文档库 最新最全的文档下载
当前位置:文档库 › 埋弧焊工艺

埋弧焊工艺

埋弧焊工艺
埋弧焊工艺

1/5

埋弧焊标准

ZGGY-0924-2004 浙江精工钢结构有限公司 埋弧自动焊焊接施工工艺标准 (第二次修订版) 编制: 审核: 批准: 2003-09-25发布2004-10-01实施浙江精工钢结构有限公司重钢分公司发布

目录 1.总则 (1) 2.规范与标准 (1) 3.埋弧自动焊焊接技术 (1) 3.1埋弧自动焊焊接原理 (1) 3.2埋弧自动焊焊接施工工艺流程 (1) 3.3焊前准备工作 (1) 3.4埋弧自动焊焊接规范的选择 (1) 3.5埋弧自动焊焊接参考规范 (1) 4.埋弧自动焊质量控制 (1) 5.埋弧自动焊焊接质量自检规范 (1) 6.埋弧自动焊应注意的事项 (1)

第一部分:总则 《埋弧自动焊焊接施工工艺标准》(以下简称“本标准”)是由浙江精工钢结构建设集团有限公司(以下简称“精工”)贯彻了《建筑钢结构焊接技术规程》(JGJ81-2002)、《埋弧焊焊缝坡口的基本形式和尺寸》(GB986-88)等,并根据操作人员素质、设备和工艺特点、以及多个工程的加工经验编制而成的企业标准。本标准若有与国家标准相抵触之处,则以国家标准为准。 本标准适用于工业与民用建筑钢结构工程中普通碳素结构钢和低合金钢结构钢的焊接。 本标准同设计详图和设计说明一起,作为本公司建筑工程的单层、多层、高层结构中钢板埋弧自动焊过程中必须执行的技术要求及检验标准。 本标准制定的主要目的是为了使生产工人及质量检查员在日常工作中使用方便,同时,也使操作者容易理解与掌握产品质量的要求,从而保证产品的质量。 为了提高本标准质量,请工厂各车间班组在执行过程中认真总结经验,积累资料,随时将有关意见和建议反馈给重钢技术部,以便做进一步修改、完善。 本标准自2004年11月01日起实施 本标准由浙江精工钢结构建设集团有限公司提出 本标准由重钢制造分公司技术部负责起草 本标准主要求起草人:万进鸿刘代龙

埋弧焊工艺参数及焊接技术讲解

1.3 埋弧焊工艺参数及焊接技术 1.3.1 影响焊缝形状、性能的因素 埋弧焊主要适用于平焊位置焊接,如果采用一定工装辅具也可以实现角焊和横焊位置的焊接。埋弧焊时影响焊缝形状和性能的因素主要是焊接工艺参数、工艺条件等。本节主要讨论平焊位置的情况。 (1) 焊接工艺参数的影响影响埋弧焊焊缝形状和尺寸的焊接工艺参数有焊接电流、电弧电压、焊接速度和焊丝直径等。 1)焊接电流当其他条件不变时,增加焊接电流对焊缝熔深的影响(如图1所示),无论是Y 形坡口还是I 形坡口,正常焊接条件下,熔深与焊接电流变化成正比,即状的影响,如图2所示。电流小,熔深浅,余高和宽度不足;电流过大,熔深大,余高过大,易产生高温裂纹 图1 焊接电流与熔深的关系(φ4.8mm)

图2 焊接电流对焊缝断面形状的影响 a)I形接头b)Y形接头 2)电弧电压电弧电压和电弧长度成正比,在相同的电弧电压和焊接电流时,如果选用的焊剂不同,电弧空间电场强度不同,则电弧长度不同。如果其他条件不变,改变电弧电压对焊缝形状的影响如图3所示。电弧电压低,熔深大,焊缝宽度窄,易产生热裂纹:电弧电压高时,焊缝宽度增加,余高不够。埋弧焊时,电弧电压是依据焊接电流调整的,即一定焊接电流要保持一定的弧长才可能保证焊接电弧的稳定燃烧,所以电弧电压的变化范围是有限的 图3电弧电压对焊缝断面形状的影响 a)I形接头b)Y形接头 3)焊接速度焊接速度对熔深和熔宽都有影响,通常焊接速度小,焊接熔池大,焊缝熔深和熔宽均较大,随着焊接速度增加,焊缝熔深和熔都将减小,即熔深和熔宽与焊接速度成反比,如图 4 所示。焊接速度对焊缝断面形状的影响,

埋弧焊工艺参数及焊接

埋弧焊工艺参数及焊接技术 1. 影响焊缝形状、性能的因素 埋弧焊主要适用于平焊位置焊接,如果采用一定工装辅具也可以实现角焊和横焊位置的焊接。埋弧焊时影响焊缝形状和性能的因素主要是焊接工艺参数、工艺条件等。下面我们主要讨论平焊位置的情况。1.1焊接工艺参数的影响影响埋弧焊焊缝形状和尺寸的焊接工艺参数有焊接电流、电弧电压、焊接速度和焊丝直径等。 <1)焊接电流 当其他条件不变时,增加焊接电流对焊缝熔深的影响(如图1所示>,无论是Y 形坡口还是I 形坡口,正常焊接条件下,熔深与焊接电流变化成正比,即状的影响,如图2所示。电流小,熔深浅,余高和宽度不足;电流过大,熔深大,余高过大,易产生高温裂纹。 图1 焊接电流与熔深的关系<φ4.8mm)

图2 焊接电流对焊缝断面形状的影响 a>I形接头b>Y形接头 <2)电弧电压 电弧电压和电弧长度成正比,在相同的电弧电压和焊接电流时,如果选用的焊 剂不同, 电弧空间电场强度不同,则电弧长度不同。如果其他条件不变,改变电弧电压对焊缝形状的影响如图3所示。电弧电压低,熔深大,焊缝宽度窄,易产生热裂纹:电弧电压高时,焊缝宽度增加,余高不够。埋弧焊时,电弧电压是依据焊接电流调整的,即一定焊接电流要保持一定的弧长才可能保证焊接电弧的稳定燃烧,所以电弧电压的变化范围是有限的。 图3电弧电压对焊缝断面形状的影响 a>I形接头b>Y形接头

