文档库 最新最全的文档下载
当前位置:文档库 › 用递归法求斐波那契数列第n项

用递归法求斐波那契数列第n项

用递归法求斐波那契数列第n项
用递归法求斐波那契数列第n项

#include

int fun(int n)

{

if(n==1)

return 0;

if(n==2)

return 1;

if(n>=3)

return fun(n-1)+fun(n-2);

}

int main()

{

int x;

printf("请输入一个正整数:");

scanf("%d",&x);

if(x<=0)

{

printf("请输入正确的正整数!\n");

return 0;

}

printf("%d\n",fun(x));

}

vb套题——斐波那契数列

第03套: 1. 基本操作(2小题,每小题15分,共计30分) 注意:下面出现的“考生文件夹”均为%USER% ********************************************************************** 请根据以下各小题的要求设计Visual Basic应用程序(包括界面和代码)。 (1)在名称为Form1的窗体上画一个名称为Frame1,标题为“目的地”的框架,在框架中添加三个复选框,名称分别为Check1、Check2、Check3,其标题 分别是“上海”、“广州”、“巴黎”,其中“上海”为选中状态,“广 州”为未选状态,“巴黎”为灰色状态,如图所示。请画控件并设置相应 属性。 注意: 存盘时必须存放在考生文件夹下,工程文件名为sjt1.vbp,窗体文件名 为sjt1.frm。 解题思路: 启动Visual Basic系统,创建一个Form1窗体。 在该窗体上画一个框架控件,通过其属性窗口将名称设为Frame1,标题(Caption属性)设为“目的地”。在F1框架中画三个复选框控件,通过其属性窗口将名称分别设为Check1、Check2、Check3,标题(Caption属性)分别设为“上海”、“广州”、“巴黎”,“上海”的Value属性设为1,“巴黎”的Value属性设为2。 参考文件:c:\wexam\26990001\hlpsys\参考答案\sjt1.vbp、sjt1.frm、sjt1.vbw 请把这些文件复制到c:\wexam\26990001中,然后打开sjt1.vbp文件并运行。 ********************************************************************** (2)在名称为Form1的窗体上画一个名称为Picture1的图片框,其宽和高分别为1700、1900。请编写适当事件过程,使得在运行时,单击图片框,则装 入考生目录下的图形文件pic1.bmp,如图所示。单击窗体则图片框中的图 形消失。要求程序中不得使用变量,每个事件过程中只能写一条语句。 注意: 存盘时必须存放在考生文件夹下,工程文件名为sjt2.vbp,窗体文件名 为sjt2.frm。

几种求数列前n项和的方法

几种求数列前n 项和的常用方法 1、公式法: 如果一个数列是等差、等比数列或者是可以转化为等差、等比数列的数列,我们可以运用等差、等比数列的前n 项和的公式来求. ①等差数列求和公式:()()11122 n n n a a n n S na d +-==+ ②等比数列求和公式:()()()11111111n n n na q S a q a a q q q q ?=?=-?-=≠?--? 常见的数列的前n 项和:, 1+3+5+……+(2n-1)= ,等. 2、倒序相加法: 类似于等差数列的前n 项和的公式的推导方法。如果一个数列{}n a ,与首末两项等距的两项之和等于首末两项之和,可采用正序写和与倒序写和的两个和式相加,就得到一个常数列的和。这一种求和的方法称为倒序相加法. 例、求οοοοο89sin 88sin 3sin 2sin 1sin 22222++???+++的值. 解:设οοοοο89sin 88sin 3sin 2sin 1sin 22222++???+++=S …………. …. …. …. ① 将①式右边反序得:οοοοο1sin 2sin 3sin 88sin 89sin 22222+++???++=S ……② 又因为sin cos(90)x x =-o ,22sin cos 1x x +=,①+②得 : 2222222(sin 1cos 1)(sin 2cos 2)(sin 89cos 89)S =++++???++o o o o o o =89 ∴ S = 小结:倒序相加法,适用于倒序相加后产生相同的结果,方便求和. 3、错位相减法: 类似于等比数列的前n 项和的公式的推导方法。若数列各项是由一个等差数列和一个等比数列对应项相乘得到,即数列是一个“差·比”数列,则采用错位相减法. 例、求和:()2112301n n S x x nx x x -=++++≠≠L ,(课本61页习题组4) 解:设S n =1+2x+3x 2+…+(n-1)x n-2+nx n -1 , ① 则:x S n = x +2 x 2+…+(n-1) x n-1 + n x n ②

