文档库 最新最全的文档下载
当前位置:文档库 › 中国高推重比涡扇发动机核心机研制内幕

中国高推重比涡扇发动机核心机研制内幕

中国高推重比涡扇发动机核心机研制内幕
中国高推重比涡扇发动机核心机研制内幕

中国高推重比涡扇发动机核心机研制内幕

从设计和验证一个个零件开始,完成了高推重比核心机的高压压气机、主燃烧室、高压涡轮三大核心部件和轴对称矢量喷管的研制……

揭秘我国高推重比涡扇发动机核心机研制历程

如果把现代作战飞机比作高科技的皇冠,那么航空发动机就是这顶皇冠上的明珠。目前世界上能够设计、制造飞机的尚有10多个国家,而能够独立自主研制航空发动机的则仅有少数几个国家。纵观美、俄、欧先进涡喷、涡扇发动机的研制,无一不是从预先研究开始,先通过核心机研制,再通过验证机研制发展而来。所谓核心机,就是燃气涡轮发动机中由高压压气机、燃烧室、涡轮三个主要部件及有关附件组成的发动机核心部分。在核心机的基础上经必要的修改后,配上风扇、低压涡轮、加力燃烧室、控制系统和传动系统等相应的部件就可以研制出军用涡扇发动机、民用涡扇发动机、舰船用燃气轮机等一系列发动机。世界上航空发动机型号虽然种类繁多,但是核心机就那么几台,由此可知核心机的重要作用。航空发动机核心机技术是一个国家的最高技术机密之—,它们对外都是严密封锁的,在这种情况下,我国的高推重比涡扇发动机核心机又是如何研制出来的呢?

一、预先研究,初尝战果

从上世纪五十年代后期起,我国开始探索自主研制航空发动机的途径,虽历经艰辛,却没走到形成装备这一步,—直在靠进口、仿制、改型来满足新研军机对航空发动机的急需。但是能够买得到的只是三、四流的技术和产品,连二流的也买不来,更不要说一流的了。直到今天,我国在役的航空发动机或多或少都还带有外国血统。如果中国要造自己的先进战斗机,那么首先就必须有自己的航空发动机,这样才不至于在关键领域受制于人,因为武器装备对任何国家来说都具有“敏感性”,任何一个国家都不会无私地用自己的技术去“武装”其他国家。为此,我国在研制新一代战斗机的同时就启动了高推重比涡扇发动机的研制

高推重比涡扇发动机是我国第一个计划从预先研究开始,然后发展成为型号,并且装机背景明确的航空动力重点工程。它相对于我国在役和其它在研的航空发动机来说,又是一个技术全面跨代的航空发动机。因而,它对我国走完自主研制航空发动机全过程,对缩小与西方发达国家的差距,为新一代战机提供合格的动力装备,都负载着巨大的重托和期盼!“十年磨一剑”,上世纪九十年代末,我国高推重比涡扇发动机的预先研究,基本完成了

其零部件研制、一系列技术支持性试验以及核心机的方案设计,实现了预先研究阶段的研制目标。正当主研制单位中国一航燃气涡轮研究院打算歇口气时,新一代战斗机和与之配套的高推重比涡扇发动机一起被列为国家重大科研突破项目。任务很明确,进行高推重比核心机的研制,为之后的验证机和型号研制奠定基础。高推重比涡扇发动机核心机,是我国从未登顶过的航空动力高峰,而横在攀登者面前的是160余项关键技术构成的雄关险隘。

二、勇闯高压压机难关

高推重比核心机作为工程研究,“既要先进性,又要可实现性”,也就是说它的所有性能和技术指标既要达到高推重比航空发动机级别的要求,又要在中国人自己手中造出来。高推重比核心机的研制,首先需要通过无数次“技术支持性试验研究”,然后进行理论推导和计算,最后再设计和制作成一个个试验件做各种试验,在取得科学的数据、掌握一项项新技术后,再用以支持和验证设计这些前人还不曾有过的探索性实践,对中国航空科研人员来说无疑是一个极大的挑战。其中,高压压气机是航空发动机中最关键、技术最复杂的部件,在航空工业界素有“有了合格的高压压气机,就能设计航空发动机”之说。西方航空强国的高压压气机的研制,通常要通过多轮修改设计才有可能达到设计指标。在我国高推重比核心机高压压气机的第一轮设计中,由于两项技术性能没有达标,从而成了研制道路上的第一只拦路虎。以致于有一段时间,一些协作单位连高推重比核心机的技术讨论会议也不参加了,因为国际国内都有过的前车之鉴使他们怀疑这一项目能否继续下去。在这种出师不利的局面下,著名航空动力专家、中国一航燃气涡轮研究院总设计师、高推重比核心机总设计师组组长江和甫深入到每一位科研人员的办公室和家庭,耐心地做他们的思想工作,给科研人员鼓气:“科研是一个认识、实践、再认识、再实践的过程,如果没有今天不达标的压气机,哪有日后完全达标的压气机!”一位六旬老人尚且百折不挠、韧性求索,年轻人没有理由不奋力争先。

增强了信心后的科研人员鼓足干劲,马上投入到高压压气机的修改设计之中。在之后的100多天里,科研人员修改设计的方案多达几百个,尔后又进行了一次又一次的优化、筛选并最终确定了一个方案,仅半年就完成了高压压气机的修改设计。通过修改设计后的高压压气机,经试车台试验验证,所有的性能指标都达到了设计要求,有多项指标甚至还超过了设计要求。当初,业界专家估计这台压气机至少还要经过两轮以上的修改设计才有可能达标。但后来还是这些专家,却在评审中作出了这样的评审结论:这是一台具有国际先进水平,满足高推重比涡扇发动机工程运用的压气机。

三、大胆使用新材料

运用新材料,是实现航空发动机先进性的一个途径。一些新材料的研究是与高推重核心机的研制同步进行的。然而,有了新材料,不等于就能达到先进性。况且,处在研制过程中的新材料还有很多不足。在高推重比核心机上使用一种钛合金材料就很让设计人员费了—番心思。这种材料,蠕变性能好,热稳定性能就不好:热稳定性能好,蠕变性能就不好,两者不能兼顾。针对不同部件的不同要求,科研人员作了许多分别侧重蠕变性能或热稳定性能的技术试验,如期使这一材料在高推重比核心机上得到了成功运用。此外,高推重比核心机涡轮前的温度,要比它上一代发动机的温度高出200度,单从我国现有材料的承热能力或设计技术看,都无法达到指标。在这种情况下,科研人员—方面进行技术攻关,提高部件冷却效果,另一方面选用新近研制出来承热能力高的材料来制作涡轮部件,提高其承热能力,经过坚持不懈的努力,最终使涡轮部件承受住了设计温度

四、突破粉末合金盘技术

粉末合金盘是高推重比核心机中的又一个关键部件,而夹碴数量是粉末合金的一个关键技术指标。当时,这一材料的国内两家研制单位,对夹碴的评定技术方法分歧很大。如果两家相持不下,或不用这—材料,高推重比核心机研制就会因此而搁浅。作为高推重比核心机总设计师组组长的江和甫于是把两家单位找到一起进行认真的研究讨论,终于形成子—致的夹碴评定技术方法。在江和甫的科学技术决策指导下,高推重比核心机上采用了大量的新材料,不仅有力地推进了研制工作,还带动了我国这一领域新材料的发展。

五、打破常规,着眼未来

航空发动机的研制,是按预先研究、核心机研制、验证机研制、型号研制分阶段进行的,各个阶段的研制目标各有不同。

核心机研制的目标主要是掌握设计性能;只是为了满足台架试车,验证其气动性能和设计技术,因此核心机的工作寿命只需要几十小时,对各个部件和整机的重量也没有严格要求。

而我国高推重比核心机的目标是研制符合工程运用的核心机,其结构、强度、重量、寿命和可维修性要完全符合装备要求,包括高空、高速在内的“全飞行包线”的所有空中状态都要能正常工作,寿命需要达到上千小时,这无形中提高了设计标准。因此,在高推重比核心机研制阶段,还需要开展大量的验证机阶段甚至是型号阶段才开展的工作,这样下来,高推重比陔心机设计方案本身就成为一个满足验证机要求的方案。就外观来看,高准重比核心机也不再是传统意义上只有高压压气机、主燃烧室、高压涡轮三大核心部件的核心机,它还配备了外涵道等部件,这是以前的核心机所没有的。而一些技术性能和材料的使用,更是按型号机来考虑的。从高推重比核心机的顶层方案设计伊始,还综合考虑了将来向大型运输机动力以及地面燃气轮机发展。

不仅如此,总设计师组组长江和甫还提出了“第一台核心机要上高空台试验”的研制决策,这又是一个打破航空发动机研制惯例的做法。按照惯例,航空发动机在核心机研制阶段,要用好几台核心机来分别验证不同的设计性能,而第一台核心机只作地面台试验。“第—台核心机要上高空台试验”给本来就十分困难、技术风险非常大的高推重比核心机研制又增添了很多困难和技术风险。江和甫这样做,不是没有人劝过他:“研制核心机就干核心机的事,别去冒那么大的风险,拿到设计性能就行了。”而他的老同事更是专门找他相劝:“老哥,按部就班地走下去,你的形象照样很好,你还能干几年?出了事就毁了你一辈子的声誉。”但是在航空发动机研制领域求索了40多年的江和甫,曾经成功地改进过涡喷-6、涡喷—7发动机,并且作为总设计师,主持完成了涡喷—13系列发动机的后期研制。这一系列型号航空发动机,至今仍是我国主战歼击机的动力。此外,作为第一总设计师,他还主持完成了我国首台拥有完全知识产权的航空发动机核心机—中等推力涡扇发动机核心机的研制。我国几个主要歼击机的发动机里,都有他亲自设计的零部件或是由他牵头。江和甫已是一位功成名就的航空动力专家了,到了事业快要画句号的年龄段,要是栽个大跟头,说的不好听,那简直是“晚节不保”。

江和甫不是没有想过自己在其中的利害得失,他在高推重比核心机研制中自己给自己加压,一个重要原因是,可以尽可能多、尽可能早地暴露研制中的问题。按照他的话说:“尽量把问题暴露在前期,才有时间去攻关和解决,不然,后面工作的难度和技术风险将会更大。

