文档库 最新最全的文档下载
当前位置:文档库 › 正弦交流电路的分析与讲解

正弦交流电路的分析与讲解

正弦交流电路的分析与讲解
正弦交流电路的分析与讲解

授课日期年月日第课时

第一节纯电阻电路

一、电路:

1.纯电阻电路:交流电路中若只有电阻,这种电路叫纯电阻电

路。

2.电阻元件对交流电的阻碍作用,单位Ω

二、电流与电压间的关系:

1.大小关系:

设在纯电阻电路中,加在电阻R上的交流电压u = U m sin ωt,则通过电阻R的电流的瞬时值为:

i =

R

u

=

R

t

sin

m = I m sin ω t

I m =

R

U

m

I =

2

m

I =

R

U

2

m=

R

U

I =

R

U

:纯电阻电路中欧姆定律的表达式,式中:U、I为交流电

路中电压、电流的有效值。

2.相位关系:

(1)在纯电阻电路中,电压、电流同相。

(2)表示:解析式、相量图和波形图。

例:在纯电阻电路中,电阻为44 Ω,交流电压

u = 311 sin ( 314 t + 30? ) V,求通过电阻的电流多大?写出电流的解析式。

练习:

已知交流电压u = 2202sin ( 314 t + 45? ) V,它的有效

是,频率是,初相是。若电路接上一电阻负载R = 220 Ω,电路上电流的有效值是,电流的解析式

是。

小结:

1.纯电阻电路中欧姆定律的表达式。

2.电阻两端的电压和通过电阻的电流的关系。

授课日期年月日第课时

课前复习:

电阻元件上电流、电压之间的关系

1.大小关系

2.相位关系

第二节纯电感电路

一、电路:

二、电感对交流电的阻碍作用:

1.演示:

电感在交、直流电路中的作用

2.分析与结论:

电感线圈对直流电和交流电的阻碍作用是不同的。对于直流电起阻碍作用的只是线圈电阻,对交流电,除线圈电阻外,电感也起阻碍作用。

(1)电感对交流电有阻碍作用的原因。

(2)感抗:电感对交流电的阻碍作用。用X L表示,单位:Ω。(3)感抗与ω、L有关:

①L越大,X L就越大,f越大,X L就越大。

②X L与L、f有关的原因。

③X L = ω L = 2 π f L

单位:X L―欧姆(Ω);f -赫兹(Hz);L -亨利(H)。(4)电感线圈在电路中的作用:通直流、阻交流,通低频、阻高频。

(5)应用:

低频扼流圈:用于“通直流、阻交流”的电感线圈叫低频扼流圈。

高频扼流圈:用于“通低频、阻高频”的电感线圈叫高频扼流圈。

授课日期年月日第课时

课前复习:

电感元件上电流、电压之间的关系

1.大小关系

2.相位关系

第三节纯电容电路

一、电路:

二、电容对交流电的阻碍作用:

1.演示:

电容在交、直流电路中的作用

结论:直流电不能通过电容器,交流电能“通过”电容器。

原因:当电源电压增高时,电源给电容器充电,当电源电压降低时,电容器放电,充放电交替进行。

2.分析和结论:

(1)电容对交流电的阻碍作用叫容抗。用X C表示。

(2)X C与ω、C有关

X C =

C

ω

1=

C

f

π

2

1

(3)分析:为什么会产生X C,为什么X C ∝

ω

1

,X C ∝

C

1

(4)电容器在电路中的作用:通交流、隔直流;通高频、阻低频。(5)应用:

隔直电容:使交流成分通过,而阻碍直流成分通过,做这种用途的电容器叫隔直电容。

高频旁路电容:高频成分通过电容器,而使低频成分输入到下一

级,做这种用途的电容器叫高频旁路电容。

授课日期年月日第课时

课前复习:填表

电阻元件 电感元件 电容元

对交流电的阻碍作

电压、电流的大小

关系

电压、电流的相位

关系

相量图(以电流为参考相量)

第四节 电阻、电感、电容的串联电路

一、RLC 串联电路:

由电阻、电感、和电容相串联所组成的电路叫RLC 串联电路。

1.电路:

设在上述电路中通过的正弦交流电流为I = I m sin ωt 则: u R = I m R sin ωt

u L = I m X L sin (ωt +

2π)= I m ωL sin (ωt +2

π) u C = I m X C sin (ωt -2π) = I m C ω1 sin (ωt -2

π

)

u AB = u R + u L + u C

2.相量图:(以电流为参考相量)

图(1)

3.端电压与电流的关系: (1)大小关系:

①电压三角形:电路的端电压与各分电压构成一直角三角形,叫

电压三角形。(图(1))

②RLC 串联电路中欧姆定律的表达式:I = Z

U

∣Z ∣=22)(C L X X R -+∣Z ∣—— 阻抗 单位:欧姆(Ω)

U = 22)(C L R U U U -+

③电抗:感抗与容抗之差叫电抗。用X 表示 X = X L -X C

单位:欧姆(Ω) ④阻抗三角形 (图(2)) 阻抗角:∣Z ∣与R 两边的夹角 ? = arctan R

X X C L -= arctan R

X

图(2)

(2)相位关系:

①当X L > X C 时,端电压超前电流? 角,电路呈电感性,称为电

感性电路。

? = ? u - ? i = arctan ( U L -U C / U R > 0

②当X L < X C 时,端电压滞后电流 ? 角,电路呈电容性,称为电

容性电路。

? = ? u - ? I = arctan (U L -U C ) / U R < 0

③当X L = X C 时,端电压与电流同相,电路呈电阻性,电路的这种状态叫串联谐振。

? = ? u -? i = arctan (U L - U C ) / U R = 0

例 :在 RLC 串联电路中,交流电源电压 U = 220 V ,频率 f = 50 Hz ,R = 30 Ω,L = 445 mH ,C = 32 μF 。试求:(1) 电路中的电流大小 I ;(2) 总电压与电流的相位差 ? ;(3) 各元件上的电压 U R 、U L 、U C 。 解:(1) X L = 2πfL ≈ 140 Ω,X C =

1

2fC

π ≈ 100 Ω, 22()50ΩL C Z R X X =+-=

4.4A U

I Z

=

= (2)40

arctan

arctan 53.130

L C X X R ?-===o 即总电压比电流超前 53.1? ,电路呈感性。

(3) U R = RI = 132 V ,U L = X L I = 616 V ,U C = X C I = 440 V 。

授课日期年月日第课时

课前复习:

1.在RLC串联电路中,欧姆定律的表达式。

2.电路端电压与各元件两端的电压的关系。

3.电路总阻抗与电阻、感抗、容抗的关系。

4.电路端电压和电流的相位关系。

第五节串连谐振电路

一、谐振的定义和条件:

1.定义:在RLC串联电路中,当电路端电压和电流同相时,电路呈电阻性,电路的这种状态叫串联谐振。

2.串联谐振的条件

I =

Z

U∣Z∣=2

2)