<3>焊接速度焊接速度对熔深和熔宽都有影响,通常焊接速度小,焊接 熔池大,焊缝熔深和熔宽均较大,随着焊接速度增加,焊缝熔深和熔都将减小,即熔深和熔宽与焊接速度成反比,如图 4 所示。焊接速度对焊缝断面形状的影响,如图 5 所示。焊接速度过小,熔化金属量多,焊缝成形差:焊接速度较大时,熔化金属量不足,容易产生咬边。实际焊接时,为了提高生产率,在增加焊接速度的同时必须加大电弧功率,才能保证焊缝质量 图4 焊接速度对焊缝形成的影响 H-熔深B-熔宽 图5焊接速度对焊缝断面形状的影响 a>I形接头b>Y形接头 <4>焊丝直径焊接电流、电弧电压、焊接速度一定时,焊丝直径不同,焊缝形状会发生变化。表 1 所示的电流密度对焊缝形状尺寸的影响,从表中可见,其他条件不变,熔深与

焊接工艺课程设计

[文档标题]

焊接工艺课程设计 1绪论 1 .1 Q235的成分及焊接性分析 Q235钢是一种普通碳素结构钢,具有冶炼容易,工艺性好,价格价廉的优点,而且在力学性能上也能满足一般工程结构及普通机器零件的要求,在世界各国得到广泛应用。碳素结构钢的牌号体现其机械性能,符号用Q+数字表示,其中“Q”为屈服点“屈”的汉语拼音,表示屈服强度的数值。Q235表示这种钢的屈服强度为235MP,Q235钢含碳量约为0.2%属于低碳钢。Q235成分:C含量0.12%-0.22%、Mn含量0.30%-0.65%、Si含量不大于0.30%、S含量不大于0.050%、P含量不大于0.045%。S、P和非金属夹杂物较多在相同含碳量及热处理条件下,低碳钢焊接材料焊后的接头塑性和冲击韧度良好,焊接时,一般不需预热、控制层间温度和后热,焊后也不必采用热处理改善组织,整个焊接过程不必采取特殊的工艺措施,焊接性优良。 Q235含有少量的合金元素,碳含量比较低,一般情况下(除环

境温度很低或钢板厚度很大时)冷裂倾向不大。工件预热有防止裂纹、降低焊缝和热影响区冷却速度、减小内应力等重要作用。但是预热使劳动条件恶化,并使工艺复杂。低合金结构施焊前是否需要预热,一般应根据生产实践和焊接性试验来确定。当母材的碳当量Ceq≥0.35时应考虑预热。低合金钢淬硬倾向[1]主要取决于钢的化学成分,根据碳当量公式可知Q235的碳当量小于0.4%,在焊接过程中基本无淬硬倾向,焊前不需预热。且这类刚含碳量较低,具有较的抗热裂性能,焊接过程中热裂纹倾向较小,正常情况下不会出现热裂纹。从厚度考虑,当板厚超过25mm时应考虑100℃以上的焊前预热,试验中所用钢板的厚度为12mm,不需预热。 焊接热处理的目的是为了消除焊接内应力、提高构件尺寸的稳定性、增强抗应力腐蚀性能、提高结构长期使用的质量稳定性和工件安全性等。低合金钢焊接结构在大多数请况下不进行焊后热处理,只有在特殊要求的情况下才进行焊后热处理。此试验并无特殊要求,因此并未进行焊后热处理。 1.2 焊条 1.2.1对焊条的基本要求 (1)焊条的熔敷金属应具有良好的力学性能 (2)焊条的熔敷金属应具有规定的化学成分,以保证其使用性能的要求

焊接工艺设计

焊接工艺设计级生产大作业 学院:材料科学与工程学院 专业班级:焊接1301班 小组成员:马永亮(130200814) 徐壮(130200812) 孙建(130200116) 何星池(130200112) 郝绪文(130200101) 汪颖(130200525) 马鸣檀(130200530) 经戌末(130200109) 陈诗函(130200802) 作业时间: 2016年11月01日

12mm板厚Q345真空电子束焊接工艺 一、发展背景 电子束的发现迄今已100多年的历史。电子束焊接技术起源于德国,1948年前西德物理学家K.H.Steigerwald首次提出电子束焊接的设想;1954年法国的J.A.Stohr博士成功焊接了核反应堆燃料包壳,标志着电子束焊接金属获得成功;1957年11月,在法国巴黎召开的国际原子能燃料元件技术大会上公布了该技术,电子束焊接被确认为一种新的焊接方法;1958年开始,美国、英国、日本及前苏联开始进行电子束焊接方面的研究,20世纪60年代后,我国开始从事电子束焊接研究。 电子束焊接(EBW)是以高能密度电子束作为能量载体对材料和构件实现焊接和加工的新型特种加工工艺方法。它具有其它熔焊方法难以比拟的优势和特殊功能:其焊接能量密度极高,容易实现金属材料的深熔透焊接、焊缝窄、深宽比大、焊缝热影响区小、焊接残余变形小、焊接工艺参数容易精确控制、重复性和稳定性好等。 随着航空航天、微电子、核能、交通运输及国防工业的飞速发展,各种高强度、高硬度、高韧性的铝合金、镁合金、钛合金和耐高温合金等金属材料以及复合材料广泛应用,加之构件形状日趋复杂化,对焊接工艺、加工精度和表面完整性提出了更高的要求。传统的焊接工艺难以适应高技术制造领域的发展趋势,对这些材料采用包括电子束焊接在内的高能束焊接技术优势较大。 正是由于电子束焊接的上述优点,使该技术获得长足发展,已经成功地应用于各种工业领域,并广泛应用在各种材料上。厚大截面不锈钢的电子束焊接由于能够节约成本且满足质量要求而得到青睐。有许多文献已经证明电子束焊接在航空和医药钛合金上得到了成功应用。有色金属如铜、镍及其合金的电子束焊接以及运输工业中异种材料的电子束焊接正迅猛增长。 二、目的 为了巩固所学常用特种焊接方法与设备的知识,熟悉有关资料,掌握焊接参数的选择和焊接设备的使用与维护,安排了为期一周的课程设计。通过本次焊接工艺设计,锻炼学生们的分析问题的能力,提高焊接操作技能。

