文档库 最新最全的文档下载
当前位置:文档库 › 惠普V3000上电时序(945GM)

惠普V3000上电时序(945GM)

惠普V3000上电时序(945GM)
惠普V3000上电时序(945GM)

惠普V3000 945GM上电时序

不凡修维修论坛原创

https://www.wendangku.net/doc/db17944635.html, 板号:AKITA

EC:KB3910QF

南桥:ICH7

北桥:945GM

1 BAT_D

CMOS电池经过电阻R166输出电压BAT_D,为RTC实时时钟电路提供主供电:

在时序上,BAT_D,RTC_AUX_S5,RTCRST#关系如下:

2 AD+

插入电源适配器后,主供电经过U48后,输出AD+

AD+经过场管U3后,发出DCBATOUT

供电芯片得到主供电输入后,发出ACOK信号

经过场管Q29转换成AC_IN#信号(低电平有效)

3 5V_AUX_S5

系统供电芯片TPS51120 22PIN得到VIN主供电输入后,20PIN输出5V线性电

压51120_V5FILT,经过电阻R190后,输出5V_AUX_S5

5V_AUX_S5开启3D3V_AUX_S5

5 S5_ENABLE

EC KB3910得到主供电后,输出S5_ENABLE

输出到与门比较器,

EC_RST#信号为高电平 3.3V,S5_ENABLE为高电平

3.3V,U13pin4输出PWR_S5_EN

6 3D3V_S5

PWR_S5_EN输出到U40 PIN3,U40pin1输出3D3V_S5:

7 5V_S5

PWR_S5_EN输出到TPS51120 PIN29,开启系统供电5V,即:5V_S5

8 KBC_PWR_BTN#

机主按下开机按键后,发出KBC_PWR_BTN#给EC

KB3910SF pin29

9 PM_SLP_S4#,1D8V_S3,DDR_VREF_S3

EC收到KBC_PWR_BTN#信号后,发出SB_PWR_BTN#给南桥:

南桥芯片收到SB_PWR_BTN#信号后,发出PM_SLP_S4#,开启:1D8V_S3

DDR_VREF_S3

10 PM_SLP_S3#

南桥发出PM_SLP_S3#

导通U38,U39,开启:5V_S0,3D3V_S0

DDR_VREF_S0

2D5V_S0

1D5V_S0

1D05V_S0

11 CPUCORE_ON

供电芯片TPS51120,MAX8743,APL5912,工作正常后,发出PG信号:CPUCORE_ON,发给CPU供电芯片MAX8736:

12 VCC_CORE_S0

MAX8736收到CPUCORE_ON信号后,根据VID电压组合,发出对应CPU核心供电:VCC_CORE_S0

CPU供电芯片工作正常后,发出PG信号:VGATE_PWRGD

发给北桥芯片,

南桥芯片

CPU供电芯片发出CLK_EN#信号,开启系统时钟,

南桥得到时钟信号后,发出PM_SUS_CLK:

发给U50B,U50B收到时钟信号后,发出G792_32K

温控芯片G792收到时钟信号后,发出G792_RST#

发给南桥:

南桥收到PWROK后,发出H_PWRGD信号:

发给CPU:

17 南桥发出PCIRST1#,

复位读卡器管理芯片

18 PLT_RST#

南桥发出PLT_RST#

今流行笔记本主板intel架构电源时序讲解.

今流行筆記本主板intel架構電源時序講解 1.RTC電源:用以保持機器內部時鐘的運轉和保證CMOS配製信息在斷電的情況下不丟失; 2.在你插上電池或者電源適配器,但還沒按power鍵的時候(S5,機器內部的開啟的電稱為ALWAYS電,主要用以保證EC的正常運行; 3.你開機以後,所有的電力都開啟,這時候,我們稱為MAIN電(S0,以供整機的運行; 4.在你進待機的時候(S3,機器內部的電成為SUS電,主要是DDR的電力供應,以保證RAM內部的資料不丟失; 5.而休眠(S4和關機(S5的電是一樣的,都是Always電。 上文中括號內的是表示計算機的狀態(S0-開機,S3-待機,S4-休眠,S5-關機。 邏輯啟動時序: 1. 在插上電池或者電源的時候,等待用戶按下Power鍵的時候機器內部的單片機EC就Reset並開始工作,。在此期間的時序是:ALWAYS電開啟以後,EC Reset並開始運行,隨後發給南橋一個稱為`RSMRST#'的信號。這時候南橋的部分功能開始初始化並等待開機信號。這里要注意,這時候的南橋並沒有打開全部電源,只有很少一部分的功能可用,比如供檢測開機信號的PWRBTN# (PWR_SWIN2#3信號。 2. 用戶按下Power鍵的時候,EC檢測到一個電平變化(一般時序是:高-低-高,然後發送一個開機信號(PWRBTN# 南橋,南橋收到PWRBTN#信號後- 拉高 SLP_S5#,SLP_S4#,SLP_S3#信號,- 開啟了所有的外圍電壓,S電壓+VCCP PWR_GOOD3 等,並發送PM PWROK(表明外圍電源正常開啟信號。 WR-GOOD3 和PM_PMROK 發送給VCC_CORE芯片,VCC_CORE 產生後- 發出 VR_PWRGD_CK505信號送給CLK,CLK開始工作。- 同時VR_PWRGD會發送給南橋告知VCC_CORE電源已開啟OK。- 隨後南橋發出PCI_RST#和PLT_RST#總

很容易理解的上电时序

一步: 未插电源时主板准备上电的状态 装入电池后首先送出实时时钟RTCRST# &V_3V_BAT给南桥。 晶体(Crysta)提供 32.768KHZ频率给XX。 第二步: 插上电源后的主板动作时序 +5Vsb正常转换出+3VDUAL SIO(IT8712K> 67脚Check电源是否正常提供+5VSB电压。 SIO(IT8712K> 85脚发出RSMRST信号通知南桥+5VSB已经准备南桥正常送出待机时钟SUSCLK (32KHZ。 第三步: 按下电源按钮后的动作时序 使用者按下电源控制面板上电源按钮后,送出一个低电平触发脉冲给SIO (IT8712K)75 脚。 SIO( IT8712K收到后由72脚发出一个低电平触发脉冲给南桥。 SB送出SLP_S3和SLP_S4两个休眠信号给SIO( IT8712K)的71脚和77脚。 SIO(IT8712K 76 脚发出PS_ON#(Low开机信号给ATX Power的14 脚。 当ATX Power 接收到PSON#k High 变Low 后,ATX Power即送出士12V,+