正是凭着中国科研人员这种相信技术、大胆创新、不畏艰难的勇气和决心,为以后成功解决各种技术困难打下了坚实基础。

六、“顺利”通过地面最大工作状态

高推重比核心机在地面台第二阶段的一次试验中出现了油气烟雾,现场的气氛骤然紧张,很多参试人员一时不知所措。科研人员后来通过分析认为,这是在高转速条件下形成的正常现象,并不是燃油泄漏。停车后经检查和分析,这—判断非常准确,地面试验才得以继续。否则的话,如果把试验停下来,通过分解高推重比核心机来找原因,要耽误好几个月时间。

高推重比核心机地面最大工作状态试验是研制中的重要一环,要达到这一状态,就要通过“共振区”,这是任何航空发动机研制进程中的一道坎。是否能够通过,就要看高推重比核心机的设计、结构、强度和控制系统等是否能经得起全面的综合考验。

在涡轮院地面试车台上,高推重比核心机进发出有节奏感,一阵紧似一阵的,如同战机冲刺长天一样的啸叫!操作屏前,技术人员紧盯着计算机荧屏上反映高推重比核心机工作状况的绿色曲线,目不转睛地望着各种仪器、仪表,个个屏声敛气。来宾观摩室里,前来考察这次试验的上级领导,军方使用业界专家,有的站起来,有的离开座位走到大屏幕前,近距离地观察高推重比核心机的运行状态,关切之情都写在了脸上。随着油门杆缓缓向上推移,高推比核心机发出的啸叫越来越紧凑,反映推力的绿色曲线平滑地通过了“共振区”,一路攀升,直到最大状态的顶点。试验顺利成功了!这是一个载入我国航空工业史册的时刻—我国自主研制、技术跨代、具有国际先进水平的高推重比核心机地面试验达到最大状态,标志着中国最先进涡扇航空发动机的研制又迈过了—重雄关!而为了这一刻,一航涡轮院和我国50余个参研单位的数千名科技人员已经为之整整奋斗了15年。此后科研人

员并没有因为“一点点”胜利而沾沾自喜,而是一鼓作气,又顺利完成了地面台上的全部试验。我国高推重比涡扇发动机核心机由此诞生

七、结语

15年来,一航涡轮院和参研单位的数千名科技人员合力攻坚,从摸索和突破一项项关键技术着手,从设计和验证一个个零件开始,一步一个脚印,完成了高推重比核心机的高压压气机、主燃烧室、高压涡轮三大核心部件和轴对称矢量喷管的研制,先后经历了方案设计,直至核心机技术设计—核心机工程图设计和相关技术文件的编制并下厂加工—核心机总装—核心机在涡轮院地面台上点火一次成功并顺利推到慢车状态—试验达到地面最大状态—地面台上的全部试验。高推重比核心机的研制迎着风雨艰辛,一路走来,创造了80余项国内航空发动机研制的第一。高推重比核心机研制的顺利成功,在中国航空发动机研制史上写下了浓墨重彩的一笔。

高推重比核心机的研制成功,为我国在登顶高推重比航空动力高峰过程中建立起了“大本营”,有了这一“大本营”,我国一定能够如期征服高推重比涡扇航空发动机的高峰,把我国的新一代战机送上蓝天21世纪高推重比发动机要求减轻结构重量,降低研制和制造成本,这对制造技术提出了更加苛刻的要求,使发动机结构工艺性更加恶化。为此,国外将研究出全新的制造技术群

以F119发动机为代表的推重比10一级的发动机将成为以F-22为代表的第四代战斗机的动力装置。预计2 020年以前,发动机推重比将提高至15~20,许多关键技术前期研究项目已经取得成果,不少已在XTC16/1A 核心机和系列化的先进涡轮发动机燃气发生器验证机上进行了验证。在提高发动机可靠性和维护性的同时,为了提高发动机的推力和推重比,必须减轻发动机结构重量,提高发动机的结构效率和燃气温度。为此,除改进发动机设计方法外,还发展和采用了先进的轻质高性能材料与高结构效率的整体、轻量化结构。因而,使发动机的结构工艺性、可加工性和可生产性进一步恶化。为此,国外相继研发了一系列关键制造技术。

宽弦风扇叶片制造技术

F119和EJ200等推重比10一级的发动机均采用宽弦风扇叶片。F119的3级风扇叶片均为宽弦叶片。宽弦无凸台风扇叶片可有两种选择方案,即钛合金风扇叶片和复合材料风扇叶片。F119采用PW E3发动机的方案,即用钛合金毛坯经切削加工成两半叶片,用真空扩散焊接成一个整体空心平板叶身,然后在真空炉内通过蠕变、弯扭初步成形,最后经超塑成形至最终叶型。美国普惠公司和汉密尔顿标准公司联合研发了复合材料风扇叶片。目前研发的复合材料风扇叶片主要有:

1。钛梁-环氧树脂基复合材料蒙皮壳体结构,壳内填充泡沫;

2。全复合材料风扇叶片,一旦通过耐久性试验,可用作高性能发动机的风扇叶片;

3。目前正在研究推重比15~20高性能发动机的复合材料风扇叶片,它是一种空心的、用连续碳化硅纤维增强的钛金属基复合材料(MMCS)制造成的叶片,是用超塑成形/扩散连接工艺制造的轻质量、高刚度、高耐冲击破坏强度的空心风扇叶片,可使发动机结构重量减轻14%。这种复合材料风扇叶片选用的碳化硅纤维材料是S CS-6,基体材料是Ti-6Al-4V。SCS-6/Ti-6-4钛基复合材料的纵向抗拉强度和抗疲劳强度优于其他备选材料,碳化硅纤维标称直径为0。142毫米。首先,将SCS-6纤维制成经固化的SCS-6/Ti-6-4钛面板,再用此面板加工成楔形板,用钢模和超塑成形/扩散连接工艺将面板制成型板,然后,进行尺寸检测和无损检验,经质量检查合格后,将若干个型板按风扇叶片的尺寸要求制成叠板组件,最后进行超塑成形/扩散连接。叶片蒙皮厚度从叶根至叶尖递减。蒙皮制造方法是,将单向排列的SCS-6纤维与钛交织成编织物(用钛箔控制纤维间隔),按照厚度要求确定蒙皮层数,最后在热等静压罐内固结。金属基复合材料风扇叶片的制造过程大致如下:先制成蒙皮面板→制成叠板组件→扩散连接(在热压罐内)→扭转弯度成形→超塑成形→无损检验→表面光整加工。

在综合高性能涡轮发动机技术计划(IHPTET)的第一阶段中,在XTE65/2验证机上试验了一种用Ti-6Al-4 V钛合金制造的带后掠角、小展弦比、无凸台的风扇叶片,其效率和喘振裕度均高于现役先进发动机的风扇叶片。其制造方法未见报道,估计采用多坐标计算机数控加工技术制成。

整体叶盘制造技术

推重比10发动机的压气机和涡轮采用整体叶盘结构,如F119和EJ200的风扇与压气机为钛合金整体叶盘结构,涡轮采用高温合金整体叶盘结构;F120、F414-400发动机的第2、3级风扇和压气机前3级也采用整体叶盘结构。有的F119压气机转子也采用ALLOY-C型阻燃钛合金整体叶盘。ALLOY-C型钛合金不但具有良好的阻燃性能,而且具有良好的高温变形、冷轧、延展、焊接和铸造性能,其钣金成形延展率可达40%~50%。目前,制造整体叶盘有以下技术途径:

电子束焊接法-- EJ200即采用此法制造,即先将单个叶片用电子束焊接成叶片环,后用电子束焊接技术将锻造和电解加工成形的轮盘腹板与叶片环焊接成整体叶盘结构。这种整体叶盘结构比传统的榫头连接的叶盘转子结

构重量减轻30%,并可根除榫槽断裂危险。此方案采用的制造技术有电子束焊接技术、锻造技术、电解加工技术,以及线性摩擦焊接修理技术。

锻接法(用锻压植入叶片+扩散连接)--普惠公司试用锻接法制造整体涡轮转子。锻接法是用局部加热法将单晶精铸叶片直接连接到锻造涡轮盘的轮缘上。涡轮盘轮缘局部加热至变形温度后,用待连接的单晶叶片在局部加热的轮缘连接部位施压,使局部加热区域产生变形,即将叶片植入轮缘内的同时进行扩散连接过程,将叶片牢固地连接在涡轮盘的轮缘内。

锻接法的关键是正确有效地控制局部加热变形参数(温度、压力、变形量),这对叶片与轮盘之间消除松动、产生完全致密的高强度结合面是非常重要的。用此法制造的整体叶盘结构必须确保锻接过程中,叶片始终准确定位,并始终保持定位的位置。普惠公司已研究出叶片/盘的锻接工具,可准确地保持叶片的正确位置。

锻接工艺可有效用于超级耐热合金和钛合金之间的连接和修补,可用于风扇、压气机和涡轮整体叶盘结构的制造、修补和更换叶片。

五坐标计算机数控加工或电解加工技术--整体叶盘结构的制造还可采用经模锻的高温合金或钛合金实体整

体叶盘毛坯经五坐标数控加工技术或数控电解加工技术成形。此种方法要切掉大量金属材料,价格昂贵,加工时间和制造周期长。

线性摩擦焊接(LFW)法--用线性摩擦焊将叶片焊接在轮盘上,可节省大量叶片的连接件和结构重量。它是先将叶片夹紧在轮缘的叶根上,并使轮盘周向以高速振动,在叶片和轮盘叶根界面产生一个窄的摩擦加热区,当加热区的温度达到要求的温度时即停止振动,叶片与轮盘固定直至固结在一起。此法要比用实体毛坯加工法更经济。欧洲战斗机的EJ200 发动机的3级低压压气机的整体叶盘是线性摩擦焊接技术成功应用的顶极标志。目前罗-罗公司和MTU公司已用LFW技术成功地制造了宽弦风扇整体叶盘,并将为JSF的发动机提供LFW整体叶盘。用LFW技术可从发动机上更换掉被鸟撞损坏的叶片,也可用LFW技术将叶片与用不同材料制造的轮盘焊接在一起,以获得最佳的减重效果。

