文档库 最新最全的文档下载
当前位置:文档库 › 习题十 气体动理论

习题十 气体动理论

习题十 气体动理论
习题十 气体动理论

一、选择题

1.水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和化学能)?

(A) 66.7%. (B) 50%. (C) 25%. (D) 0. [ ]

2. 温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系:[ ]

(A) ε和w 都相等. (B) ε相等,而w 不相等. (C) w 相等,而ε不相等. (D) ε和w 都不相等.

3.一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们 (A) 温度相同、压强相同. (B) 温度、压强都不相同. (C) 同温,氦压强大于氮压强. (D) 同温,氦压强小于氮压强. [ ]

4.设图示的两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线;令()

2

O p

v 和()

2

H p

v 分别表示氧气和氢气的最概然速率,则

(A) 图中a表示氧气分子的速率分布曲线; ()2

O p

v /()2H

p v =4.

(B) 图中a表示氧气分子的速率分布曲线; ()2O

p v /()2

H

p v =1/4.

(C) 图中b表示氧气分子的速率分布曲线;()2

O

p v /()2

H

p v =1/4.

(C) 图中b表示氧气分子的速率分布曲线;()2

O

p v /()2

H

p v = 4. [ ]

5.在一个体积不变的容器中,储有一定量的理想气体,温度为T 0时,气体分子的平均速率为0v ,分子平均碰撞次数为0Z ,平均自由程为0λ.当气体温度升高为4T 0时,气体分子的平均速率v ,平均碰撞频率Z 和平均自由程λ分别为:[ ]

(A) v =40v ,Z =40Z ,λ=40λ. (B) v =20v ,Z =20Z ,λ=0λ. (C) v =20v ,Z =20Z ,λ=40λ. (D) v =40v ,Z =20Z ,λ=0λ. 6.两种不同的理想气体,若它们的最概然速率相等,则它们的 [ ]

(A) 平均速率相等,方均根速率相等. (B) 平均速率相等,方均根速率不相等.

(C) 平均速率不相等,方均根速率相等. (D) 平均速率不相等,方均根速率不相等.

二、填空题

1.有一个电子管,其真空度(即电子管内气体压强)为 1.0×10-5 mmHg ,则27 ℃ 时管内单位体积的分子数为_________________ .(玻尔兹曼常量k =1.38×10-23 J/K , 1 atm=1.013×105 Pa =76 cmHg )

为________________ Pa

3.储有某种刚性双原子分子理想气体的容器以速度v =100 m/s 运动,假设该容器突然停止,气体的全部定向运动动能都变为气体分子热运动的动能,此时容器中气体的温度上升 6.74K,由此可知容器中气体的摩尔质量M mol =__________. (普适气体常量R =8.31 J ·mol -1·K -1)

4.已知f (v )为麦克斯韦速率分布函数,v p 为分子的最概然速率.则()?

p f v v v 0

d 表示速率区间0 ~ v p

的 _;速率v >v p 的分子的平均速率表达式为_______ .

5.设气体分子服从麦克斯韦速率分布律,v 代表平均速率,v ?为一固定的速率区间,则速率在 v 到

v +v ?范围内的分子数占分子总数的百分率随气体的温度升高而 _ __(增加、降低或保持不变).

6.设容器内盛有质量为M 1和质量为M 2的两种不同单原子分子理想气体,并处于平衡态,其内能均为E .则此两种气体分子的平均速率之比为 .

三、计算题

1.设想每秒有2310个氧分子(质量为32原子质量单位)以-1500m s ?的速度沿着与器壁法线成45o 角的方向撞在面积为43210m -?的器壁上,求这群分子作用在器壁上的压强。

f (v ) θ

v

v

2.将1mol温度为T的水蒸气分解为同温度的氢气和氧气,试求氢气和氧气的热力学能(内能)之和比水蒸气的热力学能增加了多少?(所有气体分子均视为刚性分子)。

3.在半径为R的球形容器里贮有分子有效直径为d的气体,试求该容器中最多可以容纳多少个分子,才能使气体分子间不至于相碰?

第十二章气体动理论答案

一、选择题 1.下列对最概然速率p v 的表述中,不正确的是( ) (A )p v 是气体分子可能具有的最大速率; (B )就单位速率区间而言,分子速率取p v 的概率最大; (C )分子速率分布函数()f v 取极大值时所对应的速率就是p v ; (D )在相同速率间隔条件下分子处在p v 所在的那个间隔内的分子数最多。 答案:A 2.有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,那么由此可以得出下列结论,正确的是( ) (A )氧气的温度比氢气的高; (B )氢气的温度比氧气的高; (C )两种气体的温度相同; (D )两种气体的压强相同。 答案:A 3.理想气体体积为 V ,压强为 p ,温度为 T . 一个分子 的质量为 m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为: (A )pV/m (B )pV/(kT) (C )pV/(RT) (D )pV/(mT) 答案:B 4.有A 、B 两种容积不同的容器,A 中装有单原子理想气体,B 中装有双原子理想气体,若两种气体的压强相同,则这两种气体的单位体积的热力学能(内能)A U V ?? ???和B U V ?? ???的关系为 ( ) (A )A B U U V V ????< ? ?????;(B )A B U U V V ????> ? ?????;(C )A B U U V V ????= ? ?????;(D )无法判断。 答案:A 5.一摩尔单原子分子理想气体的内能( )。 (A )32mol M RT M (B )2i RT (C )32RT (D )32 KT 答案:C

