文档库 最新最全的文档下载
当前位置:文档库 › 不等式、线性规划、计数原理与二项式定理

不等式、线性规划、计数原理与二项式定理

不等式、线性规划、计数原理与二项式定理
不等式、线性规划、计数原理与二项式定理

第三讲 不等式、线性规划、计数原理与二项式定理

研热点(聚焦突破)

类型一 不等式的性质与解法

1.不等式的同向可加性

a b a c b d c d >?

?+>+?>?

2.不等式的同向可乘性

00a b ac bd c d >>?

?>?>>?

3.不等式的解法

一元二次不等式ax 2+bx +c >0(或<0).若Δ>0,其解集可简记为:同号两根之外,异号两根之间.

[例1] (1)(2012年高考湖南卷)设a >b >1,c <0,给出下列三个结论:

① c a >c

b

;②a c log a (b -c ).

其中所有的正确结论的序号是( ) A .① B .①② C .②③ D .①②③

(2)(2012年高考江苏卷)已知函数f (x )=x 2+ax +b (a ,b ∈R)的值域为[0,+∞),若关于x 的不等式f (x )

∵a >b >1,∴1a <1

b .

又c <0,∴ c a > c

b ,故①正确.

构造函数y =x c .

∵c <0,∴y =x c 在(0,+∞)上是减函数. 又a >b >1,∴a c b >1,-c >0,∴a -c >b -c >1. ∵a >b >1,

∴log b (a -c )>log a (a -c )>log a (b -c ), 即log b (a -c )>log a (b -c ),故③正确. (2)通过值域求a ,b 的关系是关键.

由题意知f(x)=x2+ax+b=(x+a

2

)2+b-

a2

4

.

∵f(x)的值域为[0,+∞),∴b-

a2

4

=0,即b=

a2

4

.

∴f(x)=(x+

a

2

)2.

又∵f(x)

a

2

)2

即-

a

2

-c

a

2

+c.

2

6

2

a

c m

a

c m

?

--=

??

?

?-+=+

??

解得26

c=,∴9

c=

[答案](1)D (2)9

跟踪训练

(2012年高考福建卷)已知关于x的不等式x2-ax+2a>0在R上恒成立,则实数a的取值范围是________.

解析:利用“三个二次”之间的关系.

∵x2-ax+2a>0在R上恒成立,

∴Δ=a2-4×2a<0,

∴0

答案:(0,8)

类型二线性规划

求目标函数最值的一般步骤

(1)作出可行域;

(2)借助图形确定函数最值的取值位置,并求最值.

[例2] (2012年高考课标全国卷)已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=-x+y的取值范围是( )

A.(1-32) B.(0,2)

C.

(3-1,2) D

.(0,1+3)

[解析]利用线性规划知识,求解目标函数的取值范围.

如图,

根据题意得C(1+3,2).

作直线-x+y=0,并向左上或右下平移,

过点B(1,3)和C(1+3,2)时,z=-x+y取范围的边界值,即-(1+3)+2

∴z=-x+y的取值范围是(1-3,2).

[答案] A

跟踪训练

(2012年泰安高三模考)设变量x,y满足约束条件

4312

x

y

x y

?

?

?

?+≤

?

,则z=

1

1

y

x

+

+

的取值范围是

( )

A.[0,4] B.[1

4

,5]

C.[5

4

,6] D.[2,10]

解析:

1

1

y

x

+

+

表示过点(x,y)与点(-1,-1)的直线的斜率.

根据题意,作出可行域,如图所示,

由图知

11y x ++的最小值是101134--=--,最大值是14

510

--=--,故选B. 答案:B

类型三 均值不等式的应用 1. 222a b ab +≥(,a b ∈R ) 2.

2

a b

ab +≥(,a b ∈R +) 3. 2

2a b ab +??

≤ ???

(,a b ∈R )

4. 22222a b a b ab

ab a b

++≥≥≥

+(,a b ∈R +) [例3] (2012年高考浙江卷)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( ) A. 245 B.285

C .5

D .6

[解析] 将已知条件进行转化,利用基本不等式求解.

∵x >0,y >0,由x +3y =5xy 得15(1y +3

x

)=1.

∴3x +4y =15(3x +4y )(1y +3x )=15(3x y +4+9+12y

x )

=135+15(3x y +12y x )≥135+1

5

×23x y ·12y x

=5

(当且仅当x =2y 时取等号),∴3x +4y 的最小值为5.

[答案] C

跟踪训练

已知x >0,y >0,若

28y x x y

+>m 2

+2m 恒成立,则实数m 的取值范围是( ) A .m ≥4或m ≤-2 B .m ≥2或m ≤-4

C .-2

D .-4

解析:因为x >0,y >0,所以

28y x

x y

+≥28. 要使原不等式恒成立,只需m 2+2m <8,

解得-4

答案:D

类型四 排列与组合

1.加法计数原理与乘法计数原理针对的分别是“分类”与“分步”问题.