埋弧焊焊接参数选择标准17页word

埋弧焊焊接参数选择标准 本标准所引用的技术规范与标准分为“执行技术规范与标准”和“参考技术规范与标准”两部分。 2.1执行技术规范与标准 2.1.1 GB50205-2002 《钢结构工程施工及验收规范》 2.1.2 GB986-88 《埋弧焊焊缝坡口的基本形式和尺寸》 2.1.3 JGJ81-2002 《建筑钢结构焊接技术规程》 2.1.4 GB50205-2001 《钢结构工程施工质量验收规范》 2.1.5 GB5293 《碳素钢埋弧焊用焊剂》 2.2参考技术规范与标准 2.2.1 《钢结构制作安装手册》 2.2.2 《建筑钢结构施工手册》 2.2.3 《焊接手册》 2.2.4 《钢结构工程施工工艺标准》 三部分:埋弧自动焊接技术 3.1焊接原理: 焊接电弧是在焊剂层下的焊丝与母材之间产生,电弧热使其周围的母材、焊丝和焊剂熔化以致部分蒸发,金属和焊剂的蒸发气体形成一个气泡,电弧就在这个气泡内燃烧。气泡上部被一层熔化了的焊剂——熔渣构成的外膜所包围,这层外膜以及覆盖在上面的未熔化的焊剂共同对焊接起隔离空气、绝热、和屏蔽光辐射作用。焊丝熔化的熔滴落下与已局部熔化的母材混合而构成金属熔池,部分熔渣因密度小而浮在熔池表面。随着焊丝向

前移动,电弧力将熔池中熔化金属推向熔池后方,在随后的冷却过程中,这部分熔化金属凝固成焊缝。熔渣凝固成渣壳,覆盖在焊缝金属表面上。在焊接过程中,熔渣除了对熔池和焊缝金属起机械保护作用外,还与熔化金属发生冶金反应(如脱氧、去杂质、渗合金等),从而影响焊缝金属的化学成分。 3.2埋弧焊焊接施工工艺流程 ZGGY-0920-2004 3.3 焊前准备工作 3.3.1焊剂及焊丝的选择 根据目前钢结构的钢材类型,常用埋弧焊丝和焊剂的选择如下表:表3.1 3.3.2焊接材料的保管和使用 1 ZGGY-0920-2004 3.3.2.1焊剂的烘焙 埋弧焊用焊剂的烘焙温度如下表: 表3.2 3.3.2.2焊剂的保存 焊接低碳钢的熔炼焊剂在使用中放置时间不超过24h;焊接低合金钢的熔炼焊剂在使用中放置时间不超过8h;烧结焊剂经高温烘焙后,应转入100~150℃的低温保温箱中存放,从保温箱中取出时间不超过4h。 3.3.2.3焊剂的领用和使用 焊接所用的埋弧焊焊剂必须在二级库领取;埋弧焊过程中,未熔化的

埋弧焊焊接工艺及操作方法

弧焊焊接工艺及操作方法 一、焊前准备 1准备焊丝焊剂,焊丝就去污、油、锈等物,并有规则地盘绕在焊丝盘内,焊剂应事先烤干(250°C下烘烤1—2小时),并且不让其它杂质混入。工件焊口处要去油去污去水。 2接通控制箱的三相电源开关。 3检查焊接设备,在空载的情况下,变位器前转与后转,焊丝向上与向下是否正常,旋转 焊接速度调节器观察变位器旋转速度是否正常;松开焊丝送进轮,试控启动按扭和停止 按扭,看动作是否正确,并旋转电弧电压调节器,观察送丝轮的转速是否正确。 4弄干净导电咀,调整导电咀对焊丝的压力,保证有良好的导电性,且送丝畅通无阻。 5按焊件板厚初步确定焊接规范,焊前先作焊接同等厚度的试片, 根据试片的熔透情况(X光透视或切断焊缝,视焊缝截面熔合情况)和表面成形,调整焊接规范,反复试验后确定最好的焊接规范。 6使电咀基本对准焊缝,微调焊机的横向调整手轮,使焊丝与焊缝对准。7按焊丝向下按扭,使焊丝与工件接近,焊枪头离工件距离不得小于15mm,焊丝伸出长度不得小与30mm。 8检查变位器旋转开关和断路开关的位置是否正确,并调整好旋转速度。 9打开焊剂漏头闸门,使焊剂埋住焊丝,焊剂层一般高度为30—50mm。 二、焊接工作 1按启动按扭,此时焊丝上抽,接着焊丝自动变为下送与工件接触摩擦并引起电弧,以保证电弧正常燃烧,焊接工作正常进行。 2焊接过程中必须随时观察电流表和电压表,并及时调整有关调节器(或按扭) 。使其符合所要求的焊接规范,在发现网路电压过低时应立刻暂停焊接工作,以免严重影响熔透质量,等网路电压恢复正常后再进行工作。在使用4mm焊丝时要求焊缝宽度>10mm,焊接沟槽时焊接速度≈15m/h,电压≈24V,电流≈300A,在接近表面时,电压>27V,电流≈450A。在焊接球阀时一般在焊第一层时尽量用低电压小电流,因无良好冷却怕升温过高损坏内件及内应力大。在焊第二层及以后一定通水冷却,电压及电流均可加大,以焊渣容易清理为好。 3焊接过程还应随时注意焊缝的熔透程度和表面成形是否良好, 熔透程度可观察工件的反 面电弧燃烧处红热程度来判断,表面成形即可在焊了一小段时,就去焊渣观察,若发现 熔透程度和表面成形不良时及时调节规范进行挽救,以减少损失。 4注意观察焊丝是否对准焊缝中心,以防止焊偏,焊工观察的位置应与引弧的调整焊丝时的位置一样,以减少视线误差,如焊小直径筒体的内焊缝时,可根据焊缝背面的红热情 况判断此电弧的走向是否偏斜,进行调整。 5经常注意焊剂漏斗中的焊剂量,并随时添加,当焊剂下流不顺时就及时用棒疏通通道,排除大块的障碍物。 三、焊接结束 1关闭焊剂漏斗的闸门,停送焊剂。 2、轻按(即按一半深,不要按到底)停止按扭,使焊丝停止送进,但电弧仍燃烧,以填满金属熔池,然后再将停止按扭按到底,切断焊接电流,如一下子将停止按扭按到底,不 但焊缝末端会产生熔池没有填满的现象,严重时此处还会有裂缝,而且焊丝还可能被粘

