文档库 最新最全的文档下载
当前位置:文档库 › 用于局部放电模式的深度置信网络方法

用于局部放电模式的深度置信网络方法

用于局部放电模式的深度置信网络方法
用于局部放电模式的深度置信网络方法

(完整版)深度神经网络及目标检测学习笔记(2)

深度神经网络及目标检测学习笔记 https://youtu.be/MPU2HistivI 上面是一段实时目标识别的演示,计算机在视频流上标注出物体的类别,包括人、汽车、自行车、狗、背包、领带、椅子等。 今天的计算机视觉技术已经可以在图片、视频中识别出大量类别的物体,甚至可以初步理解图片或者视频中的内容,在这方面,人工智能已经达到了3岁儿童的智力水平。这是一个很了不起的成就,毕竟人工智能用了几十年的时间,就走完了人类几十万年的进化之路,并且还在加速发展。 道路总是曲折的,也是有迹可循的。在尝试了其它方法之后,计算机视觉在仿生学里找到了正确的道路(至少目前看是正确的)。通过研究人类的视觉原理,计算机利用深度神经网络(Deep Neural Network,NN)实现了对图片的识别,包 括文字识别、物体分类、图像理解等。在这个过程中,神经元和神经网络模型、大数据技术的发展,以及处理器(尤其是GPU)强大的算力,给人工智能技术 的发展提供了很大的支持。 本文是一篇学习笔记,以深度优先的思路,记录了对深度学习(Deep Learning)的简单梳理,主要针对计算机视觉应用领域。 一、神经网络 1.1 神经元和神经网络 神经元是生物学概念,用数学描述就是:对多个输入进行加权求和,并经过激活函数进行非线性输出。 由多个神经元作为输入节点,则构成了简单的单层神经网络(感知器),可以进行线性分类。两层神经网络则可以完成复杂一些的工作,比如解决异或问题,而且具有非常好的非线性分类效果。而多层(两层以上)神经网络,就是所谓的深度神经网络。 神经网络的工作原理就是神经元的计算,一层一层的加权求和、激活,最终输出结果。深度神经网络中的参数太多(可达亿级),必须靠大量数据的训练来“这是苹在父母一遍遍的重复中学习训练的过程就好像是刚出生的婴儿,设置。.果”、“那是汽车”。有人说,人工智能很傻嘛,到现在还不如三岁小孩。其实可以换个角度想:刚出生婴儿就好像是一个裸机,这是经过几十万年的进化才形成的,然后经过几年的学习,就会认识图片和文字了;而深度学习这个“裸机”用了几十年就被设计出来,并且经过几个小时的“学习”,就可以达到这个水平了。 1.2 BP算法 神经网络的训练就是它的参数不断变化收敛的过程。像父母教婴儿识图认字一样,给神经网络看一张图并告诉它这是苹果,它就把所有参数做一些调整,使得它的计算结果比之前更接近“苹果”这个结果。经过上百万张图片的训练,它就可以达到和人差不多的识别能力,可以认出一定种类的物体。这个过程是通过反向传播(Back Propagation,BP)算法来实现的。 建议仔细看一下BP算法的计算原理,以及跟踪一个简单的神经网络来体会训练的过程。

深度学习系列(7):神经网络的优化方法

机器?学习中,梯度下降法常?用来对相应的算法进?行行训练。常?用的梯度下降法包含三种不不同的形式,分别是BGD 、SGD 和MBGD ,它们的不不同之处在于我们在对?目标函数进?行行梯度更更新时所使?用的样本量量的多少。 以线性回归算法来对三种梯度下降法进?行行?比较。 ?一般线性回归函数的假设函数为: (即有n 个特征)对应的损失函数为下图即为?一个?二维参数和组对应的损失函数可视化图像:批量量梯度下降法(Batch Gradient Descent ,简称BGD )是梯度下降法最原始的形式,它的具体思路路是在更更新每?一参数时都使?用所有的样本来进?行行更更新,其数学形式如下: 深度学习系列列(7):神经?网络的优化?方法?一、Gradient Descent [Robbins and Monro, 1951,Kiefer et al., 1952] = h θ∑j =0n θj x j L (θ)=12m ∑i =1 m (h ()?)x i y i 2θ0θ11.1 BGD (Batch Gradient Descent )

