文档库 最新最全的文档下载
当前位置:文档库 › AFR-1液位继电器说明书

AFR-1液位继电器说明书

AFR-1液位继电器说明书

AFR-1液位继电器使用说明书

一、用途

AFR –1液位继电器采用液位专用集成芯片和控制电路,参照国外同类产品生产工艺标准,具有外型美观、体积小、接线简便、工作稳定性高、抗干扰强、功耗小、触点容量大,电压范围宽等优点。可广泛应用于工农业生产的供排水自动控制、建筑工程、小区楼宇的供排水处理,以及科学实验等场合作供排水自动元件使用。

二、技术参数

1、工作电源:AC380V、AC220V(AC36V、AC24V )

50/60Hz

2、功耗:≤3伏安

3、控制容量:

4、控制方式:1NO、1NC 转换,控制极中最大电流:50mA

5、工作性能:可连续工作

6、机械寿命:100x 100000

7、电气寿命:10x 100000

8、触点容量:5A /250VAC 9、环境温度:-10℃~+50℃10、环境湿度:38~80℃RH

三、接线图1、上、下限水位供水接线图

2、恒水位供水接线图

3、上、下限水位排水接线图

4、恒水位排水接线图

注:E1、E2、E3三条液位传感线可采用单芯铜电线,如液体属于腐蚀性的,则在伸入液体部分焊接上不锈钢条。电压

(AC)

电阻感

COS∮=1COS∮=0.4220V

6A 2A 380V 3A

1A

固态继电器原理及应用电路

固态继电器原理及应用电路 固态继电器(SOLID STATE RELAYS),简写成“SSR”,是一种全部由固态电子元件组成的新型无触点开关器件,它利用电子元件(如开关三极管、双向可控硅等半导体器件)的开关特性,可达到无触点无火花地接通和断开电路的目的,因此又被称为“无触点开关”,它问世于70年代,由于它的无触点工作特性,使其在许多领域的电控及计算机控制方面得到日益广范的应用。 一、固态继电器的原理及结构 SSR按使用场合可以分成交流型和直流型两大类,它们分别在交流或直流电源上做负载 的开关,不能混 下面以交流型的SSR为例来说明它的工作原理,图1是它的工作原理框图,图1中的部件 ①-④构成交流SSR的主体,从整体上看,SSR只有两个输入端(A和B)及两个输出端(C和 D),是一种四端器件。工作时只要在A、B上加上一定的控制信号,就可以控制C、D两端之间的“通”和“断”,实现“开关”的功能,其中耦合电路的功能是为A、B端输入的控制信号提供一个输入/输出端之间的通道,但又在电气上断开SSR中输入端和输出端之间的(电)联系,以防止输出端对输入端的影响,耦合电路用的元件是“光耦合器”,它动作灵敏、响应速度高、输入/输出端间的绝缘(耐压)等级高;由于输入端的负载是发光二极管,这使SSR的输入端很容易做到与输入信号电平相匹配,在使用可直接与计算机输出接口相接,即受“1”与“0”的逻辑电平控制。触发电路的功能是产生合乎要求的触发信号,驱动开关电路④工作,但由于开关电路在不加特殊控制电路时,将产生射频干扰并以高次谐波或尖峰等污染电网,为此特设“过零控制电路”。所谓“过零”是指,当加入控制信号,交流电压过零时,SSR即为通态;而当断开控制信号后,SSR要等待交流电的正半周与负半周的交界点(零电位)时,SSR才

实验二 油水分离器的操作 (1)

实验二 分离器日常维护保养、 油水分离器的操作 一.实验目的 1.熟悉船用油水分离器的基本原理; 2.掌握油水分离器的操作步骤及油分浓度计的调整方法 3.掌握油水分离器的运行管理要点。 二.装置简介 1.油水分离器规格、型号 型 式:CYSC —1型油水分 离器一台 处理能力:1m 3/h 排放标准:<10P.P.M 工作压力:≤0.245Mpa 泵 型 式:电动柱塞泵 电机功率:0.55KW 泵吸入高度:5m 控 制 箱:交流:380V 50Hz 3Ф 排油方式:自动和手动 加热方式:电加热,功率2Kw 2.油水分离器的基本工作原理 油水分离器的内部结构如图20 —2所示,舱底污水经过泵进入 油水分离器顶部,然后切向进入斜板组,水中的油滴经过聚合、上浮至斜板,最后上浮至装置顶部的集油室。经斜板组后的水还 含有微小油粒,这些油在进入第 图20—1 油水分离器的外部结构 一级滤芯时进行粗粒化,粗粒化的油上浮至顶部集油室。水进入第二级滤芯。在第二级滤芯内,水中的极细小的油粒再进一步粗粒化,使水的含油量降至15mg/L 以下,然后排出舷外。 在装置的顶部的集油室内装有液位电极,当油位到达低位时,液位电极发出讯号,由电控箱自动打开排油电磁阀,并发出排油信号,分离器内压力将油排到油收集箱。当油位到达高位时,自动关闭排油电磁阀。为了避免溢油,集油室还装有液压计。 污油出口净水出口手动排油阀压力表电磁阀 控制箱 液位计 电极 铭牌净水排出阀往复泵 二级放残阀 一级放残阀 安全阀取样考克 放气考克放气考克

合上箱门上的电源开关Q1,按下启动按钮S2,交流接触器Q2通电吸合,电机运转,运行指示灯H3亮,装置进水,同时接通加热和排油部分的控制回路。 ⑵自动排油控制 电机运行后,将排油方式旋钮S7置于手动位置,待装置中水位到达装置的顶部使装置内空气全部排出后,再将排油方式旋钮置于自动,当集油室内油层不断増厚,使

