文档库 最新最全的文档下载
当前位置:文档库 › 体面积分方程混合不连续伽辽金方法研究

体面积分方程混合不连续伽辽金方法研究

6.1 电磁场边界积分方程

第六章 边界单元法 有限元法属于偏微分方程法。对于求解有界电磁场域的场分布,尤其是有复杂边界和多种媒质、线性或非线性、静态或时变场的数值计算都是十分成功的,有的文献认为有限元法是应用最广,最重要的数值分析方法。 当然,任何一种数值分析方法都不是万能的,有限元法的不足之处主要表现为: 1. 对于无界求解区域的处理比较困难; 2. 所求得的数值解是位函数值,再通过求导,一般比位值的精度低一个数量级,所以计算精度较低; 3. 对时变电磁场的求解,计算量太大。 在以上这几点所反映的问题上,边界单元法解决得比较好,有明显优势。此外,边界单元法还具有能降低所研究问题的维数,离散剖分和数据准备简单等特点,它已成为计算场的重要方法,我们需要进行学习。 6.1 电磁场边界积分方程 6.1.1电磁场边界元方程的基本关系 设三维线性泊松方程为所求场的控制方程,D 是具有边界面S 的求解区域。在S 上含有给定的第一和第二类边界条件的边界1S 和2S ,21S S S +=。对于这类恒定场,定解问题可表示为: 式中:u 表示位函数,f 是场源密度函数(如ε ρ-)。若已求得近似解u ~ ,带入边值问题, 用R 、1R 和2R 分别表示方程余量及边界余量:

f u R -?=~2 u u R S ~-=1 S q q R -=2 取权函数w ,按加权余量法,令误差分配的加权积分为: 021>=<->??<->

6.3 边界积分方程的离散化方程

6.3 离散化边界积分方程的建立 以二维边界离散化方程的建立为例,重点突出离散化方法的学习。 6.3.1建立Laplace 场的边界离散化方程 电磁场边界元法的通用积分方程 (4) 其中: ?????? ?∈∈∈=域外 光滑的边界上域内D D c i 0 211 设在Laplace 场中的二维边界上一点i 处,有方程: 在二维场的边界线l 上进行离散,将l 划分为许多小段,每段以直线段或曲线段逼近,作为一个单元。设l 点共被分为0N 个单元,其中在第一类边界1l 段上划分了1N 个单元,在第二类边界2l 段上划分了2N 个单元: 210N N N += 作为单元待求量的插值计算方式,可分为几种: ① 恒值单元 同一单元中的待求量u 和 n u ??都设为恒定值 (或称零次插值),实际上是取单元中点的u 值(或 n u ??值)作为单元的u 值(或n u ??值)。这样,取单 元中点为节点,所以求解变量数等于节点数。 ② 线性单元

它也是直线单元,其u 值在单元两端点之间按线性变化(即线性插值)。单元两端点为单元的节点。 ③ 曲线单元 每单元上的节点数大于2,以多节点拟合的曲线逼近边界单元,以单元节点上的高阶插值函数作为待求位函数近似解。 取最简单的单元——恒值单元为例,介绍边界元离散方法。 按上面的方程对i 单元的“i ”节点离散化 ∑? ∑? ==??= ??+ o j o j N j l N j l i l n u F l n F u u 1 1 d d 2 1 ∑? ∑?=== ??+ 1 1 d d 2 1N j l N j l j j i j o j l F q l n F u u ,?= j l ij l F G d ,上式表示为: 设i 点为i 单元的中点(021N i 、、、 =),有 ()∑∑==== 1 01 21N j N j j ij j ij N i q G u H ,,, 式中: 于是上述0N 个方程写为矩阵形式 GQ HU = 由定解问题中的第一类边界1l ,对应有1N 个单元的位值u s 是已知的,2l 是第二类边界,对应有2N 个单元n u q s ??= 位是已知。所以上述矩阵方程中,有2N 个单元的u 值和 1N 个单元的q 值是未知的,即是说矩阵方程有021N N N =+个未知数。设单元排列顺序 在1l 边界上为1,2,……,1N ,在2l 边是上为11+N 、21+N 、…、0N ,则上述矩阵方