还是以上?面?小球的例例?子来看,momentum ?方式下?小球完全是盲?目被动的?方式滚下的。这样有个缺 三、NAG (Nesterov accelerated gradient )[Nesterov, 1983]

点就是在邻近最优点附近是控制不不住速度的。我们希望?小球可以预判后?面的“地形”,要是后?面地形还是很陡峭,那就继续坚定不不移地?大胆?走下去,不不然的话就减缓速度。 当然,?小球?自?己也不不知道真正要?走到哪?里里,这?里里以 作为下?一个位置的近似,将动量量的公式更更改为: 相?比于动量量?方式考虑的是上?一时刻的动能和当前点的梯度,?而NAG 考虑的是上?一时刻的梯度和近似下?一点的梯度,这使得它可以先往前探探路路,然后慎重前进。 Hinton 的slides 是这样给出的: 其中两个blue vectors 分别理理解为梯度和动能,两个向量量和即为momentum ?方式的作?用结果。?而靠左边的brown vector 是动能,可以看出它那条blue vector 是平?行行的,但它预测了了下?一阶段的梯度是red vector ,因此向量量和就是green vector ,即NAG ?方式的作?用结果。 momentum 项和nesterov 项都是为了了使梯度更更新更更加灵活,对不不同情况有针对性。但是,?人?工设置?一些学习率总还是有些?生硬,接下来介绍?几种?自适应学习率的?方法 训练深度?网络的时候,可以让学习率随着时间退?火。因为如果学习率很?高,系统的动能就过?大,参数向量量就会?无规律律地变动,?无法稳定到损失函数更更深更更窄的部分去。对学习率衰减的时机把握很有技巧:如果慢慢减?小,可能在很?长时间内只能浪费计算资源然后看着它混沌地跳动,实际进展很少;但如果快速地减少,系统可能过快地失去能量量,不不能到达原本可以到达的最好位置。通常,实现学习率退?火有三种?方式: θ?γv t ?1 =γ+ηJ (θ?γ) v t v t ?1?θv t ?1θ=θ?v t 四、学习率退?火

(完整版)深度神经网络全面概述

深度神经网络全面概述从基本概念到实际模型和硬件基础 深度神经网络(DNN)所代表的人工智能技术被认为是这一次技术变革的基石(之一)。近日,由IEEE Fellow Joel Emer 领导的一个团队发布了一篇题为《深度神经网络的有效处理:教程和调研(Efficient Processing of Deep Neural Networks: A Tutorial and Survey)》的综述论文,从算法、模型、硬件和架构等多个角度对深度神经网络进行了较为全面的梳理和总结。鉴于该论文的篇幅较长,机器之心在此文中提炼了原论文的主干和部分重要内容。 目前,包括计算机视觉、语音识别和机器人在内的诸多人工智能应用已广泛使用了深度神经网络(deep neural networks,DNN)。DNN 在很多人工智能任务之中表现出了当前最佳的准确度,但同时也存在着计算复杂度高的问题。因此,那些能帮助DNN 高效处理并提升效率和吞吐量,同时又无损于表现准确度或不会增加硬件成本的技术是在人工智能系统之中广泛部署DNN 的关键。 论文地址:https://https://www.wendangku.net/doc/d514671519.html,/pdf/1703.09039.pdf 本文旨在提供一个关于实现DNN 的有效处理(efficient processing)的目标的最新进展的全面性教程和调查。特别地,本文还给出了一个DNN 综述——讨论了支持DNN 的多种平台和架构,并强调了最新的有效处理的技术的关键趋势,这些技术或者只是通过改善硬件设计或者同时改善硬件设计和网络算法以降低DNN 计算成本。本文也会对帮助研究者和从业者快速上手DNN 设计的开发资源做一个总结,并凸显重要的基准指标和设计考量以评估数量快速增长的DNN 硬件设计,还包括学界和产业界共同推荐的算法联合设计。 读者将从本文中了解到以下概念:理解DNN 的关键设计考量;通过基准和对比指标评估不同的DNN 硬件实现;理解不同架构和平台之间的权衡;评估不同DNN 有效处理技术的设计有效性;理解最新的实现趋势和机遇。 一、导语 深度神经网络(DNN)目前是许多人工智能应用的基础[1]。由于DNN 在语音识别[2] 和图像识别[3] 上的突破性应用,使用DNN 的应用量有了爆炸性的增长。这些DNN 被部署到了从自动驾驶汽车[4]、癌症检测[5] 到复杂游戏[6] 等各种应用中。在这许多领域中,DNN 能够超越人类的准确率。而DNN 的出众表现源于它能使用统计学习方法从原始感官数据中提取高层特征,在大量的数据中获得输入空间的有效表征。这与之前使用手动提取特征或专家设计规则的方法不同。 然而DNN 获得出众准确率的代价是高计算复杂性成本。虽然通用计算引擎(尤其是GPU),已经成为许多DNN 处理的砥柱,但提供对DNN 计算更专门化的加速方法也越来越热门。本文的目标是提供对DNN、理解DNN 行为的各种工具、有效加速计算的各项技术的概述。 该论文的结构如下:

