文档库 最新最全的文档下载
当前位置:文档库 › 涡轮风扇喷气发动机及涡轮喷气发动机的区别以及涡喷

涡轮风扇喷气发动机及涡轮喷气发动机的区别以及涡喷

涡轮风扇喷气发动机及涡轮喷气发动机的区别以及涡喷
涡轮风扇喷气发动机及涡轮喷气发动机的区别以及涡喷

涡轮风扇喷气发动机及涡轮喷气发动机的区别以及涡喷.冲压原理

涡轮风扇喷气发动机的诞生

二战后,随着时间推移、技术更新,涡轮喷气发动机显得不足以满足新型飞机的动力需求。尤其是二战后快速发展的亚音速民航飞机和大型运输机,飞行速度要求达到高亚音速即可,耗油量要小,因此发动机效率要很高。涡轮喷气发动机的效率已经无法满足这种需求,使得上述机种的航程缩短。因此一段时期内出现了较多的使用涡轮螺旋桨发动机的大型飞机。

实际上早在30年代起,带有外涵道的喷气发动机已经出现了一些粗糙的早期设计。40和50年代,早期涡扇发动机开始了试验。但由于对风扇叶片设计制造的要求非常高。因此直到60年代,人们才得以制造出符合涡扇发动机要求的风扇叶片,从而揭开了涡扇发动机实用化的阶段。

50年代,美国的NACA(即NASA 美国航空航天管理局的前身)对涡扇发动机进行了非常重要的科研工作。55到56年研究成果转由通用电气公司(GE)继续深入发展。GE 在1957年成功推出了CJ805-23型涡扇发动机,立即打破了超音速喷气发动机的大量纪录。但最早的实用化的涡扇发动机则是普拉特·惠特尼(Pratt & Whitney)公司的JT3D涡扇发动机。实际上普·惠公司启动涡扇研制项目要比GE晚,他们是在探听到GE在研制CJ805的机密后,匆忙加紧工作,抢先推出了了实用的JT3D。

1960年,罗尔斯·罗伊斯公司的“康威”(Conway)涡扇发动机开始被波音707大型远程喷气客机采用,成为第一种被民航客机使用的涡扇发动机。60年代洛克西德“三星”客机和波音747“珍宝”客机采用了罗·罗公司的RB211-22B大型涡扇发动机,标志着涡扇发动机的全面成熟。此后涡轮喷气发动机迅速的被西方民用航空工业抛弃。

波音707的军用型号之一,KC-135加油机。不加力式涡扇发动机实际上较为容易辨认,其外部有一直径很大的风扇外壳。

涡轮风扇喷气发动机的原理

涡桨发动机的推力有限,同时影响飞机提高飞行速度。因此必需提高喷气发动机的效率。发动机的效率包括热效率和推进效率两个部分。提高燃气在涡轮前的温度和压气机的增压比,就可以提高热效率。因为高温、高密度的气体包含的能量要大。但是,在飞行速度不变的条件下,提高涡轮前温度,自然会使排气速度加大。而流速快的气体在排出时动能损失大。因此,片面的加大热功率,即加大涡轮前温度,会导致推进效率的下降。要全面提高发动机效率,必需解决热效率和推进效率这一对矛盾。

涡轮风扇发动机的妙处,就在于既提高涡轮前温度,又不增加排气速度。涡扇发动机的结构,实际上就是涡轮喷气发动机的前方再增加了几级涡轮,这些涡轮带动一

定数量的风扇。风扇吸入的气流一部分如普通喷气发动机一样,送进压气机(术语称“内涵道”),另一部分则直接从涡喷发动机壳外围向外排出(“外涵道”)。因此,涡扇发动机的燃气能量被分派到了风扇和燃烧室分别产生的两种排气气流上。这时,为提高热效率而提高涡轮前温度,可以通过适当的涡轮结构和增大风扇直径,使更多的燃气能量经风扇传递到外涵道,从而避免大幅增加排气速度。这样,热效率和推进效率取得了平衡,发动机的效率得到极大提高。效率高就意味着油耗低,飞机航程变得更远。

涡轮风扇喷气发动机的优缺点

如前所述,涡扇发动机效率高,油耗低,飞机的航程就远。

但涡扇发动机技术复杂,尤其是如何将风扇吸入的气流正确的分配给外涵道和内涵道,是极大的技术难题。因此只有少数国家能研制出涡轮风扇发动机,中国至今未有批量实用化的国产涡扇发动机。涡扇发动机价格相对高昂,不适于要求价格低廉的航空器使用。

涡轮风扇喷气发动机结构图

涡轮喷气发动机结构图

涡轮风扇发动机。这种发动机在涡轮喷气发动机的的基础上增加了几级涡轮,并由这些涡轮带动一排或几排风扇,风扇后的气流分为两部分,一部分进入压气机(内涵道),另一部分则不经过燃烧,直接排到空气中(外涵道)。由于涡轮风扇发动机一部分的燃气能量被用来带动前端的风扇,因此降低了排气速度,提高了推进效率,而且,如果为提高热效率而提高涡轮前温度后,可以通过调整涡轮结构参数和增大风扇直径,使更多的燃气能量经风扇传递到外涵道,就不会增加排气速度。这样,对于涡轮风扇发动机来讲,热效率和推进效率不再矛盾,只要结构和材料允许,提高涡轮前温度总是有利的。

目前航空用涡轮风扇发动机主要分两类,即不加力式涡轮风扇发动机和加力式涡轮风扇发动机。前者主要用于高亚音速运输机,后者主要用于歼击机,由于用途不同,这两类发动机的结构参数也大不相同。

不加力式涡轮风扇发动机不仅涡轮前温度较高,而且风扇直径较大,涵道比可达8以上,这种发动机的经济性优于涡轮喷气发动机,而可用飞行速度又比活塞式发动机高,在现代大型干线客机、军用运输机等最大速度为M0.9左右的飞机中得到广泛的应用。根据热机的原理,当发动机的功率一定时,参加推进的工质越多,所获得的推力就越大,不加力式涡轮风扇发动机由于风扇直径大,空气流量就大,因而推力也较大。同时由于排气速度较低,这种发动机的噪音也较小。

加力式涡轮风扇发动机在飞机巡航中是不开加力的,这时它相当于一台不加力式涡轮风扇发动机,但为了追求高的推重比和减小阻力,这种发动机的涵道比一般在1.0以下。在高速飞行时,发动机的加力打开,外涵道的空气和涡轮后的燃气一同进入加力燃烧室喷油后再次燃烧,使推力可大幅度增加,甚至超过了加力式涡轮喷气发动机,而且随着速度的增加,这种发动机的加力比还会上升,并且耗油率有所下降。加力式涡轮风扇发动机由于具有这种低速时较油耗低,开加力时推重比大的特点,目前已在新一代歼击机上得到广泛应用。

冲压喷气发动机

冲压喷气发动机是一种利用迎面气流进入发动机后减速,使空气提高静压的一种空气喷气发动机。它通常由进气道(又称扩压器)、燃烧室、推进喷管三部组成。冲压发动机没有压气机(也就不需要燃气涡轮),所以又称为不带压气机的空气喷气发动机。

这种发动机压缩空气的方法,是靠飞行器高速飞行时的相对气流进入发动机进气道中减速,将动能转变成压力能(例如进气速度为3倍音速时,理论上可使空气压力提高37倍)。冲压发动机的工作时,高速气流迎面向发动机吹来,在进气道内扩张减速,气压和温度升高后进入燃烧室与燃油(一般为煤油)混合燃烧,将温度提高到2000一2200℃甚至更高,高温燃气随后经推进喷管膨胀加速,由喷口高速排出而产生推力。冲压发动机的推力与进气速度有关,如进气速度为3倍音速时,在地面产生的静推力可以超过2OO千牛。

冲压发动机的构造简单、重量轻、推重比大、成本低。但因没有压气机,不能在静止的条件下起动,所以不宜作为普通飞机的动力装置,而常与别的发动机配合使用,成为组合式动力装置。如冲压发动机与火箭发动机组合,冲压发动机与涡喷发动机或涡扇发动机组合等。安装组合式动力装置的飞行器,在起飞时开动火箭发动机、涡喷或涡扇发动机,待飞行速度足够使冲压发动机正常工作的时,再使用冲压发动机而关闭与之配合工作的发动机;在着陆阶段,当飞行器的飞行速度降低至冲压发动机不能正常工作时,又重新起动与之配合的发动机。如果冲压发动机作为飞行器的动力装置单独使用时,则这种飞行器必须由其他飞行器携带至空中并具有一定速度时,才能将冲压发动机起动后投放。冲压发动机或组合式冲压发动机一般用于导弹和超音速或亚音速靶机上。按应用范围划分,冲压发动机分为亚音速、超音速、高超音速三类。

一、亚音速冲压发动机

亚音速冲压发动机使用扩散形进气道和收敛形喷管,以航空煤油为燃料。飞行时增压比不超过 1.89,飞行马赫数小于 O.5时一般不能正常工作。亚音速冲压发动机用在亚音速航空器上,如亚音速靶机。