(

C

L

X

X

R-

+

串联谐振的条件:

X L = X Cω0L =

C

1

ω

ω0 =

LC

1f

=

LC

π2

1

3.电路实现谐振的方法:

(1)电源频率一定,可调节L或C的大小来实现谐振。

(2)当电路参数L、C一定时,可改变电源频率。

二、串联谐振的特点:

1.阻抗最小,且为纯电阻∣Z0∣= R。

2.电路中电流最大,并与电源电压同相I0 =

Z

U=

R

U

3.电感和电容两端的电压相等,且相位相反,其大小为总电压的Q 倍(电压谐振)。

U L = I0 X L=

R

U X

L

=U

R

L

ω= Q U

U C = I0X C =

R

U X

C

= Q U

U R = I0 R =

R

U R = U

U L = U C = QU

其中:Q =

R

L

ω=

CR

1

ω

Q——串联谐振电路的品质因数

(1)减小电阻,则电路消耗的能量就小,电路品质因数高。 (2)增大线圈的电感量L ,线圈储存的能量就多,在损耗一定时,同样说明电路品质好。

4.谐振时,电能仅供给电路中电阻消耗,电源与电路间不发生能量转

换,而电感与电容间进行着磁场能和电场能的转换。 三、串联谐振的应用:

1.收音机中的调谐接收回路。 2.调谐方法:改变C 或L 的值。 四、谐振电路的选择性:

1.选择性:选择性即电路选择信号的能力,也即电路的选频本领。 2.影响电路选择性的因素:

(1)讨论方法

作谐振曲线→结论

谐振曲线:以f (或ω)作为自变量,把回路电流i 作为它的函

数,绘成的函数曲线。

(2)结论:Q 值越大,谐振曲线越陡,电路的选择性越好。 (3)提出问题:电路的Q 值是不是越高越好呢? 3.品质因数和通频带的关系:

从分析谐振曲线得出结论:

(1)谐振电路的通频带:当回路外加电压的幅值不变时,回路

中产生的电流不小于谐振值的0.707倍的一段频率范围,简称带宽,用Δf 表示。

? f = f 2 - f 1;? f =

Q

f 0

(2)Q 值越高,电路的选择性越好,但电路传送信号的频带越窄(即

通频带Δf 越窄),因此Q 值过大容易造成信号失真。所以Q 和Δf 是辨证的统一,在实际应用中可根据具体情况,两者有

1.电路:

设在AB 两端加正弦交流电压u = U m sin ωt ,则各支路上的电流 分别为:

i R =I R m sin ωt I R =

R

U i L = I C m sin(ω t -

2

π

) I L =L X U

i C = I C m sin(ωt +2π

) I C =C

X U

2.相量图:

以电压为参考相量 (1)X L > X C (2)X L < X C (3)X L = X C

3.总电流和电压之间的关系: (1)总电流和电压的大小关系:

① 电流三角形:电路中总电流与各支路电流构成一个直角三角

形,叫电流三角形。

I =22)(C L R I I I -+

② 欧姆定律表达式

I = Z

U

;|Z | =

22)11()1(1

C

L X X R -+→导纳三角形

(2)相位间的关系

① 当X L > X C 时,总电流超前端电压 ? 角,电路呈电容性。 ② 当X L < X C 时,总电流滞后端电压 ? 角,电路呈电感性。 ③ 当X L = X C 时,则I L = I C ,端电压与总电流同相,电路呈电阻

性,电路的这种状态叫并联谐振。

其中:

总电流与端电压的相位差为:

? = ? i - ? u = - arctan R

C L I I I -= - arctan R

U X U X U C L ///-

= - arctan

G

B B C

L - < 0 感纳B L =

L X 1;容纳B C =C X 1

;电导G =R

1,单位:西门子(S )。 例1:在 RLC 并联电路中,已知:电源电压 U = 120 V ,频率 f= 50

Hz,R = 50 Ω,L = 0.19 H,C = 80 μF。试求:(1) 各支路电流I

R

I L、I C ;(2) 总电流I,并说明该电路成何性质?(3) 等效阻抗|Z|。解:(1)ω = 2πf = 314 rad/s,X L =ωL= 60 Ω,X C = 1/(ωC) = 40 Ω(2)I R = U/R = 120/50 A = 2.4 A,I L = U/X L = 2 A,I C = U/X C = 3 A 22

() 2.6A

R C L

I I I I

=+-=,因X L > X C,则电路呈容性。

(3) |Z|= U/I= 120/2.6 Ω = 46 Ω。

四、RLC并联电路的二个特例:

1.当X C→∞则I C = 0,此电路为RL并联电路

(1)相量图:以电压为参考相量

(2)总电流与电压的大小关系

I =2

2

L

R

I

I+→电流三角形

I =

Z

U| Z |=

2

2)

1

(

)

1

(

1

L

X

R

+

→导纳三角形

(3)总电流与电压的相位关系

电压超前总电流 ? 角,电路呈电感性

? = - arctan

R

L

I

I

= - arctan

R

X

L

1

1

2.当X L→∞则I L= 0,此电路为RC并联电路

(1)相量图:以电压为参考相量

(2)总电流与电压的大小关系

I = 2

2

C

R

I

I+→电流三角形

I =

Z

U

|Z| =

2

2)

1

(

)

1

(

1

C

X

R

+

→导纳三角形

(3)总电流与电压的相位关系

总电流超前电压 ? 角,电路呈电容性

授课日期年月日第课时

课件-第4章 正弦稳态电路分析--例题

第4章 正弦稳态电路分析 --例题 √【例4.1】已知两个同频正弦电流分别为 ()A 3314cos 2101π+=t i ,()A 65314cos 2222π-=t i 。求(1) 21i i +;(2)dt di 1;(3)?dt i 2。 【解】 (1)设()i t I i i i ψω+=+=cos 221,其相量为i I I ψ∠=? (待求),可得: ()()()()A 54.170314cos 224.14A 54.17014.24A 34.205.14 A 1105.19A j8.665 A 15022A 601021?-=?-∠=--=--++=?-∠+?∠=+=? ? t i j j I I I (2)求 dt di 1可直接用时域形式求解,也可以用相量求解 () () ?+?+=?+?-=9060314cos 23140 60314sin 3142101 t t dt di 用相量形式求解,设dt di 1的相量为K K ψ∠,则有 )9060(31406010314K 1K ?+?∠=?∠?==∠? j I j ωψ 两者结果相同。 (3)?dt i 2的相量为 ?∠=? ∠?-∠=? 12007.0903********ωj I