神经网络及深度学习

可用于自动驾驶的神经网络及深度学习 高级辅助驾驶系统(ADAS)可提供解决方案,用以满足驾乘人员对道路安全及出行体验的更高要求。诸如车道偏离警告、自动刹车及泊车辅助等系统广泛应用于当前的车型,甚至是功能更为强大的车道保持、塞车辅助及自适应巡航控制等系统的配套使用也让未来的全自动驾驶车辆成为现实。 作者:来源:电子产品世界|2017-02-27 13:55 收藏 分享 高级辅助驾驶系统(ADAS)可提供解决方案,用以满足驾乘人员对道路安全及出行体验的更高要求。诸如车道偏离警告、自动刹车及泊车辅助等系统广泛应用于当前的车型,甚至是功能更为强大的车道保持、塞车辅助及自适应巡航控制等系统的配套使用也让未来的全自动驾驶车辆成为现实。 如今,车辆的很多系统使用的都是机器视觉。机器视觉采用传统信号处理技术来检测识别物体。对于正热衷于进一步提高拓展ADAS功能的汽车制造业而言,深度学习神经网络开辟了令人兴奋的研究途径。为了实现从诸如高速公路全程自动驾驶仪的短时辅助模式到专职无人驾驶旅行的自动驾驶,汽车制造业一直在寻求让响应速度更快、识别准确度更高的方法,而深度学习技术无疑为其指明了道路。 以知名品牌为首的汽车制造业正在深度学习神经网络技术上进行投资,并向先进的计算企业、硅谷等技术引擎及学术界看齐。在中国,百度一直在此技术上保持领先。百度计划在2019 年将全自动汽车投入商用,并加大全自动汽车的批量生产力度,使其在2021 年可广泛投入使用。汽车制造业及技术领军者之间的密切合作是嵌入式系统神经网络发展的催化剂。这类神经网络需要满足汽车应用环境对系统大小、成本及功耗的要求。 1轻型嵌入式神经网络 卷积式神经网络(CNN)的应用可分为三个阶段:训练、转化及CNN在生产就绪解决方案中的执行。要想获得一个高性价比、针对大规模车辆应用的高效结果,必须在每阶段使用最为有利的系统。 训练往往在线下通过基于CPU的系统、图形处理器(GPU)或现场可编程门阵列(FPGA)来完成。由于计算功能强大且设计人员对其很熟悉,这些是用于神经网络训练的最为理想的系统。 在训练阶段,开发商利用诸如Caffe(Convolution Architecture For Feature Extraction,卷积神经网络架构)等的框架对CNN 进行训练及优化。参考图像数据库用于确定网络中神经元的最佳权重参数。训练结束即可采用传统方法在CPU、GPU 或FPGA上生成网络及原型,尤其是执行浮点运算以确保最高的精确度。 作为一种车载使用解决方案,这种方法有一些明显的缺点。运算效率低及成本高使其无法在大批量量产系统中使用。 CEVA已经推出了另一种解决方案。这种解决方案可降低浮点运算的工作负荷,并在汽车应用可接受的功耗水平上获得实时的处理性能表现。随着全自动驾驶所需的计算技术的进一步发展,对关键功能进行加速的策略才能保证这些系统得到广泛应用。 利用被称为CDNN的框架对网络生成策略进行改进。经过改进的策略采用在高功耗浮点计算平台上(利用诸如Caffe的传统网络生成器)开发的受训网络结构和权重,并将其转化为基于定点运算,结构紧凑的轻型的定制网络模型。接下来,此模型会在一个基于专门优化的成像和视觉DSP芯片的低功耗嵌入式平台上运行。图1显示了轻型嵌入式神经网络的生成