06气体动理论习题解答课件

第六章 气体动理论 一 选择题 1. 若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子总数为( )。 A. pV /m B. pV /(kT ) C. pV /(RT ) D. pV /(mT ) 解 理想气体的物态方程可写成NkT kT N RT pV ===A νν,式中N =ν N A 为气体的分子总数,由此得到理想气体的分子总数kT pV N = 。 故本题答案为B 。 2. 在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态。A 种气体的分子数密度为n 1,它产生的压强为p 1,B 种气体的分子数密度为2n 1,C 种气体的分子数密度为3 n 1,则混合气体的压强p 为 ( ) A. 3p 1 B. 4p 1 C. 5p 1 D. 6p 1 解 根据nkT p =,321n n n n ++=,得到 1132166)(p kT n kT n n n p ==++= 故本题答案为D 。 3. 刚性三原子分子理想气体的压强为p ,体积为V ,则它的内能为 ( ) A. 2pV B. 2 5pV C. 3pV D.27pV 解 理想气体的内能RT i U ν2 =,物态方程RT pV ν=,刚性三原子分子自由度i =6, 因此pV pV RT i U 326 2===ν。 因此答案选C 。 4. 一小瓶氮气和一大瓶氦气,它们的压强、温度相同,则正确的说法为:( ) A. 单位体积内的原子数不同 B. 单位体积内的气体质量相同 C. 单位体积内的气体分子数不同 D. 气体的内能相同 解:单位体积内的气体质量即为密度,气体密度RT Mp V m ==ρ(式中m 是气体分子

(完整word版)大学物理气体动理论热力学基础复习题及答案详解

第12章 气体动理论 一、 填空题: 1、一打足气的自行车内胎,若在7℃时轮胎中空气压强为4.0×510pa .则在温度变为37℃,轮胎内空气的 压强是 。(设内胎容积不变) 2、在湖面下50.0m 深处(温度为4.0℃),有一个体积为531.010m -?的空气泡升到水面上来,若湖面的 温度为17.0℃,则气泡到达湖面的体积是 。(取大气压强为50 1.01310p pa =?) 3、一容器内储有氧气,其压强为50 1.0110p pa =?,温度为27.0℃,则气体分子的数密度 为 ;氧气的密度为 ;分子的平均平动动能为 ;分子间的平均 距离为 。(设分子均匀等距排列) 4、星际空间温度可达 2.7k ,则氢分子的平均速率为 ,方均根速率为 ,最概然速率 为 。 5、在压强为51.0110pa ?下,氮气分子的平均自由程为66.010cm -?,当温度不变时,压强 为 ,则其平均自由程为1.0mm 。 6、若氖气分子的有效直径为82.5910cm -?,则在温度为600k ,压强为21.3310pa ?时,氖分子1s 内的 平均碰撞次数为 。 7、如图12-1所示两条曲线(1)和(2),分别定性的表示一定量的 某种理想气体不同温度下的速率分布曲线,对应温度高的曲线 是 .若图中两条曲线定性的表示相同温 度下的氢气和氧气的速率分布曲线,则表示氧气速率分布曲线的 是 . 8、试说明下列各量的物理物理意义: (1) 12kT , (2)32 kT , (3)2i kT , (4)2 i RT , (5)32RT , (6)2M i RT Mmol 。 参考答案: 1、54.4310pa ? 2、536.1110m -? 3、25332192.4410 1.30 6.2110 3.4510m kg m J m ----???? 4、21 21121.6910 1.8310 1.5010m s m s m s ---?????? 图12-1

第七章 气体动理论答案

一.选择题 1、(基础训练1)[ C ]温度、压强相同的氦气与氧气,它们分子的平均动能ε与平均平动动能w 有如下关系: (A) ε与w 都相等. (B) ε相等,而w 不相等. (C) w 相等,而ε不相等. (D) ε与w 都不相等. 【解】:分子的平均动能kT i 2 = ε,与分子的自由度及理想气体的温度有关,由于氦气为单原子分子,自由度为3;氧气为双原子分子,其自由度为5,所以温度、压强相同的氦气与氧气,它们分子的平均动能ε不相等;分子的平均平动动能kT w 2 3 = ,仅与温度有关,所以温度、压强相同的氦气与氧气,它们分子的平均平动动能w 相等。 2、(基础训练3)[ C ]三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同, 而方均根速率之比为( )()()2 /122 /122 /12::C B A v v v =1∶2∶4,则其压强之比A p ∶B p ∶ C p 为: (A) 1∶2∶4. (B) 1∶4∶8. (C) 1∶4∶16. (D) 4∶2∶1. 【解】:气体分子的方均根速率:M RT v 32 = ,同种理想气体,摩尔质量相同,因方均根速率之比为1∶2∶4,则温度之比应为:1:4:16,又因为理想气体压强nkT p =,分子数密度n 相同, 则其压强之比等于温度之比,即:1:4:16。 3、(基础训练8)[ C ]设某种气体的分子速率分布函数为f (v ),则速率分布在v 1~v 2区间内的分子的平均速率为 (A) ? 2 1d )(v v v v v f . (B) 2 1 ()d v v v vf v v ?. (C) ? 2 1 d )(v v v v v f /?2 1 d )(v v v v f . (D) ? 2 1 d )(v v v v v f /0()d f v v ∞ ? . 【解】:因为速率分布函数f (v )表示速率分布在v 附近单位速率间隔内的分子数占总分子数的百分率,所以 ? 2 1 d )(v v v v v f N 表示速率分布在v 1~v 2区间内的分子的速率总与,而 2 1 ()d v v Nf v v ? 表示速率分布在v 1~v 2区间内的分子数总与,因此?2 1 d )(v v v v v f /?2 1 d )(v v v v f 表 示速率分布在v 1~v 2区间内的分子的平均速率。 4、(基础训练10)[ B ]一固定容器内,储有一定量的理想气体,温度为T ,分子的平均碰撞次数为 1Z ,若温度升高为2T ,则分子的平均碰撞次数2Z 为 (A) 21Z . (B) 12Z . (C) 1Z . (D) 12 1Z . 【解】:分子平均碰撞频率n v d Z 2 2π,因就是固定容器内一定量的理想气体,分子数密 度n 不变,而平均速率: v = 温度升高为2T ,则平均速率变为v 2,所以2Z =12Z 5、(自测提高3)[ B ]若室内生起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数减少了:(A)0、500. (B) 400. (C) 900. (D) 2100.