有限差分法、边界元法和离散元法

有限差分法 已经发展的一些近似数值分析方法中,最初常用的是有限差分法,它可以处理一些相当困难的问题。但对于几何形状复杂的边界条件,其解的精度受到限制,甚至发生困难。作为60年代最重要的科技成就之一的有单元法。在理论和工程应用上都_得到迅速发展,几乎所有用经典力学解析方法难以解决的工程力学问题郁可以用有限元方法求解。它将连续的求解域离散为一组有限个单元的组合体,解析地模拟或逼近求解区域。由于单元能按各种不同的联结方式组合在一起,且单元本身又可有不同的几何形状,因此可以适应几何形状复杂的求解域。相限元的另一特点是利用每一单元内假设的近似函数来表示全求解区域上待求的未知场函数。单元内的近似函数由未知场函数在各个单元结点上数值以及插值函数表达,这就使未知场函数的结点值成为新的未知量,把一个连续的无限自由度问题变成离散的有限自由度问题,只要结点来知量解出,便可以确定单元组合体上的场函数。随着单元数目的增加,近似解收敛于精确解。但是有限元方法常常需要很大的存贮容量,甚至大得无法计算;由于相邻界面上只能位移协调,对于奇异性问题(应力出现间断)的处理比较麻烦。这是有限单元法的不足之处。 边界元法 边界元法是在有限元法之后发展起来的一种较精确有效的工程数值分析方法。与有限元法在连续体域内划分单元的基本思想不同,边界元法是在定义域的边界上划分单元,用满足控制方程的函数去逼近边界条件,通过对边界分元插值离散,化为代数方程组求解。降低了问题的维数,可用较简单的单元准确地模拟边界形状,利用微分算子的解析的基本解作为边界积分方程的核函数,而具有解析与数值相结合的特点,通常具有较高的精度。边界元法的主要缺点是它的应用范围以存在相应微分算子的基本解为前提,对于非均匀介质等问题难以应用,故其适用范围远不如有限元法广泛,而且通常由它建立的求解代数方程组的系数阵是非对称满阵,对解题规模产生较大限制。 上述两种数值方法的主要区别在于,边界元法是“边界”方法,而有限元法是“区域”方法,但都是针对连续介质而言,只能获得某一荷载或边界条件下的

固体力学中的边界积分方程及其边界元法综述

计算固体力学 读书报告 固体力学中的边界积分方程及其边界元法 综述 Review of the Boundary Integral Equation and Boundary Element Method in Solid Mechanics 土木工程系 2014年03月17日

评语

目录 摘要 (2) A BSTRACT (2) 一、引言 (3) 1)什么是边界元法[1] (3) 2)积分方程和边界元法的发展历史[2] (3) 二、边界元法[5] (4) 1)概述 (4) 2)基本解 (4) 3)拉普拉斯(Laplace)积分方程 (5) 4)拉普拉斯(Laplace)边界积分方程 (6) 5)拉普拉斯(Laplace)积分方程离散化与解法 (6) 6)泊松(Poisson)边界积分方程 (7) 三、结束语 (8) 参考文献 (9)

