文档库 最新最全的文档下载
当前位置:文档库 › (完整版)一元二次方程培优提高例题

(完整版)一元二次方程培优提高例题

(完整版)一元二次方程培优提高例题
(完整版)一元二次方程培优提高例题

考点一、概念

(1)定义:①只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③整式方...

程.

就是一元二次方程。 (2)一般表达式:)0(02≠=++a c bx ax

⑶难点:如何理解 “未知数的最高次数是2”:

①该项系数不为“0”;

②未知数指数为“2”;

③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以

讨论。

典型例题:

例1、下列方程中是关于x 的一元二次方程的是( )

A ()()12132+=+x x

B 02112=-+x x

C 02=++c bx ax

D 1222+=+x x x

变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。

例2、方程()0132=+++mx x

m m 是关于x 的一元二次方程,则m 的值为 。

针对练习:

★1、方程782=x 的一次项系数是 ,常数项是 。 ★2、若方程()021=--m x m 是关于x 的一元一次方程,

⑴求m 的值;⑵写出关于x 的一元一次方程。

★★3、若方程()112=?+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。

★★★4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( )

A.m=n=2

B.m=2,n=1

C.n=2,m=1

D.m=n=1

考点二、方程的解

⑴概念:使方程两边相等的未知数的值,就是方程的解。

⑵应用:利用根的概念求代数式的值;

典型例题:

例1、已知322-+y y 的值为2,则1242

++y y 的值为 。 例2、关于x 的一元二次方程()0422

2=-++-a x x a 的一个根为0,则a 的值为 。 说明:任何时候,都不能忽略对一元二次方程二次项系数的限制.

例3、已知关于x 的一元二次方程()002

≠=++a c bx ax 的系数满足b c a =+,则此方程 必有一根为 。

说明:本题的关键点在于对 “代数式形式”的观察,再利用特殊根“-1”巧解代数 式的值。

例4、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582

=+-m y y 的两个根, 则m 的值为 。

针对练习:

★1、已知方程0102

=-+kx x 的一根是2,则k 为 ,另一根是 。 ★2、已知关于x 的方程022=-+kx x 的一个解与方程31

1=-+x x 的解相同。 ⑴求k 的值;

⑵方程的另一个解。

★3、已知m 是方程012=--x x 的一个根,则代数式=-m m 2

。 ★★4、已知a 是0132=+-x x 的根,则=-a a 622

。 ★★5、方程()()02

=-+-+-a c x c b x b a 的一个根为( ) A 1- B 1 C c b - D a -

★★★6、若=?=-+y x 则y x 324,0352 。

考点三、解法 ⑴方法:①直接开方法;②因式分解法;③配方法;④公式法

⑵关键点:降次

类型一、直接开方法:()m x m m x ±=?≥=,02

※※对于()m a x =+2,()()2

2n bx m ax +=+等形式均适用直接开方法 典型例题:

例1、解方程:();08212=-x ()216252x -=0; ()();09132

=--x 例2、解关于x 的方程:02

=-b ax 例3、若()()2

221619+=-x x ,则x 的值为 。 针对练习:下列方程无解的是( )

A.12322-=+x x

B.()022

=-x C.x x -=+132 D.092=+x

类型二、因式分解法:()()021=--x x x x 21,x x x x ==?或

※方程特点:左边可以分解为两个一次因式的积,右边为“0”,

※方程形式:如()()2

2n bx m ax +=+,()()()()c x a x b x a x ++=++ , 0222=++a ax x

典型例题:

例1、()()3532-=-x x x 的根为( )

A 25=x

B 3=x

C 3,2

521==x x D 52=x 例2、若()()044342=-+++y x y x ,则4x+y 的值为 。

变式1:()()=+=-+-+222222

2,06b 则a b a b a 。 变式2:若142=++y xy x ,282=++x xy y ,则x+y 的值为 。

例3、方程062=-+x x 的解为( )

A.2321=-=,x x

B.2321-==,x x

C.3321-==,x x

D.2221-==,x x

例4、解方程: ()04321322=++++x x

例5、已知023222=--y xy x ,则y

x y x -+的值为 。 变式:已知02322

2=--y xy x ,且0,0>>y x ,则y x y x -+的值为 。 针对练习:

★1、下列说法中:

①方程02=++q px x 的二根为1x ,2x ,则))((212

x x x x q px x --=++ ② )4)(2(862

--=-+-x x x x . ③)3)(2(652

2--=+-a a b ab a ④ ))()((22y x y x y x y x -++=-

⑤方程07)13(2=-+x 可变形为0)713)(713(=-+++x x

正确的有( )

A.1个

B.2个

C.3个

D.4个

★2、以71+与71-为根的一元二次方程是()

A .0622=--x x

B .0622

=+-x x C .0622=-+y y D .0622

=++y y ★★3、⑴写出一个一元二次方程,要求二次项系数不为1,且两根互为倒数:

⑵写出一个一元二次方程,要求二次项系数不为1,且两根互为相反数: ★★4、若实数x 、y 满足()()023=++-+y x y x ,则x+y 的值为( )

A 、-1或-2

B 、-1或2

C 、1或-2

D 、1或2

5、方程:212

2=+x x 的解是 。 类型三、配方法()002≠=++a c bx ax 222

442a ac b a b x -=??

? ??+? ※在解方程中,多不用配方法;但常利用配方思想求解代数式

的值或极值之类的问题。

典型例题:

例1、试用配方法说明322+-x x 的值恒大于0。 例2、已知x 、y 为实数,求代数式7422

2+-++y x y x 的最小值。 例3、已知,x、y y x y x 013642

2=+-++为实数,求y x 的值。 例4、分解因式:31242

++x x 针对练习:

★★1、试用配方法说明47102

-+-x x 的值恒小于0。 ★★2、已知041122=---+x x x

x ,则=+x x 1 . ★★★3、若912322-+--=x x t ,则t 的最大值为 ,最小值为 。

1、关于x 的方程20x px q ++=的两根同为负数,则( )

A .0p >且q >0

B .0p >且q <0

C .0p <且q >0

D .0p <且q <0

2、如果方程022=++m x x 有两个同号的实数根,则m 的取值范围是 ( )

A 、 m <1

B 、 0<m ≤1

C 、 0≤m <1

D 、 m >0

类型四、公式法

⑴条件:()

04,02≥-≠ac b a 且 ⑵公式: a

ac b b x 242-±-=,()04,02≥-≠ac b a 且 典型例题:

例1、选择适当方法解下列方程:

⑴().6132

=+x ⑵()().863-=++x x ⑶0142=+-x x ⑷01432

=--x x ⑸()()()()5211313+-=+-x x x x

说明:解一元二次方程时,首选方法是因式分解法和直接开方法、其次选用求根公式 法;一般不选择配方法。

例2、在实数范围内分解因式:

(1)3222--x x ; (2)1842-+-x x . ⑶2

2542y xy x -- 说明:①对于二次三项式c bx ax ++2

的因式分解,如果在有理数范围内不能分解, 一般情况要用求根公式,这种方法首先令c bx ax ++2=0,求出两根,再写成 c bx ax ++2=))((21x x x x a --. ②分解结果是否把二次项系数乘进括号内,取决于能否把括号内的分母化去.