埋弧焊焊接参数选择标准

本标准所引用的技术规范与标准分为“执行技术规范与标准”和“参考技术规范 与标准”两部分。 2.1执行技术规范与标准 2.1.1 GB50205-2002 《钢结构工程施工及验收规范》 2.1.2 GB986-88 《埋弧焊焊缝坡口的基本形式和尺寸》 2.1.3 JGJ81-2002 《建筑钢结构焊接技术规程》 过程中,这部分熔化金属凝固成焊缝。熔渣凝固成渣壳,覆盖在焊缝金属表面上。在焊接过程中,熔渣除了对熔池和焊缝金属起机械保护作用外,还与熔化金属发生冶金反应(如脱氧、去杂质、渗合金等),从而影响焊缝金属的化学成分。 3.2埋弧焊焊接施工工艺流程

3.3.2焊接材料的保管和使用

3.3.2.1焊剂的烘焙 埋弧焊用焊剂的烘焙温度如下表:表3.2 3.3.2.2焊剂的保存 焊接低碳钢的熔炼焊剂在使用中放置时间不超过24h;焊接低合金钢的熔炼焊剂 e.焊咀的角度和位置准确。 3.3.5埋弧自动焊坡口的制备 根据钢板厚度和技术要求制备坡口,坡口尺寸符合工艺标准,要求使用半自动切 割坡口。 坡口加工完毕后,应对坡口面及周围50mm的范围内进行打磨,去除铁锈、氧化 皮及焊点等杂物。

3.3.6组装和定位焊 3.3.6.1接头的组装 接头的组装是指组合件或者分组件的装配,它直接影响焊缝质量、强度和变形。 应严格控制错边和间隙的允差,参照下表、 表3.3 头的始末端,从而保证焊缝质量均匀。引弧板材质应与母材相同,其坡口尺寸形状也应与母材相同。埋弧焊焊缝引出长度应大于60mm,其引弧、引出板的板宽不小于100mm,长度不小于150mm;引弧板及熄弧板的设置形式及点焊位置如下示意图所示:

悬 空 埋 弧 焊 工 艺

埋弧焊工艺 1、悬空埋弧焊是一种不用任何衬托和辅助设备、装置的埋弧焊工艺方法,埋弧焊焊接电流大,电弧压力大,电弧穿透能力强,在无任何衬托和辅助装置情况下,易造成焊穿或液态金属流失;为防止焊穿,减小正面第一层焊接电流,造成第一层厚度减薄,在施焊背面第一层时,焊接电流受正面第一层厚度限制而无法增大,不能保证接头熔透,出现连续性中心未焊透、大气孔。其次,为排除未焊透、气孔等缺陷,须通过提高电弧穿透力来增加焊缝熔深,必须增加焊接电流,焊接电流增大时:一方面,若坡口较窄,限制了熔池扩展,熔池深度增加,电弧搅拌作用增强,熔渣卷入熔池不易上浮,同时,熔融金属过热,熔渣高温时间长,金属、渣界面处渣中阴离子长大,使熔渣质点移动困难,粘度增大,进一步阻碍了渣的浮出,渣与界面金属紧密结合,造成脱渣困难和夹渣;另一方面,电弧搅拌作用增强,熔渣高温存在时间长,强制冷却成型作用弱化,焊缝表面成型粗糙;尤其环缝焊接时,熔池运动结晶,焊缝尺寸更难控制,造成成型不良;其三焊丝熔化量增大,造成余高过高;同时,焊接大线能量条件下,焊缝、热影响区组织晶粒严重长大,使接头性能,尤其是韧性受到显著影响。如此,要改善悬空埋弧焊工艺应注意以下几方面问题:(1)降低每层热输入,保证接头性能。(2)保证焊透,防止焊穿、气孔、裂纹等缺陷产生;(3)改善表面成型,降低余高,提高焊缝表面质量;(4)背面不清根,减少层间清渣、打磨量,降低劳动强度,减少污染。考虑采用大坡口小钝边双面悬空埋弧焊工艺。 2、采用大坡口,小钝边双面悬空埋弧焊工艺方法,直流反接。以厚度8㎜、10㎜、12㎜、14㎜、16㎜、18㎜、20㎜、22㎜等常用于压力容器的16MnR试板、筒体及其钛/钢复合板筒体焊缝焊接作为跟踪考察对象,进行工艺试验和参数优化。 3 坡口加工,机械加工方法进行试板或产品纵、环焊缝坡口加工,,根据工件厚度,其接头坡口型式如图1所示: 4 焊接材料 选用H10Mn2焊丝配HJ431焊剂, 焊丝直径Φ3.2㎜\Φ4㎜,焊剂焊前经250℃,2小时烘干。 5 焊接工艺参数 开坡口工件焊接线能量相应不开坡口情况要小。第一层焊接电流选择应防止焊穿,即保证一定电流值,以保证熔化50%以上钝边;背面第一层焊接时,焊接电流在防止焊穿的情况下尽可能大,以保证熔深,从而排除未焊透和气孔缺陷;其它道次焊接采用中等电流多层(道)次焊接。参数选择上应注意焊接电流(I)、电压(U)、和速度(V)匹配,其焊