整体叶环制造技术

推重比15~20高性能发动机,如XTX16/1A变循环发动机的核心机第3、4级压气机为整体叶环转子结构。该整体叶环转子及其间的隔环采用TiMC金属基复合材料制造。目前正在研究的整体叶环结构制造技术是一种用单长丝缠绕金属基复合材料结构的制造技术。用连续单根碳化硅长丝增强的钛合金金属基复合材料制造的压气机整体叶环转子可以减少70%整体叶环转子结构的转动质量,而且可以提高高温性能。用单根长丝增强的钛合金金属基复合材料制造的整体叶环是用直径为100微米或更粗的碳化硅连续长丝,长度为25千米,在钛合金基体上缠绕成形而成。所用的长丝是在钨丝或未拧成丝束的单根碳纤维外表面用化学气相沉积工艺沉积一层硼化硅或碳化硅陶瓷,再将数根碳化硅纤维拧成纤维束制成连续的长丝。单长丝增强的复合材料在高温下在沿纤维方向具有很高的比强度和比刚度。目前有几种方法可以获得选择性增强的铝合金、钛合金、金属间化合物合金。如,在合金箔板之间排列铺放单向纤维束制成叠层板,然后用扩散连接方法将叠层板固结成整体构件。另一种方法是按要求采用在表面涂有基体金属的单根长丝制成长丝缠绕结构,然后用扩散连接方法将长丝缠绕的结构固结成整体构件。

目前,最常用的长丝表面涂敷方法有两种,其一,在纤维绕成纤维束的过程中用等离子喷涂方法将所要求的基体金属喷涂在纤维束的表面。其二,在长丝缠绕和固结之前,用物理气相沉积方法将基体材料沉积在缠绕的长丝表面。长纤维束排列铺放已经实现计算机控制的自动铺放。纤维束自动铺放是一种新型的复合材料制造技术。纤维束自动铺放机像纤维缠绕工艺一样把单根或多根纤维束材料缠绕在旋转芯轴上,亦可将多根纤维束在张力近乎为零的情况下直接铺放到模具表面。这种单长丝缠绕增强的复合材料在21世纪高推重比、高性能发动机中的应用具有很大的潜力,可以大幅度提高发动机的性能,降低结构重量;未来发动机的低压压气机叶片和静子叶片、压气机和涡轮整体叶环,以及涡轮轴、压气机机匣也将广泛采用这种复合材料制造。通常发动机的低温部件,如轴和机匣以及低压转子等采用单长丝增强的、以标准钛合金为基体材料的复合材料制造;而高温涡轮部件则用单长丝增强的金属间化合物合金为基体的复合材料制造。目前,正在原型发动机上对单长丝增强的金属基复合材料部件的性能进行评估。

另外,在IHPTET计划第2阶段中的新的核心机压气机上,将采用高温钛合金Ti1100钛合金代替Ti6Al4V 制造整体叶环,而压气机静子将采用TiAl金属间化合物制造,可使耐热性能提高到700℃~800℃,减轻50%的结构重量,同时不易着火。Ti1100钛合金整体叶环结构的制造技术尚未见透露,估计采用锻坯加多坐标数控加工或数控电解加工技术制造。

复合层板冷却结构制造技术

多孔复合层板冷却结构是高推重比发动机采用的先进冷却结构,多用于燃烧室和涡轮叶片。它是将带有复杂冷却回路的Lamilloy多孔层板用扩散连接方法成形的冷却结构。多孔复合层板冷却结构的关键制造技术是复杂冷却回路的计算机辅助设计和绘制、"照相-腐蚀"或"照相-电解"工艺,也可用激光和电子束等特种工艺加工。

新型封严结构制造技术

推重比8一级发动机采用蜂窝封严结构,推重比10一级发动机采用丝刷封严结构。F119和EJ200采用刷式封严结构。它是由一组紧密捆在一起的直径为0。0136毫米金属丝鬃毛和内外夹板组成,鬃毛夹在内外夹板之间。鬃毛在轴的旋转方向偏置一个角度以减少摩擦和磨损。轴发生偏转时,偏置角度可使鬃毛弯曲而不致折损,保持良好的封严性能。刷式封严结构对选材、制造、装配和使用都有严格的要求。1955年刷式封严首次试用于J 47发动机,但未成功。1983年用于RB199发动机,通过定型试验,但未采用。90年代初,在V2500、EJ200等发动机上应用。艾利逊公司为高性能发动机研究的刷式封严装置的鬃毛材料为Hanynes25,封严板材为Nimon ic75,鬃毛直径0。071毫米、倾角为450、刷子径向高度为7。26毫米、鬃毛表面经磨削处理,发动机轴轴径表

面涂敷氧化铝涂层。鬃毛和封严板(内外夹板)采用压制、烧结高温钎焊或扩散连接方法制成刷式封严结构。鬃毛的拔制工艺和封严结构的详细制造工艺至今未见报道。

中国航空工业集团公司背景展板上显示中国正在研制第四代涡轮风扇发动机摄影:门广阔

浮壁式火焰筒制造技术

推重比10一级发动机涡轮前温度达到1500℃~1700℃。艾利逊公司研究了用Lamilloy多孔层板加柔性金属/陶瓷制造的浮壁火焰筒结构。普惠公司研究了用玻璃陶瓷基复合材料制造浮壁式火焰筒结构。F119采用的浮壁式火焰筒结构是用多环段连接而成。环段背向火焰一面对流散热的凸环,并有缝隙形成冷却隔热气膜,隔热环是由浮动片组成,并用螺栓连接在外环段上。浮动片用精密铸造而成,而冷却隔热环局部喷涂热障涂层,以降低部件表面温度。

大型整体构件超薄壁厚精密铸造

精密铸造技术对减轻高推重比发动机结构重量和降低制造成本起着极其重要的作用。用精密铸件取代由多个零件组成的组件可以减少零件/连接件数量,节省工时,减轻结构重量。为了提高推重比,高性能发动机的燃气发生器扩压器是采用低密度轻质高温材料γ-Ti3Al合金精密铸造而成的。

由于现有铸造技术的限制造成发动机零件超重,出现超设计零件,使许多零件必须经过多道工序和后置处理工序才能完成零件的制造。美国普惠公司与艾利逊公司(后被罗-罗公司收购)推出一种超薄壁厚精密铸造工艺制造F119单晶整体过渡进气道扇形段,其最小壁厚仅有0。25毫米。这种技术大大简化了零件制造过程,仅需要一道精密铸造工序即可完成薄壁整体构件的制造,可取消许多后续加工工序,减少零件数量、减轻零件的结构重量和降低制造成本。采用这项技术可将由69个分离件组成的F119的过渡进气道扇形段铸造成一个整体件,预计可使每台F119减重6。8千克,后续工序由6道减为2道。此项技术是美国"可买得起,可重复生产先进战斗机计划"的一部分。美国空军要求在本项技术中引入快速响应技术,并将此项技术推广应用于其他航空产品和民用产品零件的制造。目前这项技术已经得到验证。另外,美国莱特实验室与普惠公司和艾利逊公司签订了650万美元合同,以改进镍基合金超簿壁厚精密铸造工艺。此项合同的研究重点是制造形状更加复杂(如扭转形状)和尺寸精度要求更高的零件。

目前,国外树脂基复合材料构件制造过程已经实现自动化,并采用自动控制系统完成铺放纤维和树脂转移造型。自动化RTM成形技术可以降低纤维铺放成本、生产形状复杂的构件和提高生产可重复性,并可将材料消耗降低到最小程度。先进的自动化纤维引导铺放、树脂膜浸渍和真空辅助RTM造型技术,为21世纪生产低成本、经济可承受的飞机和发动机提供了先进的制造技术,可以广泛用于复杂几何形状、大尺寸、厚截面和高精度构件的制造。采用自动化纤维铺放技术可以取代手工铺放,降低成本38%,减少劳动工时60%,减少零件数量80%。与RTM相关的工艺技术如树脂膜浸渍技术(RFI)和真空辅助树脂转移造型(VARTM)技术尚在发展之中。

精密制坯技术

新一代航空发动机结构发展的趋势是减少零件总数(减少60%),从而达到减轻结构重量、提高推重比和降低成本(降低25%~30%)的目的。因此,这些发动机的毛坯构成将发生重大变化。趋势是铸件、精锻件、单晶和定向凝固精铸件的用量大大增加。预计,一般锻件由77%降至33%,铸件由18%增至44%,粉末冶金件由3%增至8%,复合材料构件由4%增至15%。

精密制坯技术已广泛用于发动机零件制造。用石蜡铸型可一次铸出钛合金件。精密铸造和精密锻造采用CA TIA软件、预测模型和计算机模拟技术实现了"实体造型"以及铸、锻过程用计算机模拟仿真,这些技术提高了金属填充和凝固质量,消除了疏松和避免了热裂,并可取代常规的试铸法,从而提高了精密铸造和精密锻造质量与效率,降低了成本。

定向凝固和单晶精铸

定向凝固和单晶精铸技术已经成为推重比10以上高性能发动机关键制造技术之一。目前使用中的单晶叶片是第二代空心无余量单晶叶片,即采用定向凝固经时效处理加防护涂层的对开式空心超单晶叶片。国外主要发动机公司均已经建立定向凝固和单晶涡轮叶片精铸生产线,其叶片单面余量已稳定在0。05-0。1毫米,涡轮叶片合格率可达70%以上,导向叶片达90%以上。

国外已批量生产叶身无余量的各种尺寸的叶片精锻件和定向及单晶合金空心叶片精铸件,如:批量生产直径1300毫米、壁厚1~2毫米(最薄0。5毫米)的钛合金精铸机匣;现役发动机已普遍采用的精铸单晶空心叶片和超塑性锻造粉末高温合金涡轮盘;美国Howmet公司已生产100多种100多万件精铸单晶叶片。此外,国外还在研究尺寸达2000毫米的精铸件和已研究成功复杂内腔的单晶叶片与双性能涡轮盘。

高推重比发动机的锻件占结构重量55%以上。精密锻造技术已经成为高性能发动机的关键制造技术。目前,国外已批量生产投影面积1。2~3。5平方米的各种材料的大型模锻件,并已研究成功投影面积5。16平方米的钛合金模锻件。另外,正在研发的有:用等温锻造技术制造带叶片的压气机整体叶盘转子;用粉末冶金超塑热等静压和等温锻造精化技术制造具有无偏析超细晶粒及难以成形的锻件毛坯,材料利用率可提高4倍。精密锻造精度和质量主要依靠计算机对锻造过程进行控制,以获取最佳的锻件精度和质量。

快速凝固粉末冶金制坯

快速凝固技术已广泛用于制造叶片,可提高涡轮前温度200℃。目前正在研究快速凝固层板涡轮叶片,即用快速凝固粉末先制出叶片层板,然后用扩散连接技术将多层层板固结成叶片。用此法可以制成具有冲击、对流和气膜组合式冷却结构的复合层板冷却的涡轮叶片。这种叶片可使涡轮前温度提高到1730℃。

国外在大力发展电子束熔炼法、氮等离子旋转电极法、氮雾化,并分别用于制取超强度高温合金粉末、超强度钛合金粉末和超强度铝合金粉末。采用快速凝固技术可降低粉末合金元素偏析和提高合金的固熔度。

热障涂层技术

高推重比发动机结构中将大量采用以热障涂层技术为代表的先进涂层技术。热端部件采用热障涂层以提高结构强度,其中有陶瓷涂层和多层隔热层。陶瓷热障涂层需先在零件表面喷涂MCrALY底层以提高结合强度。多层复合隔热涂层是在基体金属表面钎焊一层柔性金属纤维结构(材料为HFe22。5cr5。5SiO0。1C),可减少冷却气流80%。涡轮工作叶片和导向器的隔热涂层采用低压等离子喷涂涂敷,也可以采用电子束物理气相沉积(E B-PVD)涂敷。发动机冷端部件均采用封严涂层、耐磨和防腐蚀涂层。涂敷方法多采用等离子喷涂、火焰喷涂、爆炸喷涂、超音速火焰喷涂和真空等离子喷涂。

中国的发动机业还有很长很长的路要走!!