类型五、 “降次思想”的应用

⑴求代数式的值; ⑵解二元二次方程组。

典型例题:

例1、已知0232=+-x x ,求代数式()1

1123-+--x x x 的值。 例2、如果012=-+x x ,那么代数式7223

-+x x 的值。 例3、已知a 是一元二次方程0132

=+-x x 的一根,求1152223++--a a a a 的值。 说明:在运用降次思想求代数式的值的时候,要注意两方面的问题:①能对已知式进 行灵活的变形;②能利用已知条件或变形条件,逐步把所求代数式的高次幂化为低次 幂,最后求解。

例4、用两种不同的方法解方程组

???=+-=-)2(.065)1(,6222y xy x y x

说明:解二元二次方程组的具体思维方法有两种:①先消元,再降次;②先降次,再 消元。但都体现了一种共同的数学思想——化归思想,即把新问题转化归结为我们已 知的问题.

考点四、根的判别式ac b 42- 根的判别式的作用:

①定根的个数;

②求待定系数的值;

③应用于其它。

典型例题:

例1、若关于x 的方程0122

=-+x k x 有两个不相等的实数根,则k 的取值范围是 。 例2、关于x 的方程()0212

=++-m mx x m 有实数根,则m 的取值范围是( ) A.10≠≥且m m B.0≥m C.1≠m D.1>m

例3、已知关于x 的方程()0222

=++-k x k x (1)求证:无论k 取何值时,方程总有实数根;

(2)若等腰?ABC 的一边长为1,另两边长恰好是方程的两个根,求?ABC 的周长。 例4、已知二次三项式2)6(92

-++-m x m x 是一个完全平方式,试求m 的值. 说明:若二次三项式为一个完全平方式,则其相应方程的判别式0=?

即:若042=-ac b ,则二次三项式c bx ax ++2

)0(≠a 为完全平方式;反之,若 c bx ax ++2)0(≠a 为完全平方式,则042=-ac b .

例5、m 为何值时,方程组???=+=+.

3,6222y mx y x

有两个不同的实数解?有两个相同的实数解?

针对练习:

★1、当k 时,关于x 的二次三项式92

++kx x 是完全平方式。 ★2、当k 取何值时,多项式k x x 2432

+-是一个完全平方式?这个完全平方式是什么? ★3、已知方程022

=+-mx mx 有两个不相等的实数根,则m 的值是 . ★★4、k 为何值时,方程组???=+--+=.0124,

22y x y kx y

(1)有两组相等的实数解,并求此解;

(2)有两组不相等的实数解;

(3)没有实数解.

★★★5、当k 取何值时,方程0423442

2=+-++-k m m x mx x 的根与m 均为有理数? 考点五、方程类问题中的“分类讨论”

典型例题:

例1、关于x 的方程()03212

=-++mx x m ⑴有两个实数根,则m 为 ,

⑵只有一个根,则m 为 。

例2、不解方程,判断关于x 的方程()322

2-=+--k k x x 根的情况。 例3、如果关于x 的方程022=++kx x 及方程022

=--k x x 均有实数根,问这两方程 是否有相同的根?若有,请求出这相同的根及k 的值;若没有,请说明理由。

考点六、根与系数的关系

⑴前提:对于02

=++c bx ax 而言,当满足①0≠a 、②0≥?时,

才能用韦达定理。

⑵主要内容:a

c x x a b x x =-=+2121, ⑶应用:整体代入求值。

典型例题:

例1、已知一个直角三角形的两直角边长恰是方程07822

=+-x x 的两根,则这个直角三 角形的斜边是( )

A.3

B.3

C.6

D.6

说明:要能较好地理解、运用一元二次方程根与系数的关系,必须熟练掌握b a +、 b a -、ab 、22b a +之间的运算关系.

例2、解方程组:

?

??=+=+???==+.2,10)2(;24,10)1(22y x y x xy y x 说明:一些含有y x +、2

2y x +、xy 的二元二次方程组,除可以且代入法来解外, 往往还可以利用根与系数的关系,将解二元二次方程组化为解一元二次方程的问题. 有时,后者显得更为简便.

例3、已知关于x 的方程()011222=+-+x k x k 有两个不相等的实数根21,x x , (1)求k 的取值范围;

(2)是否存在实数k ,使方程的两实数根互为相反数?若存在,求出k 的值;若不 存在,请说明理由。

例4、小明和小红一起做作业,在解一道一元二次方程(二次项系数为1)时,小明因看错

常数项,而得到解为8和2,小红因看错了一次项系数,而得到解为-9和-1。你知道 原来的方程是什么吗?其正确解应该是多少?

例5、已知b a ≠,0122=--a a ,0122

=--b b ,求=+b a 变式:若0122=--a a ,0122=--b b ,则a

b b a +的值为 。 例6、已知βα,是方程012=--x x 的两个根,那么=+βα34 .

针对练习:

1、解方程组???=+=+)