WPS-埋弧焊焊接工艺评定

WELDING PROCEDURE SPECIFICATION(WPS)焊接工艺规程Yes[√] PREQUALIFIED免除评定QUALIFEID BY TESTING试验评定√or PROCEDURE QUALIFICATION RECORDS或工艺评定记录(PQR)Yes[ ] 焊接方法welding process 焊接方法welding process:自动埋弧焊(SAW)预热Preheat 预热温度Preheat Temp.Min 手工/机械manual/machine 自动/半自动: /semi-auto 接头形式j oint type 机械machine 自动auto 层间温度Interpass Temp 加 热方法Preheat Process::--- 焊接位置p osition 接头joint type:Butt (25+25)mm 衬垫backing: --- 根部间隙Root opening: 0~1 mm 背部清根B ack gouging: 6~8mm 母材B ase material 母材牌号m aterial spec: Q345B 执行标准standard : GB/T 1591 -2008 厚度thickness: 25mm 焊丝welding wire 牌号spec: EM13K AWS级别c lass:AWS A5.17 焊丝直径welding wire spec Φ4 mm 焊接位置welding position: 1G 角焊缝f illet weld: 立焊方向v ertical progression: --- 电特性e lectrical characteristics 电流类型current type:DC 极性power source:: EP 过渡形式transfer mode: --- 焊接技巧t echnique 焊接层数welding layer: 5~6 摆动方式weave bead:String 焊丝数量n umber of electrodes: 1 焊丝间距electrode spacing: 焊剂F lux c:焊丝伸出长度:wire extension20 mm 牌号spec: F7AO-EH14(SJ101) AWS级别c lass:AWS A5.17 保护气体Shielding gas 类型:type --- 混合比例composition: --- 流量flow rate; 焊枪角度w eld gun angle:86° 焊丝角度wire angle: °焊后热处理p ostweld treatment 温 度Temp.: --- 加热方式h eat process: --- 时间time: --- 焊角 Fillet weld leg mm 焊道/ 层数 Bead/layer 焊接电流 current 焊接电压 voltage V 焊接速度 welding接头详图Joint details 送丝速度 speed cm/min 电流 current A cm/min 255~6600~68036~4254~58 speed

埋弧焊工艺参数及焊接技术

1.3埋弧焊工艺参数及焊接技术 1. 3. 1??影响焊缝形状、性能的因素 埋弧焊主要适用于平焊位置焊接,如果采用一定工装辅具也可以实现角焊和横焊位 置的焊接。埋弧焊时影响焊缝形状和性能的因素主要是焊接工艺参数、工艺条件等。本 节主要讨论平焊位置的情况。 (1)焊接工艺参数的影响 影响埋弧焊焊缝形状和尺寸的焊接工艺参数有焊接电流、 电弧电压、 焊接速度和焊丝直径等。 1) 焊接电流 当其他条件不变时,增加焊接电流对焊缝熔深的影响(如图1所示),无 论是Y 形坡口还是I 形坡口,正常焊接条件下,熔深与焊接电流变化成正比,即状的 影响,如图2所示。电流小,熔深浅,余高和宽度不足;电流过大,熔深大,余高过大, 易产生咼温裂纹 图2焊接电流对焊缝断面形状的影响 a)I 形接头 b) Y 形接头 2) 电弧电压 电弧电压和电弧长度成正比,在相同的电弧电压和焊接电流时,如果 选用 的焊剂不同, 电弧空间电场强度不同,则电弧长度不同。如果其他条件不变,改变 电弧电压对焊缝形状的影响如图 3所示。电弧电压低,熔深大,焊缝宽度窄,易产生热 裂纹:电弧电压高时,焊缝宽度增加,余高不够。埋弧焊时,电弧电压是依据焊接电流 调整的,即一定焊接电流要保持一定的弧长才可能保证焊接电弧的稳定燃烧,所以电弧 电压的变化范围是有限的 图3电弧电压对焊缝断面形状的影响 a)I 形接头 b) Y 形接头 3) 焊接速度????旱接速度对熔深和熔宽都有影响,通常焊接速度小,焊接熔池大,焊 缝熔深和熔宽均较大,随着焊接速度增加,焊缝熔深和熔都将减小,即熔深和熔宽与焊 接速度成反比,如图 4所示。焊接速度对焊缝断面形状的影响,如图 5所示。焊接速 图1焊接电流与熔深的关系( 4.8mm )

埋弧焊对接工艺

埋弧焊实施方法 一焊前准备 1)坡口事宜 1坡口设计及加工同其他焊接方法相比,埋弧焊接母材稀释率较大,母材成分对焊缝性能影响较大,埋弧焊坡口设计必须考虑到这一点。依据单丝埋弧焊使用电流范围,当板厚小于 18mm ,可以不开坡口,装配时留有一定间隙:板厚为 18 ~ 22mm ,一般开 V 形坡口;板厚 22 -50mm 时开 X 形坡口。 2坡口表面及其两侧20mm范围内的油污、铁锈、氧化皮及水汽等均应清除干净,并用砂 轮打磨至露出金属光泽,凹凸不平处应予以修整。 2)装配点固 1埋弧焊要求接头间隙均匀无错边,装配时需根据不同板厚进行定间距、定位焊 2定位焊缝的长度为30~40mm,间距200~300mm左右, 3定位焊缝起头及收尾处应圆滑过渡, 4定位焊后应去除渣壳及焊缝两侧飞溅物, 如发现有气孔、裂纹等缺陷时,应铲除重焊