歼-20 2001架原型机首飞

网友将歼-20亲切而形象地称为“黑丝带” 图

国产新型歼-11B战机已经开始配备太行发动机

发动机在飞机上的安装位置

飞机上发动机的安装位置与发动机的数目及型式有关。 1.活塞发动机和涡轮螺桨发动机的安装位置 活塞发动机和涡轮螺桨发动机在飞机上目前多安装一台、两台或四台,一般多是拉进式(即螺旋在前)的,装在机头或机翼前缘,这样可以使机翼上所受的载荷降低,因为发动机的重力和举力的方向想反,减少了由这些外力所引起的弯矩。 另一种是推进式的,发动机装于机翼后沿或机身后段。这种安排使机翼位于螺旋桨的滑流之外,阻力会降低,但主起落架较高,重量增大;而且发动机在地面工作时冷却条件也较差,因而目前使用较少。 目前也有一种轻型飞机将发动机安装在垂尾上,以降低机身离地面高度,可在起飞时充分利用地面效应。 2.涡轮喷气发动机和涡轮风扇发动机的安装位置和固定。 这两类发动机在飞机上的安装位置相似,可用涡轮喷气发动机作为代表。 一台涡轮喷气发动机多装在机身后段或机身下部。这种方式有利于维护修理,只要将机身后段拆卸开就行了;同时还可让出机身短舱或前段的空间,以便容纳人员和武器装备。 装在机身后段的国产太行航空发动机(航空图) 这种发动机安排方式主要用于战斗机。 两台涡轮喷气发动机有几种安排方式。常见的一种是把两台发动机各装在一只短舱内,这种方式的优点是机身空间大,装载的人员和设备多;对机翼能起减少载荷的作用。但其构造比较复杂,而且还会增大阻力和降低机翼的后掠作用。 第二种双发的安排方式是把发动机装在机翼下的吊舱内。这种方式的好处是减少短舱和机翼的干扰,对提高最大举力系数有利;防火性能较好;可采用全翼展的襟翼。另外,由予短舱离地近,维护比较方便,但易于吸入尘土。 双发的第三种安排方式是把两台发动机并列在后机身外部的两侧,这种叫尾吊式。其优

浅析新乡旅游发展的问题及对策

龙源期刊网 https://www.wendangku.net/doc/df18076168.html, 浅析新乡旅游发展的问题及对策 作者:段亚芳 来源:《旅游纵览·行业版》2011年第01期 1. 引言 新乡地处河南北部,交通便利,拥有良好的自然资源和人文资源,被国家旅游局授予中国优秀旅游城市,是豫北的历史文化名城。新乡南临黄河,与郑州、开封隔河相望。北依太行,与安阳、鹤壁毗邻。西接焦作,东连濮阳。新乡古称鄘国,春秋属卫,战国属魏,汉为获嘉,至隋文帝开皇六年(公元586年)在获嘉,汲县两地置县,取原“新中乡”首尾两字“新乡”为名,“新乡”二字由此见诸史册,设置新乡县至今已有1400余年。新中国成立之初,新乡曾是平原省省会所在地。早在8000多年前,新乡已经有人类活动。旅游资源以自然资源为主,突出南太行特色,新乡在旅游资源开发的同时应注重环境保护,使开发和保护达到一种良性的互动,让人们通过旅游,去领略自然的真谛,提高人们保护自然的意识,并推动新乡旅游、环境、经济的和谐发展。 2. 新乡进行旅游开发的有利条件和不利因素 2.1有利条件 近年来,新乡重视旅游业的发展,加大了对旅游业的扶持与开发,新乡市正努力建立自己的城市旅游形象。城市旅游是人们对城市旅游产品、旅游设施、旅游服务功能等抽象的、概括的,使之区别于其他城市旅游的较稳定持久的认识和评价,是对城市的历史印象,现实感知与未来信念的一种理性综合。新乡市拥有良好的自然资源和人文资源,即南太行的雄、奇、险、秀以及古老的牧野大地给新乡留下了厚重的人文历史景观。随着经济和社会的发展,旅游业已成为新的经济增长点。特别是改革开放以后,人民生活水平提高,旅游在整个国民经济和社会发展中的支柱产业地位越来越凸显。因此新乡有发展旅游的资源,更有庞大的旅游消费市场。 2.1.1丰富的自然景观和文物古迹 旅游业就是以旅游资源为凭借,以旅游设施为基础,通过提供旅游服务满足消费者各种需要的综合性行业。新乡作为豫北的历史文化名城,拥有良好的自然资源和人文资源,适宜开展旅游活动。新乡拥有各类自然景观近百处,其中国家4A级景区3家(八里沟、万仙山、京华园),3A级景区4家(百泉、回龙、比干庙、潞王陵)。国家级文物保护单位4处,国家级森林公园一处,国家级湿地鸟类自然保护区一处,省级风景名胜区和文物保护单位50余处,市级文物保护单位多达500余处,历史文化名城一处,历史文化名镇一处。新乡现形成了以南太行自然景观为主导,人文景观与之相辉映的旅游产业结构。 2.1.2远近闻名的“太行明珠”郭亮村

太行山大峡谷旅游景区市场调查报告

太行山大峡谷旅游景区市场调查报告 1.引言 中国的旅游活动早在古代就有,正因为如此,一些著名的游记、诗篇才能流传至今。20世纪20年代,中国有组织的旅游业有了发展,在上海出现了旅行社。随着我国国际地位和国际威望的不断提高,使得我国的旅游业有了长远的发展。对于国内来说,随着人们物质文化生活水平的提高,旅游人数也在逐年的增长,人们旅游消费的需求进一步上升;对外来说,来自全国各地的旅游者也在逐年的增加。因此,旅游业在国民经济的地位和作用越来越重要。 作为“无烟产业”和“永远的朝阳产业”的旅游业,已经和石油业、汽车行业并列为世界的三大产业,因此其发展和推广对于我国经济的发展有着重大的作用。 本次的调研主要围绕我们大学生这个群体,针对太行山大峡谷旅游景区来开展调查。通过对调查问卷的统计与分析,找出一些问题,并提出相应的结论和解决方案。 2.调查目的 本次调查的目的主要是了解大学生群体自身的旅游意向以及对太行山大峡谷景区的认识及看法,为进一步完善和提高太行山大峡谷景区的服务质量,提供一定的参考。 3.调查过程 发动大学生群体做了网上问卷调查,问卷开始时间为2012年4

月11 日,结束时间为2012年4月18日,通过一周的时间收回问卷412份,图1-1、记录了调查问卷的基本信息。 1-1 性别结构图 由图1-1可以看到,被调查者的男女比例基本持平,男性210人,占总人数的50.97%,女性202人,占总人数的49.03%. 1-2年龄结构图 由图1-2可以得出,在19到23岁的大学生年龄群体中,旅游人数呈现依次增多的情况。

1-3偏好结构图 由图1-3可以看出,占总数92.23%的学生都喜欢旅游,只有7.77%的人数选择了不喜欢。 1-4选择标准图 由1-4可以看出,个人爱好是调查群体选择出游的主要标准。 1-5 了解途径图 由1-5可以看出,朋友介绍是调查群体信息来源的主要渠道,

涡扇发动机工作原理

动力原理: 涡轮喷气发动机涡轮风扇发动机冲压喷气发动机涡轮轴发动机 升力原理: 飞机是比空气重的飞行器,因此需要消耗自身动力来获得升力。而升力的来源是飞行中空气对机翼的作用。 在下面这幅图里,有一个机翼的剖面示意图。机翼的上表面是弯曲的,下表面是平坦的,因此在机翼与空气相对运动时,流过上表面的空气在同一时间(T)内走过的路程(S1)比流过下表面的空气的路程(S2)远,所以在上表面的空气的相对速度比下表面的空气快 (V1=S1/T >V2=S2/T1)。根据帕奴利定理——“流体对周围的物质产生的压力与流体的相对速度成反比。”,因此上表面的空气施加给机翼的压力F1小于下表面的F2。F1、F2的合力必然向上,这就产生了升力。 从机翼的原理,我们也就可以理解螺旋桨的工作原理。螺旋桨就好像一个竖放的机翼,凸起面向前,平滑面向后。旋转时压力的合力向前,推动螺旋桨向前,从而带动飞机向前。当然螺旋桨并不是简单的凸起平滑,而有着复杂的曲面结构。老式螺旋桨是固定的外形,而后期设计则采用了可以改变的相对角度等设计,改善螺旋桨性能。 飞行需要动力,使飞机前进,更重要的是使飞机获得升力。早期飞机通常使用活塞发动机作为动力,又以四冲程活塞发动机为主。这类发动机的原理如图,主要为吸入空气,与燃油混合后点燃膨胀,驱动活塞往复运动,再转化为驱动轴的旋转输出:

单单一个活塞发动机发出的功率非常有限,因此人们将多个活塞发动机并联在一起,组成星型或V型活塞发动机。下图为典型的星型活塞发动机。 现代高速飞机多数使用喷气式发动机,原理是将空气吸入,与燃油混合,点火,爆炸膨胀后的空气向后喷出,其反作用力则推动飞机向前。下图的发动机剖面图里,一个个压气风扇从进气口中吸入空气,并且一级一级的压缩空气,使空气更好的参与燃烧。风扇后面橙红色的空腔是燃烧室,空气和油料的混和气体在这里被点燃,燃烧膨胀向后喷出,推动最后两个风扇旋转,最后排出发动机外。而最后两个风扇和前面的压气风扇安装在同一条中轴上,因此会带动压气风扇继续吸入空气,从而完成了一个工作循环。