继电器控制电路图

继电器控制电路图 [日期:2008-12-07 ] [来源:东哥单片机学习网https://www.wendangku.net/doc/da15442968.html, 作者:佚名] [字体:大中小] (投递新闻) 继电器控制电路图在人们的习惯中,总认为CMOS集成块不能直接带动继电器工作,但实验证明,部分CMOS集成块不仅能直接带动继电器工作,而且工作稳定可靠。实验中所用继电器的型号为JRC5M-DC12V微型密封继电器(其线圈电阻为750Ω)。现将CD4066 CMOS集成块带动继电器的工作原理分析如下: 电路中,继电器线圈两端均反相并联了一只二极管,它是用于保护集成块的,切不可省去,否则在继电器由吸合状态转为释放时,由于电感的作用线圈上将产生较高的反电动势,极容易导致集成块击穿。并联了二极管后,在继电器由吸合变为释放的瞬间,线圈将通过二极管形成短时间的续流回路,使线圈中的电流不致突变,从而避免了线圈中反电动势的产生,确保了集成块的安全。 低电压下继电器的吸合措施 常常因为电源电压低于继电器的吸合电压而使其不能正常工作,事实上,继电器一旦吸合,便可在额定电压的一半左右可靠地工作。因此,可以在开始时给继电器一个启动电压使其吸合,然后再让其在较低的电源电压下工作,如图所示的电路便可实现此目的。

制作本电路时,一般可取继电器的额定电压为电源电压的1.5倍左右,一般情况下,任何型号的单向可控硅(或双向可控硅)皆可满足本电路需要。V2、C1、C3的耐压视电源电压的高低选取。C2耐压最好不低于电源电压的两倍。 继电器的三种附加电路 继电器是电子电路中常用的一种元件,一般由晶体管、继电器等元器件组成的电子开关驱动电路中,往往还要加上一些附加电路以改变继电器的工作特性或起保护作用。继电器的附加电路主要有如下三种形式: 1.继电器串联RC电路:电路形式如图1,这种形式主要应用于继电器的额定工作电压低于电源电压的电路中。当电路闭合时,继电器线圈由于自感现象会产生电动势阻碍线圈中电流的增大,从而延长了吸合时间,串联上RC电路后则可以缩短吸合时间。原理是电路闭合的瞬间,电容C两端电压不能突变可视为短路,这样就将比继电器线圈额定工作电压高的电源电压加到线圈上,从而加快了线圈中电流增大的速度,使继电器迅速吸合。电源稳定之后电容C不起作用,电阻R起限流作用。 2.继电器并联RC电路:电路形式见图2,电路闭合后,当电流稳定时RC电路不起作用,断开电路时,继电器线圈由于自感而产生感应电动势,经RC电路放电,使线圈中电流衰减放慢,从而延长了继电器衔铁释放时间,起到延时作用。 3.继电器并联二极管电路:电路形式见图3,主要是为了保护晶体管等驱动元器件。当图中晶体管VT由导通变为截止时,流经继电器线圈的电流将迅速减小,这时线圈会产生很高的自感电动势与电源电压叠加后加在VT的c、e两极间,会使晶体管击穿,并联上二极管后,即可将线圈的自感电动势钳位于二极管的正向导通电压,此值硅管约0.7V,锗管约0.2V,从而避免击穿晶体管等驱动元器件。并联二极管时一定要注意二极管的极性不可接反,否则容易损坏晶体管等驱动元器件。 无电感式模拟继电器 本文介绍一种无电感式模拟继电器,其电路原理如下图所示。

固态继电器介绍及工作原理

固态继电器介绍及工作原理(2) 收藏此信息打印该信息添加:用户发布来源:未知 固态继电器的控制信号所需的功率极低,因此可以用弱信号控制强电流。同时交流型的SSR采用过零触发技术,使SSR可以安全地用在计算机输出接口,不会像E MR那样产生一系列对计算机的干扰,甚至会导致严重当机。比较常用的是DIP封装的型式。控制电压和负载电压按使用场合可以分成交流和直流两大类,因此会有DC-AC、DC-DC、AC-AC、AC-DC四种型式,它们分别在交流或直流电源上做负载的开关,不能混用. 按负载电源的类型不同可将SSR分为交流固态继电器(AC—SSR)和直流固态继电器(DC—SSR)。AC—SSR是以双向晶闸管作为开关器件,用来接通或断开交流负载电源的固态继电器。AC—SSR的控制触发方式不同,又可分为过零触发型和随机导通型两种。过零触发型AC—SSR是当控制信号输入后,在交流电源经过零电压附近时导通,故干扰很小。随机导通型AC—SSR则是在交流电源的任一相位上导通或关断,因此在导通瞬间可能产生较大的干扰。 工作原理 过零触发型AC—SSR为四端器件,其内部电路如图1所示。1、2为输入端,3、4为输出端。R0为限流电阻,光耦合器将输入与输出电路在电气上隔离开,V1构成反相器,R4、R 5、V2和晶闸管V3组成过零检测电路,UR为双向整流桥,由V3和UR用以获得使双向晶闸管V4开启的双向触发脉冲,R3、R7为分流电阻,分别用来保护V3和V4,R8和C 组成浪涌吸收网络,以吸收电源中带有的尖峰电压或浪涌电流,防止对开关电路产生冲击或

干扰。 要指出的是所谓“过零”并非真的必须是电源电压波形的零处,而一般是指在10~25V或-(1 0~25)V区域内进行触发,如图2所示。图中交流电压分三个区域,Ⅰ区为-10V~+10V范围,称为死区,在此区域中加入输入信号时不能使SSR导通。Ⅱ区为10~25V和-(10~2 5)V范围,称为响应区,在此区域内只要加入输入信号,SSR立即导通。Ⅲ区为幅值大于2 5V的范围,称为抑制区在此区域内加入输入信号,SSR的导通被抑制。 当输入端未加电压信号时,光耦合器的光敏晶体管因未接收光而截止,V1饱和,V3和V4因无触发电压而截止,此时SSR关闭。当加入输入信号时,光耦合器中的发光二极管发光,光敏晶体管饱和,使V1截止。此时若V3两端电压在-(10~25)V或10~25V范围内时,只要适当选择分压电阻R4和R5,就可使V2截止,这样使V3触发导通,从而使V4的控制极上得到从R6→UR→V3→UR→R7或反方向的触发脉冲,而使V4导通,使负载接通交流电源。而若交流电压波形在图2中的Ⅲ区内时,则因V2饱和而抑制V3和V4的导通,而使SSR被抑制,从而实现了过零触发控制。由于10~25V幅值与电源电压幅值相比可近似看作“零”。因此,一般就将过零电压粗略地定义为0~±25V,即认为在此区域内,只要加入

