一个重要特征,基音周期信息在多个领域有着广泛的应用,如语音识别、说话人识别、语音分析与综合以及低码率语音编码,发音系统疾病诊断、听觉残障者的语音指导等。因为汉语是一种有调语言,基音的变化模式称为声调,它携带着非常重要的具有辨意作用的信息,有区别意义的功能,所以,基音的提取和估计对汉语更是一个十分重要的问题。 由于人的声道的易变性及其声道持征的因人而异,而基音周期的范围又很宽,而同—个人在不同情态下发音的基音周期也不同,加之基音周期还受到单词发音音调的影响,因而基音周期的精确检测实际上是一件比较困难的事情。基音提取的主要困难反映在:①声门激励信号并不是一个完全周期的序列,在语音的

数字信号处理基础实验报告 (2)

成都理工大学 《信号处理基础》实验 开设时间:2013—2014学年第2学期

题目1:信号的产生和显示 一、实验目的: 认识基本信号 通过使用MATLAB 设计简单程序, 掌握对MATLAB 的基本使用方法 二、实验原理: 找出下列表达式的信号与:正弦信号、最小相位信号、最大相位信号、零相位信号的对应关系。 1、sin60t 2、e-60t sin60t 3、(1- e-60t)sin60t 4、e60t sin60t 三、实验内容: 产生上述信号的信号并显示 (1)t=[-pi/30:0.001:pi/30]; f=sin(60*t); plot(t,f) 产生图形如下:

(2)t=[0:0.001:pi/30]; f=exp(-60*t).*sin(60*t); plot(t,f) 产生图形如下:

(3)t=[-5*pi/30:0.001:5*pi/30]; f=(1-exp(-60*t)).*sin(60*t); plot(t,f) 产生图形如下: (4) t=[-pi/30:0.001:pi/30]; f=exp(6*t).*sin(60*t); plot(t,f) 产生如下波形:

四、实验结果与讨论: 讨论上述信号的特点 从第一个波形图可以看出,它的波形与正弦函数sin(t)的相像,只是相位上有改变,是一个正弦信号。最大相位信号的能量集中在后面,最小相位能量集中在前面,所以第二个是一个最小相位,第四个是一个最大相位信号。第三个由于波形在t>0时没有,所以是一个零相位信号。 题目2:频谱分析与显示 一、实验目的 初步认识频谱分析

语音信号处理实验报告实验一

通信工程学院12级1班罗恒2012101032 实验一语音信号的低通滤波和短时分析综合实验 一、实验要求 1、根据已有语音信号,设计一个低通滤波器,带宽为采样频率的四分之一,求输出信号; 2、辨别原始语音信号与滤波器输出信号有何区别,说明原因; 3、改变滤波器带宽,重复滤波实验,辨别语音信号的变化,说明原因; 4、利用矩形窗和汉明窗对语音信号进行短时傅立叶分析,绘制语谱图并估计基音周期,分析两种窗函数对基音估计的影响; 5、改变窗口长度,重复上一步,说明窗口长度对基音估计的影响。 二、实验目的 1.在理论学习的基础上,进一步地理解和掌握语音信号低通滤波的意义,低通滤波分析的基本方法。 2.进一步理解和掌握语音信号不同的窗函数傅里叶变化对基音估计的影响。 三、实验设备 1.PC机; 2.MATLAB软件环境; 四、实验内容 1.上机前用Matlab语言完成程序编写工作。 2.程序应具有加窗(分帧)、绘制曲线等功能。 3.上机实验时先调试程序,通过后进行信号处理。 4.对录入的语音数据进行处理,并显示运行结果。 5. 改变滤波带宽,辨别与原始信号的区别。 6.依据曲线对该语音段进行所需要的分析,并且作出结论。 7.改变窗的宽度(帧长),重复上面的分析内容。 五、实验原理及方法 利用双线性变换设计IIR滤波器(巴特沃斯数字低通滤波器的设计),首先要设计出满足指标要求的模拟滤波器的传递函数Ha(s),然后由Ha(s)通过双线性变换可得所要设计的IIR滤波器的系统函数H(z)。如果给定的指标为数字滤波器的指标,则首先要转换成模拟滤波器的技术指标,这里主要是边界频率Wp和Ws 的转换,对ap和as指标不作变化。边界频率的转换关系为∩=2/T tan(w/2)。接着,按照模拟低通滤波器的技术指标根据相应设计公式求出滤波器的阶数N和3dB截止频率∩c ;根据阶数N查巴特沃斯归一化低通滤波器参数表,得到归一化传输函数Ha(p);最后,将p=s/ ∩c 代入Ha(p)去归一,得到实际的模拟滤波器传输函数Ha(s)。之后,通过双线性变换法转换公式s=2/T((1-1/z)/(1+1/z))得到所要设计的IIR滤波器的系统函数H(z)。

数字信号处理上机实验答案完整版

数字信号处理上机实验 答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

第十章上机实验 数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。 实验一系统响应及系统稳定性。 实验二时域采样与频域采样。 实验三用FFT对信号作频谱分析。 实验四 IIR数字滤波器设计及软件实现。 实验五 FIR数字滤波器设计与软件实现 实验六应用实验——数字信号处理在双音多频拨号系统中的应用 任课教师根据教学进度,安排学生上机进行实验。建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR数字滤波器设计及软件实现在。学习完第六章进行;实验五在学习完第七章后进行。实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。 functiontstem(xn,yn) %时域序列绘图函数 %xn:信号数据序列,yn:绘图信号的纵坐标名称(字符串) n=0:length(xn)-1; stem(n,xn,'.');boxon xlabel('n');ylabel(yn); axis([0,n(end),min(xn),*max(xn)]) 实验一: 系统响应及系统稳定性 1.实验目的 (1)掌握求系统响应的方法。 (2)掌握时域离散系统的时域特性。 (3)分析、观察及检验系统的稳定性。 2.实验原理与方法 在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。在计算机上适合用递推法求差分方程的解,最简单的方法是采用MATLAB语言的工具箱函数filter函数。也可