先进航空发动机关键制造技术研究

ARTICLES 学术论文 引言 航空发动机的设计、材料与制造技术对于航空工业的发展起着关键性的作用,先进的航空动力是体现一个国家科技水平、军事实力和综合国力的重要标志之一。随着航空科技的迅速发展,面对不断提高的国防建设要求,航空发动机必须满足超高速、高空、长航时、超远航程的新一代飞机的需求。 近年来,航空工业发达国家都在研制高性能航空发动机上投入了大量的资金和人力,实施一系列技术开发和验证计划,如“先进战术战斗机发动机计划(ATFE )”、“综合高性能涡轮发动机技术(IHPTET )计划”及后续的VAATE 计划、英法合作军用发动机技术计划(AMET )等。在这些计划的支持下,美国的F119、欧洲的 EJ200、法国的M88和俄罗斯的AL-41F 等推重比10 一级发动机陆续问世。 为了提高发动机的可靠性和推力,先进高性能发动机采用了大量新材料,且结构越来越复杂,加工精度要求越来越高,对制造工艺提出了更高的要求。而且,在新一代航空发动机性能的提高中,制造技术与材料的贡献率为 50%~70%,在发动机减重方面,制造技术和材料的贡献率占70%~80%,这也充分表明先进的材料和工艺是航空发动机实现减重、增效、改善性能的关键。 1 航空发动机的材料、结构及工艺特点 在提高发动机可靠性和维护性的同时,为了提高发动机的推力和推重比,航空发动机普遍采用轻量化、整体化结构,如整体叶盘、叶环结构。钛合金、镍基高温合金,以及比强度高、比模量大、抗疲劳性能好的树脂基复合材 先进航空发动机关键制造技术研究 黄维,黄春峰,王永明,陈建民 (中国燃气涡轮研究院,四川 江油 621703) Key manufacturing technology research of advanced aero-engine HUANG Wei ,HUANG Chun-feng ,WANG Yong-ming ,CHEN Jian-min (China Gas Turbine Establishment ,Jiangyou 621703,China ) Abstract :This paper describes the features of aero-engine material ,structure and technology ,and then ,development status and trend of key manufacturing technology for advanced aero-engine was analyzed. Finally ,the development of advanced aero-engine manufacturing technology in China is introduced and some proposals are put forward. Key Words : aero-engine ,manufacturing ,summarization 作者简介: 黄维(1982—),男,四川仁寿人,中国燃气涡轮研究院助理工程师,主要从事工艺技术研究。E-mail :huangwei611@https://www.wendangku.net/doc/df18076168.html,

航空涡扇发动机的工作原理

航空涡扇发动机的工作原理 ?发表于:2014-01-21 21:57:40 ?作者:江山红红发短信加好友更多作品 级别:上将积分:118791 航空喷气发动机主要有两种,一种是涡喷发动机,一种是锅扇发动机。在这里主要介绍大家关心的涡扇发动机的工作原理。 涡扇发动机是喷气发动机的一个分支,从血缘关系上来说,涡扇发动机应是涡喷发动机的变种。从结构上看,涡扇发动机是在涡喷发动机之前加装了风扇。这几叶风扇却把涡喷发动机与涡扇发动机严格的区分开来。正是这几叶风扇,让涡扇发动机青出于蓝而胜于蓝。 研制涡扇发动机,首先是要确定它的总体结构。简单的讲,主要是发动机的转子数目多少。目前涡扇发动机所采用的总体结构无非是三种,一是单转子、二是双转子、三是三转子。其中单转子的结构最为简单,整个发动机只有一根轴,风扇、压气机、涡轮全都在这一根轴上。结构简单尽管研制难度低,省钱!但要付出性能差的代价。 从理论上讲:单转子结构的涡扇发动机的压气机,可以作成任意多的级数,以期达到一定的增压比。可是由于单转子的结构限制,使其风扇、低压压气机、高压压气机、低压涡轮、高压涡轮必须都安装在同一根主轴之上,在工作时,它们就必须要保持相同的转速,问题也跟着出来了。当单转子的发动机在工作时,如果其转速突然下降时,压气机的高压部分,就会因为得不到足够的转速,而效率严重下降;在高压部分的效率下降的同时,压气机低压部分的载荷就会急剧上升,当低压压气机部分超载运行时,就会引起发动机的振喘。在正常的飞行中,发动机发生振喘是决对不允许的。因为发动机发生振喘,会严重危及飞机的安全。为了解决低压部分在工作中的过载,只好在压气机前加装导流叶片和在压气机的中间级上进行放气,即放掉一部分以经被增压的空气来减少压气机低压部分的载荷。但这样一来发动机的效率就会大打折扣,而且这种放掉增压气的作法在高增压比的压气机上的作用也不是十分的明显。更要命的问题发生在风扇上,由于风扇必须和压气机同步,受压气机的高转数所限,单转子涡扇发动机只能选用比较小的函道比。 为了提高压气机的工作效率和减少发动机在工作中的振喘,人们想到了用双转子来解决问题,即让发动机的低压压气机和高压压气机工作在不同的转速之下。这样低压压气机与低压涡轮联动形成了低压转子,高压压气机与高压涡轮联动形成了高压转子。低压转子的转速可以相对低一些。因为压缩作用,在压气机内的空气温度升高,其作用力随着空气温度的升高而增大。高压转子的转速可以设计的相对高一些,转速提高了,其高压转子的直径就可以做得小一些,这样在双转子的喷气发动机上就形成了一个“蜂腰”,而发动机的一些附属设备比如燃油调节器、起动装置等等就可以装在这个“蜂腰”的位置上,以减少发动机的迎风面积降低飞行阻力。一般来说双转子发动机的的高压转子的重量比较轻,起动惯性小,所以人们在设计双转子发动机的时候都只把高压转子设计成用启动机来驱动,这样和单转子发动机相比双转子的启动也比较容易,启动的能量也要求较小,启动设备的重量也就相对降低。 然而双转子结构的涡扇发动机也并不是完美的。在双转子结构的涡扇发动机上,由于风扇要和低压压气机联动,风扇和低压压气机就必须要互相将就一下对方。风扇为将就压气机而必需提高转数,这样直径相对比较大的风扇所承受的离心力和叶尖速度也就要大,巨大的离心力就要求风扇的重量不能太大,在风扇的重量不能太大的情况下风扇的叶片长度也就不能太长,风扇的直径小下来了,函道比自然也上不去,而实践证明函道比越高的发动机推力也就越大,而且也相对省油。而低压压气机为了将就风扇也不得不降低转数,降低了压气机的转数压气

航空发动机研制难点

航空发动机研制难点 目前,在各行各业众多工业产品中,能够称得上是“工业王冠”的大概只有喷气航空发动机和微电子芯片了。“工业王冠”不单单反应的是喷气式航空发动机在技术层面的研制难度,也不仅仅说明了航空发动机在飞机设计中属于“心脏”一样的核心地位,更说明了在国家发展过程中航空发动机如同“王权”一般高端的战略位置。但是我国偏偏在航空发动机研制过程中,长期处于“慢性心脏病”的状态,在追求“工业王权”的过程中,长期处于“知其然,不知其所以然”的境地。不过,在对航空发动机研制客观规律进行总结和对于国家发展有了更深层次的认识之后,我国在当今航空发动机技术发展的战略机遇期,不仅可以与航空强国齐头并进,还要创立属于中华民族的“动力王朝”。 现代涡扇发动机结构极其复杂,图为GE90大涵道比涡扇发动机结构剖视图 采用三维气动算法进行理论计算的压气机叶片 如何组织燃料高效的燃烧而又不伤及自身,是燃烧室设计的核心问题 带有冷却孔的涡轮叶片,采用了激光熔接技术,号称是世界上最难制造的零件之一。 我国直到上世纪八十年代才开始的高推比核心机预研计划F119-PW-100堪称是世界第一发动机,可是只是美国第四代核心机的衍生产品而已,后面还有三代…… 用于民航的大涵道比涡扇发动机,我国目前在这个领域没有自己的发动机型号。 精心雕琢的工业王冠 喷气式航空发动机的性能优势是建立在精巧的连续回旋转子结构上的,其研制难点也基本围绕这一个核心展开。现代飞机不断提高的战术技术指标对航空发动机提出了非常高的要求。高温、高压、高转速而又要求高可靠性、耐久性和维护性是其基本特点。在这些高而又相互矛盾的要求的推动促进下,航空发动机经过长时间的发展已经成为人类有史以来最复杂最精密的工业产品。 压气机的作用是利用来自涡轮的能量对发动机进气进行压缩和增温。一方面提高了进气分子活跃程度,更有利于提高燃烧效率。另外一方面,增加了单位体积内的氧气含量,因为大气尤其是高空大气的单位体积含氧量太低,远小于燃烧室中的燃油充分燃烧所需的耗氧量。压气机的主要设计难点在于要保证效率、增压比和喘振裕度这三大主要性能参数满足发动机的设计要求。一个世纪以来,伴随着气动热力学、计算流体力学的发展.压气机的设计水平在逐年提高。20世纪初采用螺旋桨理论设计压气机叶片,二十年代开始采用孤立叶形理论,三十年代中期开始采用叶栅设计理论,五十年代开始用二维设计技术,七十年代开始建立准三维设计体系,九十年代以来,航空界开始使用三维粘性流场分析设计体系对压气机进行设计。压气机设计理论、计算模型和设计系统在基础理论科研推动下不断进步跨越。即便是有先进的计算机辅助设计手段,如果基础科研理论没有进步,也无法在高性能压气机领域取得突破。由于压气机的逆压梯度相当大、需要对空气流场、温度场和压力场进行详尽的

太行航空发动机总体设计方案

一·本型航空发动机的应用领域 舰载机是以航空母舰或其他军舰为基地的海军飞机。用于攻击空中、水面、水下和地面目标,并遂行预警、侦察、巡逻、护航、布雷、扫雷和垂直登陆等任务。它是海军航空兵的主要作战手段之一,是在海洋战场上夺取和保持制空权、制海权的重要力量。舰载机能适应海洋环境。普通舰载机一般在6级风、4~5级浪的海况下,仍能在航空母舰上起落。舰载机能远在舰炮和战术导弹射程以外进行活动;借助母舰的续航力,可远离本国领土,进入各海洋活动。舰载歼击机多兼有攻击水面、地面目标的能力,舰载强击机(攻击机)多兼有空战能力,以充分发挥有限数量舰载机的最大效能。舰载飞机的起落和飞行条件比陆上飞机恶劣,因此舰载飞机应有良好的起飞性能、较低的着陆速度、良好的低速操纵性。驾驶舱的视野开阔,在母舰和飞机上还装有特殊的导航设备,便于驾驶员对准甲板跑道。为了少占甲板面积和便于在舰上机库存储器放,多数舰载飞机的机翼在停放时可以向上折叠,有的垂尾和机头也可以折转。此外,海水和潮湿的环境容易使飞机机体、发动机和机载设备严重腐蚀,飞机要有较好的防腐蚀措施。