3.3V, 士数组主要电压. 般当电源送出的+ 3.3Vand +5V正常后,SIO (IT8712K)的95 脚ATXPG言号由5V通过R450和R472两个 8.2K的电阻分压提供侦测信号。 Super IO侦测到5V电压正常后,即送出PWROK给南北桥,通知南北桥此时ATX Main Power 送出OK。 当ATX Power送出士12V, + 3.3V, 士数\组Ma in Power电压后,其它工作电压如+ 1.8V, + 1.5V, 1.05V, MCH 1.2V, 2.5V, 2.5V-DAC + 5VAVDD VTT-DDR 0.9V等也将随后全部送出。 当+VTT_GMCH送给CPU后,CPU会送出VTT_OL 控制产生VTT-PWRGDt 号[High]给CPU, VRM 芯片; CPU用VTT_PWRGD言号会发出VID[0:5]。 VRM芯片收到VTT_PWRGD后会根据VID组合送出Vcore. 在VCOREE常发出后,VCORE芯片即送出VRMGD信号给南桥ICH7,以通知南桥此时VCOR田经正常发出。

A80上电时序分析(上电全)

北京海泰雷特科技有限公司 彭络施 997149930
TOSHIBA A80 上电时序分析
电路图为 LA-2491 一. 预加电电路(点火电路) a) VIN 的产生: VIN 实为 Adapter 电压, 接入 AC 后, Adapter 的 15V 直流电压经由保险管 PF1 形成 15V 的 VIN。VIN 的作用如下:
1. 给 PU1 供电,PU1 的作用有二:首先,作为 VIN 检测电路;其次,作为预加电检测电路; 2. 经由 PQ4、PQ5 形成主电压 B+; 3. 通过 PD2、PR8 产生 VS:VS 与 BATT_A 相与合成产生 CHGRTCP(Charger RTC Power) , 以产生 RTCVREF;给检测电路 PU1 供电;给+3VALWP、+5VALWP 电源控制芯片 MAX1902 供电。 同时通过 PR85 产生 MAX1902 的 SHDN#。 需重点说明的是 VS 与 BATT_A 是如何相与后合成产生 CHGRTCP, 原因很简单, 因为 PQ1 采用 的是 TP0610T, TP0610T 其实是带有内部源-漏二极管的 P 沟道 MOS 管, 而 此二极管阳极接漏极 (PIN1) , 阴极接源极(PIN3) ,但电路图上并没有标明,所以容易产生误判。所以只要有了 VIN,则 VIN 会通 过 PQ1 内部的二极管而形成 CHGRTCP(而不是通内导电沟道,因为此时 PQ1 的栅极为 15V) ,从而 会马上产生 RTCVREF。 4. 通过 PD3,PR28、PR29、PR32 以及 B+电压端子上数个大电容组成了一个时间常数很大的 RC 延时电路,延时后产生的 B+(此时不是真正的系统主电压,只有当 PQ4 和 PQ5 完全导通后才能 真正的算得上产生了系统主电压 B+) 。延时的时间有几百毫秒。
b) VL 的产生 因为有了 VS,所以 MAX1902 PIN22 得到了 15V 的电源,且同时将 PIN23 (SHDN#) 抬为高电平,MAX1902 立即输出稳定的+5V VL。VL 电压将送往 PU1B 作为基准电压及 上拉电压,也作为 PU1B 判断 VL 存在的依据。 c) ACIN、PACIN 的产生(其实这个电路就是仁宝厂家最常用的所误谓的点火电路) 由图 1、图 2 可见,PU1A 及 PU1B 都为电压比较器,两个比较器为了更好的排除 干扰,使电路更加稳定,均采用了同相输入滞回较器,PR1 和 PR60 为反馈电阻 。电 压比较器采用的是 LM393,该器件输出为集电极开路输出,所以必须在输出端引入上 拉电阻 PR2、PR67。 当接入 AC 后,首先会产生 3.3V 的 RTCVREF,PU1 第三脚的电压为
PR 6 VIN PR 6 + PR3 20 K = 15V 61.9 K + 20 K = 3.7V
显然,PU1A 的正相端 3.7V 比反相端的 3.3V 高 0.4V,从理论上讲此时 PU1 会在 其 PIN1 输出 3.7V 的 ACIN、PACIN。但实际上此时 PIN1 输出的 ACIN、PACIN 是先 经过 2.3V 电压之后才上升为 3.7V 的。原因在于 PU1 PIN7 脚此时的电压为 OV,所以 导致 ACON(ACOFF#为 15V)此时电压为 0.7V,如图 2 所示。 注意的是, 这个电路是用来检测 VIN 大小的, 它决定多大的 VIN 可以输出 ACIN、 PACIN,要使 LM393 PIN1 能有输出,我们 LM393 PIN3 必须为 3.3V,这样 LM393 才 能进入临界状态,从来推算出 VIN。计算如下:

各个上电时序简要介绍

1. 上电时序的区别是不同厂家的上电时序在电路图中的电压标识符号不同,电压的开启顺序不同,这是不同时序的最大区别。 2. 仁宝的上电时序解析:首先出3v 5v 电感电压(3Valw 5vALW)以及vL线性电压,电感电压(3Valw 5v ALW)3Valw 给EC以及南桥3v待机点 5vALW也给南桥5v待机点当EC 有了供电之后外接晶振就会起振紧接着EC就会复位当南桥有了供电后外接晶振也会起振,此时EC发出rsmrst#给南桥待机完成等待用户按下开机按键。当用户按下开关键触发EC,EC发出EC_ON# 高电平紧接着EC发出PBTN_OUT#使南桥响应接着南桥发出 s5 s3 信号开启syson susp# 最后发出VR_ON 紧接着发出cpu电源好信号VGATE 接着EC发出ICH_PO K CL_PWROK (由南桥开启时钟电路)H_CPUPWRGD PCIRST# PLTRST# H_RESET# ADS# 3. 纬创的上电时序解析:纬创的时序先产生5v线性电压5V_AUX_S5 接着由5V_AUX_S5转换成3D3V_AUX_S5 此电压仅接着给EC供电,当EC有了供电外接晶振就会起振接着就有EC的复位此时EC发出s5_ENABLE信号开启系统 3v 5v 电压3D3V_S5和5v_S5 分别给南桥的3v待机点和5v待机点供电南桥有了供电外接晶振就会起振此时EC发出RSMRST#给南桥完成待机等待用户按下开关键。当按下开关键触发EC,EC发出PM_PWRBTN# 当南桥收到此信号后就会发出 s4 s3 信号接着发出CPUC ORE_ON 开启cpu单元电路,cpu电路工作正常后发出VGATE_PWRGD告诉南桥电路开启完毕接着EC发出p wrok 告诉南桥各路电压开启正常接着开启时钟电路接着发出H_PWRGD PCIRST CPURST. 4. 广达上电时序详解:先产生3vpcu 5vpcu 电感电压 3vpcu给EC供电接着晶振起振复位接着按下开关键触发EC EC发出s5_ON 此信号开启3v 5v 后继3v_S5 5V_S5 给南桥供电时钟接着EC发出rsmrst# 给南桥接着南桥响应DNBSWON# 发出susc# susub# sus_ON MAINON 接着发出VR_ON CPU工作正常后发出HWPG 给E C 接着发出时钟开启信号开启时钟电路另一路imvpok 告诉南桥供电开启完毕接着EC发出ECpwrok告诉南桥电压开启完毕接着发出H_PWRGOOG PLTRST# 5. 华硕上电时序详解:首先产生+3VA +5VA +12VA 的线性电压其中+3VA经过转换成+3VA_EC 给EC供电接着EC复位当EC的供电时钟复位正常后 EC发出vsus_ON 开启 3vsus 5vsus 12vsus 电感电压开启完毕后发出sus_PWRGD信号给EC 此时3vsus 5vsus 给南桥供电接着EC发出rsmrst#给南桥完成待机等待客户按下开关键。按下开关pwrsw# 触发EC EC发出PWRBTN# 给南桥,南桥收到后发出 susc# susB# 给EC 经EC转换SUS C_EC# SUSB_EC# 开启相应电压。所有电压开启完毕后发出ALL_SYSTEM_PWRGD 给EC EC收到后发出VR ON 开启cpu供电然后cpu电源好信号cpu-pwrgd 给EC EC发出EC_CLK_EN 给南桥南桥发出时钟开启信号ck _pwrgd 接着EC发出pwrok信号给南北桥当南桥收到此信号后发出复位信号pltrst# 复位北桥然后北桥发出H_C PURST 复位cpu 。

笔记本上电时序(X86平台)

用户名密码 注册 xiaoZ 青春有梦,勇敢去追 主页博客相册|个人档案 |好友 查看文章 笔记本上电时序(X86平台) 2010-09-08 17:39 我们假设没有任何的电力设备在供电(没电池和电源),这时候,机器内部只有RTC电路在运作,内部时间的运行和CMOS信息。在插上电池或者电源的时候,机器内部的单片机EC就Reset并开始电开启以后,EC Reset并开始运行,随后发给南桥一个称为‘RSMRST#’的信号。这时候南桥的部南桥并没有打开全部电源,只有很少一部分的功能可用,比如供检测开机信号的PWRBTN#信号。 在用户按下Power键的时候,EC(开机芯片)检测到一个电平变化(一般时序是:高-低-高),PWRBTN#信号后依次拉高SLP_S5#,SLP_S4#,SLP_S3#信号(他们的作用参看上页的图),开启了所PWROK信号,这信号表明外围电源正常开启。 PM PWROK将作为一个使能信号发送到CPU外围VCCP的电压Generator,并开启VCCP。在此之后,的核心电压)。至此,整机的电压已经全部开启。 在用VR_PWRGD_ICH这个信号通知南桥CORE VR成功开启后,南桥会发出PCI RST#信号到PCI 发出H_PWRGD来通知CPU它的核心电压已经成功开启。然后北桥发H_CPURST#信号给CPU,CPU被在用户需要进入待机模式(S3)的时候,系统的ACPI和windows同时运作,拉低SLP_S3#,并保入待机模式 而在需要进入休眠或者关机模式时,同时拉低SLP_S3#、SLP_S4#和SLP_S5#,关闭除了RTC以BIOS的共同协作,对硬件工程师来说,只需要保证在特定的状态保证特定的电压供给即可。 当机器要要从S0进入S5,即关机的时候,也会有一定的时序进行,基本上就是前面时序的逆下面是一张典型的主板上电的时序图,参考下。

笔记本上电时序

笔记本 INTEL 标准时序(SEQUENCE) NTEL 芯片组的笔记本一般开机过程(红色部分为电路图查图用)1、在没有任何的电力设备在供电时(没电池和电源),通过3V 的纽扣电池来产生VCCRTC 供给南桥的RTC 电路,以 保持内部时间的运行和保持CMOS 信息32D768 RTC 电路测量点:VCCRTC-DCPRTC/RTCRST#/ SRTCRST#/32.768KHz BATLOW# 3.3V EC 到南桥 2、在插上电池或适配器后,产生公共点,接着产生EC 的待机供电(一般是线性供电3.3V 电流0.08A)保护隔离 电路公共点有小阻值的电阻 3、得到待机供电EC(AVCC/VCC0)且获得待机时钟,(32.768KHZ 3.3V)和复位(3.3V EC_RST#/ ECRST# WRST# VCC_POR# VCC1_RST#)后,读取(BIOS)程序配置自身脚位(示波器可以测到波形) 4、如果EC 检测到电源适配器(一般来自充电芯片好信号ACOK 转换ACIN/AD_IN/ AC_IN / RI2/WUI1/GPD1 /ACAV_IN), 会自动发出信号开启南桥的待机电压(VCCSUS3_3,V5REF_SUS),然后发给南桥一个叫“RSMRST#“(3.3V)的待机电 压好信号通知南桥待机电压正常;如果EC 检测不到适配器(电池模式),EC 需要收到开关触发信号后,才会去开启 南桥待机供电,以节省电力0.02-0.03 电流