数学-斐波那契数列01

内蒙古自治区中小学教师教育技术水平(初级)试卷(试卷科目:中学数学)01 第一部分:基本知识题(本部分共8个题,每题2.5分,满分20分) 第1题 (单选题)根据您对教育技术及相关基础知识的理解,下例选项不正确的一项是( C)。 (2.5分) A.教育技术就是为了促进学习,对有关的学习过程和资源进行设计、开发、利用、管理和评价的理论与实践 B.教学设计是运用系统方法分析教学问题和确定教学目标,建立解决教学问题的策略方案、试行解决方案、评价试行结果和对方案进行修改的过程C.教育技术与信息技术的涵义是一样的,只是用不同的名词来表述而已D.教育信息化是指在教育教学的各个领域中,积极开发充分应用信息技术和信息资源,以促进教育现代化,培养满足社会需求人才的过程 第2题 (单选题)在美国,教育技术作为一个新兴的实践和研究领域而出现始于下列选项内容的是( A)。 (2.5分) A.视听运动 B.计算机辅助教育 C.程序教学法 D.网络技术应用 第3题 (单选题)"教师不应一味以传统集体传授教学的方式进行教学,而应使用能够让学生进行操作或进行社会活动的方式来学习",这反映的是( A )的学习观。 (2.5分) A.建构主义 B.人本主义 C.行为主义 D.认知主义 第4题 (单选题)在视听教学运动背景下,对教育技术基本内涵表述不恰当的是( C)。 (2.5分) A.在教学过程中所应用的媒体技术手段和技术方法 B.在教学过程中所应用的媒体技术和系统技术 C.在教学过程中所应用的媒体技术 D.在教学过程中所应用的媒体开发和教学设计 第5题 (单选题)关于教学方法的选择,下列选项中说法正确的是( C )。 (2.5分) A.教学方法的选择不涉及学习者特征方面因素

有趣的斐波那契数列

有趣的斐波那契数列 谈起斐波那契数列,我想很多人会想到《达芬奇密码》中的故事:午夜,卢浮宫博物馆年迈的馆长被人杀害在大陈列馆的镶木地板上.在人生的最后时刻,馆长脱光了衣服,明白无误的用自己的身体摆成了达.芬奇名画维特鲁维人的样子,还在尸体旁边留下了一个令人难以捉摸的密码.符号学专家罗伯特.兰登与密码破译天才索菲.奈夫,在对一大堆怪异的密码进行整理的过程当中,发现一连串的线索竟然隐藏在达.芬奇的艺术作品当中。而这串密码就是斐波那契数列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... 然而它们到底是怎样的一串数字呢?今天就让我们一起来认识一下吧!斐波那契数列,又称黄金分割数列,指的是这样一个数列:0、1、1、2、3、5、8、13、21、……在数学上,斐波纳契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=F(n-1)+F(n-2)(n>=2,n∈N*) 递推公式 斐波那契数列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, (1) 如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式:[1] 显然这是一个线性递推数列。[1] 通项公式 (如上,又称为“比内公式”,是用无理数表示有理数的一个范例。) 注:此时a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3,n∈N*) 待定系数法构造等比数列2(初等代数解法) 已知a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3),求数列{an}的通项公式。 解:设an-αa(n-1)=β(a(n-1)-αa(n-2))。 得α+β=1。 αβ=-1。 构造方程x^2-x-1=0,解得α=(1-√5)/2,β=(1+√5)/2或α=(1+√5)/2,β=(1-√5)/2。 所以。 an-(1-√5)/2*a(n-1)=(1+√5)/2*(a(n-1)-(1-√5)/2*a(n-2))=[(1+√5)/2]^ (n-2)*(a2-(1-√5)/2*a1)`````````1。 an-(1+√5)/2*a(n-1)=(1-√5)/2*(a(n-1)-(1+√5)/2*a(n-2))=[(1-√5)/2]^ (n-2)*(a2-(1+√5)/2*a1)`````````2。 由式1,式2,可得。