大学物理讲义(第10章气体动理论)第六节

§10.6能量按自由度均分定理 理想气体的内能和摩尔热容 在前几节中研究大量气体分子的无规则运动时,我们只考虑了分子的平动,对单原子分子来说,因为可被看作质点,平动是其唯一的运动形式.平动能是它的全部能量.但实际上,气体分子可以是双原子和多原子分子,它们不仅有平动,还有转动和分子内部原子的振动,气体分子无规则运动的能量应包括所有这些运动形式的能量,为了研究气体分子无规则运动的能量所遵从的统计规律,并进而计算理想气体的内能,需要首先引入自由度的概念. (关于自由度的概念在刚体部分已作介绍) 一、自由度 二、分子的自由度 气体分子的情况比较复杂.按气体分子的结构可分为单原子分子、双原子分子和多原子分子.单原子分子可看作自由质点,有3个自由度.在双原子分子中,如果原子间的位置保持不变(称刚性双原子分子),那么,这分子就可看作由保持一定距离的两个质点构成,这时有5个自由度,其中3个平动自由度,2个转动自由度.多原子分子中,整个分子看作自由刚体,即这些原子间的相互位置不变,其自由度数为6,其中3个属平动自由度,3个属转动自由度.事实上,双原子或多原子的气体分子一般不是完全刚性的,原子间的距离在原子间的相互作用下,要发生变化,分子内部要出现振动,因此,除平动自由度和转动自由度外,还有振动自由度.但在常温下,振动自由度可以不予考虑. 一般地说,如果分子由n 个原子组成,则这个分子最多有3n 个自由度,其中3个平动,3个转动,其余3n-6个为振动自由度. 三、能量按自由度均分定理 在§ 10.3中已经证明了理想气体分子的平均平动能是 kT m 2 3212=υ=ε平 因平动有3个自由度,所以分子的平动动能可表示为三个自由度上的平均平动动能之和,即 22222 1212121z y x m m m m υ+υ+υ=υ 又按统计假说,在平衡态下,大量气体分子沿各个方向运动的机会均等,由此可知 kT m m m m z y x z y x 2 121312121213122222222 =υ=υ=υ=υ?υ=υ=υ=υ)(

气体动理论剖析

1
质量为 m 摩尔质量为 M 的理想气体,在平衡态下,压强 p、体积 V 和热力学温度 T 的关系 式是
?
A、pV=(M/m)RT B、pT=(M/m)RV C、pV=(m/M)RT D、VT=(m/M)Rp
?
?
?
正确答案: C 我的答案:C 得分: 9.1 分
2
一定量某理想气体按
=恒量的规律膨胀,则膨胀后理想气体的温度
?
A、将降低 B、将升高 C、保持不变 D、升高还是降低,不能确定
?
?
?
正确答案: A 我的答案:A 得分: 9.1 分
3
在标准状态下,任何理想气体每立方米中含有的分子数都等于

? A、
? ? B、
? ? C、
? ? D、
?
正确答案: C 我的答案:A 得分: 0.0 分
4
有一截面均匀的封闭圆筒,中间被一光滑的活塞分隔成两边,如果其中的一边装有 0.1 kg 某一温度的氢气, 为了使活塞停留在圆筒的正中央, 则另一边应装入同一温度的氧气的质量 为
?
A、0.16 kg B、0.8 kg
?

?
C、1.6 kg D、3.2 kg
?
正确答案: C 我的答案:C 得分: 9.1 分
5
若理想气体的体积为 V,压强为 p,温度为 T,一个分子的质量为 m,k 为玻尔兹曼常量, R 为普适气体常量,则该理想气体的分子数为
?
A、pV / m B、pV / (kT) C、pV / (RT) D、pV / (mT)
?
?
?
正确答案: B 我的答案:C 得分: 0.0 分
6
一定量的理想气体在平衡态态下,气体压强 p、体积 V 和热力学温度 T 的关系式是
? A、
? ? B、

第四章 气体动理论 总结

第四章 气体动理论 单个分子的运动具有无序性 布朗运动 大量分子的运动具有规律性 伽尔顿板 热平衡定律(热力学第零定律) 实验表明:若 A 与C 热平衡 B 与C 热平衡 则 A 与B 热平衡 意义:互为热平衡的物体必然存在一个相同的 特征--- 它们的温度相同 定义温度:处于同一热平衡态下的热力学系统所具有的共同的宏观性质,称为温度。 一切处于同一热平衡态的系统有相同的温度。 理想气体状态方程: 形式1: mol M PV =RT =νRT M 形式2: 2 2 2111T V p T V p =形式3: nkT P = n ----分子数密度(单位体积中的分子数) k = R/NA = 1.38*10 –23 J/K----玻耳兹曼常数 在通常的压强与温度下,各种实际气体都服从理想气体状态方程。 §4-2 气体动理论的压强公式 V N V N n ==d d 1)分子按位置的分布是均匀的 2)分子各方向运动概率均等、速度各种平均值相等 k j i iz iy ix i v v v v ++=分子运动速度 单个分子碰撞器壁的作用力是不连续的、偶然的、不均匀的。从总的效果上来看,一个持续的平均作用力。 2213 212()323 p nmv p n mv n ω === v----摩尔数 R--普适气体恒量 描述气体状态三个物理量: P,V T 压 强 公 式