摘要 本文综述了边界元法的历史、现状及发展,并对积分方程和边界元法的原理进行了简单推导。边界元法是在经典的积分方程的基础上,吸收了有限元法的离散技术而发展起来的计算方法,具有计算简单、适应性强、精度高的优点。它以边界积分方程为数学基础,同时采用了与有限元法相似的划分单元离散技术,通过将边界离散为边界元,将边界积分方程离散为代数方程组,再用数值方法求解代数方程组,从而得到原问题边界积分方程的解。用传统的有限单元法求解不可压缩材料会遇到严重困难,但是用边界元法求解这类材料不会有任何问题。近年来随着将快速多级算法引入边界元法,使边界元法的计算效率和解题规模都有了几个数量级的提高。 关键词:边界元法积分方程边界离散快速多级算法 Abstract This paper reviews the history, current situation and development of the boundary element method and deduced the integral equation. The boundary element method is based on the integral equation and absorbed the discrete technology of finite element method. It has the advantages of simple calculation, strong adaptability and high accuracy. It is based on the boundary integral equation, though boundary discretization discrete boundary integral equations into algebraic equations, and then by the numerical method solving algebraic equations, thus obtain the original problem solution of boundary integral equations. The solution of nearly or exactly incompressible material problems presents serious difficulties and errors when using the conventional displacement-based finite element method, because the general stress-strain equations of elasticity contain terms that become infinite as Poisson’s ratio reaches 0.5, while the boundary element method accommodates such problems without any difficulty due to the nature of the integral equations used in the analysis. In recent years, the fast multi-pole boundary element method has received much attention because some large-scale engineering design and analysis problems were analyzed faster using boundary element method than with finite element method. This new trend suggests future prospects for boundary element method applications. Keywords:Boundary Element Method; Integral Equation; Boundary Discretization Method; Fast Multipole Algorithm

求第一类Fredholm积分方程的离散正则化方法

求第一类Fredholm积分方程的离散正则化方法 【摘要】基于矩阵奇异值分解的离散正则化算法,本文给出了第一类Fredholm积分方程的求解方法。并通过算例验证了此算法的可行性。 【关键词】第一类Fredholm积分方程;矩阵奇异值;正则化方法 0 引言 在实际问题中,有很多数学物理方程反问题的求解最后总要归结为一个第一类算子方程: Kx=y(1) 的求解问题,其中K是从Hilbert空间X到Hilbert空间Y一个有界线性算子,x∈X,y∈Y。通常右端项y是观测数据,因而不可避免的带有一定的误差δ。文中假设方程(1)的右端的扰动数据yδ∈Y满足条件:yδ-y≤δ(C1)。我们需要求解扰动方程Kx=yδ∈Y。(2) 通常境况下,当K为紧算子时,方程(1)的求解时不适定的[1]。即右端数据的小扰动可导致解的巨大变化。消除不稳定性的一个自然的方式是用一族接近适定问题的模型去逼近原问题,比如最著名的Tikhonov正则化方法,用如下适定的算子方程: 去逼近原问题Kx=yδ,其中α>0为一正的“正则参数”,K*表示K的伴随算子。正则化[2-3]是近似求解方程(1)的一种有效方法。Krish应用奇异系统理论提出的正则化子的概念,这给正则化方法的建立提供了新的理论依据。本文利用基于矩阵奇异值分解的离散正则化算法,通过适当选取正则化参数进行不适定问题的求解。 1 基于矩阵奇异值分解的离散正则化算法 矩阵的奇异值分解(SVD)是现代数值线性代数中最重要的基本计算分析工具之一,它具有优良的数值稳定性。其重要应用领域包括矩阵理论以及自动控制理论,力学和物理学等,还有更多的应用方面尚在继续探索中。 对于一般算子方程Kx=y,利用高斯-勒让德求积公式、复化梯形公式或者复化辛普森求积公式等的数值方法将它离散得到一个矩阵方程Ax=y,这样,算子方程Kx=y的求解就转化为矩阵方程: 的求解。 定义设A是m×n实矩阵(m≥n),称n阶方阵ATA的非零特征值的算术平