二·航空发动机的性能设计指标 推力:15000daN 单位推力:20daN·s/kg 重量:150kg 推重比:10 耗油率:0.4kg/(h·N) 总压比:36 涡轮前温度:1800K 整机效率:50% 设计寿命:24000h 三·航空发动机的结构形式 3.1压气机 采用传统的小涵道比涡轮风扇发动机。涡轮风扇发动机有内外两

个涵道,它的外涵风扇处于飞机进气道内,可以在跨声速或超声速飞行时工作,较之于螺浆发动机具有效率高的优点。涡扇发动机与涡喷发动机相比,它具有较高的推进效率与较大的推力。而且采用涡轮风扇发动机后,为提高热效率而提高涡轮前温度不会给推进效率带来不利影响。而且外涵道的冷空气可以在涡轮部位形成冷空气薄膜,降低涡轮前高温燃气对涡轮的损害。而且外涵道空气与涡轮后燃气相掺混,有利于增加推力并降低噪音。下面对主要部件进行阐述。 压气机依然选用轴流式压气机。空气在轴流式是压气机中的流动方向大致平行工作轮轴,采用此中压气机的优点是其流动使其在结构上容易组织多级压缩,以没一级都较低的整压压力比获得较高的压气机总增压压力比。每级的增压压力i1.15-1.35之间,使得空气流经每级叶片通道时无需急剧的改变方向,减少流动损失,因而压气机效率高。特别在大流量是,轴流式压气机较其他种类的压气机更容易获得较高的压气机效率,可达90%左右,多级轴流式压气机还具有大流量,高效率,小迎风面的优点。 采用鼓盘式转子,兼顾鼓式转子的抗弯刚性和盘式转子的承受大离心载荷的能力,具体为混合式鼓盘转子,采用这种形式的转

河南省旅游开发现状及分析论文

学校名称 专 题目:河南省旅游资源开发现状分析 专业:宋体四号 学生姓名:宋体四号 指导教师:宋体四号 完成时间:宋体四号

省旅游资源开发现状分析 关键词:旅游“三点一线”发展战略生态旅游 容摘要:近年来,省委、省政府加大了省旅游业的发展力度,把旅游业的发展作为促进现代服务业发展的一项重要举措。在沿黄地区原有的旅游产业资源的基础上,加快增多了旅游景点的开发。明确我省旅游业中存在的主要问题和薄弱环节,认清发展的态势,加强公共服务体系和信息化建设,逐步完善我省旅游业的发展体系。 省包括17个地级市和一个省直辖市,其中,以、汴、洛“三点一线”丰富的历史文化资源为依托,以嵩山少林寺、龙门石窟、黄河小浪底、宋都景区等基础设施建设为重点,着力开发以古都、名寺、祖根、功夫、为特色的文化观光、寻根朝觐以及休闲度假、生态观光旅游项目,加快了伏牛山、南太行、桐柏—大别山景区的连线连片开发。 一:软实力 驰名中外的登封嵩山少林寺,以其悠久的历史和丰厚的历史文化底蕴成功创建成为国家5A级景区。并且随着登封市政府正式与港中旅签署战略合作框架协议,港中旅嵩山少林旅游文化挂牌成立,以后的嵩山少林香火会更加旺盛,发展态势也会越来越好。 龙门石窟是中国石刻艺术宝库之一,是国家AAAAA级景区,位于南郊伊河两岸的龙门山与香山上。开凿于北孝文帝年间,之后历经东、西、北齐、隋、唐、五代的营造,南北长达1公里,今存有窟龛2345个,造像10万余尊,碑刻题记2800余品。其中“龙门二十品”是书法碑精华,褚遂良所书的“伊阙佛龛之碑”

则是初唐楷书艺术的典。龙门石窟延续时间长,跨越朝代多,以大量的实物形象和文字资料从不同侧面反映了中国古代政治、经济、、文化等许多领域的发展变化,对中国石窟艺术的创新与发展做出了重大贡献。2000年入选世界文化遗产。 除此之外,嵩山、云台山、宝天曼分别被列为世界文化遗产、世界地质公园和人与生物圈保护区,跨入世界品牌的行列。同时,工业旅游、农业观光、会展旅游、科普旅游、旅游节庆活动等新的旅游项目有声有色,呈现出人文景观和自然山水景观交相辉映、综合发展的良好局面。 黄河历史悠久,记录着中华上下五千年的文明,所以在其附近还有古荥汉代冶铁遗址和西山遗址。 与黄河同样有着悠久历史与深厚文化的还有巩义县,巩义县城有许多名人故居及古代庄园,著名的有省文物保护单位杜甫故里、杜甫陵园。此外,还有于2001年被确定为国家级文物保护单位的康百万庄园,是我国三大庄园之一。 新的黄帝故里以其每年的祭祖大典吸引了不少的游客前往,可是宣传力度大,具体的文化活动应该再多一些,在原来的基础上应该新添一些文化底蕴深厚、容与历史和现实相结合的文娱活动,借此加强大家的历史文化知识,又使大家娱乐其中。 综合各方面的旅游咨询,可以整合省旅游的四条精品路线。首先是沿黄风光古韵旅游:结合黄河故道、悬河景观等,突出省的黄河旅游的核心地位;其次,功夫文化方面:以嵩山少林和龙门石窟为中心,联合荥阳苌家拳和家沟太极拳等与功夫相关和白马寺等佛教寺庙的旅游容,形成修习武术、参禅悟道的功夫文化旅游路线;再者,古都文化方面:主要依托商城遗址公园、商都博物院、殷墟等景区,显示商文化、殷商文化、汉文化等,带动的古都文化游;最后一条是皇帝

涡轮发动机的工作原理、特点

一.涡轮发动机的工作原理、特点 答:1.燃气涡轮喷气发动机 工作原理:航空燃气涡轮喷气发动机是一种热机,将燃油燃烧释放出的热能转变为流经发动机气流的动能。由于气流的速度增加而直接产生反作用推力,因此,这种发动机既是热机也是推进器 特点:与航空活塞发动机相比,燃气涡轮喷气发动机结构简单,重量轻,推力大,推进效率高,而且在很大的飞行速度范围内,发动机的推力随飞行速度的增加而增加,然而其较高的耗油率逐渐被涡扇发动机所替代。 2.涡轮风扇发动机 组成:进气道、风扇、低压压气机、高压压气机、燃烧室、高压涡轮、低压涡轮和喷管工作原理:涡扇发动机内路的工作情形与涡喷发动机相同。即流入内含的空气通过高速旋转的风扇,低压压气机和高压压气机对空气做功,压缩空气,提高空气压力。高压空气在燃烧室内和燃气混合,燃烧,将化学能转变为热能,形成高温高压的燃气。高温高压燃气首先在高压涡轮内膨胀,推动高压涡轮旋转,去带动高压压气机,然后再低压涡轮内膨胀,推动低压涡轮旋转,去带动低压压气机和风扇,最后燃气通过喷管排入大气产生反作用推力。 特点:与涡喷发动机相比,涡扇发动机具有推力大,推进效率高,噪音低,在一定的飞行速度范围内燃油消耗率低等优点。但涡扇发动机结构复杂,速度特性差。目前民航干线飞机大多装配涡扇发动机。 二.轴流式压气机的基元增压原理 答:轴流式压气机主要是利用扩散增压的原理来提高空气压力的。(根据气动知识得知亚音速气流流过扩张形通道时)速度降低,压力升高。参数分析。 基元级组成:由工作叶栅和整流器叶栅组成,两处叶栅通道均是扩形的 三.压气机转子的结构形式分析图3-40 答:(图3-40为CFM56发动机风扇后增压级转子,鼓筒靠精密螺栓固定于风扇轮盘后端,其外圆上作出三道凸缘,用拉刀一次拉出三级燕尾形榫槽,因此三级叶片数目相同,虽然对性能有一定影响,但加工却大大地简化) 轴流式压气机转子的基本结构型式有三种:鼓式盘式鼓盘式 特点 鼓式:结构简单、零件数目少、加工方便、有较高的抗弯刚度,但由于受到强度的限制,目前在实际中应用的不广泛。 盘式:强度好,但抗弯刚性差,并容易发生振动。目前这种简单的盘式转子只用于单盘或小流量的压气机上。 鼓盘式:这种转子兼有鼓式转子抗弯性好和盘式转子强度高的优点在发动机广泛应用。 四.燃烧室的分类工作过程优缺点 分类:管型燃烧室,环型燃烧室,管环型燃烧室。 工作过程:发动机工作时,被压气机压缩的空气,进入燃烧室,它一边向后流动,一边与喷嘴喷出的燃油混合,组成混合气。发动机起动时,混合气由点火装置产生的火花点燃:起动后,点火装置不再产生火花,新鲜混合气全靠已燃混合气的火焰引火而燃烧。 混合气在燃烧室内燃烧时,喷嘴喷出的燃油与燃烧室中流动的空气不断混合组成新的混合气,以供连续不断的燃烧之用,这样就形成了燃边油与空气混合边燃烧的连续不断的

中国研制航空发动机的故事

中国研制航空发动机的故事 这个历史太长了,有50多年,我记的后面的更清楚一些,先从后忘前讲吧——也就是说,先讲涡扇,再讲涡喷 涡扇发动机是在涡喷发动机的基础上加装了风扇和外函道的一种航空动力装置,西方从70年代开始,逐步用涡扇换了涡喷 现在世界上评价第三代战机的一个很重要的标准,就是看你是不是用了涡扇发动机。其实呢,中国研制的起步时间并不是很晚,大概是1962年开始的———— 呵呵——开讲第一种——涡扇5—— 涡扇5,起于1962年,当时有部队(废话,当然是空军)提出一个主意,想用涡喷6改型为涡扇发动机之后,装在H5飞机上,当时的涡扇机是世界上的一个发展方向。各国都在研制自己的第一代产品,其实,当时中国和世界各国站在一个起跑线上,也算跟上了时代的节奏了—— 1963年1月设计方案出来了,反正是涡扇5比涡喷6好用的多了,油耗下降30%,推力也增大了不少 把这种发动机装在轰5上,航程和作战半径增加了30%,是有进步的,黑黑。涡扇5的样机是1965年——不好意思,孩子刚才哭的厉害 接着说——1965年啊,总装出来了,结果呢,风扇叶片不合格,出现断裂,到了1965年7月才解决叶片问题。 到了1970年才试车,71年换了发动机的飞机开始试飞(H5),哈哈,就在这个时候呢,轰5的改装计划被取消了,于是,涡扇5的研制就终止了,第一次歇菜—— 1964年的时候,中国开始研制F9和A6战机,歼9大家听说过吧,强6就是强5的新一代产品,这里我习惯用西方的标示符号来表示中国的战机,于是我用的是F9和A6。 为了适应新的飞机的要求,中国开始研制新的发动机,大家知道,刚才的涡扇5用在轰炸机上,现在的涡扇6用的是战机和攻击机,显然,原先的涡扇5的设计是不能用的,于是64年开始干活,当时设计单位是沈阳航发设计所,当时据说搞了22个方案,设计推力70.6千牛,推重比是6的一款发动机。