深度神经网络及目标检测学习笔记

深度神经网络及目标检测学习笔记 https://youtu.be/MPU2HistivI 上面是一段实时目标识别的演示,计算机在视频流上标注出物体的类别,包括人、汽车、自行车、狗、背包、领带、椅子等。 今天的计算机视觉技术已经可以在图片、视频中识别出大量类别的物体,甚至可以初步理解图片或者视频中的内容,在这方面,人工智能已经达到了3岁儿童的智力水平。这是一个很了不起的成就,毕竟人工智能用了几十年的时间,就走完了人类几十万年的进化之路,并且还在加速发展。 道路总是曲折的,也是有迹可循的。在尝试了其它方法之后,计算机视觉在仿生学里找到了正确的道路(至少目前看是正确的)。通过研究人类的视觉原理,计算机利用深度神经网络(DeepNeural Network,NN)实现了对图片的识别,包括文字识别、物体分类、图像理解等。在这个过程中,神经元和神经网络模型、大数据技术的发展,以及处理器(尤其是GPU)强大的算力,给人工智能技术的发展提供了很大的支持。 本文是一篇学习笔记,以深度优先的思路,记录了对深度学习(Deep Learning)的简单梳理,主要针对计算机视觉应用领域。 一、神经网络 1.1 神经元和神经网络 神经元是生物学概念,用数学描述就是:对多个输入进行加权求和,并经过激活函数进行非线性输出。 由多个神经元作为输入节点,则构成了简单的单层神经网络(感知器),可以进行线性分类。两层神经网络则可以完成复杂一些的工作,比如解决异或问题,而且具有非常好的非线性分类效果。而多层(两层以上)神经网络,就是所谓的深度神经网络。 神经网络的工作原理就是神经元的计算,一层一层的加权求和、激活,最终输出结果。深度神经网络中的参数太多(可达亿级),必须靠大量数据的训练来设置。训练的过程就好像是刚出生的婴儿,在父母一遍遍的重复中学习“这是苹

基于深度置信网络的语音增强算法

第41卷第5期2018年10月 电子器件 ChineseJournalofElectronDevices Vol 41一No 5Oct.2018 项目来源:国家自然科学基金项目(61673108)?江苏高校品牌专业建设工程项目(PPZY2015A092)?南京信息职业技术学院科 技创新团队项目 收稿日期:2017-08-23一一修改日期:2017-09-22 SpeechEnhancementAlgorithmBasedonADeepBeliefNetwork? YINFaming1??TANGYufeng2 (1.SchoolofCommunicationsEngineering?NanjingCollegeofInformationTechnology?Nanjing210023?China? 2.SchoolofInformationScienceandEngineering?SoutheastUniversity?Nanjing210096?China) Abstract:DBN(DeepBeliefNetwork)wasstudiedbasedonspeechenhancementalgorithm.WechoseLog ̄SpectralMinimumMeanSquareError(LOGMMSE)algorithmandoptimally ̄modifiedlog ̄spectralamplitude(OM ̄LSA)speechestimator?whicharethebesttraditionalspeechenhancementalgorithms?tocomparewithDBN ̄basedspeechenhancementalgorithm.TheresultsindicatedthattheDBN ̄basedspeechenhancementalgorithmdemonstratedsuperiorperformanceamongthreealgorithms?especiallytheimprovementofspeechquality. Keywords:speechenhancementalgorithm?deepbeliefnetwork?LOGMMSEalgorithm?OM ̄LSAalgorithmEEACC:6130一一一一doi:10.3969/j.issn.1005-9490.2018.05.048 基于深度置信网络的语音增强算法 ? 阴法明1??唐於烽2 (1.南京信息职业技术学院通信学院?南京210023?2.东南大学信息科学与工程学院?南京?210096) 摘一要:研究了一种基于深度置信网络的语音增强算法?选取在噪声环境下传统语音增强算法中较好的LOGMMSE与OM ̄ LSA算法和基于深度置信网络的语音增强算法进行了分析比较?结果证明深度置信网络的语音增强算法在3种算法中体现出了卓越的性能?尤其对增强后的语音质量的提升远远超过前两种算法? 关键词:语音增强算法?深度置信网络?LOGMMSE算法?优化改进的对数幅度谱算法 中图分类号:H017?TN69一一一一文献标识码:A一一一一文章编号:1005-9490(2018)05-1325-05一一语音是人类社会信息重要的也是最便捷的载体?但是人类生存的环境却是一个极端复杂的声学环境?因此人类的通信通常会收到各种噪声的干扰? 自然环境中的这些噪声严重影响了语音的质量和信息的传递? 语音增强技术旨在提升被噪声干扰语音的可懂度和质量?语音增强技术在助听器二耳蜗移植中广泛使用?语音增强技术的使用是的上述设备的听觉舒适度和可懂度得到提升?此外?在语音识别系统和说话人识别系统中?语音增强技术也有广泛的应用? 传统的单声道语音增强算法主要分为时域方法和频域方法?时域方法主要包括参数和滤波的方法?信号子空间法等?而频域的方法有谱减法二维纳滤波法二听觉掩蔽法等[1]?其中谱减法是最简单?计算复杂度最小的方法?但会残留音乐噪声和严重的语音失真?而维纳滤波法能够将音乐噪声转变成 白噪声?让处理后的语音听上去更舒适?但维纳滤波是基于平稳假设前提下的最小均方误差的估计?因此对非平稳信号的抑制能力较弱?听觉掩蔽法是根据人耳的掩蔽效应提出的一种算法?即能量大的声音会将能量小的声音掩蔽?此方法不用将噪声完全从语音中减去?只要将噪声能量抑制在掩蔽阈值以下?革命性的语音增强算法是1984年Ephraim和Malah提出的基于最小均方误差MMSE(MinimumMeanSquareError)的语音幅度谱估计?由于人耳对声强的感知是非线性的?因而他们又提出了对数谱域的最小均方误差估计(LOG ̄MMSE)?在LOG ̄MMSE语音增强方法提出来的同时?RainerMartin[6]在1994年提出了基于最小统计量的语音增强方法?后面许多学者对此方法提出了相应的改良?其中使用最重要的是IsraelCohen提出的最佳修正对数谱OM ̄LSA(Optimally ̄ModifiedLog ̄SpectralAmplitude)