1. 积分方程一般概念与弗雷德霍姆方程

第十五章 积分方程 积分方程论是泛函分析的一个重要分支,它是研究数学其他学科(例如偏微分方程边值问题)和各种物理问题的一个重要数学工具。本章叙述线性积分方程,重点介绍弗雷德霍姆积分方程的性质和解法;并简略地介绍了沃尔泰拉积分方程以及一些奇异积分方程;此外,还扼要地叙述积分方程的逐次逼近法和预解核,并举例说明近似解法;最后考察了一个非线性积分方程。 §1 积分方程一般概念与弗雷德霍姆方程 一. 积分方程一般概念 1. 积分方程的定义与分类 [线形积分方程] 在积分号下包含未知函数y (x )的方程 ()()()()(),d b a x y x F x K x y αλξξξ=+? (1) 称为积分方程。式中α(x ),F (x )和K (x,ξ)是已知函数,λ,a,b 是常数,变量x 和ξ可取区间(a,b ) 内的一切值;K (x,ξ)称为积分方程的核,F (x )称为自由项,λ称为方程的参数。如果K (x,ξ)关于x,ξ是对称函数,就称方程(1)是具有对称核的积分方程;如果方程中的未知函数是一次的,就称为线性积分方程,方程(1)就是线性积分方程的一般形式;如果F (x )≡0 ,就称方程(1)为齐次积分方程,否则称为非齐次积分方程。 [一维弗雷德霍姆积分方程(Fr 方程)] 第一类Fr 方程 ()()(),d b a K x y F x ξξξ=? 第二类Fr 方程 ()()()(),d b a y x F x K x y λξξξ=+? 第三类Fr 方程 ()()()()(),d b a x y x F x K x y αλξξξ=+? [n 维弗雷德霍姆积分方程] 111()()()()(),d D P y P F P K P P y P P α=+? 称为n 维弗雷德霍姆积分方程,式中D 是n 维空间中的区域,P ,P 1∈D ,它们的坐标分别是 (x 1,x 2, ,x n )和),,,(21 n x x x ''' ,α(P )=α(x 1,x 2, ,x n ),F (P )=F (x 1,x 2, x n )和K (P ,P 1)=K (x 1,x 2, ,x n , ),,,21 n x x x ''' 是已知函数,f (P )是未知函数。 关于Fr 方程的解法,一维和n (>1)维的情况完全类似,因此在以后的讨论中仅着重考虑一维Fr 方程。 [沃尔泰拉积分方程] 如果积分上限b 改成变动上限,上面三类Fr 方程分别称为第一、第二、第三类沃尔泰拉积分方程。 由于第三类Fr 方程当α(x )在(a ,b )内是正函数时,可以化成