5直缝焊接在坡口两端应各焊引弧板和熄弧板,引,熄弧的焊接条件要与产品一样,(具体表现为板准备两块,厚度要与实际产品厚度相同,材质也相同,若产品开坡口,引,熄弧板也必须开坡口)其尺寸为大于等于150×150mm。 6去除引、熄弧板,应采用气割的方法,严禁使用敲击的方法,切除处应予打磨平整。 7引弧和收弧的焊缝长度不得少于80mm 3)焊接材料 焊丝:本生产线采用的是大西洋CHW-S1 的焊丝,Φ3.2mm,焊丝装盘前应彻底清除其表面上的铁锈和油污 焊剂:采用的是大西洋的CHF501 焊剂,使用前需要事先在烘箱内250~300℃烘焙2h。 采用单面焊的必须要在铜垫上铺一层焊剂。 二焊中检验 1根据板厚将事先给定的参数调好 2焊前先空走一遍,将红点瞄准焊缝中心处。 3 若是采用多道焊的时候,需要清根清除熔渣打磨好才许进行下一道。 4 从引弧板开始起弧,一直到收弧板收弧。 5待熔池冷却之后,再将焊渣敲掉,否则保护作用大大降低,会引起缺陷。 三焊后检验 1焊后必须清除焊缝表面渣壳并在规定部位打上代表焊工工号的钢印(或用记号笔书写钢印号)。 2 焊缝及热影响区表面应无裂纹、气孔、夹渣、弧坑等缺陷。发现缺陷应及时铲除,进行焊补并磨光。 3 焊缝表面的余高按根据ISO5817标准,B级焊缝余高小于1+0.1t,但最大不超过5mm。焊缝宽度一般每侧比坡口增宽2~4mm;对I型坡口,一般不得超过板厚的2倍。 4 焊后打磨待焊缝冷却后再打磨。

埋弧焊焊接参数

埋弧焊工艺参数及焊接技术 1.3.1 影响焊缝形状、性能的因素 埋弧焊主要适用于平焊位置焊接,如果采用一定工装辅具也可以实现角焊和横焊位置的焊接。埋弧焊时影响焊缝形状和性能的因素主要是焊接工艺参数、工艺条件等。本节主要讨论平焊位置的情况。 (1) 焊接工艺参数的影响影响埋弧焊焊缝形状和尺寸的焊接工艺参数有焊接电流、电弧电压、焊接速度和焊丝直径等。 1)焊接电流当其他条件不变时,增加焊接电流对焊缝熔深的影响(如图1所示),无论是Y 形坡口还是I 形坡口,正常焊接条件下,熔深与焊接电流变化成正比,即状的影响,如图2所示。电流小,熔深浅,余高和宽度不足;电流过大,熔深大,余高过大,易产生高温裂纹。 图1 焊接电流与熔深的关系(φ)

图2 焊接电流对焊缝断面形状的影响 a)I形接头b)Y形接头 2)电弧电压电弧电压和电弧长度成正比,在相同的电弧电压和焊接电流时,如果选用的焊剂不同,电弧空间电场强度不同,则电弧长度不同。如果其他条件不变,改变电弧电压对焊缝形状的影响如图3所示。电弧电压低,熔深大,焊缝宽度窄,易产生热裂纹:电弧电压高时,焊缝宽度增加,余高不够。埋弧焊时,电弧电压是依据焊接电流调整的,即一定焊接电流要保持一定的弧长才可能保证焊接电弧的稳定燃烧,所以电弧电压的变化范围是有限的。 图3电弧电压对焊缝断面形状的影响 a)I形接头b)Y形接头 焊接速度焊接速度对熔深和熔宽都有影响,通常焊接速度小,焊接熔池大,焊缝熔深和熔宽均较大,随着焊接速度增加,焊缝熔深和熔都将减小,即熔深和熔宽与焊接速度成反比,如图 4 所示。焊接速度对焊缝断面形状的影响,如图 5 所示。焊接速度过小,熔化金属量多,焊缝成形差:焊接速度较大时,熔化金属量不足,容易产生咬边。实际焊接时,为了提高生产率,在增加焊接速度的同时必须加大电弧功率,才能保证焊缝质量。

埋弧焊工艺应用

埋弧焊工艺应用 【摘要】通过对埋弧焊原理及结构分析,合理选择焊接参数包括焊接电流、焊接电压、焊接速度、焊丝直径,同时要有合理的施焊工艺方法,从而达到生产率高、焊接质量好、劳动条件好的目的。 【关键词】埋弧焊焊接参数焊缝 前言 埋弧焊是焊接生产中应用最广泛的工艺方法之一。由于焊接熔深大、生产效率高、机械化程度高,因而特别适用于中厚板长焊缝的焊接。在造船、锅炉与压力容器、起重机械、工程机械等制造中都是主要的焊接生产手段。因而正确掌握其焊接工艺很重要,对有效保证焊接质量,达到良好的焊接成形效果是非常有利的。 随着焊接冶金技术和焊接材料生产的发展,埋弧焊所能焊接的材料已从碳素结构钢发展到低合金结构钢、不锈钢、耐热钢以及一些有色金属材料。 正文 1、埋弧焊原理 埋弧焊是预先把颗粒状焊剂散布在焊接线上,焊丝通过送丝装置,自动连续地向焊剂中送进,在焊丝前端与母材间引燃电弧,进行自动电弧焊。 埋弧焊结构及实施过程如图1所示: 由4个部分组成:①焊接电源接在导电嘴和弓箭之间用来产生电弧;②焊丝由焊 图1 丝盘经送丝机构和导电嘴送入焊接区;③颗粒状焊剂由焊剂漏斗经软管均匀的堆