求前n项和公式的常用方法

求数列前N项和的常用方法 核心提示:求数列的前n项和要借助于通项公式,即先有通项公式,再在分析数列通项公式的基础上,或分解为基本数列求和,或转化为基本数列求和。当遇到具体问题时,要注意观察数列的特点和规律,找到适合的方法解题。 一.用倒序相加法求数列的前n项和 如果一个数列{a n},与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n项和公式的推导,用的就是“倒序相加法”。 例题1:设等差数列{a n},公差为d,求证:{a n}的前n项和S n=n(a1+a n)/2 解:S n=a1+a2+a3+...+a n① 倒序得:S n=a n+a n-1+a n-2+…+a1② ①+②得:2S n=(a1+a n)+(a2+a n-1)+(a3+a n-2)+…+(a n+a1) 又∵a1+a n=a2+a n-1=a3+a n-2=…=a n+a1 ∴2S n=n(a2+a n) S n=n(a1+a n)/2 点拨:由推导过程可看出,倒序相加法得以应用的原因是借助a1+a n=a2+a n-1=a3+a n-2=…=a n+a1即与首末项等距的两项之和等于首末两项之和的这一等差数列的重要性质来实现的。 二.用公式法求数列的前n项和 对等差数列、等比数列,求前n项和S n可直接用等差、等比数列的前n项和公式进行求解。运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。 例题2:求数列的前n项和S n 解: 点拨:这道题只要经过简单整理,就可以很明显的看出:这个数列可以分解成两个数列,一个等差数列,一个等比数列,再分别运用公式求和,最后把两个数列的和再求和。 三.用裂项相消法求数列的前n项和 裂项相消法是将数列的一项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前n项和。 例题3:求数列(n∈N*)的和

计算Fibonacci数列前20个数值之和

计算Fibonacci 数列前20个数值之和 问题 计算Fibonacci 数列前20个数值之和,其中Fibonacci 数列有如下的迭代规律: 第一个元素:11=F 第二个元素:12=F 第三个元素:213F F F += …… 第n 个元素:21--+=n n n F F F 分析 根据Fibonacci 数列的递推规律,必须已知第n-1项和第n-2项之后,才可以计算 出第n 项。可以同时计算第n -1项和第n 项序列的值。所需数据与算法如下。 数据要求 问题中的常量: 无 问题的输入: int f1=1 /*序列中第1项*/ int f2=1 /*序列中第2项*/ 问题的输出: unsigned long sum /*序列前20项之和*/ 设计 初始算法 1. f1和f2初始化为1,并初始化sum 的值为sum=0。 2. 计算第n-1项并求和,再计算第n 项并求和。 3. 循环执行步骤2至求出前20项之和,输出sum 。 算法细化

1.初始化: f1=1; f2=1; sum= f1+f2; 当n=1,n=2时f1=1,f2=1;因此前两项之和为sum=f1+f2。 2.循环体的语句如下: f1=f1+f2; /*计算第n-1项*/ sum+=f1; f2=f2+f1; /*计算第n项*/ sum+=f2; 当n=3时f3=f1+f2。如果f3用f1表示,则f1=f1+f2;因此前三项之和为 sum=sum+f1。 当n=4时f4=f3+f2。如果f3用f1表示,f4用f2表示,则f2=f2+f1。前四项 之和为sum=sum+f2。 依次类推,可以求解出前n项之和。 3.由于循环次数已知,因此可以使用for语句。由于循环一次计算2项,因此循环9次可以计算18项数据的和,加上前两项之和,正好为前20项之和。循环 条件为 for(i=1;i<10;i++) { …… } 流程图

数列通项公式、前n项和求法总结全

一.数列通项公式求法总结: 1.定义法 —— 直接利用等差或等比数列的定义求通项。 特征:适应于已知数列类型(等差或者等比). 例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,2 55a S =.求数列{}n a 的通项公式. 变式练习: 1.等差数列{}n a 中,71994,2,a a a ==求{}n a 的通项公式 2. 在等比数列{}n a 中,212a a -=,且22a 为13a 和3a 的等差中项,求数列{}n a 的首项、公比及前n 项和. 2.公式法 求数列{}n a 的通项n a 可用公式???≥???????-=????????????????=-21 11n S S n S a n n n 求解。 特征:已知数列的前n 项和n S 与n a 的关系 例2.已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式。 (1)13-+=n n S n 。 (2)12 -=n s n