弹性动力学问题一种新的时空域边界积分方程_姚振汉

2009全国结构动力学学术研讨会 安徽省安庆市,2009.10.28-31 中国振动工程学会结构动力学专业委员会 弹性动力学问题一种新的时空域边界积分方程i 姚振汉 清华大学航天航空学院工程力学系, 北京, 100084 Email: demyzh@https://www.wendangku.net/doc/dd7996129.html, 摘要:弹性动力学问题传统的时空域边界积分方程采用含时间的基本解基于动力学互等定理来建立。弹性动力学含时间的基本解是在无限弹性空间某点于某瞬时作用单位集中力脉冲的解,其中不仅含有压力波、剪切波,还有波速介于两者之间的Laplace波。本文采用加权余量格式由弹性动力学偏微分方程初边值问题出发导出一种新的时空域边界积分方程。方程中只分别利用于某瞬时会聚于弹性体边界某点的球面会聚压力波和剪切波作为核函数,从而使方程显著简化。由此建立的边界元法将比传统方法具有更高的计算效率。 关键词:弹性动力学,边界积分方程,边界元法,球面会聚压力波,球面会聚剪切波 引言 众所周知,边界元法是比有限元法稍晚几年发展起来的,最早可以看到关于间接法的一系列工作,其中求解的边界未知量并不是原问题未知场变量的边界值,而是为求解而引进的辅助变量。最早的间接法边界积分方程方法的文献可追溯到1958年(Smith 和 Pierce用于位势问题)。直接法边界积分方程方法的文献出现得稍晚一些,1963年 Jaswon将其用于位势问题。1967年Rizzo发表了关于弹性静力学问题直接法边界积分方程方法的论文,我国从事固体力学边界元法研究的一些作者曾经把它作为边界元法的第一篇文献。1968年Cruse和Rizzo就发表了弹性动力学问题直接法边界积分方程方法的文章[1, 2]。弹性动力学问题在重大工程问题中广泛存在,因此弹性动力学是固体力学边界元法中最重要的研究领域之一。在近年Aliabadi的边界元法专著[3]中也有专门的一章。 上述最早的弹性动力学边界积分方程方法的文献将边界元结合Laplace变换,然后求解变换域中的椭圆型方程,后来Manolis和Beskos对其做了一些改进[4]。时间-空间域边界元描述最早是由Cole、Kosloff和Minster于1978年对反平面问题给出的[5],后来Niwa、Kobayashi和Kitahara给出了一般形式的描述[6]。进一步的改进还可见于Antes[7],Karabalis和Beskos[8],以及Mansur等的文献[9]。 基于弹性动力学方程的问题除弹性波问题之外还有弹性体振动问题。主要对于后者,Nardini和Brebbia基于弹性静力学描述导出了质量阵和刚度阵[10],后来发展成为双重互易法,用于将惯性力的域内积分化为边界积分。弹性动力学边界元法在广泛的应用中受到重视,还进一步发展了用于土壤-结构相互作用和动态断裂力学的方法。 弹性动力学传统的时空域边界积分方程采用含时间的基本解、基于动力学互等定理来建立。该基本解是在无限弹性空间某点于某瞬时作用单位集中力脉冲的解,其中不仅含有压力波、剪切波,还有波速介于两者之间的Laplace波。 i此项研究得到国家自然科学基金资助(10602029) 117

伽辽金法求简支平板的屈曲载荷

This program calculates the buckling load for a simply supported plate using the Galerkin method. The region considered for the plate in this case is, x=0, x=1, and y=0, y=1 (* Definition of trial function which satisfies the given boundary conditions. The least order defined for this case.*) order=8; poly[n_]: Sum [a[(i+j) (i+j+1) / 2+i+1] x^i y^ j, {i, 0,n},{j, 0,n - i}] (*Generating the trial function using the above function definition*) poly[order] (*Applying the boundary conditions *) eq1 =CoefficientList[poly[order] / . x?>0 , y] eq2 =CoefficientList[poly[order] / . x?>1 , y] eq3 =CoefficientList[poly[order] / . y?>0 , x] eq4 =CoefficientList[poly[order] / . y?>1 , x] 63 eq5 =CoefficientList[D[poly[order] , {x, 2}] +v( D[poly[order],{y, 2}] ) / . x?>0 , y] eq6 =CoefficientList[D[poly[order] ,{x, 2}] +v( D[poly[order],{y, 2}] ) / . x?>1 , y] eq7 =CoefficientList[D[poly[order] ,{y, 2}] +v( D[poly[order],{x, 2}] ) / . y?>0 , x] eq8 =CoefficientList[D[poly[order] ,{y, 2}] +_v( D[poly[order],{x, 2}] ) / . y?>1 , x] (*Flatten command used for grouping all the eight equations together *) Eq = Flatten[ { eq1, eq2, eq3, eq4, eq5, eq6, eq7, eq8} ] (* Tabulating all the eight equations using the Table command *) Equn = Table[ Eq[ [ i ]] == 0, {i ,1, Length[Eq] } ] (* Solving all the eight equations and generating the coefficients *) sol = Solve[ Equn, Table[a[i], {i, 1, 60} ]][[1]] [ [ 1] ]是指第一个解,变量是a[i],用Table列出每一个变量。Equn里每一行都有a[i]的系数,i最大为45,所以Table里i从1到至少45。 (* Substituting the values of coefficients back into the equations *) poly1 = poly[order] / . sol 方程的解的形式为sol,将计算结果替换原方程未知数 {a[1]→0,a[2]→0,a[3]→0,……} 上式中是将已经求出来的a[i]的解替换原来变量。解的形式为a[1]→0等。 (* Simplifying the equation by taking out common terms *)