敷到焊缝接口区;④焊丝及送丝机构、焊剂漏斗和焊接控制盘等通常装在一台小车上,以实现焊接电弧的移动。 埋弧焊焊缝形成过程如图2,埋弧焊时,连续送进的焊丝在一层壳熔化的颗 粒状焊剂覆盖下引燃电弧。 2、工艺参数 埋弧焊主要应用于平焊位置焊接。 2.1 焊接工艺参数的影响 2.1.1 焊接电流 当其他条件不变时,增加焊接电流对焊缝熔深的影响(如图1所示),无论是 Y 形坡口还是 I 形坡口,正常焊接条件下,熔深与焊接电流变化成正比,即电流增加,熔深增加。 图1 焊接电流与熔深的关系(φ4.8mm ) 焊接电流对焊缝断面形状的影响,如图2所示。电流小,熔深浅,余高和宽度不足;电流过大,熔深大,余高过大,易产生高温裂纹。 图2

埋弧自动焊接工艺

埋弧自动焊接工艺 本工艺适用于板厚6~22mm的碳钢及高强度低合金钢焊接。 一.焊前准备 1.所焊产品的钢种及板材厚度按工艺要求选择焊丝牌号,焊丝直径及焊剂牌号,选用焊接规范。 2.检查埋弧焊机是否完好,电流表、电压表的正确性。 3.检查焊缝两端的始终点引弧板及灭弧板,其规格尺寸为80×80(mm)厚度≥母材。 4.焊件边缘加工和装配要求高,焊件边缘必须打磨清洁干净至光洁金属为止(距焊件边缘20mm处),用砂轮机进性打磨。 5.焊件边缘加工必须平直,装配间隙均匀一致,高低平整,装配间隙<1mm,两板高低差<0.5mm。 6.定位焊缝间距300~400mm,焊缝长度15~20mm,A3钢使用J427焊条,16Mn钢使用J507焊条,并清除点焊焊渣。 二.焊丝与焊剂选用 1.焊丝与焊剂根据不同钢种的焊件进行选用(如表1)。 表1

2.焊丝直径根据板厚不同选用,<10mm板厚选用直径4mm,≥ 12mm板厚选用5mm。 .1. 3.焊丝外表不得有油、锈存在,且应在干燥室存放。 4.焊剂使用前必须进行烘焙150~200℃×2后使用,使用剩余焊剂应重新烘焙。 三.焊接规范参数: 1.本规范适应于双面焊接板厚≤14mm可不开坡口焊接,板厚≥16mm 应开坡口,焊接坡口为65°±5°,根部8mm。 2. 板厚≥16mm正面焊后,反面进行用气刨扣槽,碳棒φ10mm,扣槽深度为6~7mm。 3.焊接规范参数如表2,船形角焊(平对接焊)如表3,平角焊如表4。 表2 焊接规范参数

注:以上规格指间隙在标准范围内,如间隙超差则焊接电流及速度应相应调整。 四.焊接(纵缝焊接): 1.根据不同板厚用试板调试焊接规范,不允许在产品上边焊接边调试,防止未焊透现象生。 2.开始焊前应校核焊丝与焊缝对中,焊丝伸出长度应等于焊接时长 度,并把 .2. 指针纠正与焊丝对一直线。 3.起、熄弧应在引、熄弧板上进行,其起、熄焊缝长度不少于60mm。 表3 船形角焊

钢结构埋弧焊通用实用工艺

钢结构作业文件 文件编号: 版本号/修改次数: 埋弧焊焊接通用工艺 受控状态: 发放序号: 发布日期:2017.05.27 实施日期:2017.05.29 工艺编写

本标准所引用的技术规与标准分为“执行技术规与标准”和“参考技术规与标准”两部分。 2.1执行技术规与标准 2.1.1 GB50205-2002 《钢结构工程施工及验收规》 2.1.2 GB986-88 《埋弧焊焊缝坡口的基本形式和尺寸》 2.1.3 JGJ81-2002 《建筑钢结构焊接技术规程》 2.1.4 GB50205-2001 《钢结构工程施工质量验收规》 2.1.5 GB5293 《碳素钢埋弧焊用焊剂》 2.2参考技术规与标准 2.2.1 《钢结构制作安装手册》 2.2.2 《建筑钢结构施工手册》 2.2.3 《焊接手册》 2.2.4 《钢结构工程施工工艺标准》 三部分:埋弧自动焊接技术 3.1焊接原理: 焊接电弧是在焊剂层下的焊丝与母材之间产生,电弧热使其周围的母材、焊丝和焊剂熔化以致部分蒸发,金属和焊剂的蒸发气体形成一个气泡,电弧就在这个气泡燃烧。气泡上部被一层熔化了的焊剂——熔渣构成的外膜所包围,这层外膜以及覆盖在上面的未熔化的焊剂共同对焊接起隔离空气、绝热、和屏蔽光辐射作用。焊丝熔化的熔滴落下与已局部熔化的母材混合而构成金属熔池,部分熔渣因密度小而浮在熔池表面。随着焊丝向前移动,电弧力将熔池中熔化金属推向熔池后方,在随后的冷却过程中,这部分熔化金属凝固成焊缝。熔渣凝固成渣壳,覆盖在焊缝金属表面上。在焊接过程中,熔渣除了对熔池和焊缝金属起机械保护作用外,还与熔化金属发生冶金反应(如脱氧、去杂质、渗合金等),从而影响焊缝金属的化学成分。 3.2埋弧焊焊接施工工艺流程

埋弧焊工艺参数及焊接技术演示教学

埋弧焊工艺参数及焊 接技术

1.3 埋弧焊工艺参数及焊接技术 1.3.1 影响焊缝形状、性能的因素 埋弧焊主要适用于平焊位置焊接,如果采用一定工装辅具也可以实现角焊和横焊位置的焊接。埋弧焊时影响焊缝形状和性能的因素主要是焊接工艺参数、工艺条件等。本节主要讨论平焊位置的情况。 (1) 焊接工艺参数的影响影响埋弧焊焊缝形状和尺寸的焊接工艺参数有焊接电流、电弧电压、焊接速度和焊丝直径等。 1)焊接电流当其他条件不变时,增加焊接电流对焊缝熔深的影响(如图1所示),无论是 Y 形坡口还是 I 形坡口,正常焊接条件下,熔深与焊接电流变化成正比,即状的影响,如图2所示。电流小,熔深浅,余高和宽度不足;电流过大,熔深大,余高过大,易产生高温裂纹 图1 焊接电流与熔深的关系(φ4.8mm)