二、超音速冲压发动机

超音速冲压发动机采用超音速进气道(燃烧室入口为亚音速气流)和收敛形或收敛扩散形喷管,用航空煤油或烃类燃料。超音速冲压发动机的推进速度为亚音速~6倍音速,用于超音速靶机和地对空导弹(一般与固体火箭发动机相配合)。

三、高超音速冲压发动机

这种发动机燃烧在超音速下进行,使用碳氢燃料或液氢燃料,飞行马赫数高达5~16,目前高超音速冲压发动机正处于研制之中。由于超音速冲压发动机的燃烧室入口为亚音速气流,也有将前两类发动机统称为亚音速冲压发动机,而将第三种发动机称为超音速冲压发动机。

发动机结构图

基本参数

推力重量比:Thrust to weight ratio,代表发动机推力与发动机本身重量之比值,愈大者性能愈好。

压气机级数:代表压缩机的压缩叶片有几级,通常级数愈大者压缩比愈大。

涡轮级数:代表涡轮机的涡轮叶片有几级。

压缩比:进气被压缩机压缩後的压力,与压缩前的压力之比值,通常愈大者性能愈好。

海平面最大净推力:发动机在海平面高度及条件,与外界空气的速度差(空速)为零时,全速运转所产生的推力,被使用的单位包括kN(千牛顿)、kg(公斤)、lb(磅)等。

单位推力小时耗油率:又称比推力(specific thrust),耗油率与推力之比,公制单位为kg/N-h,愈小者愈省油。

涡轮前温度:燃烧後之高温高压气流进入涡轮机之前的温度,通常愈大者

性能愈好。

燃气出口温度:废气离开涡轮机排出时的温度。

平均故障时间:每具发动机发生两次故障的间隔时间之总平均,愈长者愈不易故障,通常维护成本也愈低。

涡轮喷气发动机原理简释

概述

涡轮喷气发动机是一种涡轮发动机。特点是完全依赖燃气流产生推力。通常用作高速飞机的动力。油耗比涡轮风扇发动机高。涡喷发动机分为离心式与轴流式两种,离心式由英国人弗兰克·惠特尔爵士于1930年取得发明专利,但是直到1941年装有这种发动机的飞机才第一次上天,没有参加第二次世界大战,轴流式诞生在德国,并且作为第一种实用的喷气式战斗机Me-262的动力参加了1945年末的战斗。相比起离心式涡喷发动机,轴流式具有横截面小,压缩比高的优点,当今的涡喷发动机均为轴流式。

原理及工作方式

涡轮喷气式发动机应用于喷气推进避免了火箭和冲压喷气发动机固有的弱点,因为采用了涡轮驱动的压气机,因此在低速时发动机也有足够的压力来产生强大的推力。涡轮喷气发动机按照“工作循环”工作。它从大气中吸进空气,经压缩和加热这一过程之后,得到能量和动量的空气以高达2000英尺/秒(610米/秒)或者大约1400英里/小时(2253公里/小时)的速度从推进喷管中排出。在高速喷气流喷出发动机时,同时带动压气机和涡轮继续旋转,维持“工作循环”。涡轮发动机的机械布局比较简单,因为它只包含两个主要旋转部分,即压气机和涡轮,还有一个或者若干个燃烧室。然而,并非这种发动机的所有方面都具有这种简单性,因为热力和气动力问题是比较复杂的。这些问题是由燃烧室和涡轮的高工作温度、通过压气机和涡轮叶片而不断变化着的气流、以及排出燃气并形成推进喷气流的排气系统的设计工作造成的。

飞机速度低于大约450英里/小时(724公里/小时)时,纯喷气发动机的效率低于螺旋桨型发动机的效率,因为它的推进效率在很大程度上取决于它的飞行速度;因而,纯涡轮喷气发动机最适合较高的飞行速度。然而,由于螺旋桨的高叶尖速度造成的气流扰动,在350

英里/小时(563公里/小时)以上时螺旋桨效率迅速降低。这些特性使得一些中等速度飞行的飞机不用纯涡轮喷气装置而采用螺旋桨和燃气涡轮发动机的组合 -- 涡轮螺旋桨式发动机。

螺旋桨/涡轮组合的优越性在一定程度上被内外涵发动机、涵道风扇发动机和桨扇发动机的引入所取代。这些发动机比纯喷气发动机流量大而喷气速度低,因而,其推进效率与涡轮螺旋桨发动机相当,超过了纯喷气发动机的推进效率。

涡轮/冲压喷气发动机将涡轮喷气发动机(它常用于马赫数低于3的各种速度)与冲压喷气发动机结合起来,在高马赫数时具有良好的性能。这种发动机的周围是一涵道,前部具有可调进气道,后部是带可调喷口的加力喷管。起飞和加速、以及马赫数3以下的飞行状态下,发动机用常规的涡轮喷气式发动机的工作方式;当飞机加速到马赫数3以上时,其涡轮喷气机构被关闭,气道空气借助于导向叶片绕过压气机,直接流入加力喷管,此时该加力喷管成为冲压喷气发动机的燃烧室。这种发动机适合要求高速飞行并且维持高马赫数巡航状态的飞机,在这些状态下,该发动机是以冲压喷气发动机方式工作的。

涡轮/火箭发动机与涡轮/冲压喷气发动机的结构相似,一个重要的差异在于它自备燃烧用的氧。这种发动机有一多级涡轮驱动的低压压气机,而驱动涡轮的功率是在火箭型燃烧室中燃烧燃料和液氧产生的。因为燃气温度可高达3500度,在燃气进入涡轮前,需要用额外的燃油喷入燃烧室以供冷却。然后这种富油混合气(燃气)用压气机流来的空气稀释,残余的燃油在常规加力系统中燃烧。虽然这种发动机比涡轮/冲压喷气发动机小且轻,但是,其油耗更高。这种趋势使它比较适合截击机或者航天器的发射载机。这些飞机要求具有高空高速性能,通常需要有很高的加速性能而无须长的续航时间。

结构

进气道

轴流式涡喷发动机的主要结构如图,空气首先进入进气道,因为飞机飞行的状态是变化的,进气道需要保证空气最后能顺利的进入下一结构:压气机(compressor,或压缩机)。进气道的主要作用就是将空气在进入压气机之前调整到发动机能正常运转的状态。在超音速飞行时,机头与进气道口都会产生激波(shockwave,又称震波),空气经过激波压力会升高,因此进气道能起到一定的预压缩作用,但是激波位置不适当将造成局部压力的不均匀,甚至有可能损坏压气机。所以一般超音速飞机的进气道口都有一个激波调节锥,根据空速的情况调节激波的位置。

两侧进气或机腹进气的飞机由于进气道紧贴机身,会受到机身附面层(boundary layer,或边界层)的影响,还会附带一个附面层调节装置。所谓附面层是指紧贴机身表面流动的一层空气,其流速远低于周围空气,但其静压比周围高,形成压力梯度。因为其能量低,不适于进入发动机而需要排除。当飞机有一定迎角(angle of attack,AOA,或称攻角)时由于压力梯度的变化,在压力梯度加大的部分(如背风面)将发生附面层分离的现象,即本来紧贴机身的附面层在某一点突然脱离,形成湍流。湍流是相对层流来说的,简单说就是运动不规则的流体,严格的说所有的流动都是湍流。湍流的发生机理、过程的模型化现在都不太清楚。但是不是说湍流不好,在发动机中很多地方例如在燃烧过程就要充分利用湍流。

压气机

压气机由定子(stator)页片与转子(rotor)页片交错组成,一对定子页片与转子页片称为一级,定子固定在发动机框架上,转子由转子轴与涡轮相连。现役涡喷发动机一般为8-12级压气机。级数越多越往后压力越大,当战斗机突然做高g机动时,流入压气机前级的空气压力骤降,而后级压力很高,此时会出现后级高压空气反向膨胀,发动机工作极不稳定的状况,工程上称为“喘振”,这是发动机最致命的事故,很有可能造成停车甚至结构毁坏。防止“喘振”发生有几种办法。经验表明喘振多发生在压气机的5,6级间,在次区间设置放气环,以使压力出现异常时及时泄压可避免喘振的发生。或者将转子轴做成两层同心空筒,分别连接前级低压压气机与涡轮,后级高压压气机与另一组涡轮,两套转子组互相独立,在压力异常时自动调节转速,也可避免喘振。

燃烧室与涡轮

空气经过压气机压缩后进入燃烧室与煤油混合燃烧,膨胀做功;紧接着流过涡轮,推动

涡轮高速转动。因为涡轮与压气机转子连在一根轴上,所以压气机与涡轮的转速是一样的。最后高温高速燃气经过喷管喷出,以反作用力提供动力。燃烧室最初形式是几个围绕转子轴环状并列的圆筒小燃烧室,每个筒都不是密封的,而是在适当的地方开有孔,所以整个燃烧室是连通的,后来发展到环形燃烧室,结构紧凑,但是整个流体环境不如筒状燃烧室,还有结合二者优点的组合型燃烧室。