2.排列数A m n

=n !

(n -m )!

. 组合数C m n =

n !

m !(n -m )!

.

3.组合数性质

(1)C m n =C n -m

n ; (2)C m n +C m -1n =C m n +1.

[例4] (2012年高考北京卷)从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为( ) A .24 B .18 C .12 D .6 [解析] 根据所选偶数为0和2分类讨论求解.

当选0时,先从1,3,5中选2个数字有C 2

3种方法,然后从选中的2个数字中选1个排在末位有C 12种方法,剩余1个数字排在首位,共有C 23C 12=6(种)方法;当选2时,先从1,3,5中选2个数字有C 23种方法,然后从选中的2个数字中选1个排在末位有C 12种方法,其余2个数字全排列,共有C 23C 12A 22=12(种)方法.

依分类加法计数原理知共有6+12=18(个)奇数. [答案] B

跟踪训练

(2012年高考山东卷)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张.不同取法的种数为( )

A .232

B .252

C .472

D .484

解析:利用分类加法计数原理和组合的概念求解.

分两类:第一类,含有1张红色卡片,共有不同的取法C 14C 2

12=264(种);第二类,不含有红色卡片,共有不同的取法C 312-3C 34=220-12=208(种).由分类加法计数原理知不同的取法

有264+208=472(种). 答案:C

类型五 二项式定理

1.二项展开式的通项:T k +1=C k n a

n -k b k

(k =0,1,…,n ). 2.二项式系数为C 0n ,C 1n ,…,C r n ,…,C n n (r =0,1,…n ).

3.用赋值法研究展开式中各项系数之和.

[例5] (2012年高考安徽卷)(x 2+2)( 21

x

-1)5的展开式的常数项是( )

A .-3

B .-2

C .2

D .3 [解析] 利用二项展开式的通项求解

二项式(1

x

2-1)5展开式的通项为:

T r +1=C r 5(1

x

2)5-r ·(-1)r =C r 5·x 2r -10

·(-1)r . 当2r -10=-2,即r =4时,有x 2·C 45x -2·(-1)4=C 45×(-1)4=5; 当2r -10=0,即r =5时,有2·C 55x 0·(-1)5

=-2. ∴展开式中的常数项为5-2=3,故选D. [答案] D

跟踪训练

(2012年郑州模拟)在二项式(x2-1 x

)n的展开式中,所有二项式系数的和是32,则展开式中

各项系数的和为( )

A.32 B.-32

C.0 D.1

解析:依题意得所有二项式系数的和为2n=32,

解得n=5.因此,该二项展开式中的各项系数的和等于(12-

1

1

)5=0,选C.

答案:C

析典题(预测高考)

高考真题

【真题】(2012年高考江苏卷)已知正数a,b,c满足:5c-3a≤b≤4c-a,c ln b≥a+c ln c,则

b

a

的取值范围是________.

【解析】由题意知

4

35

ln ln a c

a b c

a b c

c b a c c b ce

?+

?

+

?

?

-?

?

≥≥

作出可行域(如图所示).

?

?

?a+b=4c,

3a+b=5c,

得a=

c

2

,b=

7

2

c.

此时(b

a

)

max

=7.

?

?

?a+b=4c,

b=c e

a

c,

得a=

4c

e+1

,b=

4c e

e+1

.

此时(

b

a

)

min

4c e

e+1

4c

e+1

=e.所以

b

a

∈[e,7].

【答案】[e,7]

【名师点睛】本题主要考查了不等式的性质、线性规划的应用等知识,命题角度创新,难度较大,解决此题的关键是将问题转化为线性规划问题,通过数形结合思想来解决.

考情展望

高考对线性规划的考查比较灵活,多以选择、填空形式出现,主要考查利用线性规划求目标函数最值及应用.常涉及距离型、斜率型、截距型.有时与函数、圆、平面向量等知识相综合.

名师押题

【押题】如果点P在不等式组

10

2350

4310

x

x y

x y

-

?

?

+-

?

?+-

?

所确定的平面区域内,点Q在曲线(x+2)2+

(y+2)2=1上,那么|PQ|的最小值为( )

A.1 B.2 C.3 D.6

【解析】画出可行域,如图所示,

点Q在圆(x+2)2+(y+2)2=1上,易知|PQ|的最小值为圆心(-2,-2)到直线4x+3y-1=

0的距离减去圆的半径1,即|PQ|

min

|861|

5

---

-1=2,故选B.