12 2 ω=mv 理想气体的压强公式揭示了宏观量与微观量统计平均值之间的关系,说明压强具 有统计意义; 压强公式指出:有两个途径可以增加压强 1)增加分子数密度n 即增加碰壁的个数 2)增加分子运动的平均平动能 即增加每次碰壁的强度 思考题:对于一定量的气体来说,当温度不变时,气体的压强随体积的减小而增大(玻意耳定律);当体积不变时,压强随温度的升高而增大(查理定律)。从宏观来看,这两种变化同样使压强增大,从微观(分子运动)来看,它们有什么区 别? 对一定量的气体,在温度不变时,体积减小使单位体积内的分子数增多,则单位时间内与器壁碰撞的分子数增多,器壁所受的平均冲力增大,因而压强增大。而当体积不变时,单位体积内的分子数也不变,由于温度升高,使分子热运动加剧,热运动速度增大,一方面单位时间内,每个分子与器壁的平均碰撞次数增多; 另一方面,每一次碰撞时,施于器壁的冲力加大,结果压强增大。 §4-3 理想气体的温度公式 nkT p =23 p =n ω 1322 2 ω=mv =kT 1. 反映了宏观量 T 与微观量w 之间 的关系 ① T ∝ w 与气体性质无关;② 温度具有统计意义,是大量分子集 体行为 ,少数分子的温度无意义。2. 温度的实质:分子热运动剧烈程度的宏观表现。3. 温度平衡过程就是能量平衡过程。 二.气体分子运动的方均根速率 kT v m 2 32 1 2 = ?2 m ol 3kT 3R T v = =m M 在相同温度下,由两种不同分子组成的混合气体,它们的方均根速率与其质量的平方根成正比 当温度T=0时,气体的平均平动动能为零,这时气体分子的热运动将停止。然而事实上是绝对零度是不可到达的(热力学第三定律),因而分子的运动是永不停息 的。 μRT m kT v v x = ==22 31 分子平均平动动能 温度的微观本质:理想气体的温度是分子平均平动动能的量度 摩尔质量

大学物理气体动理论热力学基础复习题集与答案解析详解

第12章 气体动理论 一、填空题: 1、一打足气的自行车内胎,若在7℃时轮胎中空气压强为4.0×5 10pa .则在温度变为37℃, 轮胎内空气的压强是 。(设内胎容积不变) 2、在湖面下50.0m 深处(温度为4.0℃),有一个体积为531.010m -?的空气泡升到水面上 来,若湖面的温度为17.0℃,则气泡到达湖面的体积是 。(取大气压强为50 1.01310p pa =?) 3、一容器内储有氧气,其压强为50 1.0110p pa =?,温度为27.0℃,则气体分子的数密度 为 ;氧气的密度为 ;分子的平均平动动能为 ; 分子间的平均距离为 。(设分子均匀等距排列) 4、星际空间温度可达2.7k ,则氢分子的平均速率为 ,方均根速率为 , 最概然速率为 。 5、在压强为5 1.0110pa ?下,氮气分子的平均自由程为66.010cm -?,当温度不变时,压强为 ,则其平均自由程为1.0mm 。 6、若氖气分子的有效直径为82.5910cm -?,则在温度为600k ,压强为2 1.3310pa ?时,氖分子1s 内的平均碰撞次数为 。 7、如图12-1所示两条曲线(1)和(2),分别定性的表示一定量的 某种理想气体不同温度下的速率分布曲线,对应温度高的曲线 是 .若图中两条曲线定性的表示相同温 度下的氢气和氧气的速率分布曲线,则表示氧气速率分布曲线的 是 . 图12-1

8、试说明下列各量的物理物理意义: (1) 12kT , (2)32 kT , (3)2i kT , (4)2 i RT , (5)32RT , (6)2M i RT Mmol 。 参考答案: 1、54.4310pa ? 2、536.1110m -? 3、2533 2192.4410 1.30 6.2110 3.4510m kg m J m ----???? 4、2121 121.6910 1.8310 1.5010m s m s m s ---?????? 5、6.06pa 6、613.8110s -? 7、(2) ,(2) 8、略 二、选择题: 教材习题12-1,12-2,12-3,12-4. (见课本p207~208) 参考答案:12-1~12-4 C, C, B, B. 第十三章热力学基础 一、选择题 1、有两个相同的容器,容积不变,一个盛有氦气,另一个盛有氢气(均可看成刚性分 子)它们的压强和温度都相等,现将 5 J 的热量传给氢气,使氢气温度升高,如果使氦气也 升高同样的温度,则应向氦气传递的热量是 ( ) (A ) 6 J (B ) 5 J (C ) 3 J (D ) 2 J 2、一定量理想气体,经历某过程后,它的温度升高了,则根据热力学定理可以断定: (1)该理想气体系统在此过程中作了功; (2)在此过程中外界对该理想气体系统作了正功;