变式练习: 1. 已知数列{}n a 的前n 项和为n S ,且n S =2n 2 +n ,n ∈N ﹡,数列{b }n 满足n a =4log 2n b +3,n ∈N ﹡.求n a ,n b 。 2. 已知数列{}n a 的前n 项和2 12 n S n kn =-+(*k N ∈),且S n 的最大值为8,试确定常数k 并求n a 。 3. 已知数列{}n a 的前n 项和*∈+=N n n n S n ,2 2.求数列{}n a 的通项公式。 3.由递推式求数列通项法 类型1 特征:递推公式为 ) (1n f a a n n +=+ 对策:把原递推公式转化为)(1n f a a n n =-+,利用累加法求解。 例3. 已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。

斐波那契数列

斐波那契数列 一、简介 斐波那契数列(Fibonacci),又称黄金分割数列,由数学家斐波那契最早以“兔子繁殖问题”引入,推动了数学的发展。故斐波那契数列又称“兔子数列”。 斐波那契数列指这样的数列: 1,1,2,3,5,8,13,……,前两个数的和等于后面一个数字。这样我们可以得到一个递推式,记斐波那契数列的第i项为F i,则F i=F i-1+F i-2. 兔子繁殖问题指设有一对新生的兔子,从第三个月开始他们每个月都生一对兔子,新生的兔子从第三个月开始又每个月生一对兔子。按此规律,并假定兔子没有死亡,10个月后共有多少个兔子? 这道题目通过找规律发现答案就是斐波那契数列,第n个月兔子的数量是斐波那契数列的第n项。 二、性质 如果要了解斐波那契数列的性质,必然要先知道它的通项公式才能更简单的推导出一些定理。那么下面我们就通过初等代数的待定系数法计算出通项公 式。 令常数p,q满足F n-pF n-1=q(F n-1-pF n-2)。则可得: F n-pF n-1=q(F n-1-pF n-2) =q2(F n-2-pF n-3) =…=q n-2(F2-pF1)

又∵F n-pF n-1=q(F n-1-pF n-2) ∴F n-pF n-1=qF n-1-pqF n-2 F n-1+F n-2-pF n-1-qF n-1+pqF n-2=0 (1-p-q)F n-1+(1+pq)F n-2=0 ∴p+q=1,pq=-1是其中的一种方程组 ∴F n-pF n-1= q n-2(F2-pF1)=q n-2(1-p)=q n-1 F n=q n-1+pF n-1=q n-1+p(q n-2+p(q n-3+…))=q n-1+pq n-2+p2q n-3+…+p n-1 不难看出,上式是一个以p/q为公比的等比数列。将它用求和公式求和可以得到: 而上面出现了方程组p+q=1,pq=-1,可以得到p(1-p)=-1,p2-p-1=0,这样就得到了一个标准的一元二次方程,配方得p2-p+0.25=1.25,(p-0.5)2=1.25,p=±√1.25+0.5。随意取出一组解即可: 这就是著名的斐波那契数列通项公式。有了它,斐波那契数列的一些性质也不难得出了。比如斐波那契数列相邻两项的比值趋向于黄金分割比,即: 根据斐波那契数列通项公式,可以得到 因为n是趋向于正无限的,因此我们可以知道: 那么我们就可以把分子和分母的第二项同时省略掉,即 这就是斐波那契数列的魅力之一——它和黄金分割比有密切的关系。下面将给出斐波那契数列的几个性质及其证明。

详解由递推公式求斐波那契数列的通项公式

详解由递推公式求斐波那契数列的通项公式 武汉市黄陂区第四中学 蔡从江 斐波那契数列的递推公式是121==a a ,11-++=n n n a a a (2≥n 且N n ∈),那么它的通项公式是怎样的呢?不少同学经常问到这个问题。 下面详细解答用待定系数法构造过渡数列求其通项公式。 由递推公式11-++=n n n a a a ,可设)(11-++=+n n n n a a a a λμλ,比较得1=-λμ且1=μλ,即012=-+λλ,解得251±-= λ。若251+-=λ,则251+=μ;若251--=λ,则2 51-=μ。 先以2 51+-=λ,251+=μ求解, 此时)2)(2 15(21521511≥-++=-+-+n a a a a n n n n , 所以)2()215()215()215(2151211≥+=-++=-+ -+n a a a a n n n n , 即)2()2 15(2511≥++-=+n a a n n n , 再另)2]()215([251)215( 11≥+--=+-++n x a x a n n n n 即n n n x x )2 15()215(215)215(1+=+-+++, 所以12 15215=-++x x 即55=x , 所以 ])215(55[251)215(5511n n n n a a +--=+-++, )2]()2 15(551[)251()215(552111≥+--=+--++n a n n n ,