神经网络11大常见陷阱及应对方法

深度学习的这些坑你都遇到过吗?神 经网络11 大常见陷阱及应对方法【新智元导读】如果你的神经网络不工作,该怎么办?本文作者列举了搭建神经网络时可能遇到的11个常见问题,包括预处理数据、正则化、学习率、激活函数、网络权重设置等,并提供解决方法和原因解释,是深度学习实践的有用资料。 如果你的神经网络不工作,该怎么办?作者在这里列出了建神经网络时所有可能做错的事情,以及他自己的解决经验。 1.忘记规范化数据 2.忘记检查结果 3.忘记预处理数据 4.忘记使用正则化 5.使用的batch太大 6.使用了不正确的学习率 7.在最后层使用了错误的激活函数 8.你的网络包含了Bad Gradients 9.初始化网络权重不正确 10.你使用的网络太深了 11.使用隐藏单元的数量不对 忘记规范化数据了

问题描述 在使用神经网络时,思考如何正确地规范化数据是非常重要的。这是一个无法改变的步骤——假如这一步骤没有小心、正确地做,你的网络就几乎不可能工作。由于这个步骤非常重要,在深度学习社区中也是众所周知的,所以它很少在论文中被提及,因此初学者常常在这一步出错。 怎样解决? 一般来说,规范化(normalization)的意思是:将数据减去均值,再除以其方差。通常这是对每个输入和输出特征单独做的,但你可能经常会希望对特征组做或特别主翼处理某些特征的规范化。 为什么? 我们需要对数据进行规范化的主要原因是大部分的神经网络流程假设输入和输出数据都以一个约是1的标准差和约是0的均值分布。这些假设在深度学习文献中到处都是,从权重初始化、激活函数到训练网络的优化算法。 还需要注意 未训练的神经网络通常会输出约在-1到1范围之间的值。如果你希望输出其他范围的值(例如RBG图像以0-255范围的字节存储)会出现一些问题。在开始训练时,网络会非常不稳定,因为比如说预期值是255,网络产生的值是-1或1——这会被大多数用于训练神经网络的优化算法认为是严重的错误。这会产生过大的梯度,可能导致梯度爆炸。如果不爆炸,那么训练的前几个阶段就是浪费的,因为网络首先学习的是将输出值缩小到大致是预期的范围。如果规范化了数据(在这种情况下,你可以简单地将数值除以128再减去1),就不会发生这些问题。 一般来说,神经网络中特征的规模也决定了其重要性。如果输出中的有一个特征规模很大,那么与其他特征相比它会产生更大的错误。类似地,输入中的大规模特征将主导网络并导致下游发生更大的变化。因此,使用神经网络库的自动规范化往往是不够的,这些神经网络库会在每个特征的基础上盲目地减去平均值并除以方差。你可能有一个输入特征,通常范围在0.0到0.001之间——这个特征的范围如此之小,因为它是一个不重要的特征(在这种情况下,你可能不想重新scale),或者因为与其他特征相比它有一些小的单元(在这种情