非线性Volterra积分方程(学习资料)

一类第二种非线性Volterra 积分方程 积分数值解方法 1前言 微分方程和积分方程都是描述物理问题的重要数学工具,各有优点.相对于某种情况来说,对于某种物理数学问题,积分方程对于问题的解决比微分方程更加有优势,使对问题的研究更加趋于简单化,在数学上,利用积分形式讨论存在性、唯一性往往比较方便,结果也比较完美,所以研究积分方程便得越来越有用,日益受到重视. 积分方程的发展,始终是与数学物理问题的研究息息相关.一般认为,从积分发展的源头可以追溯到国外的数学家克莱茵的著作《古今数学思想》,该书是被认为第一个清醒的认为应用积分方程求解的是Abel.Abel 分别于1833年和1826年发表了两篇有关积分方程的文章,但其正式的名称却是由数学家du Bois-Raymond 首次提出的,把该问题的研究正式命名为积分方程。所以最早研究积分方程的是Abel,他在1823年从力学问题时首先引出了积分方程,并用两种方法求出了它的解,第一的积分方程便是以Abel 命名的方程.该方程的形式为:?=-b a a x f dt t x t )()() (?,该方程称为广义Abel 方程,式中a 的值在(0,1)之间.当a=21时,该式子便成为)()(x f dt t x x x a =-??.在此之前,Laplace 于1782年所提出的求Laplace 反变换问题,当时这个问题就要求解一个积分方程.但是Fourier 其实已经求出了一类积分方程的反变换,这就说明在早些时候积分方程就已经在专业性很针对的情况下得到了研究,实际上也说明了Fourier 在研究反变换问题是就相当于解出了一类积分方程.积分方程的形成基础是有两位数学家Fredholm 和V olterra 奠定的,积分方程主要是研究两类相关的方程,由于这两位数学家的突出贡献,所以这两个方程被命名为Fredholm 方程和V olterra 方程。后来又有德国数学家D.Hilbert 进行了重要的研究,并作出了突出的贡献,由于D.Hilbert 领头科学家的研究,所以掀起了一阵研究积分方程的热潮,并出现了很多重要的成果,后来该理论又推广到非线性部分。我国在60年代前,积分方程这部分的理论介绍和相关书本主要靠翻译苏联的相关书籍,那时研究的积分方程基本是一种模式,即用古典的方法来研究相关的积分方程问题,这样使得问题的研究变得繁琐、复杂,在内容方面比较单一、狭隘,甚至有些理论故意把积分方程的研究趋向于复杂化。随着数学研究的高速发展,特别是积分方程近年来的丰富发展,如此单一、刻板的解法已经不能跟上数学研究时代的步伐。在九十年代我国的数学专家路见可、钟寿国出版了《积分方程论》,该书选择2L 空间来讨论古典积分方程,并结合泛函分析的算子理论来分析积分方程的相关问题。最近出版的比较适