【答案】 B

高考数学-计数原理-1-二项式定理

专项-二项式定理 知识点 1.二项式定理: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L , 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的次数和等 于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系数是a 与 b 的系数(包括二项式系数) 。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N * -=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???= ?=L ④奇数项的系数和与偶数项的系数和:

二项式定理(通项公式)

六、二项式定理 一、指数函数运算 知识点:1.整数指数幂的概念 *)(N n a a a a a a n n ∈??= 个 )0(10≠=a a ,0(1 N n a a a n n ∈≠=- 2.运算性质: ),(Z n m a a a n m n m ∈=?+ ,),()(Z n m a a mn n m ∈=,)()(Z n b a ab n n n ∈?= 3.注意 ① n m a a ÷可看作n m a a -? ∴n m a a ÷=n m a a -?=m a -② n b a )(可看作n n b a -? ∴n b a )(=n n b a -?n n b 4、n m n m a a = (a >0,m ,n ∈N *,且n >1) 例题: 例1求值:43 32 13 2)81 16(,)41(,100,8---. 例2用分数指数幂的形式表示下列各式: 1) a a a a a a ,,32 32?? (式中a >0) 2)43a a ? 3)a a a 例3计算下列各式(式中字母都是正数));3()6)(2)(1(656131212132b a b a b a -÷- .))(2(88 341n m 例4计算下列各式: );0() 1(3 2 2>a a a a 435)12525)(2(÷- 例5化简:)()(4 14 12 12 1y x y x -÷- 例6 已知x+x -1 =3,求下列各式的值:.)2(,)1(2 32 32 12 1- - ++x x x x 二、二项式知识回顾 1. 二项式定理 0111()n n n k n k k n n n n n n a b C a C a b C a b C b --+=+++++ , 以上展开式共n+1项,其中k n C 叫做二项式系数,1k n k k k n T C a b -+=叫做二项展开式的通项. (请同学完成下列二项展开式) 0111()(1)(1)n n n k k n k k n n n n n n n a b C a C a b C a b C b ---=-++-++- ,1(1)k k n k k k n T C a b -+=- 01(1)n k k n n n n n n x C C x C x C x +=+++++ ① 0111(21)(2)(2)(2)(2)1n n n k n k n n n n n x C x C x C x C x ---+=+++++ 1110n n n k n n n k a x a x a x a x a ----=+++++ ②

不等式与线性规划

1. 不等式2560x x -++≥的解集是______________________________ 2. ()21680k x x --+<的解集是425x x x ??<->???? 或,则k =_________ 3. 不等式20ax bx c ++>的解集为{} 23x x <<,则不等式20ax bx c -+>的解集是___ 4. 若0a b >>,则()()0a bx ax b --≤的解集是_____________________ 5. 已知点(2 , 1)和点(-4 , 5)在直线 3x –2y + m = 0 的两侧,则 m 的取值范围 为_________ 6. 若?????≥+≤≤2 22y x y x ,则目标函数 z = x + 2 y 的取值范围是______________ 7. 已知x ,y 满足?????≥-+≥≥≤-+0320 ,1052y x y x y x ,则x y 的最大值为___________,最小值为____________ 8. 不等式组260302x y x y y +-≥??+-≤??≤? 表示的平面区域的面积为___________ 9. 、已知x 、y 满足以下约束条件220240330x y x y x y +-≥??-+≥??--≤? ,则z=x 2+y 2的最大值和 最小值分别是___________ 10. 已知x 、y 满足以下约束条件5503x y x y x +≥??-+≤??≤? ,使z=x+ay(a>0)取得最小值 的最优解有无数个,则a 的值为___________ 11. 若不等式kx 2-2x+6k<0(k ≠0). (1)若不等式解集是{x|x<-3或x>-2},求k 的值; (2)若不等式解集是R ,求k 的取值。 12. 某运输公司接受了向抗洪抢险地区每天至少送180t 支援物资的任务.该公司有8辆载重为6t 的A 型卡 车与4辆载重为10t 的B 型卡车,有10名驾驶员;每辆卡车每天往返的次数为A 型卡车4次,B 型卡车3次;每辆卡车每天往返的成本费A 型车为320元,B 型车为504元.请你们为该公司安排一下应该如何调配车辆,才能使公司所花的成本费最低?若只调配A 型或B 型卡车,所花的成本费分别是多少?

二项式定理11种题型解题技巧

二项式定理知识点及11种答题技巧 1.二项式定理: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L , 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的 次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系 数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N * -=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???= ?=L ④奇数项的系数和与偶数项的系数和:

计数原理与二项式定理

小题精练:计数原理与二项式定理(限时:50分钟) 1.甲、乙两人计划从A 、B 、C 三个景点中各选择两个游玩,则两人所选景点不全相同的选 法共有( ) A .3种 B .6种 C .9种 D .12种 2.(2013·高考四川卷)从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a , b ,共可得到lg a -lg b 的不同值的个数是( ) A .9 B .10 C .18 D .20 3.(2013·高考全国卷)(x +2)8 的展开式中x 6 的系数是( ) A .28 B .56 C .112 D .224 4.将4名实习教师分配到高一年级的3个班实习,若每班至少安排1名教师,则不同的分 配方案种数为( ) A .12 B .36 C .72 D .108 5.(2014·济南市模拟)二项式? ?????x 2-13x 8 的展开式中常数项是( ) A .28 B .-7 C .7 D .-28 6.把五个标号为1到5的小球全部放入标号为1到4的四个盒子中,不许有空盒且任意一 个小球都不能放入标有相同标号的盒子中,则不同的放法有( ) A .36种 B .45种 C .54种 D .84种 7.一个盒子里有3个分别标有号码1,2,3的小球,每次取出一个,记下它的标号后再放 回盒子中,共取3次,则取得小球标号最大值是3的取法有( ) A .12种 B .15种 C .17种 D .19种 8.(2014·安徽省“江南十校”联考)若(x +2+m)9 =a 0+a 1(x +1)+a 2(x +1)2 +…+a 9(x + 1)9 ,且(a 0+a 2+…+a 8)2 -(a 1+a 3+…+a 9)2 =39 ,则实数m 的值为( ) A .1或-3 B .-1或3 C .1 D .-3 9.我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合 数”中首位为2的“六合数”共有( ) A .18个 B .15个 C .12个 D .9个 10.设复数x =2i 1-i (i 是虚数单位),则C 12 013x +C 22 013x 2+C 32 013x 3+…+C 2 0132 013x 2 013 =( ) A .i B .-I C .-1+i D .1+i 11.(2014·郑州市质检)在二项式? ?? ???x +1 2·4x n 的展开式中,前三项的系数成等差数列, 把展开式中所有的项重新排成一列,有理项都互不相邻的概率为( )

基本不等式与线性规划

不等式(二) 一.基本不等式(ab b a 2≥+一正:两个数或式子必须都为正数. 二定;必须有和定或积定 三相等:等号成立为最值存在的充分,那里使用基本不等式,那两个数相等) 积定,和有最小(积定的判断依据:互为倒数关系) 1.设4 1 4,4-+-=>x x y x 的最小值为 . 2.设4 1 ,4-+ =>x x y x 的最小值为 . 3.1,1>>b a ,则a b b a log log +的最小为 . 4.下列函数中,最小值为22的是 ( ) A .x x y 2+ = B .)0(sin 2 sin π<<+ =x x x y C .x x e e y -+=2 D .2log 2log 2x x y += 5.下列各函数中,最小值为2的是 ( ) A .y=x + x 1 B .y= sinx +x sin 1,x ∈(0,2 π) C .y= 2 322++x x D .y=x x 1 + 6.若lg x +lg y =2,则 x 1 +y 1的最小值为( ) A . 20 1 B . 5 1 C . 2 1 D .2 7.(10.重庆)已知0>t ,则函数t t t y 1 42+-=的最小值为 . 8.若1>=+y x y x 则 y x 2 1+的最小 . (09.天津)设0,0>>b a ,若3是a 3与b 3的等比中项,则b a 1 1+的最小值为( ) A .8 B .4 C .1 D .4 1 总结:常见倒数关系 x x a a -与 a b b a log log 与

二项式定理(通项公式).

二项式定理 二项式知识回顾 1. 二项式定理 0111 ()n n n k n k k n n n n n n a b C a C a b C a b C b --+=++ ++ +, 以上展开式共n+1项,其中k n C 叫做二项式系数,1k n k k k n T C a b -+=叫做二项展开式的通项. (请同学完成下列二项展开式) 0111()(1)(1)n n n k k n k k n n n n n n n a b C a C a b C a b C b ---=-++-+ +-,1(1)k k n k k k n T C a b -+=- 01(1)n k k n n n n n n x C C x C x C x +=++ +++ ① 01 11 (21)(2)(2)(2)(2)1n n n k n k n n n n n x C x C x C x C x ---+=++ ++ + 1110n n n k n n n k a x a x a x a x a ----=++++ + ② ① 式中分别令x=1和x=-1,则可以得到 01 2n n n n n C C C ++ +=, 即二项式系数和等于2n ; 偶数项二项式系数和等于奇数项二项式系数和,即0213 12n n n n n C C C C -++=++ = ② 式中令x=1则可以得到二项展开式的各项系数和. 2. 二项式系数的性质 (1)对称性:与首末两端等距离的两个二项式系数相等,即m n m n n C C -=. (2)二项式系数k n C 增减性与最大值: 当12n k +< 时,二项式系数是递增的;当1 2 n k +≥时,二项式系数是递减的. 当n 是偶数时,中间一项2n n C 取得最大值.当n 是奇数时,中间两项12n n C -和12n n C +相等,且同 时取得最大值. 3.二项展开式的系数a 0,a 1,a 2,a 3,…,a n 的性质:f(x )= a 0+a 1x +a 2x 2+a 3x 3……+a n x n ⑴ a 0+a 1+a 2+a 3……+a n =f(1) ⑵ a 0-a 1+a 2-a 3……+(-1)n a n =f(-1) ⑶ a 0+a 2+a 4+a 6 (2) 1()1(-+f f ⑷ a 1+a 3+a 5+a 7……= 2 ) 1()1(--f f