第章气体动理论

第10章 气体动理论题目无答案 一、选择题 1. 一理想气体样品, 总质量为M , 体积为V , 压强为p , 绝对温度为T , 密度为?, 总分子数为N , k 为玻尔兹曼常数, R 为气体普适常数, 则其摩尔质量可表示为 [ ] (A) MRT pV (B) pV MkT (C) p kT ρ (D) p RT ρ 2. 如T10-1-2图所示,一个瓶内装有气体, 但有小孔与外界相通, 原来瓶内温度为300K .现在把瓶内的气体加热到400K (不计容积膨胀), 此时瓶内气体的质量为 原来质量的______倍. [ ] (A) 27/127 (B) 2/3 (C) 3/4 (D) 1/10 3. 相等质量的氢气和氧气被密封在一粗细均匀的细玻璃管内, 并由一 水银滴隔开, 当玻璃管平放时, 氢气柱和氧气柱的长度之比为 [ ] (A) 16:1 (B) 1:1 (C) 1:16 (D) 32:1 4. 一容器中装有一定质量的某种气体, 下列所述中是平衡态的为 [ ] (A) 气体各部分压强相等 (B) 气体各部分温度相等 (C) 气体各部分密度相等 (D) 气体各部分温度和密度都相等 5. 一容器中装有一定质量的某种气体, 下面叙述中正确的是 [ ] (A) 容器中各处压强相等, 则各处温度也一定相等 (B) 容器中各处压强相等, 则各处密度也一定相等 (C) 容器中各处压强相等, 且各处密度相等, 则各处温度也一定相等 (D) 容器中各处压强相等, 则各处的分子平均平动动能一定相等 6. 理想气体能达到平衡态的原因是 [ ] (A) 各处温度相同 (B) 各处压强相同 (C) 分子永恒运动并不断相互碰撞 (D) 各处分子的碰撞次数相同 7. 理想气体的压强公式 k 3 2 εn p = 可理解为 [ ] (A) 是一个力学规律 (B) 是一个统计规律 (C) 仅是计算压强的公式 (D) 仅由实验得出 8. 一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为p 1和p 2,则两者的大小关系是: [ ] (A) p 1> p 2 (B) p 1< p 2 (C) p 1=p 2 (D)不确定的 9. 在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态.A 种气体的分子数密度为n 1,它产生的压强为p 1;B 种气体的分子数密度为2n 1;C 种气体的分子数密度为3 n 1.则混合气体的压强p 为 [ ] (A) 3 p 1 (B) 4 p 1 (C) 5 p 1 (D) 6 p 1 10. 若室内生起炉子后温度从15?C 升高到27?C, 而室内气压不变, 则此时室内的分子数减少了 [ ] (A) % (B) 4% (C) 9% (D) 21% 11. 无法用实验来直接验证理想气体的压强公式, 是因为 T10-1-2图 T 10-1-3图

气体动理论

气体动理论 一、选择题 1.按照气体分子运动论,气体压强的形成是由于 ( ) (A )气体分子之间不断发生碰撞; (B )气体分子的扩散; (C )气体分子不断碰撞器壁; (D )理想气体的热胀冷缩现象. 2.理想气体中仅由温度决定其大小的物理量是( ) (A )气体的压强 (B )气体分子的平均速率 (C )气体的内能 (D )气体分子的平均平动动能 3. 在一个容积不变的封闭容器内理想气体分子平均速率若提高为原来的2倍,则( ) A .温度和压强都提高为原来的2倍 B .温度为原来的2倍,压强为原来的4倍 C .温度为原来的4倍,压强为原来的2倍 D .温度和压强都为原来的4倍 4.关于温度的意义,下列几种说法中错误的是:( ) A .气体的温度是分子平均平动动能的量度. B .气体的温度是大量气体分子热运动的集体表现,具有统计意义. C .温度的高低反映物质内部分子运动剧烈程度的不同. D .从微观上看,气体的温度表示每个气体分子的冷热程度. 5.容积为V 的容器中,贮有1N 个氧分子、2N 个氮分子和M kg 氩气的混合气体,则混合 气体在温度为T 时的压强为(其中A N 为阿佛伽德罗常数,μ为氩分子的摩尔质量)[ ] (A )kT V N 1 (B )kT V N 2 (C )kT V MN A μ (D )kT N M N N V A )(121μ ++ 6.一瓶氦气和一瓶氮气(均为理想气体)都处于平衡状态,质量密度相同,分子平均平动动 能相同,则它们( ) A 、温度相同、压强相同; B 、温度相同,但氦气的压强大于氮气的压强; C 、温度、压强都不相同; D 、温度相同,但氦气的压强小于氮气的压强 7.压强、温度相同的氩气和氮气,它们的分子平均平动动能k ε和平均动能ε的关系为 ( ) (A )和k ε都相等 (B )和k ε都不相等 (C )k ε相等,而 ε不相等 (D )ε相等,而k ε不相等 8.mol 2的刚性分子理想气体甲烷,温度为T ,其内能可表示为:( ) A 、kT 5; B 、kT 6; C 、RT 5; D 、RT 6.