涡轮始终工作在极端条件下,对其材料、制造工艺有着极其苛刻的要求。目前多采用粉末冶金的空心页片,整体铸造,即所有页片与页盘一次铸造成型。相比起早期每个页片与页盘都分体铸造,再用榫接起来,省去了大量接头的质量。制造材料多为耐高温合金材料,中空页片可以通以冷空气以降温。而为第四代战机研制的新型发动机将配备高温性能更加出众的陶瓷粉末冶金的页片。这些手段都是为了提高涡喷发动机最重要的参数之一:涡轮前温度。高涡前温度意味着高效率,高功率。

喷管及加力燃烧室

喷管(nozzle,或称喷嘴)的形状结构决定了最终排除的气流的状态,早期的低速发动机采用单纯收敛型喷管,以达到增速的目的。根据牛顿第三定律,燃气喷出速度越大,飞机将获得越大的反作用力。但是这种方式增速是有限的,因为最终气流速度会达到音速,这时出现激波阻止气体速度的增加。而采用收敛-扩张喷管(也称为拉瓦尔喷管)能获得超音速的喷气流。飞机的机动性来主要源于翼面提供的空气动力,而当机动性要求很高时可直接利用喷气流的推力。在喷管口加装燃气舵面或直接采用可偏转喷管(也称为推力矢量喷管,或向量推力喷嘴)是历史上两种方案,其中后者已经进入实际应用阶段。著名的俄罗斯Su-30、Su-37战机的高超机动性就得益于留里卡设计局的AL-31推力矢量发动机。燃气舵面的代表是美国的X-31技术验证机。

在经过涡轮后的高温燃气中仍然含有部分未来得及消耗的氧气,在这样的燃气中继续注入煤油仍然能够燃烧,产生额外的推力。所以某些高性能战机的发动机在涡轮后增加了一个加力燃烧室(afterburner,或後燃器),以达到在短时间里大幅度提高发动机推力的目的。一般而言加力燃烧能在短时间里将最大推力提高50%,但是油耗惊人,一般仅用于起飞或应付激烈的空中缠斗,不可能用于长时间的超音速巡航。

使用情况

涡喷发动机适合航行的范围很广,从低空低亚音速到高空超音速飞机都广泛应用。前苏联的传奇战斗机米格-25高空超音速战机即采用留里卡设计局的涡喷发动机作为动力,曾经创下3.3马赫的战斗机速度纪录与37250米的升限纪录。(这个纪录在一段时间内不太可能被打破的)

与涡轮风扇发动机相比,涡喷发动机燃油经济性要差一些,但是高速性能要优于涡扇,特别是高空高速性能。

涡轴发动机概况

涡轮轴发动机概况 只想纯蠢的宅 【摘要】涡轮轴发动机作为有人及无人直升机的主要动力装置,在各类发动机中具有不可替代的地位。本文结合国外涡轴发动机的技术发展历程以及军用涡轴发动机的发展历程,介绍了几种典型军用涡轴发动机的性能特点及各国现役军用涡轴发动机的装备情况;分析并总结了涡轴发动机的工作原理技术特点,预测了涡轴发动机的有关技术趋势。 【关键词】涡轴发动机工作原理特点应用发展 1 引言 作为驱动直升机旋翼而产生升力和推进力的动力装置,可分为活塞式发动机和涡轮轴发动机。相对于活塞发动机来说,涡轴发动机功重比大、振动小、便于维修,且最大截面较小,可以大大提高直升机气动力性能。因此,从20世纪50年代开始,涡轴发动机逐步取代活塞发动机,成为直升机的主要动力装置。随着科技的发展和直升机动力的需求,涡轴发动机的研究与发展愈显重要。 2 涡轮轴发动机工作原理 涡轮轴发动机是航空燃气涡轮发动机中的一种。在核心机或燃气发生器后,加装一套涡轮,燃气在这后一涡轮(动力涡轮或低压涡轮)中膨胀,驱动它高速旋转并发出一定功率,动力轴穿过核心机转子,通过压气机前的减速器减速后由输出轴输出功率,就组成了涡轴发动机。以此涡轮轴发动机按有无自由涡轮(动力涡轮与核心机机械连接为一体)分为自由涡轮式和定轴式。但大体上涡轮轴发动机由进气装置、压气机、燃烧室、燃气发生器涡轮、动力涡轮(自由涡轮)、排气装置及体内减速器(因为其涡轮轴转速极高,需要设减速器来水平输出功率。)、附件传动装置等部件构成。 图1 涡轮轴发动机基本结构示意图 2.1 涡轮轴发动机特点 (1)定轴式涡轮轴发动 机(图2)具有功率传送方 便,结够简单等优点。但其 自身的起动性,加速性以及

航模涡轮喷气发动机制造安装

航模涡轮喷气发动机制造安装 HerrSchreckling早期受到过基础技术教育,后来又修完了重点在应用物理学方面的工程课程。之后又在一家大型的化工公司从事工程控制和系3统控制方面的工作。HerrSchreckling在15岁之前已经有了飞行模型的经验,那是他第一次把一套飞机模型套件组装起来后的事。几年之后他开始学习制造模型飞机和无线电控制设备。他特别钟情于模型的动力系统,但那时还没有重大的进展。因此他投入了相当多的时在电动飞行器方面的开发:可调螺距的推进系统和计算机优化的电动飞行系统。接下来他的首次成功尝试是用他自己制作的一套电动直升机,随后是他为WolfgangKueppers设计了电动系统,并创造了竞速模型的速度记录。再随后的五年中他把他的全部业余时间投入了喷气发动机的开发,并且抽出时间写出他在这方面的成功经验。因此,如决定要开发专业级的模型喷气发动机的话,HerrSchreckling 是最适合的合作人选。虽然HerrSchreckling并不是非常好的模型飞行员,但是他具有独创的见解,并且在一个领域有独创,并把他自己做的发动机装到了模型中并且飞了起来,因此他必定是我们这个时代最多才多艺最有经验的模型制造者。至今已经有很多种成功类型的FD3/64涡轮喷气发动机被制造出来,这促使我决定要给这本新版本的书添加一个附录,涉及到喷气发动机的一些特殊问题,但是如果我要写一个很透切的附录那肯定会超出本书的范围,甚至会让读者困惑。很多问题摆在我面前,比如说:“为什么你把FD3/64发动机设计

成这个样子而不是那样?”对于这个问题我只能作一些比较片面的回答。当面对一个比较棘手的问题,比如轴承润滑的供给,我试图使用一些简单实用的解决方案而不使用比较完善但复杂的测试每一种方法找出最好的系统的方法。有很多在喷气模型方面比较成功的模型爱好者,他们的活动在1994年在Nordheim举行的争夺战利品Ohain/Whittle中形成了一个高潮。尽管是作为一个非完全专业的模型爱好者来参加竞赛的,但是由ReinerEckstein制作并操作使用FD3/64涡轮喷气发动机的一架“涡轮驯马师”获得了quotBestofShowquot奖。自从第一个版本出现以后很多真正的开发工作已经进行,并且在半像真比例模型和FD3发动机的飞行中获得了很多经验,这导致了一种新的更精确完美的设计的产生:FD3/67LS涡轮喷气发动机套件。当然我会很愿意对按我的图纸制作发动机中遇到的问题进行解释,对于过去在电话中耐心的听我指导的模型爱好者我在这向他们表示感谢。 简介22222.1简单的涡轮喷气发动机如何工作2.2一个用业余制作燃气轮机的好方法2.3燃烧系统2.3.1燃料2.3.2燃烧室和燃油喷射器2.4温度问题2.5冷却33333.1涡轮喷气推进和螺旋桨推进的本质区别3.2在典型的模型飞行器飞行中的动力效应3.2.1滑跑起飞3.2.2爬升性能和最大速度3.2.3典型的动力运动:圆周运动3.3涡轮喷气模型的飞行经验3.3.1今天的涡轮喷气发动机模型3.3.2涡轮喷气发动机模型的特性3.4飞行中的涡轮喷气发动机3.5噪声3.6模型介绍44444.1角速度和平面速度4.2涡轮的设计过程54.3压缩机的设计过程4.3.1增压涡轮的设计与空气动力的关系4.3.2扩散系统的设计4.3.3

喷气发动机原理简介

喷气发动机原理简介

分类 涡轮喷气式发动机 完全采用燃气喷气产生推力的喷气发动机是涡轮喷气发动机。这种发动机的推力和油耗都很高。适合于高速飞行。也是最早的喷气发动机。离心式涡轮喷气发动机 使用离心叶轮作为压气机。这种压气机很简单,适合用比较差的材料制作,所以在早期应用很多。但是这种压气机阻力很大,压缩比低,并且发动机直径也很大,所以现在已经不再使用这种压气机。 轴流式涡轮喷气发动机 使用扇叶作为压气机。这样的发动机克服了离心式发动机的缺点,因此具有很高的性能。缺点是制造工艺苛刻。现在的高空高速飞机依然在使用轴流式涡喷发动机。 涡轮风扇发动机 一台涡扇发动机的一级压气机 主条目:涡轮风扇发动机