涡扇10系列发动机太行发动机

涡扇10系列发动机太行发动机 涡扇10系列发动机太行发动机 太行发动机,也叫涡扇10系列发动机。太行发动机的研制始于上世纪八十年代末,2005年12月28日完成设计定型审查考核,历时18年。太行发动机是中国首个具有自主知识产权的高性能、大推力、加力式涡轮风扇发动机,它结束了国产先进涡扇发动机的空白。太行发动机由中国606所研制,是国产第三代大型军用航空涡轮风扇发动机。采用大推力函比及全自动数字化控制系统,最大推力不超过12000公斤。目前主要用于装备中国第三代高性能歼-10战斗机。简介[ 转自铁血社区https://www.wendangku.net/doc/df18076168.html,/ ]2005年12月28日,在我国大中型航空发动机的摇篮———中国一航沈阳发动机设 计研究所,诞生了我国自行设计研制、具有自主知识产权的第一台大推力涡轮风扇发动机——太行发动机。正像诗中描绘的那样,“将登太行雪满山”,现实中研制“太行”的难度更是超乎想象,以张恩和为总设计师的“太行”研制团队,历经18载艰苦攻关,突破了数十项核心技术和关键技术,攻克了200多个重大障碍和技术难题,终于在世纪之初研制出了先进的航空动力,一颗强健的“中国心”。太行,号称"天下之脊",中国第一台大推力涡轮风扇发动机取名太行,其意义不言启明。主要型号依据装配对象的不同,涡扇10系

列有涡扇10、涡扇10A、涡扇10B、涡扇10C、涡扇10D等型号,其中涡扇10A是专门为中国为赶超世界先进水平而上马的新歼配套的。中国为加快发展涡扇10系列发动机,采取两条腿走路方针。一是引进国外成熟的核心机技术。中美关系改善的八十年代,中国从美国进口了与F100同级的航改陆用燃汽轮机,这是涡扇10A核心机的重要技术来源之一;二是自研改进。中国充分运用当时正在进行的高推预研部分成果(如92年试车成功的624所中推核心机技术,性能要求全面超过F404),对引进的核心机加以改进,使核心机技术与美国原型机发生了较大变化,性能大为增强。研制改革开放的大潮使航空发动机事业重新焕发了生机。1986年1月,经邓-小-平同志批示,肯定了发动机行业老专家发展涡扇发动机的建议。于是一航动力所与兄弟单位一起,开始了新一代大推力涡扇发动机-"太行"发动机的研制。[ 转自铁血社区https://www.wendangku.net/doc/df18076168.html,/ ]"太行"发动机不是为研制而研制,是我国国防建设急切而重大的需要。毫不夸张地说,事关我国某两型先进战斗机的生死,"一发配两型天大的事"。1987年至1993年,在原国防科工委和空军的大力支持下,经过6年多的艰苦奋斗,一航动力所克服了基础薄弱、条件不足等重重困难,完成了"太行"验证机阶段的研制工作,并拟配装我国自行研制的某新型战斗机,使其从技术状态转入原型机研制状态。值得说明的是,但凡发动机的研制,一般

关于太行山大峡谷旅游发展规划的论述

关于太行山大峡谷旅游发展规划的论述 近年来,壶关县旅游业取得了可喜成绩,太行山大峡谷先后被评为国家AAAA级旅游景区、国家地质公园、国家森林公园、中国最美十大峡谷和中国县城旅游品牌200强景区,旅游业已成为县域经济新的增长点。 一、发展现状 太行山大峡谷自然风光旅游区,位于壶关县东南部,纵横100公里,方圆100平方公里。经过10年来的开发建设,现有景区10个、旅游宾馆饭店9个、旅游接待村3个、旅游社5个。 2010年,年接待游客79.35万人次,门票收入1200万元,旅游业总收入9.92亿元。预计到2011年年底可接待游客达到95万人次,门票收入达到1500万元,旅游社会总收入达到12亿元。 经过10多年发展,太行山大峡谷旅游业具备了四大有利发展条件:一是县域经济社会强劲的发展势头,有利于旅游经济的成长。全县招商引资力度不断加大,产业结构进一步优化,县城形象和投资环境具备了一定的吸引力,外来考察投资、旅游观光的人数不断增多。二是交通环境大为改善,为旅游经济的发展奠定了良好基础。旅游公路将在明年建成通车,正在建设的长安高速公路、长治环城高速和中南铁路所构建的交通网络,把我县与全国高速公路网、铁路网联为一体,人流物流在途时间大为缩短。三是旅游产业结构逐渐完备,产业规模不断扩大。我县宾馆饭店的数量逐年增多,旅游休闲产业展现出强劲的扩张势头。四是景区建设、旅游

项目形成了重大突破。投资力度不断加大,景区、景点的持续开发使全县旅游景区(点)的竞争力进一步加大。 二、发展思路 根据县委、县政府提出的“生态兴县、旅游立县、打造旅游品牌基地”的思路,依托太行山大峡谷丰富的旅游资源,通过改革管理体制,整合旅游资源,加快旅游开发,提升旅游档次,带动第三产业迅猛发展,努力把太行山大峡谷打造成为全国一流,世界有名的AAAAA级旅游区。具体讲:围绕一个发展思路,采取“三高一大”(高起点规划、高品位开发、高水平管理、大力度宣传)措施,实现“三个二”(旅游人数得到200万人次,社会总收入超过20亿元,门票收入2亿元)的奋斗目标 三、发展目标 1、“十二五”期间,把太行山大峡谷建设成为世界地质公园、国家5A级旅游区、国家级风景名胜区和国家自然遗产。 2、到“十二五”末,实现旅游业接待游客200万人次,实现门票收入2亿元,旅游社会总收入超过20亿元,跻身全国旅游百强县行列。 四、发展措施 (一)高起点规划 在市委、市政府的大力支持下,从2008年9月开始,聘请中国顶级的旅游规划设计院---中国城市规划设计研究院旅游中心,对我县太行山大峡谷风景旅游区进行总体规划,从景区总规、控规、详规到标志性建筑都进行了全面的规划设计,规划设计目标就是超过九寨沟的水平。这是我县“十

太行发动机

太行发动机,也叫涡扇10系列发动机。太行发动机的研制始于上世纪八十年代末,2005年完成设计定型审查考核,历时18年。太行发动机是中国首个具有的高性能、大推力、加力式,它结束了国产先进涡扇发动机的空白。太行发动机由中国606所研制,是国产第三代大型军用航空涡轮风扇发动机。采用大推力涵比及全自动控制系统,最大推力为13200公斤。目前主要用于装备中国第三代高性能和战斗机。太行的最大推力在132KN,推比7.5,涡前温度1747K,这么高的涡前温度在三代发动机中也是少见的。 在太行的早期型上,其高压涡轮叶片采用的是DZ125定向凝固合金,但定型批产估计会采用DD6单晶合金,涡轮盘早期型应用的是,如今已经开始应用FGH95粉末冶金。 专业一点地描述,涡扇发动机要达到更大推力、更低的油耗,首要的是提高增压比、提高热效率,涡轮前温度是衡量热效率的一个重要指标。例如,第三代苏27的AL-31发动机的涡轮前温度是1665K,而第四代F-22的F-119发动机将这个指标提高到了1977K;AL-31的涡轮前温度尚在普通钢材熔点之下,但F-119的已超出约200度。 螀将纳米氧化锆技术应用于热障涂层,给“太行”发动机高压涡轮导向叶片以及低压一、二级导向叶片穿上了一层性能优良稳定的“保护衣”,达到了世界热障涂层技术应用的最前沿。 涡扇发动机原理 涡扇发动机是喷气发动机的一个分支,从血缘关系上来说涡扇发动机应该算得上是涡喷发动机的小弟弟.从结构上看,涡扇发动机只不过是在涡喷发动机之前(之后)加装了风扇而已.然而正是这区区的几页风扇把涡喷发动机与涡扇发动机严格的区分开来. 这种发动机在的的基础上增加了几级涡轮,并由这些涡轮带动一排或几排风扇,风扇后的气流分为两部分,一部分进入压气机(内涵道),另一部分则不经过燃烧,直接排到空气中(外涵道)。在尾部喷管膨胀的气流大部分冲击后面的低压涡轮,做功变成旋转的机械能,从输出轴传递向前,来驱动前面的风扇,前面的风扇驱动空气从外涵道喷出,这才是发动机主要的推力来源。它的尾喷管喷出的燃气推力极小,只占总推力的5%左右。由于尾部喷管气流已经对低压涡轮做功,热量降低了,速度也降低了,再喷入大气也带来部分推力,算是废物利用。 由于涡轮风扇发动机一部分的燃气能量被用来带动前端的风扇,因此降低了排气速度,提高了推进效率,而且,如果为提高热效率而提高涡轮前温度后,可以通过调整涡轮结构参数和增大风扇直径,使更多的燃气能量经风扇传递到外涵道,就不会增加排气速度。这样,对于涡轮风扇发动机来讲,热效率和推进效率不再矛盾,只要结构和材料允许,提高涡轮前温度总是有利的。