继电器的工作原理和作用

继电器的工作原理 简介 当输入量(如电压、电流、温度等)达到规定值时,使被控制的输出电路导通或断开的电器。可分为电气量(如电流、电压、频率、功率等)继电器及非电气量(如温度、压力、速度等)继电器两大类。具有动作快、工作稳定、使用寿命长、体积小等优点。广泛应用于电力保护、自动化、运动、遥控、测量和通信等装置中。 1、电磁继电器的工作原理和特性 电磁式继电器一般由铁芯、线圈、衔铁、触点簧片等组成的。只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,

从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置,使动触点与原来的静触点(常闭触点)释放。这样吸合、释放,从而达到了在电路中的导通、切断的目的。对于继电器的“常开、常闭”触点,可以这样来区分:继电器线圈未通电时处于断开状态的静触点,称为“常开触点”;处于接通状态的静触点称为“常闭触点”。 继电器的输入信号x从零连续增加达到衔铁开始吸合时的动作值xx,继电器的输出信号立刻从y=0跳跃到y=ym,即常开触点从断到通。一旦触点闭合,输入量x继续增大,输出信号y将不再起变化。当输入量x从某一大于xx值下降到xf,继电器开始释放,常开触点断开。我们把继电器的这种特性叫做继电特性,也叫继电器的输入-输出特性。 释放值xf与动作值xx的比值叫做反馈系数,即Kf= xf /xx 触点上输出的控制功率Pc与线圈吸收的最小功率P0之比叫做继电器的控制系数,即Kc=PC/P0 2、热敏干簧继电器的工作原理和特性 热敏干簧继电器是一种利用热敏磁性材料检测和控制温度的新型热敏开关。它由感温磁环、恒磁环、干簧管、导热安装片、塑料衬底及其他一些附件组成。热敏干簧继电器不用线圈励磁,

固态继电器原理及应用电路

固态继电器原理及应用电路 下面以交流型的SSR为例来说明它的工作原理,图1是它的工作原理框图,图1中的部件①-④构成交流SSR 的主体,从整体上看,SSR只有两个输入端(A和B)及两个输出端(C和D),是一种四端器件。工作时只要在A、B上加上一定的控制信号,就可以控制C、D两端之间的“通”和“断”,实现“开关”的功能,其中耦合电路的功能是为A、B端输入的控制信号提供一个输入/输出端之间的通道,但又在电气上断开SSR中输入端和输出端之间的(电)联系,以防止输出端对输入端的影响,耦合电路用的元件是“光耦合器”,它动作灵敏、响应速度高、输入/输出端间的绝缘(耐压)等级高;由于输入端的负载是发光二极管,这使SSR的输入端很容易做到与输入信号电平相匹配,在使用可直接与计算机输出接口相接,即受“1”与“0”的逻辑电平控制。触发电路的功能是产生合乎要求的触发信号,驱动开关电路④工作,但由于开关电路在不加特殊控制电路时,将产生射频干扰并以高次谐波或尖峰等污染电网,为此特设“过零控制电路”。所谓“过零”是指,当加入控制信号,交流电压过零时,SSR即为通态;而当断开控制信号后,SSR要等待交流电的正半周与负半周的交界点(零电位)时,SSR才为断态。这种设计能防止高次谐波的干扰和对电网的污染。吸收电路是为防止从电源中传来的尖峰、浪涌(电压)对开关器件双向可控硅管的冲击和干扰(甚至误动作)而设计的,一般是用“R-C”串联吸收电路或非线性电阻(压敏电阻器)。图2是一种典型的交流型SSR的电原理图。 直流型的SSR与交流型的SSR相比,无过零控制电路,也不必设置吸收电路,开关器件一般用大功率开关三极管,其它工作原理相同。不过,直流型SSR在使用时应注意:①负载为感性负载时,如直流电磁阀或电磁铁,应在负载两端并联一只二极管,极性如图3所示,二极管的电流应等于工作电流,电压应大于工作电压的4倍。②SSR工作时应尽量把它靠近负载,其输出引线应满足负荷电流的需要。③使用电源属经交流降压整流所得的,其滤波电解电容应足够大。图4 给出了几种国内、外常见的SSR的外形。 二、固态继电器的特点SSR成功地实现了弱信号(Vsr)对强电(输出端负载电压)的控制。由于光耦合器的应用,使控制信号所需的功率极低(约十余毫瓦就可正常工作),而且Vsr所需的工作电平与TTL、HTL、CMOS等常用集成电路兼容,可以实现直接联接。这使SSR在数控和自控设备等方面得到广泛应用。在相当程度上可取代传统的“线圈—簧片触点式”继电器(简称“MER”)。SSR由于是全固态电子元件组成,与MER相比,它没有任何可动的机械部件,工作中也没有任何机械动作;SSR由电路的工作状态变换实现“通”和“断”的开关功能,没有电接

固态继电器工作原理解析

杭州国晶 固态继电器(SSR)与机电继电器相比,是一种没有机械运动,不含运动零 件的继电器,但它具有与机电继电器本质上相同的功能。SSR是一种全部由固态电子元件组成的无触点开关元件,他利用电子元器件的点,磁和光特性来完成输入与输出的可靠隔离,利用大功率三极管,功率场效应管,单项可控硅和双向可控硅等器件的开关特性,来达到无触点,无火花地接通和断开被控电路。 固体继电器的工作原理 固体继电器(Solid State Relay SSR)是利用现代微电子技术与电力电子技术相结合而发展起来的一种新型无触点电子开关器件。它可以实现用微弱的控制信号(几毫安到几十毫安)控制0.1A直至几百A电流负载,进行无触点接通或分断。固体继电器是一种四端器件,两个输入端,两个输出端。输入端接控制信号,输出端与负载、电源串联,SSR实际是一个受控的电力电子开关,其等效电路如图。 由于固体继电器具有高稳定、高可靠、无触点及寿命长等优点,广泛应用在电动机调速、正反转控制、调光、家用电器、烘箱烘道加温控温、送变电电网的建设与改造、电力拖动、印染、塑科加工、煤矿、钢铁、化工和军用等方面。 固体继电器的工作原理 固体继电器与通常的电磁继电器不同:无触点、输入电路与输出电路之间光(电)