在轴流式涡喷发动机的一级压气机上安装巨大的进气风扇的发动机。一级压气机风扇因为体积大,除了可以压缩空气外,还能当作螺旋桨使用。 涡轮风扇发动机的燃油效率在跨音速附近比涡轮喷气发动机要高。 涡轮轴发动机 主条目:涡轮轴发动机 涡轮轴发动机类似涡桨发动机,但拥有更大的扭矩,并且他的输出轴和涡轮轴是不平行的(一般是垂直),输出轴减速器也不在发动机上。所以他更类似于飞机上用的燃气轮机。 涡轴发动机的大扭矩使他经常用于需要带动大螺旋桨的直升机。它的结构和车用燃气轮机区别不大。 涡轮喷气发动机(Turbojet)(简称涡喷发动机)[1]是一种涡轮发动机。特点是完全依赖燃气流产生推力。通常用作高速飞机的动力。油耗比涡轮风扇发动机高。 涡喷发动机分为离心式与轴流式两种,离心式由英国人弗兰克·惠特尔爵士于1930年取得发明专利,但是直到1941年装有这种发动机的

飞机才第一次上天,没有参加第二次世界大战,轴流式诞生在德国,并且作为第一种实用的喷气式战斗机Me-262的动力参加了1944年末的战斗。 相比起离心式涡喷发动机,轴流式具有横截面小,压缩比高的优点,但是需要较高品质的材料——这在1945年左右是不存在的。当今的涡喷发动机均为轴流式。 一个典型的轴流式涡轮喷气发动机图解(浅蓝色箭头为气流流向)图片注释: 1 - 吸入, 2 - 低压压缩, 3 - 高压压缩, 4 - 燃烧, 5 - 排气, 6 - 热区域, 7 - 涡轮机, 8 - 燃烧室, 9 - 冷区域, 10 - 进气口

涡扇发动机工作原理

动力原理: 涡轮喷气发动机涡轮风扇发动机冲压喷气发动机涡轮轴发动机 升力原理: 飞机是比空气重的飞行器,因此需要消耗自身动力来获得升力。而升力的来源是飞行中空气对机翼的作用。 在下面这幅图里,有一个机翼的剖面示意图。机翼的上表面是弯曲的,下表面是平坦的,因此在机翼与空气相对运动时,流过上表面的空气在同一时间(T)内走过的路程(S1)比流过下表面的空气的路程(S2)远,所以在上表面的空气的相对速度比下表面的空气快 (V1=S1/T >V2=S2/T1)。根据帕奴利定理——“流体对周围的物质产生的压力与流体的相对速度成反比。”,因此上表面的空气施加给机翼的压力F1小于下表面的F2。F1、F2的合力必然向上,这就产生了升力。 从机翼的原理,我们也就可以理解螺旋桨的工作原理。螺旋桨就好像一个竖放的机翼,凸起面向前,平滑面向后。旋转时压力的合力向前,推动螺旋桨向前,从而带动飞机向前。当然螺旋桨并不是简单的凸起平滑,而有着复杂的曲面结构。老式螺旋桨是固定的外形,而后期设计则采用了可以改变的相对角度等设计,改善螺旋桨性能。 飞行需要动力,使飞机前进,更重要的是使飞机获得升力。早期飞机通常使用活塞发动机作为动力,又以四冲程活塞发动机为主。这类发动机的原理如图,主要为吸入空气,与燃油混合后点燃膨胀,驱动活塞往复运动,再转化为驱动轴的旋转输出:

单单一个活塞发动机发出的功率非常有限,因此人们将多个活塞发动机并联在一起,组成星型或V型活塞发动机。下图为典型的星型活塞发动机。 现代高速飞机多数使用喷气式发动机,原理是将空气吸入,与燃油混合,点火,爆炸膨胀后的空气向后喷出,其反作用力则推动飞机向前。下图的发动机剖面图里,一个个压气风扇从进气口中吸入空气,并且一级一级的压缩空气,使空气更好的参与燃烧。风扇后面橙红色的空腔是燃烧室,空气和油料的混和气体在这里被点燃,燃烧膨胀向后喷出,推动最后两个风扇旋转,最后排出发动机外。而最后两个风扇和前面的压气风扇安装在同一条中轴上,因此会带动压气风扇继续吸入空气,从而完成了一个工作循环。

第六章 双轴涡轮喷气发动机

第六章双轴涡轮喷气发动机 Twin spool turbo-jet engine 第6.1节双轴涡轮喷气发动机的防喘原理和性能优点Avoiding surge occurred and other adventages of Twin spool turbo-jet engine 采用双轴涡轮喷气发动机的主要目的是防止压气机喘振。双轴发动机把一台高设计增压比的压气机分为二台低设计增压比的压气机,分别由各自的涡轮带动。低压压气机与低压涡轮组成低压转子,高压压气机与高压涡轮组成高压转子,双轴发动机的结构方案如图6.1.1。 图6.1.1 双轴发动机简图 为什么双轴发动机在转速降低时有效的防止压气机喘振?这个问题在前面已经讨论过了,现在联系涡轮的工作状态进一步说明如下: 单轴的高设计增压比压气机在非设计状态下工作严重恶化,是由于沿压气机气流通道轴向速度的重新分布所引起的,根据压气机进口和出口流量相等的条件,可以得到 式中A 2、A 3 、c 2z 、c 3z 、ρ 2 和ρ 3 分别代表压气机进出口的面积、气流轴向分速度 和密度。上式可以改写为 由多变压缩过程的关系可得: 式中 n——多变指数 分别用压气机进出口的周向速度u 2和u 3 除上式左边的分子和分母,可得

上两式中K 1和K 2 为常数。在速度三角形中c z /u称为耗量系数。 由上两式可见,压气机增压比的变化将导致压气机进出口轴向速度之比和耗量系数之比也相应地变化。当发动机相似参数变化时,就会产生这种情 况。发动机相似参数的变化可能是由于转速的变化引起的,也可能是在转速不变时压气机进口温度变化引起的,这两种情况没有本质的差别。 由压气机的气流速度三角形可以知道,耗量系数的变化影响着速度三角形的形状,使气流流入压气机叶片的攻角发生变化。例如,压气机进口耗量系数c 2z 降低,将引起第一级压气机叶片的攻角增大;而压气机出口耗量系数c 3z 增加,将引起末级压气机叶片攻角减小。 因此,当发动机转速相似参数降低后,压气机的最前面几级和末后几级都将 偏离它们的设计状态,中间各级由于耗量系数c z 变化不大,因而工作状态变化不大。压气机前后各级的攻角偏离设计状态,首先使压气机级效率降低,进一步发展将会导致压气机喘振。在非设计状态下前后各级工作不协调的现象对于高设计增压比的压气机将更为严重。 通过上述分析,可以知道,要达到在非设计状态下前后各级协调地工作,最有效的方法是使各级的转速相应于各级进口气流轴向速度的重新分布而各自变 化,以保证各级耗量系数c z 不变。然而这在结构上是不可能的,也不需要这样。在一般情况下只要把压气机分成两组就足够了。这就成为双轴压气机和双轴发动机。 当双轴发动机的转速相似参数降低以后,高压转子和低压转子的转速自动地进行调整,使前后各级能够协调工作。为了说明这个现象,再进一步分析压气机和涡轮工作的某些特点。 压气机由设计状态降低转速和增压比时,前后各级的气流轴向速度和耗量系数都将重新分布,前几级的耗量系数降低,攻角加大;而后几级的耗量系数加大, 攻角减小。攻角的改变将引起各级加功量w c,i 的变化。 对于前面几级,攻角加大时,工作轮出口的气流相对速度方向基本不变,因 而气流转角Δβ加大,扭速Δw u 加大。如果是压气机进口温度增加使转速相似参数降低而工作轮切线速度u不变时,级的加功量也加大。 对于后面几级,流入角减小时,将使气流转角Δβ减小,扭速Δw u 减小, 因而级加功量w c,i 减小。 总之,当压气机增压比降低时,低压压气机的加功量w c,l 和高压压气机的加 功量w c,h 之比将加大,即 式中下角注s表示设计状态下的比值。 如果低压压气机和高压压气机用同一个比值降低转速(这在双轴发动机上当然是不可能的,但为了便于分析,姑且这样假设),那末上述加功量比值的变化关系仍然是正确的。因为