【例4.2】 图4-9所示电路中的仪表为交流电流表,其仪表所指示的读数为电流的有效值,其中电流表A 1的读数为5 A ,电流表A 2的读数为20 A ,电流表A 3的读数为25 A 。求电流表A 和A 4的读数。 图4-9 例4.2图 【解】 图中各交流电流表的读数就是仪表所在支路的电流相量的模(有效值)。显然,如果选择并联支路的电压相量为参考相量,即令 V 0?∠=? S S U U ,根据元件的VCR 就能很方便地确定这些并联支路中电流 的相量。它们分别为: A 25 ,A 20 ,A 053 21j I j I I =-=?∠= 根据KCL ,有: ()A 095A 5A 457.07A 553 2 4 321?∠==+=?∠=+=++=j I I I j I I I I 所求电流表的读数为:表A :7.07 A ;表A 4:5 A

正弦稳态交流电路及谐振电路仿真实验

实验报告三 一、实验目的 1.通过仿真电路理解相量形式的欧姆定律、基尔霍夫定律。 2.通过仿真实验理解谐振电路工作特点。 二、实验内容 1. 建立仿真电路验证相量形式欧姆定律、基尔霍夫定律; 2. 建立仿真电路验证RLC 串联、并联谐振电路工作特点; 三、实验环境 计算机、MULTISIM 仿真软件 四、实验电路 2.3.1欧姆定律的向量形式仿真实验 1.实验电路 2.理论分析计算 由向量发和欧姆定律可知, ωω=+-≈∠Ω。1 1040.416Z R j L j C = =∠. . 。9.6116m V I A Z

= ≈13.59Rm V V ω= ≈0.43Lm V L V ω=≈1 4.33Cm V V C 3.实验结果 2.3.1欧姆定律的向量形式仿真实 1.实验电路

2.理论分析计算 (1)相量形式的基尔霍夫电压定律 由向量法和欧姆定律可知, ωω=+-1 Z R j L j C = =. . 0.329V I A Z = ≈32.91Rm V V ω= ≈10.34Lm V L V ω=≈1 104.72Cm V V C (2)相量形式的基尔霍夫电流定律: 1.实验电路

2.理论分析计算 . . . . R C L I I I I =++ . . . . R C L U U U U === ... //I U R U L U C ωω=++ 代入数据得: 假设: . 。0U U =∠ 则 1R I A = 3.183L I A = 0.314C I A = . 。。。0-9090=3.038R C L I I I I A =∠+∠+∠ 2.5.1 RLC 串联电路仿真 (R=1Ω): 1.实验电路

单相正弦交流电路分析试题

1.已知相量[] A 2321j I += ,[]A 2322j I +-= ,[] A 2323 j I --= 和[] A 2324 j I -= ,试把它们化为极坐标式,并写成正弦量321i i i ,,和4i 。 2.写出下列正弦电压的相量(用直角坐标式表示): (1)V sin 210t u ω=; (2)V 2sin 210??? ?? +=πωt u ; (3)V 2sin 210??? ? ? -=πωt u ; (4)V 43sin 210??? ? ? -=πωt u 。 如图所示,)30sin(261?+=t i ω,)60sin(282?-=t i ω,求21i i i +=。 题3 3.图示电路,电流表A 1、A 2的读数均为10A ,求电流表A 的读数。 题4 4.图示RC 串联电路,V 100sin 2100F 100C 100S t u R =,=,μΩ=,求C u u i R 和、,并画出相量图。 题5 6. RLC 串联电路。已知V 10sin 25F 001.0C mH 6k 56t U L R ===Ω=,,,μ。(1)求电流i 和各元件上的电压,画出相量图;(2)当角频率变为5102?rad/s 时,电路的性质有无改变? u s

7. 写出下列电流及电压的相量形式,并画出相量图:A )30314sin(1.14?+=t i , ()V 60314sin 2220?-=t u 。 8. 写出下列电压、电流的三角函数式:V 50100?∠=U ,V 20301 ?-=j e U ,A 6010?-∠=I ,A 2541 π j e I = 。 9. 下列表达式中那些是正确的:(1)A 305?∠=i ;(2)()A 30sin 25?+=t I ω ;(3)()V 20sin 210020100?+=?∠=t U ω ;(4)L X R Z +=;(5)22L X R Z +=;(6)Z I P ?=2;(7)A 530?=j e I ;(8)L jX R Z +=;(9) R I UI P 2cos ==?; (10)?sin UI Q =。 10. 今有一感性负载接在220V ,50H Z 电源上,消耗功率P =10kW ,功率因数 6.0cos 1=?,试求: (1)负载电流I ;(2)若欲将功率因数1cos ?提高到 95.0cos =?,应并联多大电容?(3)并联电容后电路总电流I 为多少? 11. 某感性负载参数为R =10Ω,L =55mH ,接在220V ,50H Z 电源上,试求:(1)负载电流I ,负载功率P 及功率因数1cos ?;(2)若将电路功率因数?cos 提高到0.95,应并联多大电容?此时负载电流和功率有无变化?电路总电流为多少? 12. 在某电路中,mA 46280sin 100??? ? ? -=πt i , (1)试指出它的频率、周期、角频率、幅值、有效值及初相位各为多少?(2)如果i 的参考方向选得相反,写 出它的三角函数式,并问(1)中各项有无改变?

单相正弦交流电路分析试题

1. 已知相量[] A 2321j I += ,[]A 2322j I +-= ,[] A 2323 j I --= 和[] A 2324 j I -= ,试把它们化为极坐标式,并写成正弦量321i i i ,,和4i 。 2. 写出下列正弦电压的相量(用直角坐标式表示): (1)V sin 210t u ω=; (2)V 2sin 210?? ? ?? + =πωt u ; (3)V 2sin 210?? ? ? ?- =πωt u ; (4)V 43sin 210?? ? ??- =πωt u 。 3. 如图所示,)30sin(261?+=t i ω,)60sin(282?-=t i ω,求21i i i +=。 题3 4. 图示电路,电流表A 1、A 2的读数均为10A ,求电流表A 的读数。 题4 5. 图示RC 串联电路,V 100sin 2100F 100C 100S t u R =,=,μΩ=,求C u u i R 和、, 并画出相量图。 题5 u s