基本不等式与线性规划

基本不等式与线性规划

不等式(二) 一.基本不等式(ab b a 2 ≥+一正:两个数或式子必须都为 正数. 二定;必须有和定或积定 三相等:等号成立为最值存在的充分,那里使用基本不等式,那两个数相等) 积定,和有最小( 1.设41 4,4-+-=>x x y x 2.设 4 1 ,4-+ =>x x y x 3.1,1>>b a ,则a b b a log log +的最小为 .4.下列函数中,最小值为22的是 ( ) A .x x y 2+= B .)0(sin 2 sin π<<+=x x x y C .x x e e y -+=2 D .2 log 2log 2 x x y += 5.下列各函数中,最小值为2的是 ( ) A .y=x +x 1 B .y= sinx +x sin 1 ,x ∈(0,2π) C .y= 2 32 2++x x D .y= x x 1 +

6.若lg x +lg y =2,则x 1+y 1 的最小值为( ) A .201 B .51 C .2 1 D .2 7.(10.重庆)已知0>t ,则函数t t t y 142+-= 的最小值 为 . 8.若1>=+y x y x 则y x 2 1+的最小 . (09.天津)设0,0>>b a ,若3是a 3与b 3的等比中项,则b a 1 1+的最小值为( ) A .8 B .4 C .1 D .4 1 已知312,0,0=+>>y x y x ,则y x 11+的最小 . 若实数a 、b 满足的最小值是则b a b a 22,2+=+ ( ) A .8 B .4 C .22 D .4 22 和定,积有最大(和定的判断依据:相反符号) 1.设 , 20<

高考数学 考点23 两个计数原理、排列、组合及其应用、

考点23 两个计数原理、排列、组合及其应用、 二项式定理及应用 1.(2010·湖北高考文科·T6)现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是( ) (A)65(B)56(C)565432 2 ????? (D)6543 ????2 【命题立意】本题主要考查分类和分步计数原理,考查考生的逻辑推理能力. 【思路点拨】因每名同学可自由选择其中的一个讲座,故6名同学的安排可分6步进行,每步均有5种选择,由分步计数原理即可得出答案. 【规范解答】选A.每名同学可自由选择5个讲座中的其中一个讲座,故6名同学的安排可分6步进行,每步均有5种选择,因此共有65种不同选法. 【方法技巧】本题每名同学可自由选择其中的一个讲座,故每位同学的选择都有5种,共有65种不同选法.若将“每名同学可自由选择其中的一个讲座”改为“每一个讲座都至少有一位同学去听”,它就是一个典型的不同元素的分组问题.利用“先分堆,再分配”的思想将6名同学分为5堆,再分给5个不同的讲座, 有 25 65 1800 C A= 1 800种不同选法. 2.(2010·湖北高考理科·T8)现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是() (A)152 (B)126 (C)90 (D)54 【命题立意】本题主要考查分类和分步计数原理,考查排列、组合知识的应用,考查考生的运算求解能力.【思路点拨】由甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作知,司机工作很特殊.按安排几个人担任司机工作可分为两类:①司机只安排1人;②司机安排2人,然后将其余的人安排到其他三个不同的位置. 【规范解答】选B.当司机只安排1人时,有 123 343 C C A =108(种);当司机安排2人时有 23 33 C A =18(种).由分类 计数原理知不同安排方案的种数是108+18=126(种). 【方法技巧】本题要求每项工作至少有一人参加,因此属于不同元素的分组问题,解题时往往采用“先分堆,再分配”的办法.若去掉“每项工作至少有一人参加”的限制,则甲、乙二人各有3种选择,丙、丁、 戊各有4种选择,因此共有33444576 ????=(种)安排方案. 3.(2010·全国高考卷Ⅱ理科·T6)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有( ) (A)12种(B)18种(C)36种(D)54种 【命题立意】本题考查了排列、组合的知识. 【思路点拨】运用先选后排解决,先从3个信封中选取一个放入标号为1,2的2张卡片,然后剩 余的2个信封分别放入2张卡片. 【规范解答】选B.标号为1,2的卡片放法有A 1 3种,其他卡片放法有 2 2 2 4 C C种,所以共有A132 2 2 4 C C=18 (种). 【方法技巧】先排列特殊元素是解决排列、组合问题的常用方法.