小型涡喷发动机制造材料总结

小型涡喷发动机制造材料总结 我是王开心,欢迎大家加入CHNJET中国喷气爱好者原地!介于大家对小型涡喷发动机的热爱以及对制造一个属于自己小型涡喷发动机的追求,在此我写下这点总结以备大家在制造和生产小型涡喷发动机的过程中对于制造材料产生疑惑时做以参考,同时在这里也纠正一些刚刚了解到涡喷发动机和金属材料的朋友们的一个直观错误:选择耐高温材料并不单单只看这个金属材料的熔点,而是应多方面考虑到这个金属材料的蠕变强度,热疲劳性,高温抗氧化性以及高温下金属会产生晶粒长大效应等等因素。 相关名词的解释说明——晶粒长大效应:晶粒长大是金属的一种缺陷,晶粒越大,晶界越少,晶界少了金属各部分抵御外界的能力就变小了,因此晶粒长大效应是判断金属在高温下性能好坏的重要指标。 大家在制造小型涡喷发动机的过程中最能接触到的金属材料我总结为以下几种:304不锈钢,316L不锈钢,310S不锈钢,NAS800,NAS600和K418耐高温合金。下面对上述几种材料在加工和生产中容易遇到的问题和使用中容易遇到的问题做以介绍。 首先304不锈钢,316L不锈钢,310S不锈钢,NAS800,NAS600都属于“奥氏体不锈钢”奥氏体不锈钢具有很高的耐蚀性,良好的冷加工性和良好的韧性、塑性、焊接性和无磁性,下面我们就来分析一下这几种金属在制造微型涡喷发动机时所要了解到的一些特性。

SUS304 304不锈钢介绍:304不锈钢由于含碳量较低,因而有良好的加工成型性和抗氧化性,同时该钢具有良好的焊接性能,适用于各种方法的焊接(备注:该钢焊接后不需进行热处理工艺)。 304不锈钢的抗氧化特性:1,该钢在700-800℃氧化时具有优异的抗氧化性能,属于完全抗氧化级。2,该钢在900℃时表面形成的氧化膜开始脱落,属于抗氧化级。3,该钢在1000℃时属于次抗氧化级。304不锈钢管最高使用温度在750度-860度但是,实际上达不到860度这么高。450度时有个临界点,情况如下:304不锈钢不易保持在450到860度,因为在450度以上的时候,会稀释碳周围的铬,形成碳化铭,造成贫铬区,从而改变不锈钢性能材质;而且,450的温度外加屈服力会使得奥氏体向马氏体转化。说简单通俗一点,经常在450度以上环境下使用,304不锈钢的性能和结构都发生变化。 总结得出:304不锈钢在900℃以下的热空气中具有稳定的抗氧化性,同时在900℃时304不锈钢具有较小的晶粒尺寸,在800-1000℃时产生了奥氏体晶粒长大效应,加温为1000℃时,晶粒的平均截距开始增大。所以在制造小型涡喷发动机时如果设计温度在600-900℃时不建议长期使用304不锈钢。但是,在模友制造过程中 如果受到经费的限制可以考虑用304不锈钢制造一个低推力的小型涡喷发动机的主轴,燃烧室及尾喷口。 SUS316L

涡轮发动机基础前五章复习题0405无答案讲解

第1章概述 1.燃气涡轮发动机具体包括:涡轮喷气发动机、涡轮螺旋桨发动机以及: A. 涡轮风扇发动机和涡轮轴发动机 B. 涡轮风扇和冲压发动机 C. 涡轮轴发动机和冲压发动机 D. 涡轮轴发动机和活塞发动机 2. 是热机同时又是推进器的是: A. 活塞发动机 B. 涡喷发动机 C. 带涡轮增压的航空活塞发动机 D. 涡轮轴发动机 3. 涡轮喷气发动机的主要部件包括: A. 压气机、燃烧室、尾喷管、排气混合器、消声器 B. 压气机、涡轮、尾喷管、排气混合器、燃烧室 C. 压气机、涡轮、反推装置、消声器、进气道 进气道、压气机、涡轮、尾喷管、燃烧室D. 4.涡扇发动机的总推力来自: A. 仅为内涵排气产生 B. 仅为外涵排气产生 C. 由内外涵排气共同产生 内涵排气和冲压作用产生D. 5. 涡扇发动机的涵道比是指: A. 外涵空气流量与内涵空气流量之比 B. 外涵空气流量与进气道空气流量之比 C. 内涵空气流量与外涵空气流量之比 D. 内涵空气流量与流过发动机的总空气流量之比 6. 以下哪两类燃气涡轮发动机是靠排气来获得推力的: A. 涡轮螺旋桨发动机和涡轮轴发动机 B. 涡轮喷气发动机和涡轮螺旋桨发动机 C. 涡轮喷气发动机和涡轮风扇发动机 涡轮风扇发动机和涡轮轴发动机D. 7.涡轮轴发动机、涡轮螺旋桨发动机与涡轮喷气、涡轮风扇发动机相比: A. 都是靠排气来产生推力 B. 都比后者的推进效率要高

C. 都有核心机 17 / 1 推力更大D. 8. 燃气涡轮发动机的核心机包括: A. 压气机、涡轮、尾喷管 B. 压气机、燃烧室、涡轮 C. 压气机、燃烧室、加力燃烧室 压气机、涡轮、反推力装置D. 9. 喷气发动机进行热力循环,所得的循环功为: A. 加热量与膨胀功之差 B. 加热量与压缩功之差 C. 加热量 D. 加热量与放热量之差 10. 单位质量的空气流过喷气发动机所获得的机械能为: A. 空气在燃烧室里所获得的加热量 B. 空气在压气机的所获得的压缩功 C. 燃气在涡轮里膨胀所做的膨胀功 燃气的排气动能与空气的进气动能之差D. 11.认为燃气在尾喷管完全膨胀,流过发动机的空气流量与燃气流量相等,则涡轮喷气发动机的推力)有直接关系大小与(A. 空气流量、排气速度与进气速度之差 B. 空气流量、膨胀效率大小 C. 空气流量、排气速度高低 空气流量、飞行马赫数大小D. 12. )有直接关系(若喷气发动机在地面台架试车,则推力大小与:A. 空气流量、飞行马赫数大小 B. 空气流量、排气速度高低 C. 空气流量、排气速度与进气速度之差 空气流量、膨胀效率大小D. 13. 可以表示为:N 喷气发动机的循环功率A. 空气流量与每千克空气动能差的乘积 B. 空气流量乘以每千克空气的排气动能 C. 空气流量乘以每千克空气的进气动能 每千克空气的动能差D. 14. 喷气发动机的推进效率为: A. 推进功率与循环功率之比 B. 推进功率与加热量之比 C. 推进功与循环功率之比 推进功与加热量之比D.

微型涡轮喷气发动机

产品名称: 微型涡轮喷气发动机 规格型号: 包装说明: 多种规格和型号的微型喷气发动机,推力60kg,40kg,12kg,6kg,能满足不同需要。 本实用新型涉及的一种微型涡轮喷气发动机,它包括有外壳、轴承、转轴、进气外定子、进气定子、轴套、尾排气定子、整流罩、尾轴螺母、排气定子、排气叶轮、控制装置,它还包括有前轴螺母、大轴套、燃烧室,所述转轴的前轴伸端和后轴伸端设有外螺纹,在转轴的前轴伸端的外螺纹上旋有前轴螺母,并且在转轴上向后依次设置有进气叶轮、轴套、一对支撑轴承、轴套、排气叶轮,在后轴伸端的外螺纹上旋有尾轴螺母,所述进气叶轮和排气叶轮与转轴相固定连接;由于采用了本设计方案,提高了航模发动机推动力,大大提高了航模飞行的性能,拓展了航模在现代战争、军事演习和提高军事演练技能上发挥其重要的作用 20CM的涡扇发动机存在使用型号,但全是军用型号,用于某些巡航导弹的。也正因为如此,具体的数值保密,无法知道。但两位工程师大概估算了一下,根据构型不同,最大推力应当在200磅(离心式压气机构型),至400磅(轴流式压气机构型)之间。 航模协会的人说,用于航模的涡喷发动机口径4-8厘米。最大推力20-40公斤,相当吓人。他有一架装备4.3厘米口径涡喷发动机的模型,自重1.6公斤,最大飞行速度可达350公里/小时。 30厘米直径,10000牛?差不多一吨的推力? 双路式涡轮喷气发动机 百科名片 涡轮发动机 涡轮发动机通过增加空气流过发动机的速度来产生推力。它包括进气道,压缩器,燃烧室,涡轮节,和排气节。

如图1 涡轮发动机相比往复式发动机有下列优点:振动少,增加飞机性能,可靠性高,和容易操作。

涡轮发动机类型

涡轮发动机是根据它们使用的压缩器类型来分类的。压缩器类型分为三类:离心流式,轴流式,和离心轴流式。离心流式发动机中进气道空气是通过加速空气以垂直于机器纵轴的方向排出而得到压 缩的。轴流式发动机通过一系列旋转和平行于纵轴移动空气的固定翼形而压缩空气。离心轴流式设计使用这两类压缩器来获得需要的压缩。 空气经过发动机的路径和如何产生功率确定了发动机的类型。有四种类型的飞机涡轮发动机-涡轮喷气发动机,涡轮螺旋桨发动机,涡轮风扇发动机和涡轮轴发动机。