5 、按下开关,EC 收到开关信号后(连接到EC 上名字GPIO03/GPIO0 6 PWUREQ#/GPC7/ PWR_SW#- 华硕 TMRI0/WUI2/GPC4/ EC_GPXIOD3/ KBC_PWRBTN#)延时发送一个高-低-高的PWRBTN#开机信号给南桥不上电还受, 盒盖开关控制(COVER_SW#/LID_SW#) 6、南桥收到PWRBTN#信号后依次拉高SLP_S5#、SLP_S4#、SLP_S3#信号,SLP_S5/S4#控制产生+3.3VSUS 和内存供电 (VDIMM)(可以直接控制,也可以通过EC 去控制)(0.05A DDR1 2.5V DDR2 1.8V DDR3 1.5V),SLP_S3#控制产生 +3.3V_RUN 、+5_RUN、桥供电(1.*V)总线供电、(VCCP)0.2A-0.3A 1.05V)独立显卡供电(、(0.5-0.7A 1.*V)VGPU_CORE)( 等(可以直接控制,也可以通过EC 去控制) 7、发出信号EC(1.*V)或者其他电路转换来开启CPU 的核心电压(VCORE)无独显电流0.6A,(有独显电流增加0.3-0.5A)。 至此,整机的电压已经全部开启。 8、CPU 供电正常后,CPU 电源管理芯片发出PG 最终送达南桥VRMPWRGD/ SYS_PWROK/ MEPWROK 脚(3.3V CPU 供电电源好信号) 9、CPU 供电正常后,通过电路转换开启时钟芯片,产生各路时钟(945 以下和HM55 系列的是CPU 供电CLK_EN# 直接开启时钟;965 和945 系列是VRMPWRGD 给南桥后,南桥发出CK_PWRGD 开启时钟3.3V)

时序控制器说明书

时序控制器操作說明 一、 用途 顺序时间控制器是用于使用阀针式热流道系统时,用以控制模具热咀注塑时间先后的设备。 顺序时间控制器能使热流道系统的各个浇口得以控制,具有以下优势: ·使成形产品表面引发瑕疵的熔接痕消除,或重新设置产品表面熔接痕的位置,从而达到改善成形产品的质量; ·通过对每一个浇口的注射量的调节,达到改善品质,以防产品瑕疵出现或产品填充未到位等现象的发生; ·受时间控制器的控制,所有的浇口并不是同时开放,故注塑可在最小锁模力的情况下进行; ·通过浇口处注射率的提高,使产品流痕达到最佳状态。 二、电源配置 主电源输入单相交流电95-240VAC 50/60HZ 注射信号输入直流24VDC、交流110V/220V、开 关信号可选 电磁阀电压直流24VDC、交流110V/220V、 操作温度范围(-10 - +50度) PCB结构 1.PCB主板 2.显示PCB板时间控制器电源 注塑信号输入,注射信号输出。切换信号输入,状态显示。

三、面板操作說明 A —蜂鸣器 B —A模式指示灯 C —B模式指示灯 D —显示关闭时间 E —显示开启时间 F —关闭指示灯 G —打开指示灯 H —待机指示灯 J —设定值调节功能键(上) K —设定值调节功能键(下) I —手动键 L —参数设置键 M —电源开关键 N —模式信息对照表 二.时序控制器操作步骤。 1.按ON/OFF键打开时序控制卡电源, 2.功能参数设置, 1>A/B模式设置 按住MODE SET键1秒进入参数设置,上端显示器会显示A-B,下端显示器显示模式A或B,通过按上键或下键可调整为B模式或A模式;按按住MODE SET 键1秒可退出参数设置。

HP笔记本开机时序

当我们插上Adapter19VIN时,电源流入就有一个5VPCU,3VPCU电压,它是由PU10(MAX1999)自动产生,此时机器处于待机状态。当我们按下Power Button时,NBSWON# 瞬间有一个低电平,这低电平送给97551,97551收到这信号时,产生信号DNBSWON#,DNBSWON发给南桥,同时发出S5-ON到1845产生1.5V_S5。S5-ON输入PQ128经过PQ132产生S5-OND。S5-OND通过PQ127和PQ141分别产生5V_S5和3V_S5。3V_S5,5V_S5,1.5V_S5此时供电给南桥。南桥收到DNBSWON低电平时,便发生SUSB#,SUSC# 两个高电平送给以97551,97551收到SUSB#,SUSC# 后便相继产生了SUSON,MAINON#,VRON。SUSON信号转换成SUSD信号送PQ143,PQ145管便产生3VSUS,5VSUS,及SUSON送到MAX1845 产生2.5VSUS。MAINON#经PU7产生SMDDR—VTERM。同时经PQ119和PQ125转换成MAIND送PQ143,PQ145,PQ148,PQ153产生+3V, +5V,+2.5V,+ 1.5V电压。VRON送给PU3(MAX1907),PU5(1992E)产生VCC-CORE 和VCCP电压。PU6,PU4产生HWPG信号给97551,此时PU3,PU5也各产生一个HWPG信号反馈97551。此时整个M/B的主电压都已OK各组电压反馈回来的HWPG信号相汇合,为一个HWPG 相当于“与”的关系如其中有任何一组反馈的HWPG的为低电平此时97551会发生POWER OK指令,关掉开启的电压,如OK则HWPG恒为高电平当97551收到HWPG后产生PWROK 信号送给SB南桥,后由SB南桥产生PCI RST#经U42产生PCIRST#传给北桥。北桥收到后便产生CPURST#。 MAX1999 IC: 信号介绍 该IC具有4.5V至24V的输入电压范围,1.5%的输出电压精确度,3.3V及5V两组功能模块,内部具有软体控制的开启,关闭快速电源管理系统及过压保护功能。 [主要故障:3VPCU或5VPCU 输出不良(一般机板插上19vin,则有这两电压输出)" 1,VIN_1999 输入19V电压有问题。, 2 检测第8脚参考电压为2V。,用万用表量测3VPCU或5VPCU对地阻抗,阻抗变小或短路,针对RMA板,一般为该线路中的零件烧坏。(PU10,PQ101,PQ103,PQ104,PQ MAX1845 IC: 信号介绍 - ^1 v! a% a: r' @6 s该IC是产生2.5VSUS及1.5V_S5两组电压的,在19VIN加入后,在S5_ON,SUSON两信号正常情况下,即能产生该两组电压。 P6 v9 q- W/ i$ N% U2 r) I主要故障:2.5VSUS或1.5V_S5输出不良(不输出及电压偏低)。' G" ? S) s' T9 W1 X" Y7 A! a5 [ 1,VIN_1845输入19V电压有问题。 9 Y; {2 i o8 f1 Q& }* J ^* Z2, PL17,PL9开路不良。 ?/ ^3 B+ D- n' b3,S5_ON,SUSON信号不良或没送到1845IC。; b4 J$ b: U5 t* l7 L 4, 2.5VSUS及1.5V_S5两组电压对地阻抗变小或短路,针对RMA板,一般为该线路中的零件烧坏(PU5,PQ82,PQ99,PQ83,PQ106,PQ87,U16) 9 b# ~7 f" p& C( M9 T8 i" f {; H1 D; }1 g3 U# l+ e MAX1907 IC:信号介绍! N; y* p" |% k- z( y 该IC 是高速电源管理控制芯片,供给CPU CORE电压,能自动修正偏移量,±0.75%电压输出精确度,具有0.700V-1.708V的电压输出范围,2V-28V电源输入的电压范围及输出过压保护功能等。 6 `! T1 z& X6 {9 ^' K# p主要故障:插CPU 无电压输出。' q1 S; V8 l" l/ x1 E6 A3 s 1,VIN19V 无输入,PL12,PL18坏。( j- W J; w6 |- e U% j5 z0 ] 2,PQ107,PQ108,PQ109,PQ110坏。; G0 D9 U% ~2 ]9 Y0 x