高考数学专题练习:不等式与线性规划

高考数学专题练习:不等式与线性规划 1.若不等式(-2)n a -3n -1-(-2)n <0对任意正整数n 恒成立,则实数a 的取值范围是( ) A.? ? ???1,43 B.? ???? 12,43 C.? ? ???1,74 D.? ?? ??12,74 答案 D 解析 当n 为奇数时,要满足2n (1-a )<3n -1恒成立, 即1-a <13× ? ????32n 恒成立,只需1-a <13×? ????321,解得a >1 2; 当n 为偶数时,要满足2n (a -1)<3n -1恒成立, 即a -1<13× ? ????32n 恒成立,只需a -1<13×? ????322,解得a <7 4. 综上,12<a <7 4,故选D. 2.已知a >0,b >0,且a ≠1,b ≠1,若log a b >1,则( ) A.(a -1)(b -1)<0 B.(a -1)(a -b )>0 C.(b -1)(b -a )<0 D.(b -1)(b -a )>0 答案 D 解析 取a =2,b =4,则(a -1)(b -1)=3>0,排除A ;则(a -1)(a -b )=-2<0,排除B ;(b -1)(b -a )=6>0,排除C,故选D. 3.设函数f (x )=??? x 2-4x +6,x ≥0, x +6,x <0,则不等式f (x )>f (1)的解集是( ) A.(-3,1)∪(3,+∞) B.(-3,1)∪(2,+∞) C.(-1,1)∪(3,+∞) D.(-∞,-3)∪(1,3) 答案 A 解析 f (1)=3.由题意得??? x ≥0,x 2-4x +6>3或??? x <0, x +6>3, 解得-33. 4. 若a ,b ,c 为实数,则下列命题为真命题的是( ) A.若a >b ,则ac 2>bc 2 B.若a <b <0,则a 2>ab >b 2

排列数、组合数公式及二项式定理的应用

排列数、组合数及二项式定理整理 慈济中学全椒 刘 1、排列数公式 m n A =)1()1(+--m n n n =!! )(m n n -.(n ,m ∈N*,且m n ≤). 2、排列恒等式 (1) 1(1)m m n n A n m A -=-+;(2) 1m m n n n A A n m -= -;(3)11m m n n A nA --=; (4)11n n n n n n nA A A ++=-; (5) 1 1m m m n n n A A mA -+=+.(6) 1!22!33!!(1)!1n n n +?+?+ +?=+-. 3、组合数公式 m n C =m n m m A A =m m n n n ???+-- 21)1()1(=!!!)(m n m n -?(n ∈N*,m N ∈,且m n ≤). 4、组合数的两个性质 (1) m n C =m n n C - ; (2) m n C +1 -m n C =m n C 1 +. 5、排列数与组合数的关系 m m n n A m C =?! . 6、二项式定理: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=++ ++ +∈ 【注】: 1.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 2.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。

二项式定理各种题型解题技巧

二项式定理 1.二项式定理: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L , 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的 次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是0 1 2 ,,,,,,.r n n n n n n C C C C C ??????项的系 数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N * +=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N * -=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???= ?=L ④奇数项的系数和与偶数项的系数和: ⑤二项式系数的最大项:如果二项式的幂指数n 是偶数时,则中间一项的二项式系数2n n C 取得最大值。 如果二项式的幂指数n 是奇数时,则中间两项的二项式系数1 2n n C -,12n n C +同时

线性规划与基本不等式

线性规划及基本不等式 一、知识梳理 (一)二元一次不等式表示的区域 1、对于直线0=++C By Ax (A>0),斜率K=__________,与x 轴的交点为________与y 轴的交点为___________ 2、 当B>0时, 0>++C By Ax 表示直线0=++C By Ax 上方区域; 0<++C By Ax 表示直线0=++c By Ax 的下方区域. 当B<0时, 0>++C By Ax 表示直线0=++C By Ax 下方区域; 0<++C By Ax 表示直线0=++c By Ax 的上方区域. 3、问题1:画出不等式组?????≤≥+≥+-3005x y x y x 表示的平面区域 问题2:求z=x-3y 的最大值和最小值 注、(1)不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.z=Ax+By 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于z=Ax+By 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数.满足线性约束条件的解(x,y )叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(11,y x )和(22,y x )分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解. (2)、用图解法解决简单的线性规划问题的基本步骤: 1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域). 2.设z=0,画出直线l0. 3.观察、分析,平移直线l0,从而找到最优解. 4.最后求得目标函数的最大值及最小值. (3)、线性目标函数的最值常在可行域的顶点处取得 (二)基本不等式 1.基本形式:,a b R ∈,则222a b ab +≥;0,0a b >>, 则a b +≥,当且仅当a b =时等号成 立2.、已知x 为正数,求2x+x 1 的最小值

高中不等式的基本知识点和练习题(含答案)

不等式的基本知识 (一)不等式与不等关系 1、应用不等式(组)表示不等关系; 不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>;d b c a d c b a +>+?>>,(同向可加) (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0(同向同正可乘) (5)倒数法则:b a a b b a 1 10,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论) 3、应用不等式性质证明不等式 (二)解不等式 1、一元二次不等式的解法 一元二次不等式()0002 2 ≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002 ≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42 -=?,则不等式的解的各种情况 如下表: 2、简单的一元高次不等式的解法: 标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿偶不穿;(3)根据曲线显现的符号变化规律,写出不等式的解集。()()()如:x x x +--<11202 3 3、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。 ()()0() () 0()()0;0()0 () ()f x g x f x f x f x g x g x g x g x ≥?>?>≥?? ≠? 4、不等式的恒成立问题:常应用函数方程思想和“分离变量法”转化为最值问题 若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A > 若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B < ()f x