6. RLC 串联电路。已知V 10sin 25F 001.0C mH 6k 56t U L R ===Ω=,,,μ。(1) 求电流i 和各元件上的电压,画出相量图;(2)当角频率变为5 102?rad/s 时,电路的性质有无改变? 7. 写出下列电流及电压的相量形式,并画出相量图:A )30314sin(1.14?+=t i , ()V 60314sin 2220?-=t u 。 8. 写出下列电压、电流的三角函数式:V 50100?∠=U ,V 20301 ?-=j e U ,A 6010?-∠=I ,A 2541 π j e I = 。 9. 下列表达式中那些是正确的:(1)A 305?∠=i ;(2)()A 30sin 25?+=t I ω ;(3) ()V 20sin 210020100?+=?∠=t U ω ;(4)L X R Z +=;(5)22L X R Z +=;(6)Z I P ?=2;(7)A 530?=j e I ;(8)L jX R Z +=;(9)R I UI P 2cos ==?;(10)?sin UI Q =。 10. 今有一感性负载接在220V ,50H Z 电源上,消耗功率P =10kW ,功率因数6.0cos 1=?, 试求:(1)负载电流I ;(2)若欲将功率因数1cos ?提高到95.0cos =?,应并联多大电容?(3)并联电容后电路总电流I 为多少? 11. 某感性负载参数为R =10Ω,L =55mH ,接在220V ,50H Z 电源上,试求:(1)负载电 流I ,负载功率P 及功率因数1cos ?;(2)若将电路功率因数?cos 提高到0.95,应并联多大电容?此时负载电流和功率有无变化?电路总电流为多少? 12. 在某电路中,mA 46280sin 100?? ? ? ? - =πt i , (1)试指出它的频率、周期、角频率、幅值、有效值及初相位各为多少?(2)如果i 的参考方向选得相反,写出它的三角函数式,并问(1)中各项有无改变? 13. 设mA 4sin 100?? ? ? ?- =πωt i 。试求在下列情况下电流的瞬时值: (1)Hz 1000=f ,ms 375.0=t ;(2)rad 25.1πω=t ;(3)?=90t ω;(4)T 8 7 = t 。 14. 已知()A 45314sin 151?+=t i ,()A 30314sin 102?-=t i ,(1)试问1i 与2i 的相位差等 于多少?(2)在相位上比较1i 和2i ,谁超前,谁滞后?

单相正弦交流电路公开课教案

【课题】正弦交流电基本概念 【课时】 1课时 【教学目标】 1、掌握正弦交流电的基本概念。 2、了解正弦量的三要素。 【教学重点】 正弦交流电的三要素。 【教学难点】 正弦交流电的角频率、瞬时值、最大值、有效值、相位、初相位和相位差。 【教学过程】 【一、导入新课】 在生活中同学们都经常听说直流电和交流电,那么同学们是否知道我们教室里所使用的电到底是直流电还是交流电呢 【二、讲授新课】 1.2.1正弦交流电的基本概念 正弦交流电的波形

1、交流电:大小和方向随时间按正弦规律做周期性变化的电量,符号AC 。 2、基本电量:正弦交流电流、正弦交流电压、正弦交流电动势。 3、解析式:i(t)I m sin ( t +?) u(t)U m sin ( t +?) e(t) E m sin ( t +?) I m U m E m ————振幅(峰值或最大值) ——角频率(rad/s ) ?——初相位(弧度或度) 1、 交流电的大小 1、瞬时值:交流电在任意时刻的数值,用小写字母表示,例如e 、i 、u 。 2、最大值:交流电在变化过程中出现在最大瞬时值,用大写字母并在右下角标m 表示,例如I m 、 U m 、 E m 。 3、有效值:规定用来计量交流电大小的物理量,用大写字母表示,例如U 、I 、E 。如果交流电通过一个电阻时,在一个周期内产生的热量与某直流电通过同一电阻在同样长的时间内产生的热量相等,就将这一直流电的数值定义为交流电的有效值。 正弦交流电的有效值和最大值之间的关系为 2 m U U = U m 或U m 2U 练习题:已知,u(t)500 sin (200 t +45°),求U m 、U 和第5 秒时的瞬时值。

第2章单相交流电路复习练习题

第2章单相交流电路复习练习题 一、填空 1.纯电容交流电路中通过的电流有效值,等于加在电容器两端的 电压 除以它的 容抗 。 2.在RLC 串联电路中,发生串联谐振的条件是 感抗 等于 容抗 。 3.确定正弦量的三要素有 最大值 、 角频率 、 初相角 。 4.纯电感交流电路中通过的电流有效值,等于加在电感两端的 电压 除以它的 感抗 。 5.纯电阻交流电路中通过的电流有效值,等于加在电阻两端的 电压 除以它的 电阻 。 6.在RL 串联交流电路中,通过它的电流有效值,等于 电压 除以它的 阻抗值 。 7.在感性负载的两端适当并联电容器可以使 功率因数 提高,电路的总 电流 减小。 8、任何一个正弦交流电都可以用 有效值 相量和 最大值 相量来表示。 9、已知正弦交流电压V )60314sin(2380?-=t u ,则它的有效值是 380 V ,角频率是 314 rad/s 。 10、实际电气设备大多为 感 性设备,功率因数往往 较低 。若要提高感性电路的功率因数,常采用人工补偿法进行调整,即在感性线路(或设备)两端并联 适当的电容器 。 11、电阻元件正弦电路的复阻抗是 R ;电感元件正弦电路的复阻抗是 jX L ;电容元件正弦电路的复阻抗是 -j X C ;RLC 串联电路的复阻抗是 R +j (X L -X C ) 。 12、各串联元件上 电流 相同,因此画串联电路相量图时,通常选择 电流 作为参考相量;并联各元件上 电压 相同,所以画并联电路相量图时,一般选择 电压 作为参考相量。 13、电阻元件上的伏安关系瞬时值表达式为 i =u /R ,因之称其为即时元件;电感元件上伏安关系瞬时值表达式为 dt di L u L = ,电容元件上伏安关系瞬时值表达式为 dt du C i C C = ,因此把它们称之为动态元件。 14、能量转换过程不可逆的电路功率常称为 有功功率 功率;能量转换过程可逆的电路功率叫做 无功功率 功率;这两部分功率的总和称为 视在 功率。 15、负载的功率因数越高,电源的利用率就 越高 ,无功功率就 越小 。 16、只有电阻和电感元件相串联的电路,电路性质呈 电感 性;只有电阻和电容元件相串联的电路,电路性质呈 电容 性。 17、当RLC 串联电路发生谐振时,电路中阻抗最小且等于 电阻R ;电路中电压一定时电流最大,且与电路总电压 同相 。 18.已知正弦交流电压V )60314sin(2380?-=t u ,则它的频率为 50 Hz ,初相角是 60 o。 19.在电阻元件的的电路中,已知电压的初相角为40o,则电流的初相角为 40 o。 20.在电感元件的的电路中,已知电压的初相角为40o,则电流的初相角为 -60 o。 21.在电容元件的的电路中,已知电压的初相角为40o,则电流的初相角为 130 o。

正弦稳态电路

第九章 正弦稳态电路的分析 重点: 1. 阻抗与导纳的概念及意义 2. 正弦交流电路的相量分析方法 3. 正弦交流电路的功率分析 4. 串联谐振及并联谐振的特点及分析 9.1 阻抗与导纳 9.1.1 阻抗及导纳 一、阻抗 1.相量形式的欧姆定律 2.阻抗的定义 不含独立源的一端口(二端)网络,如果端口的电压相量为, 端口的电流相量为,则该电口的策动点(驱动点)阻抗定义为 3. 几个概念 其中,称为电阻,称为电抗,而称为感抗,称为容抗 二、导纳 1.导纳的定义 不含独立源的一端口(二端)网络,如果端口的电压相量为,端口的电流相量为,R R R R I Z I U R R R R I U Z R L L L L L jX L j I Z I I U L L j L L L I U Z C C C C C C jX C j I Z I I U 1C j C C C 1I U Z U I jX R Z ||Z R X L X L C X C /1U I + _ 图11-1 阻抗的定义