电脑上电时序

台式主板上电时序 1.装入主板电池后首先送出RTCRST#(3V的复位信号)给南桥, 2.南桥边的晶振提供32.768KHZ频率给南桥 3.I/O芯片检测电源是否正常提供+5VSB电压 4.+5VSB电压正常转换出+3VSB 5.I/O发出RSMRST#信号通知南桥+5VSB已经准备好了 6.南桥正常送出SUSCLK(32KHZ) 7.当用户按下电源按钮后,将送出PWRBTN#给I/O和南桥 8.I/O收到后发出PWRBTN#信号给南桥 9.南桥送出SLP_S3#和SLP_S4#给I/O 10.I/O发出PS_ON#(低电平)给主机电源 11.当电源接收到PSON#(由高电平向低电平跳变),电源开关立即送出+12,-12V,+3.3V,+5V,-5V这些主电源电压 12.当主机电源送出+12V,-12V,+3.3V,+5V,-5V主电源电压后,其他主板转换后的工作电压如:+VTT_CPU,+1.5V,+2.5V_DAC,+5V_DUAL,+3V_DUAL,+1.8V_DUAL也将随后全部送出 13.当+VTT_CPU送给CPU后,CPU会送出VTT_PWRGD电源好信号(高电平)给CPU、时钟芯片、CPU电源管理芯片。 14.时钟芯片开始给各个功能性芯片电路提供同步时钟,(此时侦测卡的CLK指示灯亮) 15.时钟芯片同时给南桥提供时钟。 16.CPU用VTT_PWRGD信号确认VTT_CPU(供CPU电压)稳定在安全范围内,接到VTT_PWRGD信号后CPU会发出VID 17.CPU电源管理芯片收到VTT_PWRGD后会根据VID组合送出VCORE(CPU 核心供电) 18.在VCORE正常发出后,CPU电源管理芯片立即送出VRMPWRGD信号给南桥,来通知南桥现在VCORE电压已经正常发出。 19.当提供给南桥的工作电压和时钟都好了后,由南桥发出PLTRST#和PCIRST#给各个功能性芯片电路(此时侦测卡的RST指示灯亮) 20.在北桥接收到南桥发出的PLTRST#大约1ms后,(此时北桥的各个工作电压和时钟应正常)北桥送出CUPRST#给CPU,来通知CPU可以开始执行第一个指令动作 21.CPU开始寻址,调用BIOS程序开始自检。 22.自检时,CPU自检本身、北桥、南桥,再自检内存(自检64K基本内存)最后自检显卡 23.寻址自检通过内存和显卡成功后,硬件没有问题此时已经可以亮机了,会将控制权交给硬盘的操作系统,从而完成整个启动过程

基于时序控制系统的PLC程序设计策略

龙源期刊网 https://www.wendangku.net/doc/db17944635.html, 基于时序控制系统的PLC程序设计策略 作者:田玉瑛 来源:《数字技术与应用》2017年第02期 摘要:基于时序的程序设计策略,对初学者而言,基于对时序理解的差异,在进行流程图或算法设计时,总会与一般过程性流程混淆,本文借助十字路口交通灯典型的时序控制特征,总结了基于时序的PLC程序设计策略,以定时器为时序轴进行定量或变量设计,给出不同的算法结构,对初涉生产设计的人员及职业院校相关专业学习者有积极的指导意义。 关键词:时序周期;控制系统;程序设计 中图分类号:TP273 文献标识码:A 文章编号:1007-9416(2017)02-0031-02 1 问题源起 在进行PLC编程项目交通灯控制系统的教学实践中,学生在不同的学习层面有不同的程序展现出来。十字路口交通灯控制系统,作为典型的并行性分支结构流程程序设计,通过时序图展现被控对象的时序关系,有助于准确、简洁、直观地理解控制要求,但初学者在编程的过程中,往往将精力投注于系统控制要求的实现,较少思考程序设计背后的主导要素:基于时序的PLC程序设计策略对时序控制系统的程序固化方式的实践意义。 2 时序控制系统的特点 2.1 时序控制系统功能特征:自启动循环 时序控制系统是为提高生产效率,节约人力成本,实现精准工步控制而设计的,因此,在控制算法设计时,要求系统具有自启动循环功能。 2.2 时序控制系统设计特征:依时序区间交替变化实现逻辑控制 时序控制系统,是在一定时序区间内,依时实现某些控制对象的逻辑关系,因此,依时序区间交替变化实现逻辑控制是时序控制系统的设计特征。 3 使用PLC实现时序控制系统的程序设计策略 基于时序的PLC程序设计,关键点在于处理控制系统在控制周期内,不同时序区间被控对象之间的逻辑关系,因此,运用定时器作为不同被控对象的驱动信号,以变量或常量的形式去实现,成为基本的设计策略。 3.1 多个定时器连续推进的时序设计策略