涡轮喷气发动机

涡轮喷气发动机包含四节:压缩器,燃烧室,涡轮节,和排气节。压缩器部分空气以高速度通过进气道到达燃烧室。燃烧室包含燃油入口和用于燃烧的点火器。膨胀的空气驱动涡轮,涡轮通过轴连接到压缩器,支持发动机的运行。从发动机排出加速的排气提供推力。这是基本应用了压缩空气,点燃油气混合物,产生动力以自维持发动机运行,和用于推进的排气。 涡轮喷气发动机受限于航程和续航力。它们在低压缩器速度时对油门的反应也慢。

涡轮螺旋桨发动机

涡轮螺旋桨发动机是一个通过减速齿轮驱动螺旋桨的涡轮发动机。排出气体驱动一个动力涡轮机,它通过一个轴和减速齿轮组件连接。减速齿轮在涡轮螺旋桨发动机上是必须的,因为螺旋桨转速比发动机运行转速低得多的时候才能得到最佳螺旋桨性能。涡轮螺旋桨发动机是涡轮喷气发动机和往复式发动机的一个折衷产物。涡轮螺旋桨发动机最有效率的速度范围是250mph到400mph(英里每小时),高度位于18000英尺到30000英尺。它们在起飞和着陆时低空速状态也能很好的运行,燃油效率也好。涡轮螺旋桨发动机的最小单位燃油消耗通常位于高度范围25000英尺到对流层顶。

涡轮风扇发动机

涡轮风扇发动机的发展结合了涡轮喷气发动机和涡轮螺旋桨发动机的一些最好特征。涡轮风扇发动机的设计是通过转移燃烧室周围的次级气流来产生额外的推力。涡轮风扇发动机旁路空气产生了增强的推力,冷却了发动机,有助于抑制排气噪音。这能够获得涡轮喷气型发动机的巡航速度和更低的燃油消耗。 通过涡轮风扇发动机的进气道空气通常被分成两个分离的气流。一个气流通过发动机的中心部分,而另一股气流从发动机中心旁路通过。正是这个旁路的气流才有术

飞机发动机原理——涡轮风扇发动机

通俗简单的说就是:如果不用风扇出口导叶,风扇后边的气流是螺旋向后吹的,这种气流的推力较小且会使发动机产生了有害的扭转力。安装风扇出口导叶,可以起到支撑机匣,校正气流方向的作用;且风扇出口导叶有一定倾斜角度,这样气流在流过导叶时可以增加一定推力 此类发动机如何启动? 14 hshshs8121 2006年12月10日 星期日 上午 08:47 | 回复 刚启动时,要使发动机的压气机和涡轮开始工作就得用辅助 动力装置(APU )来带动压气机旋转。辅助动力装置(APU ) 是靠电瓶启动的。 1、风扇的气流为什么要分别内外函道?全部进入内涵道有什 么不可? 2、是不是在不同的飞行条件下,进入内外函道的气 流是不是也不同?如果是,他们之间是什么关系? 3、外函道 的气流对飞机推动有没有作用? 4、我对涡扇发动机能提高效 率还是有些不明白。比如说,不考虑发动机的是涡扇还是涡喷, 飞机获得的推力一定喷口气体的反作用力,出口气流越大,其 反作用力也越大。出口气流越大,其损失的动能也越大,但反 作用也越大,是不是提高出口气体速度率与燃油消耗率是非线 性的关系?在相同出口气流速度的前提下,单位时间消耗的燃 油越少效率越高。涡扇就必须在相同推力的情况下比窝喷耗油 底,增加涡扇后为什么能提高效率呢?是不是将气体加压的原 因?但加压本身是要消耗能量的。提高涡轮前的温度是怎么实 现的?是增压原因?增加燃油燃烧的原因?请大侠指教? 24 hshshs8121 2007年06月21日 星期四 上午 10:13 | 回复 1、气流分为内外涵道是涡轮风扇发动机的特征。气流流经风 扇以后分为两股,一股由外涵直接排出,一股由内涵进入压 气机。涡扇发动机的推力75%来自外函。 气体可以都流进内 涵道,这样的发动机叫涡轮喷气发动机,也就是常说的涡喷 发动机。 2、内外涵的气流都是来自于同一个进气道,所以 不管什么飞行条件,它们的状态都是一样的,唯一的区别就 是外涵气流直接排出,内涵气流进入压气机继续压缩。 3、 风扇其实就是一个放大了的压气机,所以它对发动机会产生 一个向前的推力。 25 hshshs8121 2007年06月21日 星期四 上午 10:13 | 回复 4、讨论任何问题的时候都有一定的前提条件,要不然就没法 讨论了, 而对于效率“小武”把最重要的前提条件给忽略了,那就是发动机的类型!涡扇发动机和涡喷发动机产生推力的 主要原理是不一样的!总的来说,涡喷发动机主要是靠改变 气流流经发动机前后的速度来产生反作用力,进而产生推力 的。而对于涡扇发动机,发动机的主要推力来自于风扇,核 心机的主要作用是体供维持发动机运转所需的功,所以由内 涵排出的气流速度是很低的,它对发动机推力的贡献是很有

涡轮喷气发动机

涡轮喷气发动机(Turbojet)(简称涡喷发动机)是一种涡轮发动机。特点是完全依赖燃气流产生推力。通常用作高速飞机的动力。油耗比涡轮风扇发动机高。 涡喷发动机分为离心式与轴流式两种,离心式由英国人弗兰克·惠特尔爵士于1930年取得发明专利,但是直到1941年装有这种发动机的飞机才第一次上天,没有参加第二次世界大战,轴流式诞生在德国,并且作为第一种实用的喷气式战斗机Me-262的动力参加了1944年末的战斗。 相比起离心式涡喷发动机,轴流式具有横截面小,压缩比高的优点,但是需要较高品质的材料——这在1945年左右是不存在的。当今的涡喷发动机均为轴流式。 一个典型的轴流式涡轮喷气发动机图解(浅蓝色箭头为气流流向) 图片注释: 1 - 吸入, 2 - 低压压缩, 3 - 高压压缩, 4 - 燃烧, 5 - 排气, 6 - 热区域, 7 - 涡轮机, 8 - 燃烧室, 9 - 冷区域, 10 - 进气口目录 1 结构 一个典型的轴流式涡轮喷气发动机图解(浅蓝色箭头为气流流向)图片注释: 1 - 吸入, 2 - 低压压缩, 3 - 高压压缩, 4 - 燃烧, 5 - 排气, 6 - 热区域, 7 - 涡轮机, 8 - 燃烧室, 9 - 冷区域, 10 - 进气口 1.1 进气道 1.2 压气机 1.3 燃烧室与涡轮 1.4 喷管及加力燃烧室 2 使用情况 3 基本参数 结构

离心式涡轮喷气发动机的原理示意图 图片注释: 顺时针依次为: 离心叶轮(压缩机),轴,涡轮机,喷嘴,燃烧室 轴流式涡轮喷气发动机的原理示意图 图片注释: 顺时针依次为: 压缩机,涡轮机,喷嘴,轴,燃烧室 进气道 轴流式涡喷发动机的主要结构如图,空气首先进入进气道,因为飞机飞行的状态是变化的,进气道需要保证空气最后能顺利的进入下一结构:压气机(compressor)。进气道的主要作用就是将空气在进入压气机之前调整到发动机能正常运转的状态。在超音速飞行时,机头与进气道口都会产生激波(shockwave),空气经过激波压力会升高,因此进气道能起一定的预压缩作用,但是激波位置不适当将造成局部压力的不均匀,甚至有可能损坏压气机。所以一般超音速飞机的进气道口都有一个激波调节锥,根据空速的情况调节激波的位置。 离心式涡轮喷气发动机的原理示意图图片注释: 顺时针依次为: 离心叶轮(压缩机),轴,涡轮机,喷嘴,燃烧室 两侧进气或机腹进气的飞机由于进气道紧贴机身,会受到附面层(boundary layer,或邊界層)的影响,还会附带一个附面层调节装置。所谓附面层是指紧贴机身表面流动的一层空气,其流速远低于周围空气,但其静压比周围高,形成压力梯度。因为其能量低,不适于进入发动机而需要排除。当飞机有一定迎角(angle of attack,AOA)时由于压力梯度的变化,在压力梯度加大的部分(如背风面)将发生附面层分离的现象,即本来紧贴机身的附面层在某一点突然脱离,形成湍流。 湍流是相对层流来说的,简单说就是运动不规则的流体,严格的说所有的流动都是湍流。湍流的发生机制、过程的模型化现在都不太清楚。但是不是说湍流不好,在发动机中很多地方例如在燃烧过程就要充分利用湍流。 压气机 压气机由定子(stator)叶片与转子(rotor)叶片交错组成,一对定子叶片与转子叶片称为一级,定子固定在发动机框架上,转子由转子轴与涡轮相连。现役涡喷发动机一般为8-