2(5)1(,

322y x y x 2.已知472-=-a a ,472-=-b b )(b a ≠,求b

a a

b +的值。 3、已知21,x x 是方程092=--x x 的两实数根,求663722231-++x x x 的值。

一元二次方程综合培优难度大含参考复习资料

一元二次方程提高题 1、已知0200052 =--x x ,则 ()()2 1 122 3-+---x x x 的值是 . 2、已知0120042=+-a a ,则_________1 2004 4007222=++ -a a a . 3、若1≠ab ,且07200552=++a a ,05200572=++b b ,则_________=b a . 4、已知方程043222=-+-a ax x 没有实数根,则代数式_____21682=-++-a a a . 5、已知x x y -+=62,则y 的最大值为 . 6、已知0=++c b a ,2=abc ,0φc ,则( ) A 、0πab B 、2-≤+b a C 、3-≤+b a D 、4-≤+b a 7、已知8=-b a ,0162=++c ab ,则________=++c b a . 8、已知012=-+m m ,则________2006223=-+m m . 9、已知4=-b a ,042=++c ab ,则________=+b a . 10、若方程02=-+q px x 的二根为1x ,2x ,且11φx ,03φ++q p ,则2x ( ) A 、小于1 B 、等于1 C 、大于1 D 、不能确定 11、已知α是方程041 2 =-+x x 的一个根,则α αα--331的值为 . 12、若132=-x x ,则=+--+200872129234x x x x ( ) A 、2011 B 、2010 C 、2009 D 、2008 13、方程22323=--+x x 的解为 . 14、已知06222=+-y x x ,则x y x 222++的最大值是( ) A 、14 B 、15 C 、16 D 、18 15、方程m x x =+-2||22恰有3个实根,则=m ( ) A 、1 B 、1.5 C 、2 D 、2.5 16、方程97 33 322=-+- +x x x x 的全体实数根之积为( ) A 、60 B 、60- C 、10 D 、10- 17、关于x 的一元二次方程0522=--a x x (a 为常数)的两根之比3:2:21=x x ,则=-12x x ( )

一元二次方程提高培优题

1 一元二次方程提高题 一、选择题 1.已知a 是方程x 2 +x ﹣1=0的一个根,则 的值为( ) A . B . C .﹣1 D .1 2.一元二次方程(2)2x x x -=-的根是( ) =1 =0 =1和x=2 =-1和x=2 3.为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为289元的药品进行连续两次降价后为256元,设平均每次降价的百分率为x ,则下面所列方程正确的是( ) A . 289(1﹣x )2=256 B . 256(1﹣x )2 =289 C . 289(1﹣2x )=256 D . 256(1﹣2x )=289 4.岑溪市重点打造的天龙顶山地公园在20XX 年12月27日试业了.在此之前,公园派出小曾等人到某旅游景区考察,了解到该景区三月份共接待游客20万人次,五月份共接待游客50万人次.小曾想知道景区每月游客的平均增长率x 的值,应该用下列哪一个方程来求出( ) A .20(1+x )2=50 B .20(1﹣x )2=50 C .50(1+x )2 =20 D .50(1 ﹣x )2 =20 5.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为( ) A .(1)2070x x -= B .(1)2070x x += C .2(1)2070x x += D . (1) 2070x x x -= 6.若关于x 的方程x 2 ﹣4x+m=0没有实数根,则实数m 的取值范围是 A .m <﹣4 B .m >﹣4 C .m <4 D .m >4 7.已知实数a ,b 分别满足22a 6a 40b 6b 40-+=-+=,,且a≠b,则 b a a b +的值是【 】 A .7 B .-7 C .11 D .-11 8.已知关于x 的方程()2kx 1k x 10+--=,下列说法正确的是 A.当k 0=时,方程无解 B.当k 1=时,方程有一个实数解 C.当k 1=-时,方程有两个相等的实数解 D.当k 0≠时,方程总有两个不相等的实数解 9.若22 4x Mxy y -+是一个完全平方式,那么M 的值是( ) A. 2 B. ±2 C. 4 D.±4 二、填空题 10.已知方程x 2 +(1﹣ )x ﹣=0的两个根x 1和x 2,则x 12+x 22 = 11.已知m 和n 是方程2x 2 -5x -3=0的两个根,则 1m +1 n =________. 12.若将方程2 67x x +=,化为()2 16x m +=,则m =________. 13.已知(x 2 +y 2 )(x 2 -1+y 2 )-12=0,则x 2 +y 2 的值是_________? 14.某种药品原价为60元/盒,经过连续两次降价后售价为元/盒.设平均每次降价的百分率为x ,则根据题意,可列方程为 . 15a 4+b 10--=,且一元二次方程2kx ax b 0++=有实数根,则k 的取值范围是 . 三、计算题 16.解方程:(x+3)2 ﹣x (x+3)=0. 按要求解方程:

人教培优一元二次方程辅导专题训练附答案

一、一元二次方程 真题与模拟题分类汇编(难题易错题) 1.已知关于x 的方程230x x a ++=①的两个实数根的倒数和等于3,且关于x 的方程 2 (1)320k x x a -+-=②有实数根,又k 为正整数,求代数式221 6 k k k -+-的值. 【答案】0. 【解析】 【分析】 由于关于x 的方程x 2+3x +a =0的两个实数根的倒数和等于3,利用根与系数的关系可以得到关于a 的方程求出a ,又由于关于x 的方程(k -1)x 2+3x -2a =0有实数根,分两种情况讨论,该方程可能是一次方程、有可能是一元二次方程,又k 为正整数,利用判别式可以求出k ,最后代入所求代数式计算即可求解. 【详解】 解:设方程①的两个实数根分别为x 1、x 2 则12123940x x x x a a +-?? ??-≥? === , 由条件,知12 1212 11x x x x x x ++==3, 即 33a -=,且94a ≤, 故a =-1, 则方程②为(k -1)x 2+3x +2=0, Ⅰ.当k -1=0时,k =1,x =23-,则221 06 k k k -=+-. Ⅱ.当k -1≠0时,?=9-8(k -1)=17-6-8k ≥0,则17 8 k ≤ , 又k 是正整数,且k≠1,则k =2,但使221 6k k k -+-无意义. 综上,代数式221 6 k k k -+-的值为0 【点睛】 本题综合考查了根的判别式和根与系数的关系,在解方程时一定要注意所求k 的值与方程判别式的关系.要注意该方程可能是一次方程、有可能是一元二次方程, 2.图1是李晨在一次课外活动中所做的问题研究:他用硬纸片做了两个三角形,分别为△ABC 和△DEF ,其中∠B=90°,∠A=45°,BC= ,∠F=90°,∠EDF=30°, EF=2.将△DEF 的斜边DE 与△ABC 的斜边AC 重合在一起,并将△DEF 沿AC 方向移动.在移动过程中,