隔离、由分立元件.半导体微电子电路芯片和电力电子器件组装而成,以阻燃型环氧树脂为原料,采用灌封技术持其封闭在外壳中、使与外界隔离,具有良好的耐压、防腐、防潮抗震动性能。 固体继电器由输入电路、驱动电路和输出电路三部分组成。 这里仅以应用较多的交流过零型固体继电器为例,介绍其工作原理。该电路采用了过零触发技术,具有电压过零时开启,负裁电流过零时关断的特性,在负载上可以得到一个完整的正弦波形,因此电路的射频干扰很小。 该电路由信号输人电路、零电压检测控制电路、工作指示电路、双向晶闸管控制电路和吸收电路几部分组成。采用了光电耦合器GD作为输入电路和输出电路之间的隔离元件,VD是防止Vin正负接反烧坏GD。 电路工作过程:当无输入信号时,GD中的光敏三极管裁止,VT1是交流电压零点检测器,通过R3获得基极电流而饱和导通,将VTH的门极箝在低电位而处于关断状态。当有输入信号时,光敏三极管导通,此时VTH的状态由VT1决定,如此电源电压大于过零电压时,分压器R3、R2的分压点P电压大于VBE1,VT1饱和导通,SCR门极因箝位在低电位而截止,TR的门极因没有触发脉冲而处于关断状态。只有当电源电压小于过零电压,P点电压小于VBE1时G1截止,SCR门极获得触发信号而导通。在TR的门极获得触发脉冲,TR就导通.从而接通负载电源。 当输入信号关断后GD中的光敏三极管截止, G1饱和导通使SCR门极箝位在低电位而关断,但是此时TR仍保持导通状态,负载上仍有电流流过,直到负载电流随VAC减小到小于双向晶闸管TR的维持电流后才会自行关断,切断负载电源。

初中物理九年级 电磁继电器工作原理及应用

电磁继电器工作原理及应用 电磁继电器可以用低电压、弱电流控制高电压、强电流电路,还可实现远距离操纵和生产自动化,在现代生活中起着越来越重要的作用。那么,电磁继电器是由那些部分组成的?它是怎样实现自动控制的呢? 一、电磁继电器的构造 电磁继电器的构造:如图所示,A是电磁铁,B是衔铁,C是弹簧,D是动触点,E是静触点。电磁继电器工作电路可分为低压控制电路和高压工作电路组成。控制电路是由电磁铁A、衔铁B、低压电源E 和开关组成;工作电路是由小灯泡 1 和相当于开关的静触点、动触点组成。连接好工作电路,在常态时,L、电源E 2 D、E间未连通,工作电路断开。用手指将动触点压下,则D、E间因动触点与静触点接触而将工作电路接通,小灯泡L发光。闭合开关S,衔铁被电磁铁吸下来,动触点同时与两个静触点接触,使D、E间连通。这时弹簧被拉长,观察到工作电路被接通,小灯泡L发光。断开开关S,电磁铁失去磁性,对衔铁无吸引力。衔铁在弹簧的拉力作用下回到原来的位置,动触点与静触点分开,工作电路被切断,小灯泡L不发光。 二、电磁继电器的工作原理 工作原理:电磁铁通电时,把衔铁吸下来使D和E接触,工作电路闭合。电磁铁断电时失去磁性,弹簧把衔铁拉起来,切断工作电路。 结论:电磁继电器就是利用电磁铁控制工作电路通断的开关。

用电磁继电器控制电路的好处:用低电压控制高电压;远距离控制;自动控制。 三、电磁继电器的应用 防讯报警器:K是接触开关,B是一个漏斗形的竹片圆筒,里面有个浮子A,水位上涨超过警戒线时,浮子A上升,使控制电路接通,电磁铁吸下衔铁,于是报警器指示灯电路接通,灯亮报警。 温度自动报警器:当温度升高到一定值时,水银温度计中水银面上升到金属丝处,水银是导体。因此将电磁铁电路接通,电磁铁吸引弹簧片,使电铃电路闭合,电铃响报警,当温度下降后,水银面离开金属丝,电磁铁电路断开,弹簧片回原状,电铃电路断开,电铃不再发声。 练习: 1.(2010河北)如图是直流电铃的原理图。关于电铃工作时的说法不正确的是()

继电器的工作原理和特性及作用!

继电器的工作原理和特性及作用! 工作原理和特性 当输入量(如电压、电流、温度等)达到规定值时,使被控制的输出电路导通或断开的电器。可分为电气量(如电流、电压、频率、功率等)继电器及非电气量(如温度、压力、速度等)继电器两大类。具有动作快、工作稳定、使用寿命长、体积小等优点。广泛应用于电力保护、自动化、运动、遥控、测量和通信等装置中。 继电器是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。故在电路中起着自动调节、安全保护、转换电路等作用。 继电器目前已广泛应用于计算机外围接口设备、恒温系统、调温、电炉加温控制、电机控制、数控机械,遥控系统、工业自动化装置;信号灯、调光、闪烁器、照明舞台灯光控制系统;仪器仪表、医疗器械、复印机、自动洗衣机;自动消防,保安系统,以及作为电网功率因素补偿的电力电容的切换开关等等,另外在化工、煤矿等需防爆、防潮、防腐蚀场合中都有大量使用。

继电器的作用 继电器是具有隔离功能的自动开关元件,广泛应用于遥控、遥测、通讯、自动控制、机电一体化及电力电子设备中,是最重要的控制元件之一。 ....继电器一般都有能反映一定输入变量(如电流、电压、功率、阻抗、频率、温度、压力、速度、光等)的感应机构(输入部分);有能对被控电路实现“通”、“断”控制的执行机构(输出部分);在继电器的输入部分和输出部分之间,还有对输入量进行耦合隔离,功能处理和对输出部分进行驱动的中间机构(驱动部分)。 ....作为控制元件,概括起来,继电器有如下几种作用: .....1) 扩大控制范围。例如,多触点继电器控制信号达到某一定值时,可以按触点组的不同形式,同时换接、开断、接通多路电路。 .....2) 放大。例如,灵敏型继电器、中间继电器等,用一个很微小