高考数学分类解析专题计数原理和二项式定理理

2019高考数学最新分类解析专题10计数原理 和二项式定理(理) 一.基础题 1.【2013年山东省日照市高三模拟考试】设 321x x ??+ ??? 旳展开式中旳常数项为 a ,则直线 y ax =与曲线2y x =围成图形旳面积为 A.272 B.9 C.92 D.274 【答案】C 【解析】.∵x x 23 1 ( ) 旳展开式中旳常数项为 23C ,即3a =. 2.【东北三省三校2013届高三3月第一次联合模拟考试】若 3 1() 2n x x - 旳展开式中第四 项为常数项,则n =( ) A .4 B .5 C .6 D .7 3.【广西百所高中2013届高三年级第三届联考】从5位男生,4位女生中选派4位代 表参 加一项活动,其中至少有两位男生,且至少有1位女生旳选法共有 ( ) A .80种 B .100种 C .120种 D .240种 【答案】B 【解析】 2231 5454100C C C C +=. 4.【北京市顺义区2013届高三第一次统练】从0,1中选一个数字,从2,4,6中选两个数字,组成无重复数字旳三位数,其中偶数旳个数为 A.36 B.30 C.24 D.12 【答案】C 【解析】若选1,则有 21232212C C A =种·若选0,则有232 332()12C A A -=种,所以共有 121224+=,选C.

5.【北京市昌平区2013届高三上学期期末理】在高三(1)班进行旳演讲比赛中,共有5位选手参加,其中3位女生,2位男生.如果2位男生不能连续出场,且女生甲不能排在第一个,那么出场顺序旳排法种数为 A. 24 B. 36 C. 48 D.60 6.【北京市朝阳区2013届高三上学期期末理】某中学从4名男生和3名女生中推荐4人参 加社会公益活动,若选出旳4人中既有男生又有女生,则不同旳选法共有 A . 140种 B . 120种 C . 35种 D . 34种 7.【广西百所高中2013届高三年级第三届联考】 51(2) 2x -旳展开式中2x 旳系数是( ) A .5 B .10 C .-15 D .-5 【答案】D 【解析】由二项式旳通项公式得2x 旳系数为 22 3 5 12()5 2 C -=- 8.【北京市丰台区2013届高三上学期期末理】从装有2个红球和2个黑球旳口袋内任取2个球,则恰有一个红球旳概率是 (A) 13 (B) 12 (C) 23 (D) 56 【答案】C 【解析】P = 1122 24 C C C =2 3 故选C ·

不等式与线性规划教案

一 体验高考 1.(2012年高考福建卷,理9)若函数y=2x 图象上存在点(x,y)满足约束 条件?? ? ??≥≤--≤-+m x y x y x 03203,则实数m 的最大值为( B ) (A)21 (B)1 (C)2 3 (D)2 解析:∵x+y-3=0和y=2x 交点为(1,2), ∴只有m ≤1时才能符合条件,故选B. 2.(2012年高考福建卷,理5)下列不等式一定成立的是( C ) (A)lg(x 2+4 1)>lg x(x>0) (B)sin x+ x sin 1 ≥2(x ≠k π,k ∈Z ) (C)x 2+1≥2|x|(x ∈R ) (D) 1 1 2 +x >1(x ∈R ) 解析:当x>0时,x 2+41≥2·x ·2 1 =x, 故lg(x 2+41)≥lg x(x>0), 当且仅当x=2 1 时取等号,因此A 不对, B 中由于x ≠k π,k ∈Z 时,sin x 的正、负不确定, 因此sin x+ x sin 1≥2或sin x+x sin 1 ≤-2,故B 不正确, C 中,由基本不等式x+y ≥2xy (x>0,y>0)知x 2+1≥22x =2|x|,故C 一定成立, 而D 中,由于x 2≥0,则x 2+1≥1.因此0<1 1 2+x ≤1. 从而D 不正确,因此选C.

3.(2011年高考湖南卷,理10)设x,y ∈R,且xy ≠0,则(x 2+21y )(21x +4y 2 )的最小值为 . 解析:(x 2+ 21y )(21x +4y 2)=1+4x 2y 2 +221y x +4 =5+(4x 2y 2+ 221y x )≥5+22 22 214y x y x =5+2×2=9. 当且仅当4x 2y 2=221y x 即x 2y 2=2 1时取得最小值9. 答案:9 二备考感悟 1.命题与备考 (1)不等式解法常与二次函数、集合等知识交汇在一起命题;基本不等 式常与函数或代数式的最值问题、不等式恒成立问题、实际应用相互交汇命题.在备考中要熟练掌握各种不等式的解法,注意基本不等式成立的条件. (2)线性规划有时单独考查目标函数的最值问题,或求字母的取值范围问题,有时也会与函数、平面向量、解析几何等相互交汇考查,求解此类问题时应准确作出不等式表示的平面区域. 2.小题快做:线性规划问题中,若不等式组表示的平面区域具有边界且目标函数是线性的,则目标函数的最值就在其区域边界的顶点处取得. 三热点考向突破 考向一 不等式的解法 解不等式的常见策略 1.解一元二次不等式的策略:先化为一般形式ax 2+bx+c>0(a>0),再结合相应二次方程的根及二次函数图象确定一元二次不等式的解集. 2.解简单的分式不等式的策略:将不等式一边化为0,再将不等式等价转化为整式不等式(组)求解; 3.解含指、对数不等式的策略:利用指、对数函数的单调性将其转化