所以)2]()2 15(551[)251()215(552111≥+--=+--++n a n n n , )2]()251()251[(5 1])215(551[)251()215(55112111≥--+=+--++=++-++n a n n n n n 所以)3]()251()251[(5 1≥--+=n a n n n , 又121==a a 适合上式,故 *)]()251()251[(51N n a n n n ∈--+=, 同理可得251--=λ,2 51-=μ时,*)]()251()251[(51N n a n n n ∈--+=, 因此斐波那契数列的通项公式是 *)]()251()251[(51N n a n n n ∈--+=

数列通项公式和前n项和求解方法

数列通项公式的求法详解 关键是找出各项与项数n 的关系.) 例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,…(2)K ,1716 4,1093 ,542,21 1(3) K ,52,21,32 ,1(4)K ,5 4 ,43,32,21-- 答案:(1)110-=n n a (2);1 22++=n n n a n (3);12+=n a n (4)1)1(1+? -=+n n a n n . 公式法1:特殊数列 例2: 已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x ) = (x -1)2 ,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1),b 3 = f (q -1),求数列{ a n }和{ b n }的通项公式。 答案:a n =a 1+(n -1)d = 2(n -1); b n =b ·q n -1=4·(-2)n -1 例3. 等差数列{}n a 是递减数列,且432a a a ??=48,432a a a ++=12,则数列的通项公式是( ) (A) 122-=n a n (B) 42+=n a n (C) 122+-=n a n (D) 102+-=n a n 答案:(D) 例4. 已知等比数列{}n a 的首项11=a ,公比10<

VB 实验-计算斐波那契数列

实验:求斐波那契数列的值 斐波那契数列的公式为: 要求: ①根据用户输入的n 值编写一个计算数列的子函数,并利用子函数的计算结果来显示数列的值。 ②程序的界面的运行结果如下: 目的:掌握Visual https://www.wendangku.net/doc/dc15154027.html, 的基本语法和程序的基本结构以及过程的使用。 实验步骤: 1、新建一个Visual https://www.wendangku.net/doc/dc15154027.html, 的Windows 应用程序项目Ch4P 。 打开Visual https://www.wendangku.net/doc/dc15154027.html,2005开发环境,从菜单中选择“文件”|“新建项目”,弹出“新建项目对话框”,在对话框的“类型”中选择Visual https://www.wendangku.net/doc/dc15154027.html, ,在模板中选择“Windows ”应用程序。输入项目名称为Ch4P 。 2、界面设计 从工具箱中拖一个文本框TextBox 控件、两个标签控件Label 与一个按钮控和一个Button 控件到窗体上,设计界面如图4-1。 图4-1 程序界面 按表4-5设置各控件的属性。 表4-5 各控件的属性 F(n-1) +F(n-2) (n>=2) 1 (0<=n <2) F(n) =

3、代码设计 1)编写一个计算数列的函数 'F(n) = F(n-1) + F(n-2) (n>=2) 'F(n) = 1 (0<=n<2) Function calc(ByVal n As Integer) As Integer '定义变量 Dim i As Integer = 0 '表示F(n) Dim Fn As Double = 0 'Fn1 表示F(n-1) Dim Fn1 As Double = 0 'Fn2 表示F(n-2) Dim Fn2 As Double = 0 '循环计算结果 For i = 0 To n Select Case i Case 0, 1 Fn1 = 1 Fn2 = 1 Fn = 1 Case Else Fn = Fn1 + Fn2 Fn2 = Fn1 Fn1 = Fn End Select Next Return Fn End Function 2)在用双击“计算”按钮,产生btnCalcs_Click事件,在事件处理程序中编写下列代码: Private Sub btnCalcs_Click(ByVal sender As System.Object, _ ByVal e As System.EventArgs) Handles btnCalcs.Click Dim n As Integer '检测输入的是否是数字 Try n = Me.txtN.Text Catch ex As Exception MsgBox("请输入数字", https://www.wendangku.net/doc/dc15154027.html,rmation, Me.Text)