则该电口的策动点(驱动点)阻抗定义为 2. 几个概念 其中,称为电导,称为电纳,而称为感纳,称为容纳 9.1.2 阻抗的意义 1.引入的意义 使得正弦电路电路的分析计算可以仿照电阻电路的计算方法进行。 2.阻抗参数的意义 1) 其中表征端口电压与端口电流的幅值比,即表征了电路部分对正弦交流电流的阻碍 作用。越大,对交流电流的阻碍作用越大——比如电容元件通高频、阻低频的特性分析:,电感元件通低频、阻高频的特性分析:。 2) 其中表征端口电压与端口电流的相位关系,即表征了电路端口电压超前端口电流的角度。 3.阻抗三角形与串联电路中的电压三角形 有如下所示的RLC 串联电路 首先可以根据时域电路绘制出相应的电路相量模型: 根据KVL : ||Y U I Y jB G Y ||Y G B L B L /1C B C jX R Z ||Z ||Z ||Z ||Z C Z C /1||L Z L || L I I I I U U U U )1(1C j L j R C j L j R C L R

正弦稳态电路的分析

x 第九章 正弦稳态电路 的分析 本章重点: 1. 阻抗,导纳及的概念 2. 正弦电路的分析方法 3. 正弦电路功率的计算 4. 谐振的概念及谐振的特点 本章难点:如何求电路的参数 主要内容 X arctg 为阻抗角(辐角); R 1 1 可见,当X.>0,即L 一时,Z 是感性; 当X<0,即卩L 一时,Z 呈容性。 c c (3)阻抗三角形: 1 ?阻抗 (1)复阻抗:Z § 9-1 阻抗和导纳 R jX R=Re[Z] Z cos z 称为电阻; X=Im[Z]= ⑵RLC 串联电路的阻抗: 称电抗。 Z sin z j( L j(X L 丄) c X C ) R jX 式中X L L 称为感抗;X C 称为容抗; X X L X C L — c 式中Z 为阻抗的模; Z R

2 ?导纳 x

1 (1)复导纳:丫 一 Z ⑵RLC 并联电路的导纳: (3)导纳三角形: 3.阻抗和导纳的等效互换 § 9-2 阻抗(导纳)的串联和并联 1. 阻抗串联: (1) 等效阻抗:Z e q 乙Z 2川Z n (2) 分压作用:U |K 互U, k 1,2,|||,n Z eq 2. 导纳并联 (1) 等效导纳:Y eq 丫1 丫2 |||Y n (2) 分流作用:|[ 丫M 〔, k 1,2,|||, n 3. 两个阻抗并联: 式中Y I 一 「.G 2 B 2称为导纳的模; B Y arCtan G 称为导纳角; G Re[Y] 丫 cos 丫称为电导; lm[Y] Y sin 丫称为电纳。 Y G jB 1 c 飞) j(B c B L ) G jB Y 式中B L —称为感纳; L L 可见,当B 0,即c —时, L B c C 称为容纳; B B c B L Y 呈容性;当B 0,即c 1 —,丫呈感性 (1)RLC 串联电路的等效导纳: ⑵RLC 并联电路的等效阻抗: Y R R 2 X 2 G j 一 G B G X J " R 2 X 2 B B B G Y

单相正弦交流电路的基本知识课件【新版】

单相正弦交流电路的基本知识 本章的学习重点: ● 正弦交流电路的基本概念; ● 正弦量有效值的概念和定义,有效值与最大值之间的数量关系; ● 三大基本电路元件在正弦交流电路中的伏安关系及功率和能量问题。 3.1 正弦交流电路的基本概念 1、学习指导 (1)正弦量的三要素 正弦量随时间变化、对应每一时刻的数值称为瞬时值,正弦量的瞬时值表示形式一般为解 析式或波形图。正弦量的最大值反映了正弦量振荡的正向最高点,也称为振幅。 正弦量的最大值和瞬时值都不能正确反映它的作功能力,因此引入有效值的概念:与一个 交流电热效应相同的直流电的数值定义为这个交流电的有效值。正弦交流电的有效值与它的最大值之间具有确定的数量关系,即I I 2m 。 周期是指正弦量变化一个循环所需要的时间;频率指正弦量一秒钟内所变化的周数;角频 率则指正弦量一秒钟经历的弧度数,周期、频率和角频率从不同的角度反映了同一个问题:正弦量随时间变化的快慢程度。 相位是正弦量随时间变化的电角度,是时间的函数;初相则是对应t=0时刻的相位,初相 确定了正弦计时始的位置。 正弦量的最大值(或有效值)称为它的第一要素,第一要素反映了正弦量的作功能力; 角频率(或频率、周期)为正弦量的第二要素,第二要素指出了正弦量随时间变化的快慢程度;初相是正弦量的第三要素,瞎经确定了正弦量计时始的位置。 一个正弦量,只要明确了它的三要素,则这个正弦量就是唯一地、确定的。因此,表达一 个正弦量时,也只须表达出其三要素即可。解析式和波形图都能很好地表达正弦量的三要素,因此它们是正弦量的表示方法。 (2)相位差 相位差指的是两个同频率正弦量之间的相位之差,由于同频率正弦量之间的相位之差实 际上就等于它们的初相之差,因此相位差就是两个同频率正弦量的初相之差。注意:不同频率的正弦量之间是没有相位差的概念而言的。

Multisim 10-正弦稳态交流电路仿真实验

暨南大学本科实验报告专用纸 课程名称电路分析CAI 成绩评定 实验项目名称正弦稳态交流电路仿真实验指导教师 实验项目编号05实验项目类型验证型实验地点计算机中心C305 学生姓学号 学院电气信息学院专业实验时间 2013 年5月28日 一、实验目的 1.分析和验证欧姆定律的相量形式和相量法。 2.分析和验证基尔霍夫定律的相量形式和相量法。 二、实验环境定律 1.联想微机,windows XP,Microsoft office, 2.电路仿真设计工具Multisim10 三、实验原理 1在线性电路中,当电路的激励源是正弦电流(或电压)时,电路的响应也是同频的正弦向量,称为正弦稳态电路。正弦稳态电路中的KCL和KVL适用于所有的瞬时值和向量形式。 2.基尔霍夫电流定律(KCL)的向量模式为:具有相同频率的正弦电流电路中的任一结点,流出该结点的全部支路电流向量的代数和等于零。 3. 基尔霍夫电压定律(KVL)的向量模式为:具有相同频率的正弦电流电路中的任一回路,沿该回路全部的支路电压向量的代数和等于零。 四、实验内容与步骤 1. 欧姆定律相量形式仿真 ①在Multisim 10中,搭建如图(1)所示正弦稳态交流实 验电路图。打开仿真开关,用示波器经行仿真测量,分别测