Intel主板上电时序

时序:就是按照一定的时间顺序给出信号,就能得到你想要的数据,或者想要写的数据写进芯片。而上电时序是指主板在开机过程中电压及信号先后开启的顺序。上电时序反映的是主板工作的内在规律,是区分故障部位的重要手段,是使维修工作事半功倍的前提。 按下开机按键,启动就开始了。启动过程分为硬启动和软启动两步。硬启动就是指给主板加电,产生各级芯片必须的时钟信号和复位信号的过程;而软启动部分就是指BIOS的POST自检过程,通过POST自检程序检测电脑的配置和能否正常工作,产生各种总线信号,形成硬件配置信息。无论是台式机还是笔记本均先硬启动而后再软启动。 下面以神舟945PL天尊板为例,讲解主板的上电时序。 第一步:未插电源时主板准备上电的状态 装入电池后首先送出实时时钟RTCRST#&V_3V_BAT给南桥。 晶体(Crystal)提供32.768KHz频率给南桥。 第二步:插上电源后的主板动作时序 +5Vsb正常转换出+3VDUAL。 SIO(IT8712K)67脚Check电源是否正常提供+5VSB电压。 SIO(IT8712K)85脚发出RSMRST#信号通知南桥+5VSB已经准备OK。 南桥正常送出待机时钟SUSCLK (32KHZ)。 第三步:按下电源按钮后的动作时序 使用者按下电源控制面板上电源按钮后,送出一个低电平触发脉冲给SIO (IT8712K)75脚。 SIO(IT8712K)收到后由72脚发出一个低电平触发脉冲给南桥。 SB送出SLP_S3#和SLP_S4#两个休眠信号给SIO(IT8712K)的71脚和77脚。 SIO(IT8712K)76脚发出PS_ON#(Low)开机信号给ATX Power的14脚。 当ATX Power接收到PSON#由High变Low后,ATX Power即送出±12V, +3.3V, ±5V 数组主要电压. 一般当电源送出的+3.3V and +5V正常后, SIO(IT8712K)的95脚ATXPG信号由5V

上电时序

1.PWRBTN#/PWRSW#: Power Button/Power Switch 主板上電按鈕或開關,一般置於主板右下方的PANEL上,以便於組裝機,它需要由一電阻Pull Hign,低電平有效. 2.: Stand by电压,預備. 意義為在機箱電源即主板的A TX Power打開但並未上電的情況下,電源會提供預備電壓,並且主板上會有多個預備上電的電壓存在,若此條件未滿足,主板肯定會無法上電.此些電壓如:12VSB,5VSB,3VSB,2.5VSB,1.8VSB,1.5VSB,1.2VSB,1.05VSB.此些電壓在主板上電後仍會存在,做為工作電壓使用. 3.RSMRST# 為主板控制上電部分的芯片產生發給ICH的信號,意義為通知ICH說明5VSB電壓為ok的,它在有的板子上的名稱為AUXOK. 辟如產生RSMRST#的芯片可能為SMSC,ITE,Winbond,ASUS的Super I/O,或AS016等. 4.SLP_S3# 當它動作時,表示系統進入S3(suspend to RAM)模式,當不是用在STR模式時,此信號可用來控制電源的動作,它一般由南橋發出,在有的板子上的名稱為SUSB#.它們的作用是等同的. 5.32.768KHZ 它是一個圓筒晶振工作時產生的頻率大小,是主板RTC邏輯電路的一部分,RTC邏輯主要由電池,32.768KHZ晶振等組成,起到保存系統時間,日期和CMOS設置的作用 6.PSON# 控制A TX Power 是否輸出電源的訊號,高電平時,電源不會動作,低電平時,電源供出電壓,說明主板已上電.在S3,S5狀態時,它為High,在S1狀態時,它為Low.

笔记本上电时序大解析

我也发个时序。呵呵是远程学员的一个作业题目。发在这里大家一起看看。填写一下顺序吧。答对的有小赏哦 时序图.JPG(50.12 KB, 下载次数: 42) 我偿试填了一下,看一下,不对的地方请指正,好提高一下我这个时序,在此先谢谢了。

我来试着解答一下: 1:未插电源,装入CMOS电池后,首先送出RTCRST#、VBA T给SB;同时晶振提供32.768KHZ 给SB。 2:插入电源,IO检测电源是否发出5VSB,5VSB转换为3VSB同时提供给SB。 3:IO发出RSMRST#通知南桥5VSB准备好了。 4:按下开关后,IO收到PWS W#。之后IO发出PWBTN#给SB。SB收到此信号后,送出SLP_S3#給IO。然后由IO发出PSON#接低A TX的绿线。A TX电源工作,发出主供电。5:在主供电正常后,A TX发出ATXPWROK给SB,通知南桥ATX工作正常。同时也产生各路后续电压,如VTT,内存供电等。 6:当VTT送给CPU后,CPU发出VTT_PWGD给VRM。当VRM收到这个信号后,根据CPU发出的VID组合发出VCORE供给CPU。 7:VCORE正常产生后,VRM发出VRM_PWGD给SB和时钟,时钟收到此信号后,开始工作,发出各路时钟信号。 8:SB收到VRM_PWGD和时钟信号后,发出CPU_PWGD给CPU,同时发出PLTRST#给NB,还发出PCIRST#给IO、BIOS及各个设备。 9:NB收到PLTRST#后,发出CPURST#给CPU。 10:CPU有了电压,时钟,复位,PWGD,便开始工作了