安全继电器工作原理

安全继电器工作原理 关于安全继电器工作原理,实际上存在两个层面问题:一是未能区分安全继电器与普通继电器的区别。二是不清楚安全继电器如何搭建形成的安全继电器模块。大家想了解安全继电器工作原理,其实真正同应用相关的的是安全继电器模块的工作原理!基于当前安全设计在国内尚处于刚刚有所需求的实际情况,工程师无论是对安全继电器,还是安全继电器工作原理都不是特别清楚,为了更好服务设计工作,天之行愿就安全继电器工作原理同广大设计人员进行相关的交流。 第一个问题:安全继电器元件是如何构建安全继电器模块的,涉及安全继电器与普通继电器的区别 第二个问题:安全继电器工作原理才是我们搭建安全回路时,真正需要知道的! 下面我们将从三个方面予以介绍: 一、功能作用—解决什么问题? 在设备运行过程中,由于外部的原因,或者违规操作(无论是不懂导致的误动作或是疲劳导致的误动作),以及内部器件失效,都可能导致事故的出现,轻则财物损失,重则发生机毁人亡的恶性事故,为了降低这些事故的出现,我们在进行这些设备的设计时,一般都会针对相关情况做出相应的安全设计:如急停设计、安全门设计、安全光幕设计,双手启动设计,安全边沿设计等。这些设计要时刻实现相应的安全功能,必须基于所有的器件都能保持动作正常,功能完好! 显然这是一种理想状态,真实的情况是:从来没有“不坏”的器件,总是有一些器件在运行中会出现这样或那样的异常,导致其功能出现故障。这样由于

某个器件出现了故障,将会导致设计中整个安全功能的丧失,从而使得事故发生的概率大幅度的提高! 举个例子:当周围环境出现了状况,你希望急停设计启动,断电停机!当你拍下急停按钮时,由于种种原因,按钮卡阻了,接入电路中的常闭触点未能分开,自然也就无法实现断电停机----急停安全设计完全失效!又或者,当你拍下急停按钮后,急停按钮没有问题,接主电源的交流接触器发生了触头粘连,不能断开,此时你当然无法实现断电停机----急停安全设计完全失效! 在上述举例中,我们发现,任一个器件的功能异常,就可以导致整个安全设计的丧失!也许有人会说,选高品质的器件就可以解决这个问题!是的,没错,提高器件品质永远是降低事故的一个不二选择!然而,品质提高永远在路上。如何在当下现实的器件品质水平下,可靠维持安全设计功能的实现,从而降低事故发生的概率就成了一个必须解决的问题!也就是说,如何在承认器件可能存在故障的前提下,任然能维持系统安全功能不丧失,且故障能被及时检查出来!安全继电器原理就是为解决此问题而被发明出来的一个功能器件。 二、安全继电器模块动作逻辑

液位继电器

1.液位继电器介绍 继电器是根据某种输入信号来接通或断开小电流控制电路,实现远距离控和保护的自动控制电器。其输入量可以是电流、电压等电量,也可以是温度、时间、速度、压力等非电量,而输出则是触头的动作或者是电路参数的变化。 继电器的种类很多,按输入信号的性质分为:电压继电器、电流继电器、时间继电器、温度继电器、速度继电器、压力继电器等。按工作原理分为:电磁式继电器、感应式继电器、电动式继电器、热继电器和电子继电器等。按输出形式分为:有触点和无触点两类。按用途分为:控制用和保护用继电器等。 液位继电器是控制液面的继电器。这是一个继电器内部有电子线路。利用液体的导电性。当液面达到一定高度时继电器就会动作切断电源。液面低于一定位置时接通电源使水泵工作。达到自动控制的作用。 自动控制由传感器和控制执行机构组成。液位控制器的传感器一般是导线。利用水的导电性。水的导电性较差,不能直接驱动继电器。所以要有电子线路将电流放大,以推动继电器工作。继电器就是执行机构。 本预处理系统采用的是安良AFS-1型液位继电器。其引脚的定义如下图所示: 图示:安良AFS-1液位继电器引脚定义

2 、安良引脚定义如下:2脚为供电 L ; 7脚为供电 N ;3脚为液位探针高点;1脚为液位探针低点; 5脚和8脚为液位报警输出的常闭触点。 工作原理:5脚和8脚为液位报警输出的常闭触点,当外部信号输入时,通过PLC控制泵取水,通过液位判断,,当液位达到3脚时候,常闭触点打开,通过仪器分析进行取水样。当液位没有达到3引脚的时候,5引脚和8引脚液位报警输出,仪器通过信号分析,再次启动水泵取样,当连续取三次水样后,如果还没有达到3引脚液位,液位报警输出。即仪器会报警为预处理无样品。

固态继电器的结构、原理及应用

固态继电器(SolidStateRelay,缩写SSR),是由微电子电路,分立电子器件,电力电子功率器件组成的无触点开关。用隔离器件实现了控制端与负载端的隔离。固态继电器的输入端用微小的控制信号,达到直接驱动大电流负载。与传统继电器相比,最大的特点在于无触点开关。 一、什么是固态继电器 固态继电器是一种全部由固态电子元件组成的新型无触点开关器件,它利用电子元件(如开关三极管、双向可控硅等半导体器件)的开关特性,可达到无触点无火花地接通和断开电路的目的,因此又被称为“无触点开关”。固态继电器是一种四端有源器件,其中两个端子为输入控制端,另外两端为输出受控端。它既有放大驱动作用,又有隔离作用,很适合驱动大功率开关式执行机构,较之电磁继电器可靠性更高,且无触点、寿命长、响应速度快,对外界的干扰也小,已被得到广泛应用。 二、固态继电器结构及原理 常用固态继电器几乎都是模块化的四端有源器件,其中两端为输入控制端,另外两端为输出受控端,其基本构成如下图所示。器件中多采用光电耦合器实现输入与输出之间的电气隔离。输出受控端利用开关三极管、双向晶闸管等半导体器件的开关特性,实现无触点、无火花地接通和断开外接控制电路的目的。整个器件无可动部件及触点,可实现相当于常用电磁继电器一样的功能。只是相比传统电磁继电器,可通断的负载一般比较小。 固态继电器按输出端极性的不同,可分为直流式和交流式两大类。直流固态继电器(DC-SSR)控制电压由输入端IN输入,通过光电耦合器将控制信号耦合至接收电路,经放大处理后驱动开关三极管VT导通。显然,直流固态继电器的输出端OUT在接入被控电路回路中时,是有正、负极之分的。交流固态继电器(AC-SSR)的电路原理与直流固态继电器不同的是,其开关元件采用了双向晶闸管VS或其他交流开关,因此它的输出端OUT无正、负极之分,可以控制交流回路的通断。