涡喷发动机的工作原理

1.涡喷发动机的工作原理? 涡喷发动机以空气为介质,进气道将所需的的外界空气以最小的流动损失送到压气机;压气机通过高速旋转的叶片对空气压缩做功,提高空气的压力;空气在燃烧室内和燃油混合燃烧,将燃料化学能转变成热能,生成高温高压燃气;燃气在涡轮内膨胀,将热能转为机械能,驱动涡轮旋转,带动压气机;燃气在喷管内继续膨胀,加速燃气,燃气以较高速度排出,产生推力。 2.涡轮发动机的特征,什么是燃气涡轮发动机的特性?发动机特性分哪几种? 特征:发动机作为一个热机,它将燃料的热能转变为机械能,同时作为一个推进器,它利用所产生的机械能使发动机获得推力。 发动机的特性:燃气涡轮发动机的推力和燃油消耗率随发动机转速、飞行高度和飞行速度的变化规律叫发动机特性。发动机特性分为:保持飞机高度和飞机速度不变的情况下,发动机推力和燃油消耗率随发动机转速的变化规律叫发动机转速特性。在给定的调节规律下,保持发动机的转速和飞机速度不变时,发动机的推力和燃油消耗率随飞机的高度的变化规律叫高度特性。在给定的调节规律下,保持发动机的转速和飞行高度不变时,发动机的推力和燃油消耗量随飞机速度(或马赫数)的变化规律叫速度特性。 3.净推力和总推力 根据牛顿第2,第3定律,气流进入发动机和离开发动机的动量发生变化,产生推力。 净推力:取决于离开发动机的燃气动量与进来的空气动量加进来的燃油动量。净推力还包括喷管出口的静压超过周围空气的静压产生的推力。Fn=Qma(Vj-Va)+Aj(Pj-Pam) 总推力:是指当飞机静止时发动机排气产生的推力,包括排气动量产生的推力和喷口静压和环境空气静压之差产生的附加推力。Fg=Qma(Vj)+Aj(Pj-Pam)。 正常飞行时,压气机、扩压器、燃烧室、排气锥产生向前推力,涡轮、尾喷口产生向后的推力。 4.影响热效率的因素? 热效率表明,在循环中加入的热量有多少变为机械功。影响因素有:加热比(涡轮前燃气总温),压气机增压比,压气机效率和涡轮效率。加热比、压气机效率和涡轮效率增大,热效率也增大。压气机增压比提高,热效率增大,当增压比等于最经济增压比时,热效率最大,继续提高增压比,热效率反而下降。热效率也称做内效率。 5.进气道的作用?什么是进气道总压恢复系数? 一是尽可能多的恢复自由气流的总压并输送该压力到压气机,这就是冲压恢复或压力恢复;二是提供均匀的气流到压气机使压气机有效地工作。进气道出口截面的总压与进气道前方来流的总压比值,叫做进气道总压恢复系数,该系数是小于1的数值,表示进气道的流动损失。 6.进气道冲压比的定义,影响冲压比的因素? 进气道的冲压比是:进气道出口处的总压与远方气流静压的比值。冲压比越大,说明空气在压气机前的冲压压缩程度越大,影响冲压比因素:流动损失,飞行速度和大气温度。(大气密度、高度、发动机转速):当大气温度和飞行速度一定时,流动损失大,则冲压比下降;当大气温度和流动损失一定时,飞行速度越大,则冲压比增加;当飞行速度和流动损失一定时,大气温度上升,则冲压比下降。 7.压气机分哪两种?目前燃气涡轮发动机中常采用哪一种,为什么? 离心式和轴流式。目前燃气涡轮发动机中常采用轴流式压气机。这是因为轴流式压气机具有下述优点:总的增压比高,压气机效率高,单位面积的流通能力高,迎风面积小,阻力小。缺点:单级增压比低,结构复杂 离心式优点:单级增压比高,压气机稳定工作范围宽,结构简单可靠,重量轻,长度短,起动功率小,缺点:流动损失大,效率低,单位面积的流通能力低,迎风面积大,阻力大 8.进口导向叶片的功能是什么?决定进入压气机叶片气流攻角的因素是什么? 为了保证压气机工作稳定,有的在第1级工作叶轮前还有一排不动的叶片称为进口导向叶片。其功能是引导气流的流动方向产生预旋,使气流以合适的方向流入第1级工作叶轮。决定因素是:工作叶轮进口处的绝对速度(包括大小和方向),压气机的转速。 9.简要说明空气在多级压气机中的流动。 基元级的叶栅通道均是扩张形的。在叶轮内,绝对速度增大,相对速度减小。同时,总压、静压和总温、静温都升高;在整流器内,绝对速度减小;静压和静温升高,总压略有下降,总温保持不变。由此可见,空气流过基元级时,不仅在叶轮内受到压缩,而且在整流器内也受到压缩。

F414涡轮风扇发动机

18“大黄蜂”战斗机最新发展型F/A-18E/F的要求而设计的加力式涡轮风扇发动机。它以该公司的F404和 F412为基础,因此曾被称为F404的Ⅱ型推力增长型。1991年开始研制。1993年5月20日首次试车。计划于1995年12月首次试飞,1998年定型并交付首台生产型发动机。 通用电气公司在研制F414时充分吸取F404积累的使用经验,采用GE23A、YF120、F412以及其他军、民用发动机一些经过验证的技术,因而研制工作进展顺利,投资少、研制时间短,效果明显。 F414-GE-400涡轮风扇发动机 F414的风扇与F118的相同,第1级风扇叶片带中间凸台,第2和第3级为焊接的整体叶盘。通过1993年作的280多小时试验证明,这种风扇的流量、效率、喘振裕度和抗畸变能力均超过或达到预定的目标,流量比F404-GE-400的大16%,重量轻20.4kg。F414的高压压气机采用F412的7级设计,但前3级改为叶盘结构,以减少榫头漏气、减轻重量和提高效率。燃烧室和高压涡轮是以F412为基础发展的,低压涡轮是一种先进设计。加力燃烧室采用了该公司为先进战斗机设计的F120发动机的结构。径向火焰稳定器可用风扇后空气冷却,中心环形火焰稳定器沿圆周做成12段,可以自由膨胀,整套火焰稳定器可在发动机装在飞机上的条件下进行更换,设计寿命为2000h,5700次点火。海平面和高空试验证明,这种加力燃烧室不易发生振荡燃烧。尾喷管的设计采用了F110-GE-129 IPE 的技术,装有先进的陶瓷基复合材料的尾喷管调节片。 结构和系统 进气口环形。结构与F404的相同。 风扇3级轴流式。第1级风扇叶片可拆换,带有中间凸台。第2和第3级风扇为Ti17焊接成整体的叶盘。增压比比F404的高15%,约为4.025。3级静子和转子叶片均为三维流设计。

涡轮喷气发动机转速特性实验

《涡轮喷气发动机转速特性实验》 实验指导书

发动机控制实验室2006年3月

涡轮喷气发动机转速特性实验 1试验目的 测定涡喷发动机转速特性。即在地面台架试车条件下(飞行M=0、飞行高度H=0),测量发动机的推力F、耗油率sfc、压气机增压比 k*、排气温度T4*、空气流量ma随发动机转速n的变化关系。 2实验设备 2.1实验发动机 本试验所用发动机为MAи-201单轴涡喷发动机。该发动机为莫斯科航空学院在涡轮起动机TC-21的基础上制造的,将涡轮起动机带减速器的自由涡轮拆下,换上收敛喷管,在发动机的进口安装了带测量段的进气装置,改装成涡喷发动机。发动机的压气机为一级带导风轮的离心式压气机,燃烧室为带四个单独头部的环形燃烧室,燃油经过四个离心式喷嘴向燃烧室供油。MAи-2 01发动机采用单级涡轮和收敛形尾喷管。 发动机在最大状态工作时的主要参数如下: 发动机转速:50500rpm 增压比: 2.0 涡轮前温度:850°C 空气流量: 1.2kg/s 2.2试车台架 试验台采用弹簧片式的台架,其构造如图1所示。由活动框架1(动架)和固定底架2(定架)两部分组成,动架和定架靠四片弹簧片3相连接,发动机装在动架上。定架用螺钉与地基相连,测力系统测力计4固定在定架上,活塞杆5与动架相连。当发动机工作时,推力通过两侧支架传到动架,通过动架又传递给测力计,实验时根据推力表指示数据查推力校准曲线,即可得到发动机推力。推力校准曲线是根据对发动机台架的校准结果绘制而成的(见图3)。 为了测量空气流量,在发动机的压气机前安装了进气流量管6。 2.3操纵台 操纵台上安装有发动机油门操纵杆,控制和监视发动机工作的开关和仪表,以及测量发动机数据的仪器、仪表。 2.4燃油系统 燃油系统如图2所示,包括油路开关1、油滤2、燃油泵3、油门操纵杆4、油路开关5、油滤6、燃油压力传感器7、测量燃油消耗率的涡轮流量计8等。 2.5监控与测量仪表 2推力表:为一个毫伏表,发动机推力通过推力传感器将推力转换为电压信号。