学了四天,我也发一个。 10030523150a7851cea274df93.jpg(52.22 KB, 下载次数: 21)

上电时序总结

BIOS(基本输入输出系统)在整个系统中的地位是非常重要的,它实现了底层硬件和上层操作系统的桥梁。 比如你现在从光盘拷贝一个文件到硬盘,您只需知道“复制、粘贴”的指令就行了,您不必知道它具体是如何从光盘读取,然后如何写入硬盘。 对于操作系统来说也只需要向BIOS发出指令即可,而不必知道光盘是如何读,硬盘是如何写的。 BIOS构建了操作系统和底层硬件的桥梁。而我们平时说的BIOS设定仅仅是谈到了其软件的设定,比如设置启动顺序、禁用/启用一些功能等等。 但这里有一个问题,在硬件上,BIOS是如何实现的呢?毕竟,软件是运行在硬件平台上的吧?这里我们不能不提的就是EC。 EC(Embed Controller,嵌入式控制器)是一个16位单片机,它内部本身也有一定容量的Flash来存储EC的代码。 EC在系统中的地位绝不次于南北桥,在系统开启的过程中,EC控制着绝大多数重要信号的时序。在笔记本中,EC是一直开着的,无论你是在开机或者是关机状态,除非你把电池和Adapter完全卸除. 在关机状态下,EC一直保持运行,并在等待用户的开机信息。而在开机后,EC更作为键盘控制器,充电指示灯以及风扇和其他各种指示灯等设备的控制,它甚至控制着系统的待机、休眠等状态。 主流笔记本系统中.现在的EC有两种架构,比较传统的,即BIOS的FLASH通过X-BUS 接到EC,然后EC通过LPC接到南桥,一般这种情况下EC的代码也是放在FLASH中的,也就是和BIOS共用一个FLASH。 右边的则是比较新的架构,EC和FLASH共同接到LPC总线上,一般它只使用EC内部的ROM。至于LPC总线,它是INTEL当初为了取代低速落后的X-BUS而推出的总线标准。 EC上一般都含有键盘控制器,所以也称KBC。那EC和BIOS在系统中的工作到底有什么牵连呢? 在这里我们先简单的分析一下。在系统关机的时候,只有RTC部分和EC部分在运行。RTC部分维持着计算机的时钟和CMOS设置信息,而EC则在等待用户按开机键。 在检测到用户按开机键后,EC会通知整个系统把电源打开,CPU被RESET后,会去读BIOS内一个特定地址内的指令(其实是一个跳转指令,这个地址是由CPU硬件设定的)。这里开始分两种情况,1 CPU发出的这个地址通过FSB到北桥,然后通过HUB-LINK到南桥,通过LPC到EC,再通过X-BUS一直到达BIOS。 在CPU读到所发出的地址内的指令后,执行它被RESET后的第一个指令。 在这个系统中,EC起到了桥接BIOS和南桥(或者说整个系统)的作用,在CPU发出的地址到南桥后,会直接通过LPC到BIOS,不需要EC的桥接。 这里需要说明的是,对于台式机而言,一般是不需要EC的。 这里原因有很多:比如台式机本身的ATX电源就具有一定的智能功能,他已经能受操作系统控制来实现待机、休眠的状态;其次由于笔记本的键盘不能直接接到PS/2接口,而必须接到EC之上; 还有就是笔记本有更多的小功能,比如充电指示灯、WIFI指示灯、Fn等很多特殊的功能,而且笔记本必须支持电池的充放电等功能,而智能充放电则需要EC的支持; 另外,笔记本TFT屏幕的开关时序也必须由EC控制。这些原因导致了笔记本使用EC来做内部管理的必要性。` 总体来说,EC和BIOS都处于机器的最底层。EC是一个单独的处理器,在开机前和开

I2C总线时序详解

I2C总线时序详解 由于连接到I2C 总线的器件有不同种类的工艺(CMOS、NMOS、双极性),逻辑0(低)和逻辑1(高)的电平不是固定的,它由电源VCC的相关电平决定,每传输一个数据位就产生一个时钟脉冲。 数据的有效性 SDA 线上的数据必须在时钟的高电平周期保持稳定。数据线的高或低电平状态只有在SCL 线的时钟信号是低电平时才能改变。 I2C位传输数据有效性 起始和停止条件 SCL 线是高电平时,SDA 线从高电平向低电平切换,这个情况表示起始条件; SCL 线是高电平时,SDA 线由低电平向高电平切换,这个情况表示停止条件。 起始和停止条件一般由主机产生,总线在起始条件后被认为处于忙的状态

起始和停止条件 ,在停止条件的某段时间后总线被认为再次处于空闲状态。 如果产生重复起始条件而不产生停止条件,总线会一直处于忙的状态, 字节格式 发送到SDA 线上的每个字节必须为8 位,每次传输可以发送的字节数量不受限制。每个字节后必须跟一个响应位。首先传输的是数据的最高位(MSB),如果从机要完成一些其他功能后(例如一个内部中断服务程序)才能接收或发送下一个完整的数据字节,可以使时钟线SCL 保持低电平,迫使主机进入等待状态,当从机准备好接收下一个数据字节并释放时钟线SCL 后数据传输继续。 应答响应 数据传输必须带响应,相关的响应时钟脉冲由主机产生。在响应的时钟脉冲期间发送器释放SDA 线(高)。 在响应的时钟脉冲期间,接收器必须将SDA 线拉低,使它在这个时钟脉冲的高电平期间保持稳定的低电平。 通常被寻址的接收器在接收到的每个字节后,除了用CBUS 地址开头的数。