哈尔滨工程大学 语音信号处理实验报告

实 验 报 告 实验课程名称: 语音信号处理实验 姓名: 班级: 20120811 学号: 指导教师 张磊 实验教室 21B#293 实验时间 2015年4月12日 实验成绩 实验序号 实验名称 实验过程 实验结果 实验成绩 实验一 语音信号的端点检测 实验二 语音信号的特征提取 实验三 语音信号的基频提取

实验一 语音信号的端点检测 一、实验目的 1、掌握短时能量的求解方法 2、掌握短时平均过零率的求解方法 3、掌握利用短时平均过零率和短时能量等特征,对输入的语音信号进行端点检测。 二、实验设备 HP 计算机、Matlab 软件 三、实验原理 1、短时能量 语音信号的短时能量分析给出了反应这些幅度变化的一个合适的描述方法。对于信号)}({n x ,短时能量的定义如下: ∑ ∑∞ -∞ =∞ -∞ =*=-= -= m m n n h n x m n h m x m n w m x E )()()()()]()([222 2、短时平均过零率 短时平均过零率是指每帧内信号通过零值的次数。对于连续语音信号,可以 考察其时域波形通过时间轴的情况。对于离散信号,实质上就是信号采样点符号变化的次数。过零率在一定程度上可以反映出频率的信息。短时平均过零率的公式为: ∑∑-+=∞ -∞=--= ---=1)] 1(sgn[)](sgn[2 1 ) ()]1(sgn[)](sgn[21N n n m w w m n m x m x m n w m x m x Z 其中,sgn[.]是符号函数,即 ? ? ?<-≥=0)(10)(1 )](sgn[n x n x n x

《语音信号处理》实验3-LPC特征提取

华南理工大学《语音信号处理》实验报告 实验名称:LPC特征提取 姓名: 学号: 班级:10级电信5班 日期:2013年5 月24日

1. 实验目的 1、熟练运用MATLAB 软件进行语音信号实验; 2、熟悉短时分析原理、LPC 的原理; 3、学习运用MATLAB 编程进行LPC 的提取; 4、学会利用短时分析原理提取LPC 特征序列。 2. 实验原理 1、LPC 分析基本原理 LPC 分析为线性时不变因果稳定系统V (z )建立一个全极点模型,并利用均方误差准则,对已知的语音信号s(n)进行模型参数估计。 如果利用P 个取样值来进行预测,则称为P 阶线性预测。假P 个 取样值()()(){ } 1,2,S n S n S n p --- 的加权之和来预测信号当前取样值()S n ,则预测 信号()S n ∧ 为: ()() 1 p k k S n a n k ∧==-∑ (1) 其中加权系数用k a 表示,称为预测系数,则预测误差为: ()()()()() 1 p k k e n s n S n s n a n k ∧ ==-=--∑ (2) 要使预测最佳,则要使短时平均预测误差最小有: ()2 min E e n ε??==?? (3) ()20,(1) k e n k p a ????? =≤≤? (4) 令 ()()(),,i k E s n i S n k φ=--???? (5) 最小的ε可表示成: ()() min 10,00,p k k a k εφφ==-∑ (6) 显然,误差越接近于零,线性预测的准确度在均方误差最小的意义上为最佳,由此可以计算出预测系数。 通过LPC 分析,由若干帧语音可以得到若干组LPC 参数,每组参数形成一个

语音信号处理实验

哈尔滨工程大学实验报告 班级:电信三班 学号:2013081416 姓名:刘世杰

语音信号处理实验 一、实验目的 1、掌握短时能量的求解方法、短时平均过零率的求解方法,对输入的语音信号进行端点检测。 2、掌握语音信号的Mel 倒谱特征(MFCC )的求解方法,语音信号的线性预测原理以及LPC 特征的求解方法。 3、掌握语音信号基频的概念,加深对基频刻画声调特征作用的理解,掌握语音信号基频特征的典型求解方法。 4、掌握MATLAB 相应的功能以及使用方法。 二、仪器设备 HP 计算机、MATLAB 软件 三、实验原理 (一)语音信号的短时分析 端点检测是语音信号处理过程中非常重要的一步,它的准确性直接影响到语音信号处理的速度和结果。本次实验利用短时过零率和短时能量相结合的语音端点检测算法利用短时过零率来检测清音,用短时能量来检测浊音,两者相配合便实现了信号信噪比较大情况下的端点检测。 先引入以下三个概念 1、短时能量计算 定义n 时刻某语言信号的短时平均能量En 为: ∑∑--=+∞∞--=-=n N n m m n w m x m n w m x En )1(22 )]()([)]()([ 式中N 为窗长,可见短时平均能量为一帧样点值的平方和。特殊地,当窗函数为矩形窗时,有∑--== n N n m m x En )1(2)( 2、短时过零率 过零就是指信号通过零值。过零率就是每秒内信号值通过零值的次数。 对于离散时间序列,过零则是指序列取样值改变符号,过零率则是每个样本的改变符号的次数。对于语音信号,则是指在一帧语音中语音信号波形穿过横轴(零电平)的次数。可以用相邻两个取样改变符号的次数来计算。 如果窗的起点是n=0,短时过零率Z 为 波形穿过横轴(零电平)的次数

相关文档