边界元法发展综述

边界元法发展综述 刘娅君 学号:11080922005 从工程实际中提出的力学问题,一般可归结为数学的定解问题。但其中只有极少数简单情况可以求得解析解,而大多情况都必需借助于有效的数值方法来求解。有限元法是目前工程中应用最广泛的数值方法,已有很多通用程序和专用程序在各个工程领域投人了实际应用。然而,有限元法本身还存在一些缺点。例如,在应力分析中对于应力集中区域必须划分很多的单元,从而增加了求解方程的阶数,计算费用也就随之增加;用位移型有限元法求解出的应力的精度低于位移的精度,对于一个比较复杂的问题必须划分很多单元,相应的数据输人量就很大,同时,在输出的大量信息中,又有许多并不是人们所需要的。 边界积分方程—边界元法在有限元法之后发展起来成为工程中广泛应用的一种有效的数值分析方法。它的最大特点就是降低了问题的维数,只以边界未知量作为基本未知量,域内未知量可以只在需要时根据边界未知量求出。在弹性问题中,由于边界元法的解精确满足域内的偏微分方程,因此它相对有限元法的解具有较高的精度。同时在一些领域里,例如线弹性体的应力集中问题,应力有奇异性的弹性裂纹问题,考虑脆性材料中裂纹扩展的结构软化分析,局部进人塑性的弹塑性局部应力问题以及弹性接触问题…等,边界元法已被公认为比有限元法更为有效。正是因为这些特点,使边界元法受到了力学界、应用数学界及许多工程领域的研究人员的广泛重视。 边界元与有限元相比有很多优点:首先,它能使问题的维数降低一维,如原为三维空间的可降为二维空间,原为二维空间的问题可降为一维。其次,它只需将边界离散而不象有限元需将区域离散化,所划分的单元数目远小于有限元,这样它减少了方程组的方程个数和求解问题所需的数据,不但减少了准备工作,而且节约了计算时间。第三,由于它是直接建立在问题控制微分方程和边界条件上的,不需要事先寻找任何泛函,不像以变分问题为基础的有限元法,如果泛函不存在就难于使用。所以边界元法可以求解经典区域法无法求解的无限域类问题。最后,由于边界元法引入基本解,具有解析与离散相结合的特点,因而具有较高的精度。

积分方程

积分方程理论的发展,始终与数学物理问题的研究紧密相联,它在工程、力学等方面有着极其广泛的应用。通常认为,最早自觉应用积分方程并求出解的是阿贝尔(Abel),他在1823年研究质点力学问题时引出阿贝尔方程。此前,拉普拉斯(Laplace)於1782年在数学物理中研究拉普拉斯变换的逆变换以及傅里叶(Fourier)於1811年研究傅里叶变换的反演问题实际上都是解第一类积分方程。随着计算技术的发展,作为工程计算的重要基础之一,积分方程进一步得到了广泛而有效地应用。如今,“物理问题变得越来越复杂,积分方程变得越来越有用”。 积分方程与数学的其他分支,例如,微分方程、泛函分析、复分析、计算数学、位势理论和随机分析等都有着紧密而重要地联系。甚至它的形成和发展是很多重要数学思想和概念的最初来源和模型。例如,对泛函分析中平方可积函数、平均收敛、算子等的形成,对一般线性算子理论的创立,以至於对整个泛函分析的形成都起着重要的推动作用。积分方程论中许多思想和方法,例如,关於第二种弗雷德霍姆(Fredholm)积分方程的弗雷德霍姆理论和奇异积分方程的诺特(Noether)理论以及逐次逼近方法,本身就是数学中经典而优美的理论和方法之一。 编辑本段起源 积分号下含有未知函数的方程。其中未知函数以线性形式出现的,称为线性积分方程;否则称为非线性积分方程。积分方程起源于物理问题。牛顿第二运动定律的出现,促进了微分方程理论的迅速发展,然而对积分方程理论发展的影响却非如此。1823年,N.H.阿贝尔在研究地球引力场中的一个质点下落轨迹问题时提出的一个方程,后人称之为阿贝尔方程,是历史上出现最早的积分方程,但是在较长的时期未引起人们的注意。“积分方程”一词是 P.du B.雷蒙德于1888年首先提出的。19世纪的最后两年,瑞典数学家(E.)I.弗雷德霍姆和意大利数学家V.沃尔泰拉开创了研究线性积分方程理论的先河。从此,积分方程理论逐渐发展成为数学的一个分支。 1899年,弗雷德霍姆在给他的老师(M.)G.米塔-列夫勒的信中,提出如下的方程 公式 , (1) 式中φ(x)是未知函数;λ是参数,K(x,y)是在区域0 ≤x,y≤1上连续的已知函数;ψ(x)是在区间0≤x≤1上连续的已知函数。并认为方程(1)的解可表为关于λ的两个整函数之商。1900年,弗雷德霍姆在