数列通项、数列前n项和的求法例题练习

通项公式和前n 项和 一、新课讲授: 求数列前N 项和的方法 1. 公式法 (1)等差数列前n 项和: 11()(1) 22 n n n a a n n S na d ++= =+ 特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+g ,即前n 项和为中间项乘以项数。这个公式在很多时候可以简化运算。 (2)等比数列前n 项和: q=1时,1n S na = ( )1111n n a q q S q -≠= -,,特别要注意对公比的讨论。 (3)其他公式较常见公式: 1、)1(211+==∑=n n k S n k n 2、)12)(1(611 2 ++==∑=n n n k S n k n 3、21 3)]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1log 23-=x ,求???++???+++n x x x x 32的前n 项和. [例2] 设S n =1+2+3+…+n,n ∈N *,求1 )32()(++=n n S n S n f 的最大值.

2. 错位相减法 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. [例3] 求和:1 32)12(7531--+???++++=n n x n x x x S ………………………① [例4] 求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 练习: 求:S n =1+5x+9x 2+······+(4n -3)x n-1 答案: 当x=1时,S n =1+5+9+······+(4n-3)=2n 2-n 当x ≠1时,S n = 1 1-x [ 4x(1-x n ) 1-x +1-(4n-3)x n ] 3. 倒序相加法求和 这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例5] 求ο ο ο ο ο 89sin 88sin 3sin 2sin 1sin 2 2 2 2 2++???+++的值

斐波那契数列算法分析报告

斐波那契数列算法分析 背景:假定你有一雄一雌一对刚出生的兔子,它们在长到一个月大小时开始交配,在第二月结束时,雌兔子产下另一对兔子,过了一个月后它们也开始繁殖,如此这般持续下去。每只雌兔在开始繁殖时每月都产下一对兔子,假定没有兔子死亡,在一年后总共会有多少对兔子? 在一月底,最初的一对兔子交配,但是还只有1对兔子;在二月底,雌兔产下一对兔子,共有2对兔子;在三月底,最老的雌兔产下第二对兔子,共有3对兔子;在四月底,最老的雌兔产下第三对兔子,两个月前生的雌兔产下一对兔子,共有5对兔子;……如此这般计算下去,兔子对数分别是:1, 1, 2, 3, 5, 8, 13, 21, 34, 55,89, 144, ...看出规律了吗?从第3个数目开始,每个数目都是前面两个数目之和。这就是著名的斐波那契(Fibonacci)数列。 有趣问题: 1,有一段楼梯有10级台阶,规定每一步只能跨一级或两级,要登上第10级台阶有几种不同的走法? 答:这就是一个斐波那契数列:登上第一级台阶有一种登法;登上两级台阶,有两种登法;登上三级台阶,有三种登法;登上四级台阶,有五种方法……所以,1,2,3,5,8,13……登上十级,有89种。 2,数列中相邻两项的前项比后项的极限是多少,就是问,当n趋于无穷大时,F(n)/F(n+1)的极限是多少? 答:这个可由它的通项公式直接得到,极限是(-1+√5)/2,这个就是所谓的黄金分割点,也是代表大自然的和谐的一个数字。 数学表示: Fibonacci数列的数学表达式就是: F(n) = F(n-1) + F(n-2) F(1) = 1 F(2) = 1 递归程序1: Fibonacci数列可以用很直观的二叉递归程序来写,用C++语言的描述如下: long fib1(int n) { if (n <= 2) { return 1; } else { return fib1(n-1) + fib1(n-2); } }

最新求数列的前n项和列(教案-例题-习题)

精品文档 四.数列求和的常用方法 1. 公式法:①等差数列求和公式;②等比数列求和公式, 特别声明:运用等比数列求和公式,务必检查其 公比与1的关系,必要时需分类讨论. ③常用 公式:1 2 3山 n n 1 ) 12 22 11( n 2 二丄n (n 1)(2n 1), 2 6 13 23 33 川 n 3