数学 一元二次方程的专项 培优易错试卷练习题附答案

一、一元二次方程真题与模拟题分类汇编(难题易错题) 1.阅读下列材料 计算:(1﹣﹣)×(+)﹣(1﹣﹣)(+),令+=t,则: 原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣+t2= 在上面的问题中,用一个字母代表式子中的某一部分,能达到简化计算的目的,这种思想方法叫做“换元法”,请用“换元法”解决下列问题: (1)计算:(1﹣﹣)×(+)﹣(1﹣﹣)×(+) (2)因式分解:(a2﹣5a+3)(a2﹣5a+7)+4 (3)解方程:(x2+4x+1)(x2+4x+3)=3 【答案】(1);(2)(a2﹣5a+5)2;(3)x1=0,x2=﹣4,x3=x4=﹣2 【解析】 【分析】 (1)仿照材料内容,令+=t代入原式计算. (2)观察式子找相同部分进行换元,令a2﹣5a=t代入原式进行因式分解,最后要记得把t换为a. (3)观察式子找相同部分进行换元,令x2+4x=t代入原方程,即得到关于t的一元二次方程,得到t的两个解后要代回去求出4个x的解. 【详解】 (1)令+=t,则: 原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣﹣t+t2+= (2)令a2﹣5a=t,则: 原式=(t+3)(t+7)+4=t2+7t+3t+21+4=t2+10t+25=(t+5)2=(a2﹣5a+5)2 (3)令x2+4x=t,则原方程转化为: (t+1)(t+3)=3 t2+4t+3=3 t(t+4)=0 ∴t1=0,t2=﹣4 当x2+4x=0时, x(x+4)=0

解得:x1=0,x2=﹣4 当x2+4x=﹣4时, x2+4x+4=0 (x+2)2=0 解得:x3=x4=﹣2 【点睛】 本题考查用换元法进行整式的运算,因式分解,解一元二次方程.利用换元法一般可达到降次效果,从而简便运算. 2.如图,在△ABC中,AB=6cm,BC=7cm,∠ABC=30°,点P从A点出发,以1cm/s的速度向B点移动,点Q从B点出发,以2cm/s的速度向C点移动.如果P、Q两点同时出发,经过几秒后△PBQ的面积等于4cm2? 【答案】经过2秒后△PBQ的面积等于4cm2. 【解析】 【分析】 作出辅助线,过点Q作QE⊥PB于E,即可得出S△PQB=1 2 ×PB×QE,有P、Q点的移动速 度,设时间为t秒时,可以得出PB、QE关于t的表达式,代入面积公式,即可得出答案.【详解】 解: 如图, 过点Q作QE⊥PB于E,则∠QEB=90°. ∵∠ABC=30°, ∴2QE=QB. ∴S△PQB=1 2 ?PB?QE. 设经过t秒后△PBQ的面积等于4cm2, 则PB=6﹣t,QB=2t,QE=t. 根据题意,1 2 ?(6﹣t)?t=4. t2﹣6t+8=0. t2=2,t2=4. 当t=4时,2t=8,8>7,不合题意舍去,取t=2.

最新一元二次方程培优提高例题

考点一、概念 (1)定义:①只含有一个未知数,并且②未知数的最高次数是2,这样的③整式方 程就是一元二次方程。 (2)一般表达式:)0(02≠=++a c bx ax ⑶难点:如何理解 “未知数的最高次数是2”: ①该项系数不为“0”; ②未知数指数为“2”; ③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以 讨论。 典型例题: 例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132+=+x x B 02112=-+x x C 02=++c bx ax D 1222+=+x x x 变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。 例2、方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值为 。 针对练习: ★1、方程782=x 的一次项系数是 ,常数项是 。 ★2、若方程()021=--m x m 是关于x 的一元一次方程, ⑴求m 的值;⑵写出关于x 的一元一次方程。 ★★3、若方程()112=?+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。 ★★★4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( ) A.m=n=2 B.m=2,n=1 C.n=2,m=1 D.m=n=1 考点二、方程的解 ⑴概念:使方程两边相等的未知数的值,就是方程的解。 ⑵应用:利用根的概念求代数式的值; 典型例题: 例1、已知322-+y y 的值为2,则1242 ++y y 的值为 。 例2、关于x 的一元二次方程()0422 2=-++-a x x a 的一个根为0,则a 的值为 。 说明:任何时候,都不能忽略对一元二次方程二次项系数的限制.

一元二次方程综合培优(难度大-含参考答案)

一元二次方程拓展提高题 1、已知0200052 =--x x ,则 ()()2 1 122 3-+---x x x 的值是 . 2、已知0120042=+-a a ,则_________1 2004 400722 2=++ -a a a . 3、若1≠ab ,且07200552=++a a ,05200572=++b b ,则_________=b a . 4、已知方程043222=-+-a ax x 没有实数根,则代数式_____21682=-++-a a a . 5、已知x x y -+=62,则y 的最大值为 . 6、已知0=++c b a ,2=abc ,0 c ,则( ) A 、0 ab B 、2-≤+b a C 、3-≤+b a D 、4-≤+b a % 7、已知8=-b a ,0162=++c ab ,则________=++c b a . 8、已知012=-+m m ,则________2006223=-+m m . 9、已知4=-b a ,042=++c ab ,则________=+b a . 10、若方程02=-+q px x 的二根为1x ,2x ,且11 x ,03 ++q p ,则2x ( ) A 、小于1 B 、等于1 C 、大于1 D 、不能确定 11、已知α是方程041 2 =-+x x 的一个根,则α αα--331的值为 . 12、若132=-x x ,则=+--+200872129234x x x x ( ) A 、2011 B 、2010 C 、2009 D 、2008 { 13、方程22323=--+x x 的解为 . 14、已知06222=+-y x x ,则x y x 222++的最大值是( ) A 、14 B 、15 C 、16 D 、18 15、方程m x x =+-2||22恰有3个实根,则=m ( ) A 、1 B 、 C 、2 D 、 16、方程97 33 322=-+- +x x x x 的全体实数根之积为( ) A 、60 B 、60- C 、10 D 、10- 17、关于x 的一元二次方程0522=--a x x (a 为常数)的两根之比3:2:21=x x ,则=-12x x ( )

一元二次方程专题能力培优含答案

第2章 一元二次方程 2.1 一元二次方程 专题一 利用一元二次方程的定义确定字母的取值 1.已知2 (3)1m x -+=是关于x 的一元二次方程,则m 的取值范围是( ) A.m ≠3 B.m ≥3 C.m ≥-2 D. m ≥-2且m ≠3 2. 已知关于x 的方程2 1 (1)(2)10m m x m x +++--=,问: (1)m 取何值时,它是一元二次方程并写出这个方程; (2)m 取何值时,它是一元一次方程? 专题二 利用一元二次方程的项的概念求字母的取值 3.关于x 的一元二次方程(m-1)x 2+5x+m 2 -1=0的常数项为0,求m 的值. 4.若一元二次方程2 (24)(36)80a x a x a -+++-=没有一次项,则a 的值为 . 专题三 利用一元二次方程的解的概念求字母、代数式 5.已知关于x 的方程x 2 +bx+a=0的一个根是-a (a≠0),则a-b 值为( ) A.-1 B.0 C.1 D.2 6.若一元二次方程ax 2 +bx+c=0中,a -b+c=0,则此方程必有一个根为 . 7.已知实数a 是一元二次方程x 2 -2013x+1=0的解,求代数式22 1 20122013 a a a +--的值. 知识要点: 1.只含有一个未知数(一元),并且未知数的最高次数是2(二次),等号两边都是整式的方程,叫做一元二次方程. 2.一元二次方程的一般形式是ax 2+bx+c=0(a ≠0),其中ax 2 是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项. 3.使一元二次方程的两边相等的未知数的值,叫做一元二次方程的解,又叫一元二次方程的根. 温馨提示: 1.一元二次方程概念中一定要注意二次项系数不为0的条件. 2.一元二次方程的根是两个而不再是一个. 方法技巧: 1.ax k +bx+c=0是一元一次方程的情况有两种,需要分类讨论. 2.利用一元二次方程的解求字母或者代数式的值时常常用到整体思想,需要同学们认真领