积分方程的数值计算技巧

实验七积分方程的数值计算方法 1. 实验描述 计算 32 sin(4)x x e dx - ?定积分的近似值,起始容差00.00001 ε= 1.用组合梯形公式M=10计算。 2.用组合辛普生公式M=5计算。 3.用龙贝格积分计算。 4.用自适应积分方法计算。 2. 实验内容 1. 用组合梯形公式M=10计算。 图1. 组合梯形算法流程图

将积分区间[],a b划分为宽度为()/ =-的M个子区间,再将各区间的面积 h b a M 求和即可得到近似面积。 2.用组合辛普生公式M=5计算。Array 图2. 组合辛普森算法流程图 将积分区间[],a b划分为宽度为()/2 h b a M =-的2M个子区间,再由辛普森公式将各区间的面积求和即可得到近似面积。 3.用龙贝格积分计算。

图3.龙贝格积分算法流程图 ①.由递归梯形公式序列得到递归辛普森序列序列。 ②.由递归辛普森序列序列得到递归布尔公式序列。

③.通过理查森改进提高误差项的阶数。 4.用自适应积分方法计算 图4.自适应积分算法流程图 在辛普森公式基础上,将区间再进行划分,即为自适应积分。 3. 实验结果及分析 真实值S = 0.19971466216144 1. 用组合梯形公式M=10计算。 面积近似值S1 =0.16965032127666。误差error1=0.03006434088479。 2.用组合辛普森公式M=5计算 4.660686426147481*10-。面积近似值S2 =0.19966805529718。误差error2=5 3.用龙贝格积分计算。 表1.龙贝格积分表

混合体-面积分方程法

10.2.2 数值例子 下面给出几个数值示例来说明体-面积分方程法在微带天线分析计算中的应用。在1°节中,我们给出有限地面/基片线馈微带天线的输入阻抗计算,包括弯曲地面/基片对微带天线输入阻抗的影响。在2°节中,我们分析曲面上微带天线的互耦。 1°线馈微带天线的输入阻抗 图10.2-3给出了一种线馈贴片天线的几何结构。贴片和基片(假设地面与基片大小相同)的参数为a=76mm,b=114 mm,c=56.3mm,w=4.406 mm,基片厚 ε=,损耗角正切为0.001。天线馈线度h=1.587 mm。基片材料的介电常数 2.62 r 长度为L=110 mm。对于这个天线模型,用矩量法求解的总未知数是1053个,其中421个表面未知数和632个体元未知数。我们在7个频率上计算输入阻抗,7个频率均匀分布在1.57 ~1.216 GHz范围内。 图10.2-4(a)给出了对较大基片尺寸(d=20 mm)微带天线计算的输入阻抗,并且与文献[12]中的测量结果进行了比较。可见,基片较大时微带天线输入阻抗的计算结果与测量结果一致。图4(b)给出了四种不同的基片尺寸,即d=0,6.67 mm,13.3 mm和20 mm时天线输入阻抗的计算结果。从图10.2-4(b)中可以看到,当天线基片尺寸减小时天线输入阻抗迅速变化。当基片尺寸和贴片尺寸达到相同这一极端情况下,天线输入阻抗是完全不同于无限大基片天线的输入阻抗的。另外我们看到,小的基片/地面尺寸将对天线输入阻抗有很大的影响。这种对有限尺寸基片/地面输入阻抗的分析计算对于移动通信天线或便携设备天线的设计是非常有意义的。 图10.2-3 微带贴片天线几何关系

相关文档
相关文档 最新文档