液位继电器说明书

液位继电器说明书 篇一:JYB系列液位继电器使用说明书 JYB系列液位继电器使用说明书 JYB系列液位继电器型号定义: 工作电压 42X56X109 40.5X62X97 设计序号(系列代号;见表) 二.工作特性与工作原理 本系列电子式液位继电器采用进口集成电路。通过检测水阻的方法,控制继电器自动接通水泵电源进行供水,水满后自动切断水泵电源停止供水。由于采用交流辅助电源作为有源控制探头,增强了产品抗干扰能力和产品远距离控制的能力。采用大功率继电器输出,可直接控制1KW以内的水泵正常工作,采用螺钉或标准导轨安装,使用方便。 三.安装。使用操作说明 供水方式接线时,低端探头放在水池的底部,假如要把水池中的水用光后再打水,尽量可把中端探头靠近水池的底部,如需要水池中水位始终在高处,可调整中端探头的高度,高端探头为水池打水最高度的限制,当水池的水打满到高端探头时,水泵停止打水,当水池中的水用到低于中端探头时,水泵又开始打水,严禁自来水或外界无水时继电器工作,否

则时间过长将烧坏水泵。 排水方式接线时,低端探头放在水池的底部,假如要把水池中的水排光,尽量可把中端探头靠近水池的底部,当外界的水流满至高端探头时,水泵开始排水,当水池中的水位排到低于中端探头时,水泵停止工作。 四.接线图 JYB714、JYB714A供水方式接线图 JYB714、JYB714A排水方式接线图 篇二:C61F-GP说明书 篇三:仪表说明书 HC系列智能测控仪 使用说明书 北京京汇川仪表科技有限公司 地址(Add):北京海淀区知春路甲48号盈都大厦C座1-11A 电话(TEL):010-8212461982121435 58731899 传真(FAX):010- 82124619 一、概述 HC—100智能测控仪是智能型、高精度的数显温度、压力、液位测量控制仪表,与温度、压力、液位传感器及变送器配接可构成各种量程和规格的温度、压力、液位测控系统。HC—100智能测控仪的输入信号通过参数设置不需用户做硬

固态继电器工作原理解析

固态继电器工作原理解 析 Document number:PBGCG-0857-BTDO-0089-PTT1998

杭州国晶 固态继电器(SSR)与机电继电器相比,是一种没有机械运动,不含运动零件的继电器,但它具有与机电继电器本质上相同的功能。SSR是一种全部由固态电子元件组成的无触点开关元件,他利用电子元器件的点,磁和光特性来完成输入与输出的可靠隔离,利用大功率三极管,功率场效应管,单项可控硅和双向可控硅等器件的开关特性,来达到无触点,无火花地接通和断开被控电路。 固体继电器的工作原理 固体继(SolidStateRelaySSR)是利用现代微电子技术与电力电子技术相结合而发展起来的一种新型无触点电子开关器件。它可以实现用微弱的控制信号(几毫安到几十毫安)控制0.1A直至几百A电流负载,进行无触点接通或分断。固体继是一种四端器件,两个输入端,两个输出端。输入端接控制信号,输出端与负载、串联,SSR实际是一个受控的电力电子开关,其等效电路如图。

由于固体继具有高稳定、高可靠、无触点及寿命长等优点,广泛应用在电动机调速、正反转控制、调光、家用、烘箱烘道加温控温、送变电电网的建设与改造、电力拖动、印染、塑科加工、煤矿、钢铁、化工和军用等方面。 固体继的工作原理 固体继与通常的电磁继不同:无触点、输入电路与输出电路之间光(电)隔离、由分立元件.半导体微电子电路芯片和电力电子器件组装而成,以阻燃型环氧树脂为原料,采用灌封技术持其封闭在外壳中、使与外界隔离,具有良好的耐压、防腐、防潮抗震动性能。 固体继由输入电路、驱动电路和输出电路三部分组成。 这里仅以应用较多的交流过零型固体继为例,介绍其工作原理。该电路采用了过零触发技术,具有电压过零时开启,负裁电流过零时关断的特性,在负载上可以得到一个完整的正弦波形,因此电路的射频干扰很小。 该 电路由 信号输

继电器的工作原理和作用

继电器的工作原理 简介 当输入量(如电压、电流、温度等)达到规定值时,使被控制的输出电路导通或断开的电器。可分为电气量(如电流、电压、频率、功率等)继电器及非电气量(如温度、压力、速度等)继电器两大类。具有动作快、工作稳定、使用寿命长、体积小等优点。广泛应用于电力保护、自动化、运动、遥控、测量和通信等装置中。 1、电磁继电器的工作原理和特性 电磁式继电器一般由铁芯、线圈、衔铁、触点簧片等组成的。只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,

从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置,使动触点与原来的静触点(常闭触点)释放。这样吸合、释放,从而达到了在电路中的导通、切断的目的。对于继电器的“常开、常闭”触点,可以这样来区分:继电器线圈未通电时处于断开状态的静触点,称为“常开触点”;处于接通状态的静触点称为“常闭触点”。 继电器的输入信号x从零连续增加达到衔铁开始吸合时的动作值xx,继电器的输出信号立刻从y=0跳跃到y=ym,即常开触点从断到通。一旦触点闭合,输入量x继续增大,输出信号y将不再起变化。当输入量x从某一大于xx值下降到xf,继电器开始释放,常开触点断开。我们把继电器的这种特性叫做继电特性,也叫继电器的输入-输出特性。 释放值xf与动作值xx的比值叫做反馈系数,即 Kf= xf /xx 触点上输出的控制功率Pc与线圈吸收的最小功率P0之比叫做继电器的控制系数,即Kc=PC/P0 2、热敏干簧继电器的工作原理和特性 热敏干簧继电器是一种利用热敏磁性材料检测和控制温度的新型热敏开关。它由感温磁环、恒磁环、干簧管、导热安装片、塑料衬底及其他一些附件组成。热敏干簧继电器不用线圈励磁,