dell上电时序及戴尔笔记本电脑开机过程

dell上电时序及戴尔笔记本电脑开机过程 根据我最近维修的戴尔系列笔记本电脑来看,不管是从奔四还是到迅驰或者双核,只要是使用SMSC系列单片机的主板,其开机过程都是大同小异,同样的道理像IBM的笔记本从奔三到迅驰的开机流程也都是差不多,因为它们也都是使用相同开机控制芯片系统(TB+PMH4+H8S),也就是说只要你熟悉某一块主板后,其他和这块主板使用相同单片机的电脑对你来说都不是太难。 最近我维修的机型有C640、D400、D420、D520、D600、D610、D820、D830、M1210、M1330、M1530等等,这些机器都有一个共同特点,那就是它们都是使用SMSC系列单片机,不过从D820后的单片机不再是BGA封装了,而是用两个DIP封装的芯片组合形成一个完整地控制系统。它们之间的开机步骤基本是相同的,与其他IBM或者HP机型相比较来说,其大的步骤也有相同之处,只是有些细节方面和信号名称不同而已。以下内容是以D600为例来解说,其他机型可能没有相应信号或者名称不同,在参考阅读时请适当灵活变化运用,下面各个步骤的名称也只是根据我个人爱好来取的,并非官方的准确名字。 第一步:BIOS电压(+RTC_PWR5V&+RTC_PWR3_3V) 这个电压从名称来看就是指BIOS电池供电的电压信号+RTCSRC,这个电压在没有插电源和电池时,是由主板上面的BIOS电池供给,当插上电源或电池时主板BIOS电池就处于充电状态,这个+RTCSRC电压信号的主要作用就是用来生成+RTC_PWR5V和+RTC_PWR3_3V两个电压信号,其中+RTC_PWR3_3V信号是给南桥和单片机的一个重要供电。 第二步:公共电压(PWR_SRC) 戴尔机器的公共电压名称叫做PWR_SRC,像IBM的公共电压名称叫做VINT16是一样的意思,公共电压顾名思义就知道是公共的意思,即就是电源和电池共用的上电电路,也就是说这个电压信号既可以是电源供给,也可以是电池供给,同时这个电压信号还会送到主板很多地方去使用,这里详细说说电源上电电路过程,把电池上电电路过程作为电池充电电路内容讲解。 公共电压PWR_SRC是从外部电源经过一系列电路转换而来的,大致步骤要经过DCIN+、+DC_IN、DC_IN+、SDC_IN+、ACAV_IN等几个信号的转换过程,其中SDC_IN+和ACAV_IN两个信号都是充电电路中比较重要的信号,因为SDC_IN+是给电池充电的一个主要电源,而ACAV_IN这个信号是给单片机SMSC芯片的一个重要开启信号,单片机缺少这个信号时将无法正常工作进行充电,当然如果是电池独立供电时就没有这个信号,但会从电池电路上发送另一个具有相同功能的信号给单片机作为指示,这些将会在电池充电电路中关于电源和电池转换过程中详细说明。 第三步:待机电压(+5VALW&+3VALW)

上电时序详解

上电时序详解 1. 上电时序的区别是不同厂家的上电时序在电路图中的电压标识符号不同,电压的开启顺序不同,这是不同时序的最大区别。 2. 仁宝的上电时序解析:首先出3v 5v 电感电压(3Valw 5vALW)以及vL 线性电压,电感电压(3Valw 5vALW)3Valw给EC以及南桥3v待机点5vALW也给南桥5v待机点当EC 有了供电之后外接晶振就会起振紧接着EC就会复位当南桥有了供电后外接晶振也会起振,此时EC发出rsmrst#给南桥待机完成等待用户按下开机按键。当用户按下开关键触发EC,EC发出EC_ON# 高电平紧接着EC发出PBTN_OUT#使南桥响应接着南桥发出s5 s3 信号开启syson susp# 最后发出VR_ON 紧接着发出cpu电源好信号VGATE 接着EC发出ICH_POK CL_PWROK (由南桥开启时钟电路)H_CPUPWRGD PCIRST# PLTRST# H_RESET# ADS# 3. 纬创的上电时序解析:纬创的时序先产生5v线性电压5V_AUX_S5 接着由5V_AUX_S5转换成3D3V_AUX_S5 此电压仅接着给EC供电,当EC有了供电外接晶振就会起振接着就有EC的复位此时EC发出s5_ENABLE信号开启系统3v 5v 电压3D3V_S5和5v_S5 分别给南桥的3v待机点和5v待机点供电南桥有了供电外接晶振就会起振此时EC发出RSMRST#给南桥完成待机等待用户按下开关键。当按下开关键触发EC,EC发出PM_PWRBTN#当南桥收到此信号后就会发出s4 s3 信号接着发出CPUCORE_ON 开启cpu单元电路,cpu电路工作正常后发出VGATE_PWRGD告诉南桥电路开启完毕接着EC发出pwrok 告诉南桥各路电压开启正常接着开启时钟电路接着发出H_PWRGD PCIRST CPURST. 4. 广达上电时序详解:先产生3vpcu 5vpcu 电感电压3vpcu给EC供电接着晶振起振复位接着按下开关键触发EC EC发出s5_ON 此信号开启3v 5v 后继3v_S5 5V_S5 给南桥供电时钟接着EC发出rsmrst# 给南桥接着南桥响应DNBSWON# 发出susc# susub# sus_ON MAINON 接着发出VR_ON CPU工作正常后发出HWPG 给EC 接着发出时钟开启信号开启时钟电路另一路imvpok 告诉南桥供电开启完毕接着EC发出ECpwrok告诉南桥电压开启完毕接着发出H_PWRGOOG PLTRST# 5. 华硕上电时序详解:首先产生+3VA +5VA +12VA 的线性电压其中+3VA 经过转换成+3VA_EC 给EC供电接着EC复位当EC的供电时钟复位正常后EC发出vsus_ON 开启3vsus 5vsus 12vsus 电感电压开启完毕后发出sus_PWRGD信号给EC 此时3vsus 5vsus 给南桥供电接着EC发出rsmrst#给南桥完成待机等待客户按下开关键。按下开关pwrsw# 触发EC EC发出PWRBTN# 给南桥,南桥收到后发出susc# susB# 给EC 经EC转换SUSC_EC# SUSB_EC# 开启相应电压。所有电压开启完毕后发出ALL_SYSTEM_PWRGD 给EC EC收到后发出VRON 开启cpu供电然后cpu电源好信号cpu-pwrgd 给EC EC发出EC_CLK_EN 给南桥南桥发出时钟开启信号ck_pwrgd 接着EC发出pwrok信号

相关文档