用初等数学方法求斐波那契数列的通项公式

用初等数学方法求斐波那契数列的通项公式 斐波那契 (Fibonacci) 数列是著名的数列,有很高的实用价值。多年来,学者们一直在探究它的通项公式的求解方法,已经涌现出了多种方法。但据笔者们所知,这些方法大都需要比较高深的数学知识,例如组合数学的方法、概率的方等等,让人比较难理解,不容易接受。基于此,研究给出了一种简易的初等数学方法,先探求它们的特征多项式,然后通过求解线性方程组的思想,得出它们的通项公式。这种方法深入浅出,有一定的实用价值。 1.斐波那契数列的由来 13 世纪意大利数学家斐波那契在他的《算盘书》的修订版中增加了一道著名的兔子繁殖问题. 问题是这样的: 如果每对兔子(一雄一雌)每月能生殖一对小兔子(也是一雄一雌,下同),每对兔子第一个月没有生殖能力,但从第二个月以后便能每月生一对小兔子.假定这些兔子都没有死亡现象,那么从第一对刚出生的兔子开始,12 个月以后会有多少对兔子呢?解释说明为:一个月:只有一对兔子;第二个月:仍然只有一对兔子;第三个月:这对兔子生了一对小兔子,共有1+1=2 对兔子.第四个月:最初的一对兔子又生一对兔子,共有2+1=3对兔子.则由第一个月到第十二个月兔子的对数分别是:1,1,2,3,5,8,13,21,34,55,89,144,……,人为了纪念提出兔子繁殖问题的斐波纳契,将这个兔子数列称为斐波那契数列,即把 1,1,2,3,5,8,13,21,34…这样的数列称为斐波那契数列。 2.斐波那契数列的定义 定义:数列F1,F2,… ,Fn,…如果满足条件121==F F ,21--+=n n n F F F (对所有的正整数n ≥ 3),则称此数列为斐波那契(Fibonacci)数列。

求数列的前n项和列(教案+例题+习题)

四.数列求和的常用方法 1.公式法:①等差数列求和公式;②等比数列求和公式, 特别声明:运用等比数列求和公式,务必检查其公比与1的关系,必要时需分类讨论.;③常用公式:1123(1)2 n n n +++ +=+,222112(1)(21)6 n n n n ++ +=++, 33332 (1)123[ ]2 n n n +++++=. 例1 、已知3 log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(= 2 11)21 1(21--n =1-n 21 练一练:等比数列{}n a 的前n 项和S n=2n-1,则2 232221n a a a a ++++ =_____ ; 2.分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一 起,再运用公式法求和. 例2、 求数列的前n 项和:231 ,,71,41, 1112-+???+++-n a a a n ,… 解:设)231 ()71()41()11(12-++???++++++=-n a a a S n n 将其每一项拆开再重新组合得 )23741()1 111(12-+???+++++???+++ =-n a a a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(n n + (分组求和) 当1≠a 时,2)13(1111n n a a S n n -+--==2)13(11n n a a a n -+--- 练一练:求和:1357(1)(21)n n S n =-+-+-+-- 3.倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推 导方法). 例3、求 89sin 88sin 3sin 2sin 1sin 22222++???+++的值

求数列前N项和的方法

求数列前N 项和的方法 1. 公式法 等差数列前n 项和: 11() (1) 2 2 n n n a a n n S n a d ++= =+ 特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+ ,即前n 项和为中间项乘以项数。这个公式在很多时候可以简化运算。 等比数列前n 项和: q=1时,1n S n a = ( ) 1111n n a q q S q -≠= -,,特别要注意对公比的讨论。 其他公式: 1、)1(2 11+= = ∑ =n n k S n k n 2、)12)(1(6 11 2 ++= = ∑ =n n n k S n k n 3、21 3 )]1(2 1[+== ∑=n n k S n k n [例1] 已知3 log 1log 2 3 -= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 12log log 3 log 1log 3 3 2 3 = ?-=?-= x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利 用常用公式) =x x x n --1)1(= 2 11) 211(2 1 - -n =1- n 2 1 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(2 1+= n n S n , )2)(1(2 11++= +n n S n (利 用常用公式) ∴ 1 )32()(++= n n S n S n f = 64 342 ++n n n