热继电器的结构及工作原理

热继电器的结构及工作原理 热继电器是用于电动机或其它电气设备、电气线路的过载保护的保护电器。电动机在实际运行中,如拖动生产机械进行工作过程中,若机械出现不正常的情况或电路异常使电动机遇到过载,则电动机转速下降、绕组中的电流将增大,使电动机的绕组温度升高。若过载电流不大且过载的时间较短,电动机绕组不超过允许温升,这种过载是允许的。但若过载时间长,过载电流大,电动机绕组的温升就会超过允许值,使电动机绕组老化,缩短电动机的使用寿命,严重时甚至会使电动机绕组烧毁。所以,这种过载是电动机不能承受的。热继电器就是利用电流的热效应原理,在出现电动机不能承受的过载时切断电动机电路,为电动机提供过载保护的保护电器。 热继电器工作原理示意图如图1 图1 热继电器工作原理示意图 1——热元件,2——双金属片,3——导板,4——触点 热继电器的结构如图2所示。 图1 热继电器结构示意图 图中:1——电流调节凸轮,2——片簧(2a,2b),3——手动复位按钮,4——弓簧片,5——主金属片,6——外导板,7——内导板,8——常闭静触点,9——动触点,10——杠杆,11——常开静触点(复位调节螺钉),12——补偿双金属片,13——推杆,14——连杆,15——压簧 使用热继电器对电动机进行过载保护时,将热元件与电动机的定子绕组串联,将热继电器的常闭触头串联在交流接触器的电磁线圈的控制电路中,并调节整定电流调节旋钮,使人字形拨杆与推杆相距一适当距离。当电动机正常工作时,通过热元件的电流即

为电动机的额定电流,热元件发热,双金属片受热后弯曲,使推杆刚好与人字形拨杆接触,而又不能推动人字形拨杆。常闭触头处于闭合状态,交流接触器保持吸合,电动机正常运行。 若电动机出现过载情况,绕组中电流增大,通过热继电器元件中的电流增大使双金属片温度升得更高,弯曲程度加大,推动人字形拨杆,人字形拨杆推动常闭触头,使触头断开而断开交流接触器线圈电路,使接触器释放、切断电动机的电源,电动机停车而得到保护。 热继电器其它部分的作用如下:人字形拨杆的左臂也用双金属片制成,当环境温度发生变化时,主电路中的双金属片会产生一定的变形弯曲,这时人字形拨杆的左臂也会发生同方向的变形弯曲,从而使人字形拨杆与推杆之间的距离基本保持不变,保证热继电器动作的准确性。这种作用称温度补偿作用。 螺钉8是常闭触头复位方式调节螺钉。当螺钉位置靠左时,电动机过载后,常闭触头断开,电动机停车后,热继电器双金属片冷却复位。常闭触头的动触头在弹簧的作用下会自动复位。此时热继电器为自动复位状态。将螺钉逆时针旋转向右调到一定位置时,若这时电动机过载,热继电器的常闭触头断开。其动触头将摆到右侧一新的平衡位置。电动机断电停车后,动触头不能复位。必须按动复位按钮后动触头方能复位。此时热继电器为手动复位状态。若电动机过载是故障性的,为了避免再次轻易地起动电动机,热继电器宜采用手动复位方式。若要将热继电器由手动复位方式调至自动复位方式,只需将复位调节螺钉顺时针旋进至适当位置即可。 有些型号的热继电器还具有断相保护功能。其结构示意图如图3所示: 图3 差动式断相保护装置示意图 (a)通电前,(b)三相通有额定电流,(c)三相均衡过载,(d)一相断电故障 热继电器的断相保护功能是由内、外推杆组成的差动放大机构提供的。当电动机正常工作时,通过热继电器热元件的电流正常,内外两推杆均向前移至适当位置。当出现电源一相断线而造成缺相时,该相电流为零,该相的双金属片冷却复位,使内推杆向右移动,另两相的双金属片因电流增大而弯曲程度增大,使外推杆更向左移动,由于差动放大作用,在出现断相故障后很短的时间内就推动常闭触头使其断开,使交流接触器释放,电动机断电停车而得到保护。

液位继电器

[电工与电子]JY B(714)型晶体管液位继电器原理图 图纸来源/厂家说明书 波波(游客)于2008-6-27指出: “此图有错不能自动运行,主要是1点的电源不应取在TA后面,该在QA前面就对了,即C相电源才行。”首先感谢波波网友! 图的确是错的,我接触过永嘉仪表厂、欣灵继电器厂、先锋继电器厂的产品,配套说明书的原理图都是用了这个图,但实物接线没有错误。原理图的错误是应该改正的,现付上已更正的图如下,供网友参考

更正的图只有自动抽水状态,如果需要设置自动和手动抽水时, 请参考我的博文《JYB型晶体管液位继电器的改进》一文。 有的网友提出:“能否把元件的型号标出来?” 由于这一产品生产厂多,电压等级又不一样,元件型号、规格合有出入, 如某厂产品的元件型号、规格是: C1---220 微法/ 50V C2---47 微法/ 50V BG1 BG2----C9013 D1--D7-----1N4007 J---有的是JTX 有的是JRX-13F 电源变压器---初级有380V和220V的次级有13V 和24V的 TYB(714)型晶体管液位继电器在水塔自动上水控制中获得广泛的应用,通常一只液位继电器就可满足要求。但当水塔自动上水装置除受水塔水位控制外,还受蓄水池水位的控制时,必须采用两只液位继电器,同时还需改动其接线,才能达到相关控制的目的。 笔者仅在原电路上增加了少量的元件,达到用一只液位继电器实现相关控制的要求。