气体动理论知识点总结

气体动理论知识点总结 注意:本章所有用到的温度指热力学温度,国际单位开尔文。 T=273.15+t 物态方程 A N PV NkT P kT nkT V m PV NkT PV vN kT vRT RT M =→= =' =→===(常用) 一、 压强公式 11()33 P mn mn = =ρρ=22v v 二、 自由度 *单原子分子: 平均能量=平均平动动能=(3/2)kT *刚性双原子分子: 平均能量=平均平动动能+平均平动动能=325222 kT kT kT += *刚性多原子分子: 平均能量=平均平动动能+平均平动动能=3 332 2 kT kT kT +=

能量均分定理:能量按自由度均等分布,每个自由度的能量为(1/2)kT 所以,每个气体分子的平均能量为2 k i kT ε= 气体的内能为k E N =ε 1 mol 气体的内能22 k A i i E N N kT RT =ε== 四、三种速率 p = ≈v = ≈v = ≈ 三、 平均自由程和平均碰撞次数 平均碰撞次数:2Z d n =v 平均自由程: z λ= =v 根据物态方程:p p nkT n kT =?= 平均自由程: z λ==v

练习一 1.关于温度的意义,有下列几种说法: (1)气体的温度是分子平均平动动能的量度。(2)气体的温度是大量气体分子热运动的集体表现,具有统计意义。 (3)温度的高低反映物质内部分子热运动剧烈程度的不同。 (4)从微观上看,气体的温度表示每个气体分子的冷热程度。(错) 解:温度是个统计量,对个别分子说它有多少温度是没有意义的。 3.若室内升起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数减少了: 解:PV NkT = 211227315 0.9627327N T N T +===+ 1210.04N N N N ?=-= 则此时室内的分子数减少了4%. 4. 两容器内分别盛有氢气和氦气,若他们的温度和质量分别相等,则:(A ) (A )两种气体分子的平均平动动能相等。 (B )两种气体分子的平均动能相等。 (C )两种气体分子的平均速率相等。 (D )两种气体的内能相等。 任何气体分子的平均平动动能都是(3/2)kT ,刚性双原子分子: 平均能量=平均平动动能+平均平动动能=3 252 2 2 kT kT kT +=

第10章 气体动理论

思考题 10-1 一定量的某种理想气体,当温度恒定时,其压强随体积的减小而增大;当体积恒定时,其压强随温度的升高而增大,从微观角度来看,压强增大的原因各是什么?(根据公式nkT p =) 10-2 试用气体动理论说明道尔顿分压定律. (根据公式nkT p =) 10-3 试用气体动理论解释阿伏伽德罗定律. (根据公式nkT p =) 10-4 地球大气层上层的电离层中,电离气体的温度可达到2000K ,离子数密度不过是1011m -3,这个温度是什么意思?一块锡放到该处会不会熔化?(分清温度和热量) 10-5 1mol 氢气与1mol 氦气的温度相同,则两种气体分子的平均平动动能是否相同?两种气体分子的平均动能是否相同?内能是否相等?(根据自由度、能量均分定理以及内能同温度的关系解释) 10-6 速率分布函数f (v )的物理意义是什么?说明下列各式的物理意义: (1)()f d υυ;(2)()Nf d υυ;(3) 2 1 ()f d υυ υυ?;(4)21 ()Nf d υ υυυ? 10-7 气体分子的平均速率、最概然速率和方均根速率的意义有何不同? 10-8 若某气体分子的自由度是i ,能否说每个分子的能量都等于2 ikT ?(根据统计的特征来解释) 10-9 将沿铁路运行的火车、在海面上航行的轮船视为质点,它们的自由度各为多少?若把在空中飞行的飞机视为刚体,自由度为多少?(1,2,4) 10-10 一绝热敞口容器中盛有某种液体,液体蒸发过程中会导致液体温度的下降,试利用气体动理论解释其原因.(温度的微观本质是分子热运动剧烈程度的量度,气体的分子的平均平动动能与气体温度成正比。液体蒸发时一些平动动能较大的分子离开液体,导致分

第8章 气体动理论习题解答

习题 8-1 设想太阳是由氢原子组成的理想气体,其密度可当成是均匀的。若此理想气体的压强为1.35×1014 Pa 。试估计太阳的温度。(已知氢原子的质量m = 1.67×10-27 kg ,太阳半径R = 6.96×108 m ,太阳质量M = 1.99×1030 kg ) 解:m R M Vm M m n 3 π)3/4(== = ρ K 1015.1)3/4(73?===Mk m R nk p T π 8-2 目前已可获得1.013×10-10 Pa 的高真空,在此压强下温度为27℃的1cm 3体积内有多少个气体分子? 解:3462310 /cm 1045.210300 1038.110013.1?=????===---V kT p nV N 8-3 容积V =1 m 3的容器内混有N 1=1.0×1023个氢气分子和N 2=4.0×1023个氧气分子,混合气体的温度为 400 K ,求: (1) 气体分子的平动动能总和;(2)混合气体的压强。 解:(1) J 1014.41054001038.12 3)(233232321?=?????=+=-∑N N kT t ε (2)Pa kT n p i 32323 1076.210540010 38.1?=????== -∑ 8-4 储有1mol 氧气、容积为1 m 3的容器以v =10 m/s 的速率运动。设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能。问气体的温度及压强各升高多少?(将氧气分子视为刚性分子) 解:1mol 氧气的质量kg 10323 -?=M ,5=i 由题意得 T R Mv ?=?ν2 5 %80212K 102.62-?=??T T R V p RT pV ?=???=νν

气体动理论和热力学-答案

理工科专业 《大学物理B 》 气体动理论 热力学基础 答: 112 3 V p 0 p O V V 12V 1 p 12p 1A B 图1 4、 给定的理想气体(比热容比γ为已知),从标准状态(p 0、V 0、T 0)开始,作绝热膨胀,体积增大到三倍,膨胀后的温度T =____________,压强p =__________. 答: 1 ) 1 (T -γ , )1 (p γ