初三数学培优——一元二次方程应用题

一元二次方程应用题 数字问题 1 两个数的和为8,积为9.75,求这两个数。 2两个连续偶数的积是168,则这两个偶数是__________. 3 .一个两位数,个位数字与十位数字之和为5,把个位数字与十位数字对调,所得的两位数与原来的两位数的乘积为736,求原来的两位数。 增长(降低)率问题 1,(2009年江苏省)某县2008年农民人均年收入为7 800元,计划到2010年,农民人均年收入达到9 100元.设人均年收入的平均增长率为x,则可列方程. 2.(莱芜)某公司在2009年的盈利额为200万元,预计2011年的盈利额将达到242万元,若每 年比上一年盈利额增长的百分率相同,那么该公司在2010年的盈利额为____万元. 3,(2010年兰州)上海世博会的某纪念品原价168元,连续两次降价a%后售价为128元. 下列所列方程中正确的是 A. 128 ) % 1( 1682= +a B.128 ) % 1( 1682= -a C. 128 ) % 2 1( 168= -a D.128 ) % 1( 1682= -a 4.(2009山西省太原市)某种品牌的手机经过四、五月份连续两次降价,每部售价由 3200元降到了2500元.设平均每月降价的百分率为x,根据题意列出的方程是. 5,(2010台州市)某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x,可列方程为____________ . 6,某木器厂今年一月份生产课桌500张,因管理不善,2月份的产量减少了10%,从3月份起加强 了管理,产量逐月上升,4月份的产量达到了648张,求工厂3月份和4月份的平均增长率。 7,某城市按该市的“九五”国民经济发展规划要求,1997年的社会总产值要比1995年增长21%,求平均每年增长的百分率.

一元二次方程培优试卷

一元二次方程培优检测卷 一、选择题(每题2分,共20分) 1.对于任意实数k ,关于x 的方程x 2-2(k +1)x -k 2+2k -1=0的根的情况为 ( ) A .有两个相等的实数根 B .没有实数根 C .有两个不相等的实数根 D .无法确定 2.如果一元二次方程x 2+(m +1)x +m =0的两个根互为相反数,那么有 ( ) A .m =0 B .m =-1 C .m =1 D .以上结论都不对 3.方程x 2+3x -1=0的两个根的符号为 ( ) A .同号 B .异号 C .两根都为正 D .不能确定 4.把边长为1的正方形木板截去四个角,做成正八边形的台面,设台面边长为x ,可列出方程 ( ) A .(1-x)2=x 2 B . 14 (1-x)2=x 2 C .(1-x)2=2x 2 D .以上结论都不正确 5.已知方程x 2+bx +a =0的一个根是-a ,则下列代数式的值恒为常数的是 ( ) A .b B .a C .a +b D .a -b 6.设a 2+1=3a ,b 2+1=3b 且a ≠b ,则代数式11a b +的值为 ( ) A .5 B .3 C .9 D .11 7.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则实数k 的取值范围是( ) A .1k >- B .1k <且0k ≠ C . 1k ≥-且0k ≠ D . 1k >-且0k ≠ 8.下列一元二次方程中,有两个不相等的实数根的方程是( ) A .2310x x -+= B .2 10x += C .2210x x -+= D .2230x x ++= 9.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x ,那么x 满足的方程是( ) A . 50(1+x 2)=196 B . 50+50(1+x 2)=196 C . 50+50(1+x )+50(1+x 2)=196 D . 50+50(1+x )+50(1+2x )=196 10.我们知道,一元二次方程21x =-没有实数根,即不存在一个实数的平方等于1-. 若我们规定一个新数“i ”,使其满足21i =-(即方程21x =-有一个根为i )。并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于

一元二次方程培优提高题.doc

学习必备 欢迎下载 第一节 求根公式 【例题求解 】 【例 1】满足 (n 2 n 1) n 2 1的整数 n 有 个. 【例 2】设 x 1 、 x 2 是二次方程 x 2 x 3 0 的两个根,那么 x 1 3 4x 2 2 19 的值等于( ) A . 一 4 B .8 C . 6 D . 0 【例 3】 解关于 x 的方程 (a 1) x 2 2ax a 0 . 【例 4】 设方程 x 2 2 x 1 4 0 ,求满足该方程的所有根之和. 【练习题 】 1. 已知 a 、 b 是实数,且 2a 6 b 2 0 ,那么关于 x 的方程 (a 2)x 2 b 2 x a 1 的根 为 . 2. 已知 x 2 3x 2 0 ,那么代数式 (x 1)3 x 2 1 的值是 . x 1 3. 若两个方程 x 2 ax b 0 和 x 2 bx a 0 只有一个公共根,则 ( ) A . a b B . a b 0 C . a b 1 D . a b 1 4. 若 x 2 5x 1 0 ,则 2x 2 9 x 3 5 1 = . x 2 5. 已知 m 、 n 是有理数,方程 x 2 mx n 0 有一个根是 5 2 ,则 m n 的值为 . 6. 已知 a 、 b 都是负实数,且 1 1 1 b 0 ,那么 b 的值是 ( ) a b a a A . 5 1 B . 1 5 C . 1 5 D . 1 5 2 2 2 2 7. 已知 x 2 2x 2 0 ,求代数式 (x 1)2 ( x 3)( x 3) ( x 3)( x 1) 的值. 8. 已知 x 19 8 3 ,求 x 4 6x 3 2x 2 18 x 23 的值. x 2 8x 15 9. 已知 m 、n 是一元二次方程 x 2 2001 7 0 的两个根,求 ( m 2 2000m 6)(m 2 2002n 8) x 的值. 10. 已知方程 x 2 3x 1 0 的两根 、 也是方程 x 4 px 2 q 0 的根,求 p 、 q 的值.