量电阻R、电感L、电容C两端的电压幅值,并用电流表测 出电路电流,记录数据于下表 ②改变电路参数进行测试。电路元件R、L和C参数不变, 使电源电压有效值不变使其频率分别为f=25Hz和f=1kHz 参照①仿真测试方法,对分别对参数改变后的电路进行相同 内容的仿真测试。 ③将三次测试结果数据整理记录,总结分析比较电路电源频 率参数变化后对电路特性影响,研究、分析和验证欧姆定律 相量形式和相量法。 暨南大学本科实验报告专用纸(附页) 欧姆定律向量形式数据 V Rm/V V Lm/V V Cm/V I/mA 理论计算值 仿真值(f=50Hz) 理论计算值 仿真值(f=25Hz) 理论计算值 仿真值(f=1kHz) 2.基尔霍夫电压定律向量形式 在Multisim10中建立如图(2)所示仿真电路图。 打开仿真开关,用并接在各元件两端的电压表经行 仿真测量,分别测出电阻R、电感L、电容C两端 的电压值。用窜连在电路中的电流表测出电路中流 过的电流I,将测的数记录在下表。 ②改变电路参数进行测试。电路元件R=300Ω、L=

正弦稳态交流电路相量的研究

实验二 正弦稳态交流电路相量的研究 一、实验目的 1.掌握正弦交流电路中电压、电流相量之间的关系。 2.掌握功率的概念及感性负载电路提高功率因数的方法。 3.了解日光灯电路的工作原理,学会日光灯电路的连接。 4.学会使用功率表。 二、实验原理 1.R 、C 串联电路 在单相正弦交流电路中,用交流电流表测得各支路的电流值,用交流电压表测得回路各元件两端的电压值,它们之间的关系应满足相量形式的基尔霍夫定律,即 ∑=0I 和 0=∑U 实验电路为RC串联电路,如图1(a )所示,在正弦稳态信号U 的激励下,则有: )(C C R jX R I U U U -?=+= U 、R U 与C U 相量图为一个直角电压三角形。当阻值R 改变时,R U 与C U 始终保持着 90°的相位差,所以R U 的相量轨迹是一个半圆,如图1(b )所示。从图中我们可知,改变C 或R 值可改变φ角的大小,从而达到移相的目的。 (a )原理图 (b )向量图 图(c )Multisim 仿真电路图 图1 RC 串联电路及相量图 C R U U I

2.日光灯电路及其功率因数的提高 日光灯实验电路如图3(a)所示,日光灯电路由灯管、镇流器和启动器三部分组成。 灯管是一根普通的真空玻璃管,管内壁涂上荧光粉,管两端各有一根灯丝,用以发射电子。管内抽真空后充氩气和少量水银。在一定电压下,管内产生弧光放电,发射一种波长很短的不可见光,这种光被荧光粉吸收后转换成近似日光的可见光。 镇流器是一个带铁芯的电感线圈,启动时产生瞬时高电压,促使灯管放电,点燃日光灯。在点燃后又限制了灯管的电流。 启动器(如图2(a)所示)是一个充有氖气的玻璃泡,其中装有一个不动的静触片和一个用双金属片制成的U形可动触片,其作用是使电路自动接通和断开。在两电极间并联一个电容器,用以消除两触片断开时产生的火花对附近无线电设备的干扰。 (a) (b) (c) 图2启动器示意图和日光灯灯点燃过程 日光灯的点燃过程如下:当日光灯刚接通电源时,灯管尚未通电,启动器两极也处于断开位置。这时电路中没有电流,电源电压全部加在启动器的两电极上,使氖管产生辉光放电而发热,可动电极受热变形,于是两触片闭合,灯管灯丝通过启动器和镇流器构成回路,如图2(b)所示。灯丝通电加热发射电子,当氖管内两个触片接通后,触片间不存在电压,辉光放电停止,双金属片冷却复原,两触片脱开,回路中的电流瞬间被切断。这时镇流器产生相当高的自感电动势,它和电源电压串联后加在灯管两端,促使管内氩气首先电离,氩气放电产生的热量又使管内水银蒸发,变成水银蒸气。当水银蒸气电离导电时,激励管壁上的荧光粉而发出近似日光的可见光。 灯管点燃后,镇流器和灯管串联接入电源,如图2(c)所示。由于电源电压部分降落在镇流器上,使灯管两端电压(也就是启动器两触片间的电压)较低,不足以引起启动器氖管再次产生辉光放电,两触片仍保持断开状态。因此,日光灯正常工作后,启动器在日光灯电路中不再起作用。 日光灯点燃后的等效电路如图3(b)所示,其中灯管相当于纯电阻负载R,镇流器可用 静触片

第3章-正弦交流电路总结与提高

第3章 单相正弦交流电路复习 一、内容提要 本章主要讨论正弦交流电的基本概念和基本表示方法,并从分析R 、L 、C 各单一参数元件在交流电路中的作用入手,进而分析一般的R 、L 、C 混联电路中电压和电流的关系(包括数值和相位)及功率转换问题。最后对于电路中串联和并联的谐振现象也作概括的论述。 交流电路不仅是交流电机和变压器的理论基础,同时也要为电子电路做好理论准备,它是工程技术科学研究和日常生活中经常碰到的。所以本章是本课程中重要的内容之一。 二、基本要求 1、对正弦交流电的产生作一般了解; 2、掌握正弦交流电的概念; 3、准确理解正弦交流电的三要素、相位差及有效值的定义及表达式; 4、掌握正弦交流电的各种表示方法及相互间的关系; 5、熟悉各种交流电气元件及才参数; 6、在掌握单一参数交流电路的基础上,重点掌握R 、L 、C 串、并联电路的分析与计算方法; 7、掌握有用功功率和功率因数的计算,了解瞬时功率、无功功率、视在功率的概念 8、理解提高功率因数的意义;掌握如何提高功率因数; 9、了解谐振电路的特性。 三、 学习指导 1. 正弦量的参考方向和相位 1)、大小和方向随时间按正弦函数规律变化的电流或电压称为正弦交流电。正弦交流电的参考方向为其正半周的实际方向。 2)、正弦交流电的三要素 一个正弦量是由频率(或周期)、幅值(或有效值)和初相位三个要素来确定。 (1)频率与周期:正弦量变化一次所需的时间(S )称为周期T 。每秒内变化的次数称为频率f,单位:Z H 。频率与周期的关系为:T f 1= 角频率ω:每秒变化的弧度,单位:s rad /。 f T ππ ω22== (2)幅值与有效值 瞬时值:正弦量在任一时刻的值,用i u e ,,表示。 幅值(或最大值):瞬时值中的最大值,用m m m I U E ,,表示。 有效值:一个周期内,正弦量的有效值等于在相同时间内产生相同热量的直流电量值,用I U E ,,表示。