图2 (A) 一定都是平衡态. (B) 不一定都是平衡态. (C) 前者一定是平衡态,后者一定不是平衡态. (D) 后者一定是平衡态,前者一定不是平衡态. ( C )4、一定量的理想气体,经历某过程后,温度升高了.则根据热力学定律可以断定: ① 该理想气体系统在此过程中吸了热. ② 在此过程中外界对该理想气体系统作了正功. ③ 该理想气体系统的内能增加了. ④ 在此过程中理想气体系统既从外界吸了热,又对外作了正功. 以上正确的断言是: (A) ① 、③ . (B) ②、③. (C) ③. (D) ③、④. ( D )5、有人设计一台卡诺热机(可逆的).每循环一次可从 400 K 的高温热源吸热1800 J ,向 300 K 的低温热源放热 800 J .同时对外作功1000 J ,这样的设计是 (A) 可以的,符合热力学第一定律. (B) 可以的,符合热力学第二定律. (C) 不行的,卡诺循环所作的功不能大于向低温热源放出的热量. (D) 不行的,这个热机的效率超过理论值. 三、判断题(每小题1分,请在括号里打上√或×) ( × )1、气体的平衡态和力学中的平衡态相同。 ( √ )2、一系列的平衡态组成的过程是准静态过程。 ( × )3、功变热的不可逆性是指功可以变为热,但热不可以变为功。 ( × )4、热传导的不可逆性是指热量可以从高温物体传到低温物体,但不可以从低温物体传到高温物体。 ( × )5、不可逆循环的热机效率1 2 1Q Q bukeni - <η。 四、简答题(每小题5分) 1、气体动理论的研究对象是什么?理想气体的宏观模型和微观模型各如何? 答:气体动理论的研究对象是大量微观粒子组成的系统。(1分)是从物质的微观结构和分子运动论出发,运用力学规律,通过统计平均的办法,求出热运动的宏观结果,(1分)再由实验确认的方法。(1分) 从宏观看,在温度不太低,压强不大时,实际气体都可近似地当作理想气体来处理,压强越低,温度越高,这种近似的准确度越高。(1分)理想气体的微观模型是把分子看成弹性的自由运动的质点。(1分) 2、用热力学第一定律和第二定律分别证明,在V p -图上一绝热线与一等温线不能有两个交点,如图2所示。 解:(1)由热力学第一定律有 W E Q +?= 若有两个交点a 和b ,则经等温b a →过程有 0111=-=?W Q E (1分) 经绝热b a →过程

气体动理论(附答案)

气体动理论 一、填空题 1. (本题3分)某气体在温度为T = 273 K时,压强为p=1.0×10-2atm,密度ρ= 1.24×10-2 kg/m3,则该气体分子的方均根速率为____________。(1 atm = 1.013×105 Pa) 答案:495m/s 2. (本题5分)某容器内分子密度为1026m-3,每个分子的质量为3×10-27kg,设其中1/6分子数以速率v=200m/s垂直向容器的一壁运动,而其余5/6分子或者离开此壁、或者平行此壁方向运动,且分子与容器壁的碰撞为完全弹性的。则 (1)每个分子作用于器壁的冲量ΔP=_____________; (2)每秒碰在器壁单位面积上的分子数n0=___________; (3)作用在器壁上的压强p=_____________; 答案:1.2×10-24kgm/s ×1028m-2s-1 4×103Pa 3. (本题4分)储有氢气的容器以某速度v作定向运动,假设该容器突然停止,气体的全部定向运动动能都变为气体分子热运动的动能,此时容器中气体的温度上升0.7K,则容器作定向运动的速度v=____________m/s,容器中气体分子的平均动能增加了_____________J。

(普适气体常量R=8.31J·mol-1·K-1,波尔兹曼常k=1.38×10-23J·K-1,氢气分子可视为刚性分子。) 答案::121 2.4×10-23 4. (本题3分)体积和压强都相同的氦气和氢气(均视为刚性分子理想气体),在某一温度T下混合,所有氢分子所具有的热运动动能在系统总热运动动能中所占的百分比为________。 答案:62.5% 5. (本题4分)根据能量按自由度均分原理,设气体分子为刚性分子,分子自由度为i,则当温度为T时, (1)一个分子的平均动能为_______。 (2)一个摩尔氧气分子的转动动能总和为________。 答案:ikT RT 6. (本题5分)图示的两条曲线分别表示氦、氢两种气体在相同温度T时分子按速率的分布,其中

第四章气体动理论

第四章 气体动理论 2-4-1选择题: 1、处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,都处于平衡态。以下说法正确的是: (A )它们的温度、压强均不相同。 (B )它们的温度相同,但氦气压强大于氮气压强。 (C )它们的温度、压强都相同。 (D) 它们的温度相同,但氦气压强小于氮气压强。 2、三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,方均根速率之比 4:2:1::222=C B A v v v , 则其压强之比C B A p p p ::为: (A) 1 : 2 : 4 (B) 1 : 4 : 8 (C) 1 : 4 : 16 (D) 4 : 2 : 1 3、一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m . 根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值为: (A) 2 x v =m kT 3 (B) 2x v = m kT 331 (C) 2 x v = m kT 3 (D) 2x v = m kT 4、关于温度的意义,有下列几种说法: (1) 气体的温度是分子热运动平均平动动能的量度. (2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义. (3) 温度的高低反映物质内部分子热运动剧烈程度的不同. (4) 从微观上看,气体的温度表示每个气体分子的冷热程度. 上述说法中正确的是 (A ) (1)、(2)、(4) (B ) (1)、(2)、(3) (C ) (2)、(3)、(4) (D) (1)、(3)、(4) 5、两容器内分别盛有氢气和氦气,若它们的温度和质量分别相等,则: (A) 两种气体分子的平均平动动能相等. (B) 两种气体分子的平均动能相等. (C) 两种气体分子的方均根速率相等. (D) 两种气体的内能相等. 6、一容器内装有N 1个单原子理想气体分子和N 2个刚性双原子理想气体分子,当该系统处在温度为T 的平衡态时,其内能为 (A) ??? ??++kT kT N N 2523)(21 (B) ??? ??++kT kT N N 2523)(2121