改进的部分如图中虚线所示。工作原理为:当蓄水池有足够水量,即水位在c 点之上时,V3o导通;若水塔缺水,即水位在b点之下时,V1截止使v2 导通,J吸合,CJ也吸合,水泵运转抽水。假设水塔水位还未升到a点时,由于水源紧张而使蓄水池水位下降至d点以下时,则V3截止、V2也截止,水泵停止抽水,蓄水池的c、d电极可用来调整蓄水池抽水量的多小。整个控制电路可以手动(M)与自动(A)切换。 新增元件型号、规格已在图中标出,未标注的为原有的元件。由于新增元件不多,故在原有印制电路板上改动焊接即可。液位继电器引出端基本保持原样,5端仍接水塔a电极,而b端改接蓄水池的c电极,b、d电极则分别通过交流接触器的辅助触点与5、6端相接。为保证液位继电器的控制可靠性,将J的两对常开触点并联后接至2、3端输出。在VI、V3基极各接一只电容器,以提高液位继电器的抗干扰能力。 改进后的液位继电器,经多年的连续运行未出现任何故障。该液位继电器还可实现单控、双控两用,当仅用于水塔水位单控时,只需将液位继电器& 7端短接。 简易水位控制器 我们知道,水是有一定阻值的,随地方不同会有点差别,但差别不大, 一般水塔范围内的阻值在15kQ 左右。我们可以把它看成是一个 可变的电阻,用来控制三极管的偏置电压。 现阶段的小城镇,很多尚无自来水,需要在房顶做一个水塔, 把 水抽上去再用,但在楼下开机抽水,却不知楼上怎么样,总要跑 上

继电器控制电路模块及原理讲解

能直接带动继电器工作的CMOS集成块电路 在电子爱好者认识电路知识的的习惯中,总认为CMOS集成块本身不能直接带动继电器工作,但实际上,部分CMOS集成块不仅能直接带动继电器工作,而且工作还非常稳定可靠。本实验中所用继电器的型号为JRC5M-DC12V微型密封的继电器(其线圈电阻为750Ω)。现将CD4066 CMOS集成块带动继电器的工作原理分析如下: CD4066是一个四双向模拟开关,集成块SCR1~SCR4为控制端,用于控制四双向模拟开关的通断。当SCR1接高电平时,集成块①、②脚导通,+12V→K1→集成块①、②脚→电源负极使K1吸合;反之当SCR1输入低电平时,集成块①、②脚开路,K1失电释放,SCR2~SCR4输入高电平或低电平时状态与SCR1相同。 本电路中,继电器线圈的两端均反相并联了一只二极管,它是用来保护集成电路本身的,千万不可省去,否则在继电器由吸合状态转为释放时,由于电感的作用线圈上将产生较高的反电动势,极容易导致集成块击穿。并联了二极管后,在继电器由吸合变为释放的瞬间,线圈将通过二极管形成短时间的续流回路,使线圈中的电流不致突变,从而避免了线圈中反电动势的产生,确保了集成块的安全。 低电压下继电器的吸合措施 常常因为电源电压低于继电器的吸合电压而使其不能正常工作,事实上,继电器一旦吸合,便可在额定电压的一半左右可靠地工作。因此,可以在开始时给继电器一个启动电压使其吸合,然后再让其在较低的电源电压下工作,如图所示的电路便可实现此目的。 工作原理: 如图所示。V1为单结晶体管BT33C

,它与R1、R2、R3和C1组成一个张弛式振荡器,SCR为单向可控硅,按下启动按钮AN1后,电路通电,因为SCR无触发电压,所以不导通,继电器J不动作,电源通过R4和VD1给电容C2迅速充电至接近电源电压(Vcc-VD1压降)。同时,电源经R1给电容C1充电。数秒后,C1上电压充到V1的触发电压,C1立即通过V1放电,在R3上形成一个正脉冲,该脉冲一路加到V2基极,使V2迅速饱和导通,V2集电极也即电容C2正极近于接地。由于此时C2上充有上正下负的正极性电压,所以C2负极也即J线圈一端呈负电位。R3上的正脉冲另一路经VD2、C3去触发可控硅导通,SCR阴极也即J线圈另一端接近电源电压。这时,J线圈实际上承受约两倍的电源电压,所以J1-1闭合,松开AN1后,J1-1自保。J1-2将V1、V2供电切断,继电器在接近电源电压下工作。图中,AN2为停止按钮,按下AN2,J失电释放,J1-1断开,整个控制电路失电。 制作本电路时,一般可取继电器的额定电压为电源电压的1.5倍左右,一般情况下,任何型号的单向可控硅(或双向可控硅)皆可满足本电路需要。V2、C1、C3的耐压视电源电压的高低选取。C2耐压最好不低于电源电压的两倍。 继电器的三种附加电路 继电器是电子电路中常用的一种元件,一般由晶体管、继电器等元器件组成的电子开关驱动电路中,往往还要加上一些附加电路以改变继电器的工作特性或起保护作用。继电器的附加电路主要有如下三种形式: 1.继电器串联RC电路: 电路形式如图1,这种形式主要应用于继电器的额定工作电压低于电源电压的电路中。当电路闭合时,继电器线圈由于自感现象会产生电动势阻碍线圈中电流的增大,从而延长了吸合时间,串联上RC电路后则可以缩短吸合时间。原理是电路闭合的瞬间,电容C两端电压不能突变可视为短路,这样就将比继电器线圈额定工作电压高的电源电压加到线圈上,从而加快了线圈中电流增大的速度,使继电器迅速吸合。电源稳定之后电容C不起作用,电阻R起限流作用。 2.继电器并联RC电路: 电路形式见图2,电路闭合后,当电流稳定时RC电路不起作用,断开电路时,继电器线圈由于自感而产生感应电动势,经RC电路放电,使线圈中电流衰减放慢,从而延长了继电器衔铁释放时间,起到延时作用。 3.继电器并联二极管电路: 电路形式见图3,主要是为了保护晶体管等驱动元器件。当图中晶体管VT由导通变为截止时,流经继电器线圈的电流将迅速减小,这时线圈会产生很高的自感电动势与电源

相关文档
相关文档 最新文档