一元二次方程综合培优

一元二次方程拓展提高题 1、已知0200052 =--x x ,则 ()()2 1 122 3-+---x x x 的值是 . 2、已知0120042=+-a a ,则_________1 2004 4007222=++ -a a a . 3、若1≠ab ,且07200552=++a a ,05200572=++b b ,则_________=b a . 4、已知方程043222=-+-a ax x 没有实数根,则代数式_____21682=-++-a a a . 5、已知x x y -+=62,则y 的最大值为 . 6、已知0=++c b a ,2=abc ,0 c ,则( ) A 、0 ab B 、2-≤+b a C 、3-≤+b a D 、4-≤+b a 7、已知8=-b a ,0162=++c ab ,则________=++c b a . 8、已知012=-+m m ,则________2006223=-+m m . 9、已知4=-b a ,042=++c ab ,则________=+b a . 10、若方程02=-+q px x 的二根为1x ,2x ,且11 x ,03 ++q p ,则2x ( ) A 、小于1 B 、等于1 C 、大于1 D 、不能确定 11、已知α是方程041 2 =-+x x 的一个根,则α αα--331的值为 . 12、若132=-x x ,则=+--+200872129234x x x x ( ) A 、2011 B 、2010 C 、2009 D 、2008 13、方程22323=--+x x 的解为 . 14、已知06222=+-y x x ,则x y x 222++的最大值是( ) A 、14 B 、15 C 、16 D 、18 15、方程m x x =+-2||22恰有3个实根,则=m ( ) A 、1 B 、1.5 C 、2 D 、2.5 16、方程97 33 322=-+- +x x x x 的全体实数根之积为( ) A 、60 B 、60- C 、10 D 、10- 17、关于x 的一元二次方程0522=--a x x (a 为常数)的两根之比3:2:21=x x ,则=-12x x ( )

第22章 一元二次方程单元培优试卷A3打印版

一元二次方程单元培优测试卷 姓名____________ 时间: 90分钟 满分:120分 总分____________ 注意事项: 试卷编号:202008051733 1. 请在试卷规定时间内作答. 2. 请注意答题规范,书写规范. 3. 请用0.5毫米黑色水笔把答案直接答在试卷上. 一、选择题(每小题3分,共30分) 1. 若0=+-c b a ,则关于x 的一元二次方程02 =++c bx ax 必有一根为 【 】 (A )0 (B )1 (C )1- (D )2 2. 若关于x 的方程()22412+=-+-a x x a 中不含常数项,则a 的值是 【 】 (A )1 (B )3- (C )3± (D )1- 3. 用配方法解方程0982=+-x x ,变形后的结果正确的是 【 】 (A )()742 =-x (B )()742 -=-x (C )()2542 =-x (D )()2542 -=-x 4. 方程03522 =--x x 的两根是 【 】 (A )2115±=x (B )4295±=x (C )2295±-=x (D )4 29 5±-=x 5. 方程()()5221-=-+x x x 的根的情况是 【 】 (A )有两个相等的实数根 (B )有两个不相等的实数根 (C )有一个实数根 (D )无实数根 6. 对于任意实数x ,代数式1062 +-x x 的值是一个 【 】 (A )非负数 (B )正数 (C )负数 (D )整数 7. 若关于x 的一元二次方程0122=+-x mx 有两个实数根,则实数m 的取 值范围是 【 】 (A )m ≤1 (B )m ≤1- (C )m ≤1且0≠m (D )m ≥1-且0≠m 8. 一个等腰三角形的底边长是6,腰长是一元二次方程01582=+-x x 的一个根,则此三角形的周长是 【 】 (A )16 (B )12 (C )14 (D )12或16 9. 某商场销售一批运动休闲衫,平均每天可售出20件,每件盈利45元.为了扩大销售,增加盈利,商场决定采取适当的降价措施.经调查发现,每件休闲衫每降价1元,商场平均每天可多售出4件.若商场销售该批休闲衫平均每天盈利2 100元,每件休闲衫应降价多少元?设每件休闲衫降价x 元,根据题意,可列方程为 【 】 (A )()()210042045=-+x x (B )()()210042045=--x x (C )()()210020445=+-x x (D )()()210042045=+-x x 10. 定义:如果一元二次方程)0(02≠=++a c bx ax 满足0=++c b a ,那么我们称这个方程为“和谐”方程;如果一元二次方程)0(02≠=++a c bx ax 满足0=+-c b a ,那么我们称这个方程为“美好”方程.如果一个一元二次方程既是“和谐”方程又是“美好”方程,则下列结论正确的是 【 】 (A )方程有两个相等的实数根 (B )方程有一根等于0 (C )方程两根之和等于0 (D )方程两根之积等于0 二、填空题(每小题3分,共15分) 11. 一元二次方程()112-=-x x x 的解为_____________. 12. 若m 是关于x 的方程01322=--x x 的一个根,则 =+-7962m m __________. 13. 已知等腰三角形的两边长恰好是关于x 方程01892=+-x x 的解,则此等腰三角形的周长是__________. 14. 代数式522-+x x 的最小值是__________. 15. 元旦晚会,全班同学互赠贺卡,若每两个同学都相互赠送一张贺卡,小明 统计全班共送了1560张贺卡,那么全班有多少人?设全班有x 人,则根据题意可列方程为__________________. 三、解答题(共75分) 16.解方程:(每小题5分,共10分) (1)01662=-+x x ; (2)01422=-+-x x . 17.(9分)小明同学解一元二次方程0162=--x x 的过程如下: 解:162=-x x ,① 1962=+-x x ,② ()132=-x ,③ 13±=-x ,④ 2,421==x x .⑤ (1)小明解方程的方法是【 】 (A )直接开平方法 (B )因式分解法 (C )配方法 (D )公式法 他的求解过程从第__________步开始出现错误; (2)解这个方程.