Multisim 10-正弦稳态交流电路仿真实验

暨南大学本科实验报告专用纸 课程名称 电路分析CAI 成绩评定 实验项目名称 正弦稳态交流电路仿真实验 指导教师 实验项目编号0806109705实验项目类型 验证型 实验地点 计算机中心C305 学生姓 学号 学院 电气信息学院 专业实验时间 2013 年5月28日 一、 实验目的 1.分析和验证欧姆定律的相量形式和相量法。 2.分析和验证基尔霍夫定律的相量形式和相量法。 二、实验环境定律 1.联想微机,windows XP ,Microsoft office , 2.电路仿真设计工具Multisim10 三、实验原理 1在线性电路中,当电路的激励源是正弦电流(或电压)时,电路的响应也是同频的正弦向量,称为正弦稳态电路。正弦稳态电路中的KCL 和KVL 适用于所有的瞬时值和向量形式。 2.基尔霍夫电流定律(KCL )的向量模式为:具有相同频率的正弦电流电路中的任一结点,流出该结点的全部支路电流向量的代数和等于零。 3. 基尔霍夫电压定律(KVL )的向量模式为:具有相同频率的正弦电流电路中的 任一回路,沿该回路全部的支路电压向量的代数和等于零。 四、实验内容与步骤 1. 欧姆定律相量形式仿真 ①在Multisim 10中,搭建如图(1)所示正弦稳态交流实 验电路图。打开仿真开关,用示波器经行仿真测量,分别测 量电阻R 、电感L 、电容C 两端的电压幅值,并用电流表测 出电路电流,记录数据于下表 ②改变电路参数进行测试。电路元件R 、L 和C 参数不变, 使电源电压有效值不变使其频率分别为f =25Hz 和f =1kHz 参照①仿真测试方法,对分别对参数改变后的电路进行相同 内容的仿真测试。 ③将三次测试结果数据整理记录,总结分析比较电路电源频 率参数变化后对电路特性影响,研究、分析和验证欧姆定律 相量形式和相量法。

正弦稳态交流电路相量的研究含数据处理

实验十三正弦稳态交流电路相量的研究 专业 学号姓名实验日期 、实验目的 1. 2. 3?理解改善电路功率因数的意义并掌握其方法。 1?在单相正弦交流电路中,用交流电流表则得各支中的电流值,用交流电压表测得回路各元件两端的电压值,它们之间的关系满足相量形式的基尔霍夫定律, ' i =0 2?如图13-1所示的RC串联电路,在正弦稳态信号 相位差,即当阻值R改变时,U R的相量轨迹是一个半圆 的电压三角形。R值改变时,可改变0角的大小, 图13-1 器,用以改善电路的功率因数(COS?值)。 有关日光灯的工作原理请自行翻阅有关资料。 U的激励下,U R与U c保持有90°的 ,U、U C与U R三者形成一个直角形3?日光灯线路如图13-2所示,图中A是日光灯管,1是镇流器,S是启辉器,C是补偿电容 图13-2

序号 名称型号与规格数量备注 1 单相交流电源0~220V 1 2 三相自耦调压器 1 3 交流电压表 1 4 交流电流表 1 5 功率因数表 1 DGJ-07 6 白炽灯组15W/220V 2 DGJ-04 7 镇流器与30W灯管配用 1 DGJ-04 8 电容器1uf,2.2uf, 4.7 〃450V DGJ-04 9 启辉器与30W灯管配用 1 DGJ-04 10 日光灯灯管30W 1 DGJ-04 11 电门插座 3 DGJ-04 四、实验内容 (1)用两只15W /220V的白炽灯泡和4.7^/450V电容器组成加图13-1所示的实验电路,经指导老师检查后,接通市电220V电源,将自藕调压器输出调至220V。记录U、U R、U C 值, 白炽灯盏数测量值计算值 U(V) U R(V) U C(V) U 'V) 0 2 220 200 84 217 22.8 1 220 213 45 218 11.9 图13-3 按图13-3组成线路,经指导教师检查后按下闭合按钮开关,调节自耦调压器的输出,使其 输出电压缓慢增大,直到日光灯刚启辉点亮为止,记下三表的指示值。然后将电压调至220 V,

正弦稳态电路的分析

第九章 正弦稳态电路的分析 1内容提要 正弦稳态电路的分析应用相量法。通过引入相量法,建立了阻抗和导纳的概 念,给出了 KCL 、KVL 和欧姆定律的相量形式,山于它们与直流电路分析中所 用的同一公式在形式上完全相同,因此能够把分析直流电路的方法、原理、定律, 例如,网孔法(回路法)、结点法、叠加定理、戴维宇定理、等效电源原理等等 直接应用于分析正弦电路的相量模型,其区别在于:⑴不直接引用电压电流的瞬 时表达式来表征各种关系,而是用对应的相量形式来表征各种关系;⑵相应的运 算不是代数运算,而是复数的运算,因而运算比直流复杂。根据复数运算的特点, 可画岀相量图,利用相量图的儿何关系来帮助分析和简化计算,从而扩大了求解 问题的思路和方法。⑶引入了一些新的概念,如平均功率、无功功率、视在功率、 复功率、最大功率传输、谐振等。认识以上区别,对正弦稳态电路的分析是有益 的。 2例题 例1求图示电路中各支路电流i :, L, i 5 il 1 - R 5Q 解:①画运 算电路模型,取网孔电流 L 、L 如图。 (5-/2)/. -5/. =100 ② 列网孔方程: ' 「. -571+(5 + J 5)/2=-J 1OO 可用行列式求解: i 一人=29.23 + J6.16 = 29.87Z11.90 ③ :.i,(r) = 27.73V2cos(^-56.31°) A i 2(r) = 32.35^2 c os 伽 -115.35°) A i() = 29.87血 cos 伽 + 11.90。)A 当然此题也可以用结点电压法、或貝它 方法。 例2图中电流i 和Uzi 。 已知:Usi = IOO5/2 COS6X V q 2 =100V2COS (6X + 90°) V y 100^0° i\ = 100 -5 -ylOO 5 + j5 5-)2 一5 ?()() =15.38- J23.07 = 27.73Z - 56.31° A 10+ J15 5 + )5 i 2 = 5-)2 一5 100 一 J100 300-J500 5-J2 -5 -5 5 + )5 io+ ,i5 =-13.85-;29.23 = 32.35Z-H5.35? A 2 U 2=100Z90°