涡轮轴发动机的诞生

涡轮轴发动机的诞生 涡轮轴发动机首次正式试飞 是在1951年12月。作为直升机的新型动力,兼有喷气发动机和螺旋桨发动机特点的涡轮轴令直升机的发展更进一步。当时涡轮轴发动机还划入涡轮螺桨发动机一类。随着直升机的普及和其先进性能的体现,涡轮轴发动机逐渐被视为单独的一种喷气发动机。 在1950年时,透博梅卡(Turbomeca)公司研制成“阿都斯特 -1”(Artouste-1)涡轮轴发动机。该发动机只有一级离心式叶轮压气机,有两级涡轮的输出轴,功率达到了206千瓦(280轴马力),成为世界上第一台实用的直升机涡轮轴发动机。首先装用这种发动机的是美国贝尔直升机公司生产的Bell47(编号为XH-13F),1954年该机首飞。到了50年代中期,涡轮轴发动机开始为直升机设计者所大量采用。 涡轮轴发动机的原理 涡轮轴发动机与涡轮螺旋桨发动机相似,曾经被划入同一分类。它们都由涡轮喷气发动机演变而来,涡桨发动机驱动螺旋桨,涡轮轴发动机则驱动直升机的旋翼轴获得升力和气动控制力。当然涡轮轴发动机也有自己的特色:通常带有自由涡轮,而其他形式的涡轮喷气发动机一般没有自由涡轮。 涡轮轴发动机具有涡轮喷气发动机的大部分特点,也有着进气道、压气机、燃烧室和尾喷管等基本组件。其特有的自由涡轮位于燃烧室后方,高能燃气对自由涡轮作功,通过传动轴、减速器等带动直升机的旋翼旋转,从而升空飞行。自由涡轮并不像其他涡轮那样要带动压气机,它专门用于输出功率,类似于汽轮机。做功后排出的燃气,经尾喷管喷出,能量已经不大,产生的推力很小,包含的推力大约仅占总推力的十分之一左右。因此,为了适应直升机机体结构的需要,涡轮轴发动机喷口可灵活安排,可以向上,向下或向两侧,而不一定要向后。尽管涡轮轴发动机内,带动压气机的燃气发生器涡轮与自由涡轮并不机械互联,但气动上有着密切联系。对这两种涡轮,在气体热能分配上,需要随飞行条件的改变而适当调整,从而取得发动机性能与直升机旋翼性能的最优组合。 涡轮轴发动机剖视示意图

第二代喷气发动机以为加力式涡轮喷气发动机为主,图331是

第二代喷气发动机以为加力式涡轮喷气发动机为主,图3.3.1是加力式涡轮喷气发动机的示意图。第二代发动机中也有一些加力式涡轮风扇发动机(简称加力涡扇发动机),例如美 1-超声速进气道 2-压气机 3-燃烧室 4-涡轮 5-加力燃烧室 6-尾喷管 图3.3.2 加力式涡喷发动机 国的F111是世界上第一种装有涡轮风扇发动机(TF30)的战斗机,1966年投入使用。英国的F-4鬼怪式战斗机装有斯贝MK.202涡轮风扇发动机代替J79涡轮喷气发动机,1968年投入使用。第二代发动机的推力/重量比为5~6,可以使飞机的最大飞行马赫数 M达到 max 2.0~2.5。 20世纪70年代初,美国研制成推重比为8.0一级的加力式涡轮风扇发动机 F100-PW-100,1974年装有2台这种发动机的F-15战斗机投入使用。使喷气发动机迈入第三代的新阶段。从1974年到21世纪初期,装有第三代喷气发动机的战斗机都是战斗机中的主力,其典型代表列于表3.3.3,结构简图表示于图3.3.3。 图3.3.3 加力式涡轮风扇发动机结构简图

第四代战斗机要求发动机的推重比要在10以上,采用矢量推力喷管,有良好的隐身能力等。 第四代发动机的典型代表列于表3.3.4。 活塞式发动机/螺旋桨动力装置的经济性好,主要是因为在低飞速度度时螺旋桨的效率高,但活塞式发动机笨重、推力差性能差,不适于高速飞行;涡轮喷气发动机适于高速飞行,但低飞速度时经济性差。民用飞机侧重经济性,又要适当提高飞行速度,故20世纪40年代后期便出现了涡轮螺旋桨发动机(简称涡桨发动机)。涡桨发动机可以看成是涡喷发动机与活塞式动力装置的组合,既有螺旋桨的高效率又有涡喷发动机质量轻和推力性能好的优点。图3.3.4是涡桨发动机的原理图,发动机的基本部件与涡喷发动机一样,由进气道、压气机、燃烧室、涡轮和尾喷管组成。不同的是,涡桨发动机的动力涡轮用来驱动螺旋桨,推力主要由螺旋桨产生,动力涡轮后的气流还有较高的能量,经尾喷管排出时的速度虽然远小于涡喷发动机的排气速度,但仍然高于飞行速度,故发动机本身也产生一定的反作用推力。 20世纪50年代60年代涡桨发动机广泛用于民用和军用运输机,20世纪末期欧洲8国计划设计的A400M 军用运输机采用4台涡轮螺浆发动机。 直升机用的发动机,在20世纪50年代中期以前都是活塞式发动机,之后,涡轮轴发动机(简称涡轴发动机)开始用于直升机。60年代后,新的直升机几乎完全都采用涡轮轴发动机。图3.3.5为涡轴发动机原理图。发动机本身与涡桨发动机没有什么差别,不同的只是动力涡轮的功率驱动旋翼,旋翼产生直升机需要的升力和拉力,动力涡轮后的气流能量较低,排气管出口的速度较小,发动机本身基本上不产生反作用推力。 图3.3.4涡浆发动机原理图

涡轮风扇喷气发动机及涡轮喷气发动机的区别_以及涡喷

涡轮风扇喷气发动机及涡轮喷气发动机的区别以及涡喷.冲压原理 涡轮风扇喷气发动机的诞生 二战后,随着时间推移、技术更新,涡轮喷气发动机显得不足以满足新型飞机的动力需求。尤其是二战后快速发展的亚音速民航飞机和大型运输机,飞行速度要求达到高亚音速即可,耗油量要小,因此发动机效率要很高。涡轮喷气发动机的效率已经无法满足这种需求,使得上述机种的航程缩短。因此一段时期内出现了较多的使用涡轮螺旋桨发动机的大型飞机。 实际上早在30年代起,带有外涵道的喷气发动机已经出现了一些粗糙的早期设计。40和50年代,早期涡扇发动机开始了试验。但由于对风扇叶片设计制造的要求非常高。因此直到60年代,人们才得以制造出符合涡扇发动机要求的风扇叶片,从而揭开了涡扇发动机实用化的阶段。 50年代,美国的NACA(即NASA 美国航空航天管理局的前身)对涡扇发动机进行了非常重要的科研工作。55到56年研究成果转由通用电气公司(GE)继续深入发展。GE在1957年成功推出了CJ805-23型涡扇发动机,立即打破了超音速喷气发动机的大量纪录。但最早的实用化的涡扇发动机则是普拉特·惠特尼(Pratt & Whitney)公司的JT3D涡扇发动机。实际上普·惠公司启动涡扇研制项目要比GE晚,他们是在探听到GE在研制CJ805的机密后,匆忙加紧工作,抢先推出了了实用的JT3D。 1960年,罗尔斯·罗伊斯公司的“康威”(Conway)涡扇发动机开始被波音707大型远程喷气客机采用,成为第一种被民航客机使用的涡扇发动机。60年代洛克西德“三星”客机和波音747“珍宝”客机采用了罗·罗公司的RB211-22B大型涡扇发动机,标志着涡扇发动机的全面成熟。此后涡轮喷气发动机迅速的被西方民用航空工业抛弃。 波音707的军用型号之一,KC-135加油机。不加力式涡扇发动机实际上较为容易辨认,其外部有一直径很大的风扇外壳。 涡轮风扇喷气发动机的原理 涡桨发动机的推力有限,同时影响飞机提高飞行速度。因此必需提高喷气发动机的效率。发动机的效率包括热效率和推进效率两个部分。提高燃气在涡轮前的温度和压气机的增压比,就可以提高热效率。因为高温、高密度的气体包含的能量要大。但是,在飞行速度不变的条件下,提高涡轮前温度,自然会使排气速度加大。而流速快的气体在排出时动能损失大。因此,片面的加大热功率,即加大涡轮前温度,会导致推进效率的下降。要全面提高发动机效率,必需解决热效率和推进效率这一对矛盾。 涡轮风扇发动机的妙处,就在于既提高涡轮前温度,又不增加排气速度。涡扇发动机的结构,实际上就是涡轮喷气发动机的前方再增加了几级涡轮,这些涡轮带动一定数量的

相关文档
相关文档 最新文档