斐波那契数列的通式求解

斐波那契数列的通式求解 斐波那契数列[1]指的是这样一个数列:0、1、1、2、3、5、8、13、21……,每一项是其前面两项之和,即有通式:F0=0,F1=1,F2=1,F n+2=F n+1+F n(n∈非负整数)。 下面通过线性代数的方法来求得斐波那契数列的通式F n。 令U n=[F n+1F n],则F n+2=F n+1+F n F n+1=F n+1可表示为U n+1=[1110]U n,因此,U n=A n U0。若λ1是矩阵A的特征根,相应的特征向量为x1,则有A n x1=λn x1,因此,若把U0表示成A的特征向量的线性组合,则U n可表示成A的特征向量的线性组合。 求解det(A?λI)=det([1?λ11?λ])=λ2?λ?1=0,可得A的特征根分别为:λ1=1+5√2≈1.618、λ2=1?5√2≈?0.618,相应的特征向量为x1=[λ11]、x2=[λ21],则有:U0=[10]=x1?x2λ1?λ2。因此,斐波那契数列第n和n+1项为 U n=[F n+1F n]=(λ1)n x1?(λ2)n x2λ1?λ2 第n项为 F n=15√??(1+5√2)n?(1?5√2)n?? 由上面的通式可以看出,当n→∞时,F n→15√(1+5√2)n,相邻两项之比 F n+1F n→15√(1+5√2)≈0.618,即是当n趋向于无穷大时,后一项与前一项的比值越 来越逼近黄金分割0.618。 以下列举斐波那契数列应用于组合数学的例子: (1)有一段楼梯有10级台阶,规定每一步只能跨一级或两级,要登上第10级台阶有几种不同的走法?这就是一个斐波那契数列:登上第一级台阶有一种登法;登上两级台阶,有两种登法;登上三级台阶,有三种登法;登上四级台阶,有五种登法……1,2,3,5,8,13……所以,登上十级,有89种走法。 (2)类似的,一枚均匀的硬币掷10次,问不连续出现正面的可能情形有多少种?答案是F12=144种。 (3)求递推数列a1=1,a n+1=1+1a n的通项公式?由数学归纳法可以得到:a n=F n+1F n,将斐波那契数列的通项式代入,化简就得结果。 参考: [1] https://www.wendangku.net/doc/dc15154027.html,/view/816.htm [2] Gilbert Strang. Introduction to Linear Algebra, 4th edition.

求数列前n项和的几种常用方法

求数列前n 项和的几种常用方法 江苏省 马吉超 一、 公式法 如果数列是等差或等比数列,可直接利用前n 项求和公式,这是最基本的方法。但应注意等比数列前N 项求和公式q q a n s n -=? ? ? ?? -111中1 ≠q 的条件。 例1 求x x s n n x +++= 2 解:①当1=x 时,n s n =+++=111 。 ②当1≠x 时,( )x x x s n n --=11。 二、分组转化法 如果所给数列的每一项是由等差、等比或特殊数列对应项的和或差构成,可以把原数列的求和分组转化为等差、等比或特殊数列的求和。 例2 求 ()()()() 2834221n n n s ++++++++= 解:()() 222322321n n n s +++++++++= ()22 121 -++= +n n n 例3 求 ()()()n s n +++++++++++= 321321211 解: ()2 2213212 n n n n n +=+=++++ ∴() ()n n s n +++++++++= 3212121222 23 21

()()()2121121621+?+++?= n n n n n ()()6 21++= n n n 三、倒序相加法 如果求和数列的首末两项的和及与首末两项等距离的两项的和相等,可用此法。(等差数列求和公式可用此法推导) 例4 求所有大于2且小于10的分母为5的既约分数的和。 解:549 548547513512511+ +++++= s ⑴ 又 5 11 512513547548549++++++= s ⑵ ⑴+⑵得 )511549()548512()549511(2++++++= s 3212?= 384= 故 192=s 例5 求()c c c c c n n n n n n n n n s 1321 2 1 ++++++=- 解:()c c c c c n n n n n n n n n s 1321 2 1 ++++++=- ⑴ ()c c c c n n n n n n n n s 0 1 1 21+++++=- ⑵ 又 c c m n n m n -= ⑴+⑵得 ()()()c c c n n n n n n n s 22221 ++++++= ())(21 1 c c c c n n n n n n n +++++=- ()22n n ?+= 故 ()212-+=n n s

相关文档
相关文档 最新文档