航空发动机原理复习题

发动机原理部分 进气道 1.进气道的功用: 在各种状态下, 将足够量的空气, 以最小的流动损失, 顺利地引入压气机; 2.涡轮发动机进气道功能 冲压恢复—尽可能多的恢复自由气流的总压并输入该压力到压气机。提供均匀的气流到压气机使压气机有效的工作.当压气机进口处的气流马赫数小于飞行马赫数时, 通过冲压压缩空气, 提高空气的压力 3.进气道类型: 亚音进气道:扩张型、收敛型;超音速:内压式、外压式、混合式 4.冲压比:进气道出口处的总压与远前方气流静压的比值∏i=P1*/P0*。 影响进气道冲压比的因素:流动损失、飞行速度、大气温度。 5.$ 6.空气流量:单位时间流入进气道的空气质量称为空气流量。 影响因素:大气密度, 飞行速度、压气机的转速 压气机 7.压气机功用:对流过它的空气进行压缩,提高空气的压力。供给发动机工作时所需 要的压缩空气,也可以为坐舱增压、涡轮散热和其他发动机的起动提供压缩空气。8.压气机分类及其原理、特点和应用 (1)离心式压气机:空气在工作叶轮内沿远离叶轮旋转中心的方向流动. (2)轴流式压气机:空气在工作叶轮内基本沿发动机的轴线方向流动. (3)混合式压气机: 9.阻尼台和宽叶片功用 阻尼台:对于长叶片,为了避免发生危险的共振或颤振,在叶身中部带一个减振凸台。 < 宽弦叶片:大大改善叶片减振特性。与带减振凸台的窄弦风扇叶片比,具有流道面积大,喘振裕度宽,及效率高和减振性好的优点。 10.压气机喘振: 是气流沿压气机轴向发生的低频率、高振幅的气流振荡现象。 11.喘振的表现: 发动机声音由尖锐转为低沉,出现强烈机械振动. 压气机出口压力和流量大幅度波动,出现发动机熄火. 发动机进口处有明显的气流吞吐现象,并伴有放炮声. 12.造成喘振的原因 气流攻角过大,使气流在大多数叶片的叶背处发生分离。 燃烧室 13.| 14.燃烧室的功用及有几种基本类型 功用:用来将燃油中的化学能转变为热能,将压气机增压后的高压空气加热到涡轮前允许的温度,以便进入涡轮和排气装置内膨胀做功。 分类:单管(多个单管)、环管和环形三种基本类型 15.简述燃烧室的主要要求点火可靠、燃烧稳定、燃烧完全、燃烧室出口温度场符合要 求、压力损失小、尺寸小、重量轻、排气污染少 16.环形燃烧室的结构特点、优缺点 结构特点:火焰筒和壳体都是同心环形结构,无需联焰管 优点:与压气机配合获得最佳的气动设计,压力损失最小;空间利用率最高,迎风面积最小;可得到均匀的出口周向温度场;无需联焰管,点火时容易传焰。 缺点:调试时需要大型气源;

对航空发动机研究和发展规律的认识

收稿日期:2001-07- 18 对航空发动机研究和发展规律的认识 江和甫 蔡 毅 斯永华 (中国燃气涡轮研究院 成都#610500) 摘要:探讨了世界上航空发达国家航空发动机技术加速发展的态势。分析了我国航空动力技术预先研究的现状及存在的问题。加深了对航空发动机发展规律的认识。对如何振兴航空、动力先行,把我国航空发动机搞上去,走自主创新的发展道路提出了建议。关键词:航空发动机;研究;发展 Understanding the Law of aero -engine Research and Development JIANG He -fu &CAI Yi &SI Yong -hua (China Gas Turbine Establishment,Chengdu 610500)Abstract:T his paper discusses the accelerated developing trend of aero -eng ine technolog ies in developed countries.The present situation and existing problems in China aero -propulsion technology research have been introduced.A deeper understanding of the law of aero -engine development has been made.Also,suggestions to v italize China aviation industry w ith putting propulsion in the first place in a manner of /creating and acting on our ow n 0is put forward. Key words:aero -engine;research;development 1 引言 航空发动机研制涉及众多专业的前沿技术成果,是一种属于多学科综合技术的/高科技产品0。世界上能研制飞机的国家很多,真正能独立研制先进航空发动机的只有美国、英国、法国、俄罗斯等四个国家。因此,它是一个国家科学技术水平和综合 技术能力的标志,甚至是综合国力的象征。 2 现状分析 世界上航空发达国家诸如美国等都十分重视航 空动力技术的发展,倾注了巨大的人力、物力、财力,执行了一系列旨在促进航空动力技术进步的研究计划。如:美军方从20世纪50年代开始实施的航空推进技术探索发展计划以及70年代实施的先进战术战斗机发动机计划(ATFE );先进涡轮发动机燃气发生器计划(AT EGG)和飞机推进分系统综合计划。此外,NASA 在70年代末还实施了发动机部件改进计划,高效节能发动机计划(E 3),先进螺旋桨计划和发动机热端部件技术计划(HOST )。这些计划为各种先进军民用发动机提供了坚实的技术基础,并使美国达到了当今世界领先的水平,推出了一代又一代先进军民用发动机,跨上了一个又一个技术

浅谈大型飞机发动机的研制

浅谈大型飞机发动机的研制 发表时间:2017-03-17T14:18:40.827Z 来源:《科技中国》2016年12期作者:胥炆佳 [导读] 大型飞机是军事领域发展的重点,而发动机是大型飞机的核心技术,直接关乎着大飞机的综合性能。成都市实验外国语学校四川成都 610213 摘要:大型飞机是军事领域发展的重点,而发动机是大型飞机的核心技术,直接关乎着大飞机的综合性能,目前,我国最为常见的大型飞机发动机就是大涵道比涡扇发动机。本文主要以大涵道比涡扇发动机为例对大型飞机发动机的研制进行分析。 关键词:大型飞机发动机;研制;大涵道比涡扇发动机 当前,大型飞机发动机的关键技术发展的十分快速,同时人们也开展了深入的科技研究。尤其是近几年来通过APTD的专项研究实施的各项计划,在大涵道比涡扇发动机关键技术上取得了很高的成果,为以后的研究打下了坚实的基础。 1 外国大涵道比涡扇发动机发展概况 大涵道比涡扇发动机是指涵道比大于4的涡扇发动机,它具有很多优性特点:如推力大、节省油量和噪声小。主要是用于大型的飞机和军民用运输机。经过几十年的发展,其在各方面都有了很大的进步,它的性能越来越好,更具有持久耐用性和经济性。与过去的涡喷发动机相比较,油量节约了一半。在发动机的噪声强度和污染物排放上分别降低了75%和80%。军民用大涵道比涡扇发动机技术有很强的通用性,民用干线客机发动机在安全可靠性、环保要求和经济性上比军用运输机发动机的要求更高,更严密,所以只有两者相互结合才能是走上更高的发展道路。 2我国大涵道比涡扇发动机的需求与现状 新世纪党中央和国务院做出了具有重大战略意义的决策,重点研制大型飞机及发动机。这也是《国家中长期科学和技术发展规划纲要》和“十一五”规划纲要中做出的重大决定,更是我国一定要实现和发展的国家级目标。经过了多年的发展,我国在航空领域的发动机技术上取得了一些成绩,而且还具备了军用涡喷和小涵道比涡扇发动机方面的生产能力,研制生产了大约6万多台的各类发动机,型号多达十多种,为我国的军用航空事业贡献出重要的力量。 3 我国大涵道比涡扇发动机关键技术分析 3.1 军用和民用的大涵道比涡扇发动机总体方案 近年来,相关研究人员根据大型军用运输机及特种大型飞机的特殊要求,以定型的太行发动机核心机为基础,用大涵道比涡扇发动机验证为平台,对高压压气机叶片进行全新的三维设计,全面改善核心机性能,来满足我国大型军用运输机的迫切需求。我国在以民用涵道比涡扇发动机为前提下,努力提高自主的研究水平,力勇向前,突破关键技术所在,在通过提前研究和国际合作,完成各方面设计如:部件、系统、主体机等,在以我国市场的需求和要求下,自主研发出关键技术和拥有市场竞争力的民用涡扇发动机已经形成规模,拥有自已的飞机产业。 3.2 大涵道比涡扇发动机关键技术 军民用大涵道比涡扇发动机的主要设计技术如总体、部件、系统等是一样的,就是在环保、寿命和经济性等指标有所差异,所以可以把关键技术合起来一起研究。现有成熟材料和工艺是制作军用大涵道比涡扇发动机核心部分,当然,对于大型风扇叶片、机匣等部分关键部件的制造还是具有特殊要求,仍需要进一步攻坚克难。由于民用大涵道比涡扇发动机技术工艺各方面要求更为高些,所以需要使用新材料和先进的工艺,这样才能满足设计的要求。为了满足民用大涵道比涡扇发动机适航条例的设计要求,就需要进行特殊的大量的如咽试验、包容试验、环境试验等适航试验。 4 关键技术解决途径与措施建议 4.1 军用大涵道比涡扇发动机 通过军用大涵道比涡扇发动机的发展研究,如型号验证机研制、原型机研制和科研试飞、定型批研制和设计定型、生产定型及批量使用等,继承了核心机和滑油系统及控制系统,这是定型发动机的部分附件,该种方式可以有效降低研制成本,缩短研制周期。 4.2民用大涵道比涡扇发动机 关于该种类型发动机的研究,可以快速制定并实施先进民用大涵道比涡扇发动机关键技术研究计划,与国际部门合作,利用大约10年的时间,攻克和掌握关键技术,打好坚实的基础,强化自主创新能力,研制出具有自主知识产权和高水平的及取得适航证的民用大涵道比涡扇发动机。 4.3积极开展国际合作 我国的航空动力与国际水平相比,仍存在一定的差距,如在大涵道比涡扇发动机技术上,没有夯实的基础,缺乏先进的技术工艺,研究设备不完善和不配套及高水平人才严重缺乏,这也是我国无法研究出先进大涵道比涡扇发动机的原因。在下一阶段下,要加强自主创新,强化硬件设施,引进国际先进的技术水平,相互学习,这是我们现阶段要努力完成的任务。 结语语 要振兴航空事业,最为关键的是提高发动机技术质量,我们要勇于克服困难,一路前进,研究出性能更好,耐久性更长和更加环保的大型飞机发动机。 参考文献: [1] 张少军,王汉平,何江军,孙利兵. 叶栅式反推装置的受载与传力[J]. 四川兵工学报. 2015(03) [2] 赵秋月,董威,朱剑鋆. 发动机旋转整流帽罩的水滴撞击特性分析[J]. 燃气涡轮试验与研究. 2011(04) [3] 王树红,王苏安,张一快. AVIDM系统在发动机研制中的应用优化及功能拓展[J]. 中国制造业信息化. 2008(04) [4] 刘大响,金捷,彭友梅,胡晓煜. 大型飞机发动机的发展现状和关键技术分析[J]. 航空动力学报. 2008(06)

相关文档
相关文档 最新文档