大数据分析的深度神经网络方法

章毅 四川大学计算机学院2016.03.25 重庆

提纲 大数据简介 大脑新皮层的神经网络结构 大脑新皮层神经网络的记忆 大数据分析GPU深度神经网络计算平台

大数据商业应用诞生 全世界兴起大数据分布式存储与并行计Google Brain 计划,激起大规模神经网络在深度神经网络在语音大数据、图像大数据领域接连取得巨大突破 G. E. Hinton 教授在《Science 》发表文章,基于深度神经网络的大数据分析方法在学术界和工工信部白皮书指出:大数据分析是大数据研究的重要环节,其中大数据分“大数据” 一词诞生 2000 1997 2004 2006 2011 2012 2014 2015 我国大数据产业兴起 2013 美国奥巴马政府发布了大数据计划,将大数据战略上升为美国国家意志 国务院发布大数据发展行动纲要,大数据正式上升为我国国家意志

体量浩大Volume 多源异构Variety 生成快速Velocity 价值稀疏Value 大数据的基本特点大数据的目标实现大数 据转换为 价值 大数据的概念 问题:怎样实现大数据的目标?

大数据 关键技术 价值 大数据分析是大数据转化为价值的桥梁 问题:怎样设计大数据分析方法? 展示平台 ?大数据知识展示 ?大数据产品 数据平台 ?大数据采集,标记 ?大数据存储,管理 大数据分析是大数据转 换为价值的最重要的环 节,否则,大数据仅仅 是一堆数据而已。

?每秒信息传递和交换1000亿次,PB 级数据 ?同步处理声音、温度、气味、图像等数据 ?50亿本书的存储容量 ?每秒人眼数据量140.34GB ? 在识别、判断、预测等智能行为方面展现出十分强大的能力 ?优秀的大数据处理器 人类大脑是天然的大数据处理器! 进入大脑的信息被编码为某种数据,进而由大脑神经网络处理

深度神经网络的关键技术及其在自动驾驶领域的应用

ISSN 1674-8484 CN 11-5904/U 汽车安全与节能学报, 第10卷第2期, 2019年 J Automotive Safety and Energy, Vol. 10 No. 2, 2019 1/13 119—145 深度神经网络的关键技术及其在自动驾驶领域的应用 李升波1,关?阳1,侯?廉1,高洪波1,段京良2,梁?爽3,汪?玉3,成?波1, 李克强1,任?伟4,李?骏1 (1. 清华大学车辆与运载学院,北京100084,中国;2. 加州大学伯克利分校机械系,加州 94720,美国; 3. 清华大学电子工程系,北京100084,中国; 4. 加州大学河滨分校电子计算机系,加州92521,美国) 摘?要:?智能化是汽车的三大变革技术之一,深度学习具有拟合能力优、表征能力强和适用范围广的 特点,是进一步提升汽车智能性的重要途径。该文系统性总结了用于自动驾驶汽车的深度神经网络(DNN)技术,包括发展历史、主流算法以及感知、决策与控制技术应用。回顾了神经网络的历史及现状, 总结DNN的“神经元-层-网络”3级结构,重点介绍卷积网络和循环网络的特点以及代表性模型; 阐述了以反向传播(BP)为核心的深度网络训练算法,列举用于深度学习的常用数据集与开源框架,概 括了网络计算平台和模型优化设计技术;讨论DNN在自动驾驶汽车的环境感知、自主决策和运动控 制3大方向的应用现状及其优缺点,具体包括物体检测和语义分割、分层式和端到端决策、汽车纵 横向运动控制等;针对用于自动驾驶汽车的DNN技术,指明了不同问题的适用方法以及关键问题的 未来发展方向。 关键词:?智能汽车;自动驾驶;深度神经网络(DNN);深度学习;环境感知;自主决策;运动控制 中图分类号:?TP 18;U 463.6 文献标志码:?A DOI:?10.3969/j.issn.1674-8484.2019.02.001 Key technique of deep neural network and its applications in autonomous driving LI Shengbo1, GUAN Yang1, HOU Lian1, GAO Hongbo1, DUAN Jingliang2, LIANG Shuang3, WANG Yu3, CHENG Bo1, LI Keqiang1, REN Wei4, LI Jun1 (1. School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China; 2. Mechanical Engineering, University of California Berkeley, Berkeley, CA 94720, USA; 3. Electronic Engineering, Tsinghua University, Beijing 100084, China; 4. Electrical and Computer Engineering, University of California Riverside, Riverside, CA 92521, USA) Abstract: Autonomous driving is one of the three major innovations in automotive industry. Deep learning is a crucial method to improve automotive intelligence due to its outstanding abilities of data fitting, feature representation and model generalization. This paper reviewed the technologies of deep neural network (DNN) 收稿日期?/?Received?:?2019-01-19。 基金项目?/?Supported?by?: “十三五”国家重点研发计划(2016YFB0100906);国家自然科学基金面上项目(51575293);国家自然科学基金优秀青年科学基金项目(U1664263);国家自然科学基金重点项目(51622504);北京市自然科学基金杰出青 年科学基金项目(JQ18010);汽车安全与节能国家重点实验室开放基金课题(KF1828)。 第一作者?/?First?author?:?李升波(1982—),男(汉),山东,副教授。E-mail: lishbo@https://www.wendangku.net/doc/d514671519.html,。