初三数学一元二次方程教案综合培优练习

一元二次方程 知识点一、一元二次方程的定义 1、方程的等号两边都是整式,只含有一个未知数,并且含未知数的项的最高次数是2,这样的方程叫做一元二次方程. 注:一元二次方程的定义包括三个要素: ①只含一个未知数. ②未知数的最高次数是2. ③整式方程. 例1:判断下列方程是否是一元二次方程,为什么? (1)() ()22123a x x x a x a -+-=+; (2)() ()22221m x m x x x m ++=+-. 【变式一】求下列各题m 的值或取值范围 (1)方程()22510m x x +++=是关于x 的一元二次方程,则m 的取值范围是________. (2)若方程()1 131m m x x +-+=是关于x 的一元二次方程,则m 的值是________. (3)m =__________时,关于x 的方程2 ((3)43m m x m x m -+=+是一元二次方程. 【变式二】关于x 的方程1 (1)320a a x x +--+=是一元二次方程,则( ) A .1a ≠± B .1a = C .1a =- D .1a =± 2、一元二次方程的一般形式 一般地,任何一个关于x 的一元二次方程,经过整理,都能化成如下形式:()200ax bx c a ++=≠ 这种形式叫做一元二次方程的一般形式.其中2ax 是二次项,a (0a ≠)是二次项系数;bx 是一次项,b (b 为任意实数)是一次项系数;c (c 为任意实数)是常数项. 注:一元二次方程的一般形式中,0a ≠的条件十分重要,一般地,如果题目中明确说明“关于x 的一元二次方程”,都需要检验一下二次项系数是否为0. 知识点&例题

一元二次方程培优提高例题

(1)定义:①只含有一个未知数,并且②未知数的最高次数是 2,这样的③整式方 程就是一元二次方程。 (2) 一般表达式:ax 2 +bx + c = 0(a 工 0) ⑶难点:如何理解 “未知数的最高次数是 2 ”: ① 该项系数不为“ 0” ; ② 未知数指数为“ 2” ; ③ 若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以 讨论。 典型例题: 例1、下列方程中是关于 x 的一元二次方程的是( ) 」 2 」 1 1 A 3(x+1 2 =2(x+1 ) B 飞+--2=0 x x 2 C ax bx c = 0 时,关于x 的方程kx 2 2^ = x 2 3是一元二次方程。 例2、方程 m ' 2 x i m ' 3mx ? 1 = 0是关于x 的一元二次方程,则 m 的值为 ______________________________ 针对练习: 2 ★ 1、方程8x =7的一次项系数是 ___________________ ,常数项是 ______________ 。 ★ 2、若方程 m-2x m °=0是关于x 的一元一次方程, ⑴求m 的值;⑵写出关于 x 的一元一次方程。 ★★ 3、若方程 m -1 x 2 ? m ?x = 1是关于x 的一元二次方程,则 m ★★★ 4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( A.m=n=2 B.m=2, n=1 C.n=2,m=1 D.m=n=1 考点二、方程的解 使 利用根的概念求代数式的值; 、关于x 的一元二次方程 a-2x 2 ?x ?a 2-4=0的一个根为0,贝U a 的值为 _______ 例 说明:任何时候,都不能忽略对一元二次方程二次项系数的限制 例3、已知关于x 的一元二次方程ax 2 ? bx ? c = 0 a = 0的系数满足a b ,则此方程 必有一根为 ___________ 。 说明:本题的关键点在于对 “代数式形式”的观察,再利用特殊根“ -1 ”巧解代数 式的值。 2 2 例4、已知a, b 是方程x -4x ? m =0的两个根,b,c 是方程y -8y ?5m =0的两个根, 贝U m 的值为 _________ 。 变式:当k 的取值范围是 已知2y 2 3的值为2,则4y 2 2y 1的值为 例 1

一元二次方程培优专题讲义(最新整理)

数学培优专题讲义:一元二次方程 一.知识的拓广延伸及相关史料 1.一元二次方程几种解法之间的关系解一元二次方程有下列几种常用方法:(1)配方法:如,经配方得 2670x x ++=,再直接用开平方法; 2(3)2x +=(2)公式法;(3)因式分解法。 这三种方法并不是孤立的,直接开平方法,实际也是因式分解法,解方程,只2670x x ++=要变形为 即可,或原方程 22(3)0x +-=经配方化为,再求解时, 2670x x ++=2(3)2x +=还是归到用平方差公式的因式分解法,所以配方法归为用因式分解法的手段。公式法在推导公式过程中用的是配方法和直接开平方法,因此,它还是归到因式分解法,所不同的是,公式法用一元二次方程的系数来表示根,因而可以作为公式。由此可见,对因式分解法应予以足够的重视。因式分解法还可推广到高次方程。 2.我国古代的一元二次方程 提起代数,人们自然就把它和方程联系起来。事实上,过去代数的中心问题就是对方程的研究。我国古代对代数的研究,特别是对方程解法的研究有着优良的传统,并取得了重要成果。 下面是我国南宋数学家杨辉在1275年提出的一个问题:”直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少一十二步),问阔及长各几步?”答:”阔二十四步,长三十六步.” 这里,我们不谈杨辉的解法,只用已学过的知识解决上面的问题. 上面的问题选自杨辉所著的《田亩比类乘除算法》。原题另一个提法是:“直田积八百六十四步,只云阔与长共六十步,问阔及长各几步?”这个问题同样可以类似求解. 3. 掌握数学思想方法,以不变应万变。 本章内容蕴涵了丰富的数学方法,主要有转化思想、类比思想、降次法、配方法等。 (1)转化思想 我们知道,解方程的过程就是不断地通过变形把原方程转化为与它等价的最简单方程的过程。因此,转化思想就是解方程过程中思维活动的主导思想。在本章,转化无所不在,无处不有, 可以说这是本章的精髓和特色之一,其表现主要有以下方面: ①未知转化为已知,这是解方程的基本思路: ②一元二次方程转化为一元一次方程,这是通过将原方程降次达到的: ③特殊转化为一般,一般转化为特殊。例如,通过用配方法解数字系数的一元二次方程归纳出用配方法解一般形式2670x x ++=的一元二次方程的方法,进而得出20ax bx c ++=一元二次方程的求根公式,而用公式法又可以解各种具体的一元二次方程,推导出一元二次方程根与系数的关系。又如,通过设未知数,找出等量关系,列方程,把实际问题转化为解方程问题,等等。 掌握转化思想并举一反三,还可以解决很多其他方程问题,如高次方程转化为一元一次或一元二次方程,分式方程转化为整式方程,无理方程转化为有理方程,二元二次方程组转化为二元一次方程组,总之,本章学习的关键之一是学会如何”转化”. 练习: ;222 1 1.510a x x a a -+=+ 是方程的一根,求的值 2421032. a x a ?--=--是方程x 的一根,求a 的值 2 2 42 3101 x x x x x --=-+、若,求的值。 (2)类比思想 本章多次运用类比找出新旧知识的联系,在新旧知识间进行对比,以利于更快更好地掌握新知识. 如用配方法解一元二次方程时,可类比平方根的概念和意义,列一元二次方程解应用题,可类比列一元一次方程解应用题的思路和一般步骤. 类比思想是联系新旧知识的纽带,有利于帮助我们开阔思路,研究解题途径和方法,有利于掌握新知识、巩固旧知识,学习时应特别重视。