正弦稳态交流电路相量的研究实验报告

一、实验目的 1.研究正弦稳态交流电路中电压、电流相量之间的关系。 2. 掌握日光灯线路的接线。 3. 理解改善电路功率因数的意义并掌握其方法。 二、原理说明 1. 在单相正弦交流电路中,用交流电流表测得 各支路的电流值,用交流电压表测得回路各元件两 端的电压值,它们之间的关系满足相量形式的基尔 霍夫定律,即。 图4-1 RC 串联电路 2. 图4-1所示的RC 串联电路,在正弦稳态信 号U 的激励下,U R 与U C 保持有90o的相位差,即当 R 阻值改变时,U R 的相量轨迹是一个半园。U 、U C 与 U R 三者形成一个直角形的电压三角形,如图4-2所 示。R 值改变时,可改变φ角的大小,从而达到 移相的目的。 3. 日光灯线路如图4-3所示,图中 A 是日光灯管,L 是镇流器, S 是启辉器,C 是补偿电容器,用以改善电路的功率因数(cos φ值)。有关日光灯的工作原理请自行翻阅有关资料。 图4-3 日光灯线路 序号 名称 数量 备注 1 电源控制屏(调压器、日光灯管) 1 DG01或GDS-01 2 交流电压表 1 D36或GDS-11 3 交流电流表 1 D35或GDS-12 4 三相负载 1 DG08或GDS-06B 5 荧光灯、可变电容 1 DG09或GDS-09 6 起辉器、镇流器、电容、电门插座 DG09或GDS-09 7 功率表 1 D34或GDS-13 220V L S A C R jXc Uc U R I U R U U c I φ

四、实验内容 1. 按图4-1接线。R为220V、15W的白炽灯泡,电容器为4.7μF/450V。经指导教师检查后,接通实验台电源,将自耦调压器输出(即U)调至220V。记录 U、U R 、U C 值,验证电压三角形关系。 2. 日光灯线路接线与测量。 图4-4 (1)按图4-4接线。 (2)经指导教师检查后接通实验台电源,调节自耦调压器的输出,使其输 出电压缓慢增大,直到日光灯刚刚启辉点亮为止,记下三表的指示值。 (3)将电压调至220V,测量功率P,电流I,电压U,U L ,U A 等值,验证电压、电流相量关系。 测量值P(W)CosφI(A)U(V)U L (V)U A (V)启辉值 正常工作值48.80.540.393237.7184.7102.1 3. 并联电路──电路功率因数的改善。 测量值计算值 U(V)U R (V)U C (V) U′(与U R ,U C 组成Rt△) (U′=2 2 C R U U ) △U = U′-U (V) △U/U(%)240.3234.151.4 239.6 0.62 0.26

单相正弦交流电路试题及答案

单相正弦交流电路试题及答案 一、填空题 1.交流电流是指电流的大小和____ 都随时间作周期变化,且在一个周期内其平均值为零 的电流。 2.正弦交流电路是指电路中的电压、电流均随时间按____ 规律变化的电路。 3.正弦交流电的瞬时表达式为e =____________、i =____________。 4.角频率是指交流电在________时间内变化的电角度。 5.正弦交流电的三个基本要素是_____、_____和_____。 6.我国工业及生活中使用的交流电频率____,周期为____。 7. 已知V t t u )270100sin(4)(?+-=,m U = V ,ω= rad/s ,ψ = rad ,T= s ,f= Hz ,T t=12 时,u(t)= 。 8.已知两个正弦交流电流A )90314sin(310A,)30314sin(100201+=-=t i t i ,则21i i 和的 相位差为_____,___超前___。 9.有一正弦交流电流,有效值为20A ,其最大值为____,平均值为____。 10.已知正弦交流电压V )30314sin(100 +=t u ,该电压有效值U=_____。 11.已知正弦交流电流A )60314sin(250-=t i ,该电流有效值I=_____。 12.已知正弦交流电压() V 60314sin 22200+=t u ,它的最大值为___,有效值为____,角频率为____,相位为____,初相位为____。 13.正弦交流电的四种表示方法是相量图、曲线图、_____ 和_____ 。 14.正弦量的相量表示法,就是用复数的模数表示正弦量的_____,用复数的辐角表示正弦 量的_______。 15.已知某正弦交流电压V t U u u m )sin(ψω-=,则其相量形式?U =______V 。 16.已知某正弦交流电流相量形式为0i120e 50=?I A ,则其瞬时表达式i =__________A 。 17.已知Z 1=12+j9, Z 2=12+j16, 则Z 1·Z 2=________,Z 1/Z 2=_________。 18.已知11530Z =∠?,22020Z =∠?,则 Z 1?Z 2=_______,Z 1/Z 2=_________。 19.已知A )60sin(210,A )30sin(250201+=+=t i t i ωω,由相量图得

正弦稳态交流电路相量的研究(含数据处理)

实验十三 正弦稳态交流电路相量的研究 1.研究正弦稳态交流电路中电压、电流相量之间的关系 2.掌握日光灯线路的接线。 3.理解改善电路功率因数的意义并掌握其方法。 二、原理说明 1.在单相正弦交流电路中,用交流电流表则得各支中的电流值,用交流电压表测得回路各元件两端的电压值,它们之间的关系满足相量形式的基尔霍夫定律,即 i =∑0 和 U =∑ 0 2.如图13-1 所示的RC 串联电路,在正弦稳态信号 U 的激励下,R U 与 U C 保持有90°的 相位差,即当阻值R改变时, U R 的相量轨迹是一个半圆, U 、 U C 与 U R 三者形成一个直角形的电压三角形。R值改变时,可改变φ角的大小,从而达到移相的目的。 图 13-1 3.日光灯线路如图13-2 所示,图中A是日光灯管,L是镇流器,S是启辉器,C是补偿电容 器,用以改善电路的功率因数(cos φ值)。 图 13-2 有关日光灯的工作原理请自行翻阅有关资料。

三、实验设备 四、实验内容 (1)用两只15W /220V的白炽灯泡和4.7μf/450V电容器组成加图13-1所示的实验电路,经指导老师检查后,接通市电220V电源,将自藕调压器输出调至220V。记录U、U R、U C 值,验证电压三角形关系。 (2)日光灯线路接线与测量 图13-3 按图13-3组成线路,经指导教师检查后按下闭合按钮开关,调节自耦调压器的输出,使其输出电压缓慢增大,直到日光灯刚启辉点亮为止,记下三表的指示值。然后将电压调至220V,

测量功率P,电流I,电压 U U U L A ,,等值,验证电压、电流相量关系。 (3)并联电路——电路功率因数的改善 按图13-4组成实验线路 图 13-4 经指导老师检查后,按下绿色按钮开关调节自耦调压器的输出调至220V,记录功率表,电压表读数,通过一只电流表和三个电流取样插座分别测得三条支路的电流,改变电容值,进行三次重复测量。 五、实验注意事项 1.本实验用交流市电220V ,务必注意用电和人身安全。 2.在接通电源前,应将自藕调压器手柄置在零位上。 3.功率表要正确接入电路,读数时要注意量程和实际读数的折算关系。 4..线路接线正确,日光灯不能启辉时,应检查启辉器及其接触是否良好。 七、实验报告 1.完成数据表格中的计算,进行必要的误差分析。 误差分析: 1、仪表精确度; 2、读数时存在误差 2.根据实验数据,分别绘出电压、电流相量图,验证相量形式的基尔霍夫定律。

相关文档
相关文档 最新文档