气体动理论习题解答,DOC

习题 8-1设想太阳是由氢原子组成的理想气体,其密度可当成是均匀的。若此理想气体的压强为1.35×1014Pa 。 解:(1) J 1014.41054001038.12 3)(233232321?=?????=+=-∑N N kT t ε(2)Pa kT n p i 323231076.21054001038.1?=????==-∑

2 8-4储有1mol 氧气、容积为1 m 3的容器以v =10 m/s 的速率运动。设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能。问气体的温度及 体的温度需多高? 解:(1)J 1065.515.2731038.12 323212311--?=???==kT t ε (2)kT 23 J 101.6ev 1t 19-==?=ε

8-7一容积为10 cm 3的电子管,当温度为300K 时,用真空泵把管内空气抽成压强为5×10-4mmHg 的高真空,问此时(1)管内有多少空气分子?(2)这些空气 量。 解:RT i E ν2= ,mol 1=ν 若水蒸气温度是100℃时

4 8-9已知在273K 、1.0×10-2atm 时,容器内装有一理想气体,其密度为1.24×10-2 kg/m 3。求:(1)方均根速率;(2)气体的摩尔质量,并确定它是什么气体;(3) 分子间均匀等距排列) 解:(1)325/m 1044.2?==kT p n

(2)32kg/m 297.1333====RT P RT p v p μμρ (3)J 1021.62 3 21-?==kT t ε (4)m 1045.3193-?=?=d n d (2)K 3.36210 38.1104.51021035.12322=??????==-Nk pV T 8-13已知)(v f 是速率分布函数,说明以下各式的物理意义:

第4章气体动理论基础学习知识

第4章 气体动理论基础 4-1为什么说系统分子数太少时,不能谈论压强与温度? 答:对少数几个分子而言不能构成热力学系统,分子间确实频繁碰撞,分子速率不满足统计规律,无论是从压强和温度的定义上来讲,还是从压强与温度公式的推导来看,都不满足谈论压强和温度的条件。 4-2已知温度为27℃的气体作用于器壁上的压强为pa 105 ,求此气体内单位体积里的分子数。 解:由 nkT P =,有 2523 510415.2300 1038.1101?=???==-kT P n ]m [3 - 4-3一个温度为17℃、容积3 3m 102.11-?的真空系统已抽到其真空度为pa 1033.13 -?。 为了提高其真空度,将它放在300℃的烘箱内烘烤,使吸附于器壁的气体分子也释放出来。烘烤后容器内压强为pa 33.1,问器壁原来吸附了多少个分子? 解:(1)当17=t ℃K 290=: 1723 3 1032.3290 1038.11033.1?=???==--kT P n ]m [3- 143 17 1072.31052.111032.3?=???==-nV N (1)当300=t ℃K 573=: 2010682.1' ' '?== kT P n ]m [3- 18 10884.1''?==V n N 181088.1'?=-=?N N N 4-4 比较平衡态下分子的平均平动动能、平均动能、平均能量哪个最大?哪个最小? 答:平均动能=平均平动动能+平均转动动能>平均平动动能 平均能量=平均动能+平均势能>平均动能 4-5 指出下列各式的物理意义:(1)kT 23; (2) kT i 2;(3) RT 23;(4) RT i 2 。 答:(1) kT 2 3 :分子平均平动动能;

高中物理气体动理论和热力学题库

高中物理气体动理论和热力学题库

气体动理论和热力学 卷面总分188 期望值0 入卷题数44 时间 分钟 第1大题: 选择题(57分) 1.1 (3分) 两个体积相等的容器中,分别储有氦气和氢气,以1E 和2E 分别表示氦气和氢气的内能,若他们的压强相同,则( ) (A )1E =2E (B )1E >2E (C )1E <2E (D )无法确定 1.2 (3分) 一瓶氮气和一瓶氦气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们 ( ) (A)温度相同、压强相同 (B)温度、压强都不相同 (C)温度相同,但氦气的压强大于氮气的压强 (D)温度相同,但氦气的压强小于氮气的压强 1.3 (3分) 不同种类的两瓶理想气体,它们的体积不同,但温度和压强都相同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(V E K /),单位体积内的气体质量p ,分别有如下关系:( ) (A)n 不同,(V E K /)不同,p 不同 (B)n 不同,(V E K /)不同,p 相同 (C)n 相同,(V E K /)相同, p 不同 (D)n 相同,(V E K /)相同, p 相同 1.4 (3分) 设M 为气体的质量,m 为气体分子质量,N 为气体分子总数目,n 为气体分子数密度,0N 为阿伏伽德罗常数,则下列各式中哪一式表示气体分子的平均平动动能?( ) (A) pV M m 23 (B) pV M m mol 23 (C) npV 2 3 (D) pV N M M mol 023 1.5 (3分) 置于容器内的气体,如果气体内各处压强相等,或气体内各处温度相同,则这两种情况下气体的状态 ( ) (A)一定都是平衡态 (B)不一定都是平衡态 (C)前者一定是平衡态,后者一定不是平衡态 (D)后者一定是平衡态,前者一定不是平衡态 1.6 (3分) 两容器内分别盛有氢气和氦气,若它们的温度和质量分别相等,则:( )

相关文档
相关文档 最新文档