九年级数学一元二次方程组的专项培优练习题(含答案)

九年级数学一元二次方程组的专项培优练习题(含答案) 一、一元二次方程 1.使得函数值为零的自变量的值称为函数的零点.例如,对于函数1y x =-,令y=0,可得x=1,我们就说1是函数1y x =-的零点. 己知函数2 22(3)y x mx m =--+(m m 为常数). (1)当m =0时,求该函数的零点; (2)证明:无论m 取何值,该函数总有两个零点; (3)设函数的两个零点分别为1x 和2x ,且 12111 4 x x +=-,此时函数图象与x 轴的交点分 别为A 、B(点A 在点B 左侧),点M 在直线10y x =-上,当MA+MB 最小时,求直线AM 的函数解析式. 【答案】(1)当m =0时,该函数的零点为6和6-. (2)见解析, (3)AM 的解析式为1 12 y x =--. 【解析】 【分析】 (1)根据题中给出的函数的零点的定义,将m=0代入y=x 2-2mx-2(m+3),然后令y=0即可解得函数的零点; (2)令y=0,函数变为一元二次方程,要想证明方程有两个解,只需证明△>0即可; (3)根据题中条件求出函数解析式进而求得A 、B 两点坐标,个、作点B 关于直线y=x-10的对称点B′,连接AB′,求出点B′的坐标即可求得当MA+MB 最小时,直线AM 的函数解析式 【详解】 (1)当m =0时,该函数的零点为6和6-. (2)令y=0,得△= ∴无论m 取何值,方程 总有两个不相等的实数根. 即无论m 取何值,该函数总有两个零点. (3)依题意有, 由 解得 .

∴函数的解析式为. 令y=0,解得 ∴A( ),B(4,0) 作点B 关于直线10y x =-的对称点B’,连结AB’, 则AB’与直线10y x =-的交点就是满足条件的M 点. 易求得直线10y x =-与x 轴、y 轴的交点分别为C (10,0),D (0,10). 连结CB’,则∠BCD=45° ∴BC=CB’=6,∠B’CD=∠BCD=45° ∴∠BCB’=90° 即B’(106-,) 设直线AB’的解析式为y kx b =+,则 20{106k b k b -+=+=-,解得112 k b =-=-, ∴直线AB’的解析式为1 12 y x =--, 即AM 的解析式为1 12 y x =- -. 2.李明准备进行如下操作实验,把一根长40 cm 的铁丝剪成两段,并把每段首尾相连各围成一个正方形. (1)要使这两个正方形的面积之和等于58 cm 2,李明应该怎么剪这根铁丝? (2)李明认为这两个正方形的面积之和不可能等于48 cm 2,你认为他的说法正确吗?请说明理由. 【答案】 (1) 李明应该把铁丝剪成12 cm 和28 cm 的两段;(2) 李明的说法正确,理由见解析. 【解析】 试题分析:(1)设剪成的较短的这段为xcm ,较长的这段就为(40﹣x )cm .就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于58cm 2建立方程求出其解即可; (2)设剪成的较短的这段为mcm ,较长的这段就为(40﹣m )cm .就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于48cm 2建立方程,如果方程有解就说明李明的说法错误,否则正确. 试题解析:设其中一段的长度为cm ,两个正方形面积之和为cm 2,则 , (其中 ),当 时, ,解这个方程,得 ,,∴应将之剪成12cm 和28cm 的两段;

一元二次方程提高培优题

实用标准文案 文档大全 一元二次方程提高题 一、选择题 1.已知a 是方程x 2 +x ﹣1=0的一个根,则 的值为( ) A . B . C .﹣1 D .1 2.一元二次方程(2)2x x x -=-的根是( ) A.x=1 B.x=0 C.x=1和x=2 D.x=-1和x=2 3.为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为289元的药品进行连续两次降价后为256元,设平均每次降价的百分率为x ,则下面所列方程正确的是( ) A . 289(1﹣x )2=256 B . 256(1﹣x )2 =289 C . 289(1﹣2x )=256 D . 256(1﹣2x )=289 4.岑溪市重点打造的天龙顶山地公园在2013年12月27日试业了.在此之前,公园派出小曾等人到某旅游景区考察,了解到该景区三月份共接待游客20万人次,五月份共接待游客50万人次.小曾想知道景区每月游客的平均增长率x 的值,应该用下列哪一个方程来求出?( ) A .20(1+x )2=50 B .20(1﹣x )2=50 C .50(1+x )2 =20 D .50(1 ﹣x )2 =20 5.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一留作纪念,全班共送了2070相片,如果全班有x 名学生,根据题意,列出方程为( ) A .(1)2070x x -= B .(1)2070x x += C .2(1)2070x x += D . (1) 2070x x x -= 6.若关于x 的方程x 2 ﹣4x+m=0没有实数根,则实数m 的取值围是 A .m <﹣4 B .m >﹣4 C .m <4 D .m >4 7.已知实数a ,b 分别满足22a 6a 40b 6b 40-+=-+=,,且a≠b,则 b a a b +的值是【 】 A .7 B .-7 C .11 D .-11 8.已知关于x 的方程()2kx 1k x 10+--=,下列说确的是 A.当k 0=时,方程无解 B.当k 1=时,方程有一个实数解 C.当k 1=-时,方程有两个相等的实数解 D.当k 0≠时,方程总有两个不相等的实数解 9.若22 4x Mxy y -+是一个完全平方式,那么M 的值是( ) A. 2 B. ±2 C. 4 D.±4 二、填空题 10.已知方程x 2 +(1﹣ )x ﹣=0的两个根x 1和x 2,则x 12+x 22 = 11.已知m 和n 是方程2x 2 -5x -3=0的两个根,则 1m +1 n =________. 12.若将方程2 67x x +=,化为()2 16x m +=,则m =________. 13.已知(x 2 +y 2 )(x 2 -1+y 2 )-12=0,则x 2 +y 2 的值是_________? 14.某种药品原价为60元/盒,经过连续两次降价后售价为48.6元/盒.设平均每次降价的百分率为x ,则根据题意,可列方程为 . 15.若a 4+b 10--=,且一元二次方程2kx ax b 0++=有实数根,则k 的取值围是 . 三、计算题 16.解方程:(x+3)2 ﹣x (x+3)=0. 按要求解方程:

相关文档
相关文档 最新文档