基于SVD裁剪的深度神经网络压缩技术研究与实现

基于SVD裁剪的深度神经网络压缩技术研究与实现近年来,深度学习算法在解决抽象认知问题上展现了强大的建模 能力,并在音频事件检测与音频场景分类任务中显著的提高了性能。 因此深度学习算法受到了学术界的广泛青睐。深度学习算法强大的建模能力得益于较深的网络结构,较多的神经元和层数。因此,一些神经网络的参数量达到数百万甚至数十亿。利用处理器计算大规模神经网络需要消耗很大的计算资源,对处理器的计算能力提出了严苛的要求。本文为了减少深度神经网络参数量,研究基于SVD裁剪的深度神经网 络压缩方法,以达到压缩深度神经网络的目的。本文首先提出基于SVD 的全连接神经网络的裁剪方法。矩阵相乘是全连接神经网络最主要的计算方式,网络中参数主要集中在权重矩阵中。对于全连接神经网络 裁剪,本文利用SVD分解将一个大权重矩阵裁剪为两个小矩阵的乘积,并利用两个小矩阵重构原始的网络结构,减少网络中的参数量以达到 简化全连接神经网络的目的。在基于全连接神经网络的DCASE2016稀有音频事件检测任务上,该方法可以保留4.35%参数量时,而网络的精度仅仅下降了3%。对于卷积神经网络,本文提出了基于SVD分解的卷积层通道的裁剪方法,利用矩阵分解减少卷积层中特征图的数量,以 达到减少卷积神经网络中的参数量的目的。利用矩阵分解的方法分别压缩原卷积层的输入通道和输出通道,并重构新的卷积层,将原始卷 积层分解为三个小卷积层,使得组合之后的卷积层比原始卷积层具有 更少的参数。应用在基于GCRNN的DCASE2018声学场景分类任务上, 该方法可以保留原卷积层10.76%参数量,而网络的精度仅仅下降了

0.34%。对于循环神经网络的压缩,本文主要研究了GRU的SVD裁剪方法,主要思想是将GRU的更新门和重置门中的各个权重矩阵进行分解,从而减少网络整体的参数量。在矩阵分解之后,本文利用权重共享方法减少裁剪之后的更新门与重置门中的权重矩阵,从而进一步减少GRU中的参数量。利用裁剪之后的权重矩阵以及共享矩阵重构新的GRU网络。应用在基于GCGRU的声学场景分类任务上,该方法可以保留GRU层23.00%参数量,而网络的精度仅仅下降了0.55%。为了分析SVD能有效裁剪神经网络的原因,本文定义了权重活跃度,即如果权重参数的绝对值大于设定阈值所占的比例。通过分析SVD裁剪全连接神经网络、卷积神经网络和循环神经网络,本文发现SVD裁剪是通过增加神经网络权重活跃度来保持模型的性能。

相关文档