计数原理及二项式定理概念公式总结

排列组合及二项式定理概念及公式总结 1.分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 N=m 1+m 2+……+m n 2.分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,……,做第n 步有m n 种不同的方法,那么完成这件事有N=m 1×m 2×……m n 种不同的方法 分类要做到“不重不漏”,分步要做到“步骤完整” 3.两个计数原理的区别: 如果完成一件事,有n 类办法,不论哪一类办法中的哪一种方法,都能独立完成这件事,用分类计数原理, 如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要完成所有步骤才能完成这件事,是分步问题,用分步计数原理. 4.排列:从n 个不同的元素中取出m 个(m ≤n)元素并按一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. (1)排列数: 从n 个不同的元素中取出m 个(m ≤n)元素的所有排列的个数.用符号m n A 表示 (2)排列数公式:)1()2)(1(+-???--=m n n n n A m n 或m n A )! (! m n n -=() n m N m n ≤∈*,, n n A =!n =()1231????- n n =n(n-1)! 规定 0!=1 5.组合:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合 (1)组合数: 从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,用m n C 表示 (2)组合数公式: (1)(2)(1) ! m m n n m m A n n n n m C A m ---+==或 )! (!! m n m n C m n -= ),,(n m N m n ≤∈*且

练习-线性规划与基本不等式

线性规划与基本不等式 1.若222x y x y ????+? ≤,≤,≥,则目标函数2z x y =+的取值范围是( ) A.[26], B.[25], C.[36], D.[35], 2.已知x y ,满足约束条件5003x y x y x -+??+??? ≥,≥,≤.则24z x y =+的最大值为( ) A.5 B.38- C.10 D.38 3.若变量x ,y 满足约束条件30101x y x y y -+≤??-+≥??≥? ,则z =2x +y -4的最大值为( ) A .-4 B .-1 C .1 D .5 4.已知目标函数2z x y =+中变量x y ,满足条件4335251x y x y x --??+取得最大值的最优解有无穷多个,则a 的值为( ) A.14 B.35 C.4 D.53 8.已知0x >,0y >,且231x y +=,则23 x y +的最小值为( )

高考数学 《二项式定理》

二项式定理 主标题:二项式定理 副标题:为学生详细的分析二项式定理的高考考点、命题方向以及规律总结。 关键词:二项式定理,二项式系数,项系数 难度:2 重要程度:4 考点剖析: 1.能用计数原理证明二项式定理. 2.会用二项式定理解决与二项展开式有关的简单问题. 命题方向: 1.二项式定理是高中数学中的一个重要知识点,也是高考命题的热点,多以选择、填空题的形式呈现,试题难度不大,多为容易题或中档题. 2.高考对二项式定理的考查主要有以下几个命题角度: (1)求二项展开式中的第n项; (2)求二项展开式中的特定项; (3)已知二项展开式的某项,求特定项的系数. 规律总结: 1个公式——二项展开式的通项公式 通项公式主要用于求二项式的特定项问题,在运用时,应明确以下几点: (1)C r n a n-r b r是第r+1项,而不是第r项; (2)通项公式中a,b的位置不能颠倒; (3)通项公式中含有a,b,n,r,T r+1五个元素,只要知道其中的四个,就可以求出第五个,即“知四求一”. 3个注意点——二项式系数的三个注意点 (1)求二项式所有系数的和,可采用“赋值法”; (2)关于组合式的证明,常采用“构造法”——构造函数或构造同一问题的两种算法; (3)展开式中第r+1项的二项式系数与第r+1项的系数一般是不相同的,在具体求各项的系数时,一般先处理符号,对根式和指数的运算要细心,以防出错.

知 识 梳 理 1.二项式定理 二项式定理 (a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n n b n (n ∈N *) 二项展开式 的通项公式 T r +1=C r n a n -r b r ,它表示第r +1项 二项式系数 二项展开式中各项的系数C 0 n ,C 1n ,…,C n n 2.二项式系数的性质 (1)0≤k ≤n 时,C k n 与C n -k n 的关系是C k n =C n -k n . (2)二项式系数先增后减中间项最大 当n 为偶数时,第n 2 +1项的二项式系数最大,最大值为2n n C ;当n 为奇数时,第n +1 2项和n +3 2项的二项式系数最大,最大值为21 -n n C 或21 +n n C . (3)各二项式系数和:C 0 n +C 1n +C 2n +…+C n n =2n , C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2 n -1.

相关文档 最新文档