图2 焊接电流对焊缝断面形状的影响 a)I形接头b)Y形接头 2)电弧电压电弧电压和电弧长度成正比,在相同的电弧电压和焊接电流时,如果选用的焊剂不同,电弧空间电场强度不同,则电弧长度不同。如果其他条件不变,改变电弧电压对焊缝形状的影响如图3所示。电弧电压低,熔深大,焊缝宽度窄,易产生热裂纹:电弧电压高时,焊缝宽度增加,余高不够。埋弧焊时,电弧电压是依据焊接电流调整的,即一定焊接电流要保持一定的弧长才可能保证焊接电弧的稳定燃烧,所以电弧电压的变化范围是有限的

图3电弧电压对焊缝断面形状的影响 a)I形接头b)Y形接头 焊接速度焊接速度对熔深和熔宽都有影响,通常焊接速度小,焊接熔池大,焊缝熔深和熔宽均较大,随着焊接速度增加,焊缝熔深和熔都将减小,即熔深和熔宽与焊接速度成反比,如图 4 所示。焊接速度对焊缝断面形状的影响,如图5 所示。焊接速度过小,熔化金属量多,焊缝成形差:焊接速度较大时,熔化金属量不足,容易产生咬边。实际焊接时,为了提高生产率,在增加焊接速度的同时必须加大电弧功率,才能保证焊缝质量 3)焊接速度焊接速度对熔深和熔宽都有影响,通常焊接速度小,焊接熔池大,焊缝熔深和熔宽均较大,随着焊接速度增加,焊缝熔深和熔都将减小,即熔深和熔宽与焊接速度成反比,如图 4 所示。焊接速度对焊缝断面形状的影响,如图 5 所示。焊接速度过小,熔化金属量多,焊缝成形差:焊接速度较大时,熔化金属量不足,容易产生咬边。实际焊接时,为了提高生产率,在增加焊接速度的同时必须加大电弧功率,才能保证焊缝质量

埋弧焊焊接工艺及操作方法

□1弧焊焊接工艺及操作方法 一、焊前准备 1准备焊丝焊剂,焊丝就去污、油、锈等物,并有规则地盘绕在焊丝盘内,焊剂应事先烤 干(250°C下烘烤1—2小时),并且不让其它杂质混入。工件焊口处要去油去污去水。 2接通控制箱的三相电源开关。 3检查焊接设备,在空载的情况下,变位器前转与后转,焊丝向上与向下是否正常,旋转 焊接速度调节器观察变位器旋转速度是否正常;松开焊丝送进轮,试控启动按扭和停止 按扭,看动作是否正确,并旋转电弧电压调节器,观察送丝轮的转速是否正确。 4弄干净导电咀,调整导电咀对焊丝的压力,保证有良好的导电性,且送丝畅通无阻。 5按焊件板厚初步确定焊接规范,焊前先作焊接同等厚度的试片, 根据试片的熔透情况(X光透视或切断焊缝,视焊缝截面熔合情况)和表面成形,调整焊接规范,反复试验后确定最好的焊接规范。 6使电咀基本对准焊缝,微调焊机的横向调整手轮,使焊丝与焊缝对准。7按焊丝向下按扭,使焊丝与工件接近,焊枪头离工件距离不得小于15mm,焊丝伸出长度不得小与30mm。 8检查变位器旋转开关和断路开关的位置是否正确,并调整好旋转速度。 9打开焊剂漏头闸门,使焊剂埋住焊丝,焊剂层一般高度为30—50mm。 二、焊接工作 1按启动按扭,此时焊丝上抽,接着焊丝自动变为下送与工件接触摩擦并引起电弧,以保 证电弧正常燃烧,焊接工作正常进行。 2焊接过程中必须随时观察电流表和电压表,并及时调整有关调节器(或按扭) 。使其符合所要求的焊接规范,在发现网路电压过低时应立刻暂停焊接工作,以免严重影响熔透质量,等网路电压恢复正常后再进行工作。在使用4mm焊丝时要求焊缝宽度>10mm,焊接沟槽时焊接速度≈15m/h,电压≈24V,电流≈300A,在接近表面时,电压>27V,电流≈450A。在焊接球阀时一般在焊第一层时尽量用低电压小电流,因无良好冷却怕升温过高损坏内件及内应力大。在焊第二层及以后一定通水冷却,电压及电流均可加大,以焊渣容易清理为好。 3焊接过程还应随时注意焊缝的熔透程度和表面成形是否良好, 熔透程度可观察工件的反 面电弧燃烧处红热程度来判断,表面成形即可在焊了一小段时,就去焊渣观察,若发现 熔透程度和表面成形不良时及时调节规范进行挽救,以减少损失。 4注意观察焊丝是否对准焊缝中心,以防止焊偏,焊工观察的位置应与引弧的调整焊丝时 的位置一样,以减少视线误差,如焊小直径筒体的内焊缝时,可根据焊缝背面的红热情况判断此电弧的走向是否偏斜,进行调整。 5经常注意焊剂漏斗中的焊剂量,并随时添加,当焊剂下流不顺时就及时用棒疏通通道, 排除大块的障碍物。 三、焊接结束 1关闭焊剂漏斗的闸门,停送焊剂。 2、轻按(即按一半深,不要按到底)停止按扭,使焊丝停止送进,但电弧仍燃烧,以填满 金属熔池,然后再将停止按扭按到底,切断焊接电流,如一下子将停止按扭按到底,不 但焊缝末端会产生熔池没有填满的现象,严重时此处还会有裂缝,而且焊丝还可能被粘 在工件上,增加操作的麻烦。 3、按焊丝向上按扭,上抽焊丝,焊枪上升。 4、回收焊剂,供下次使用,但要注意勿使焊渣混入。

焊接工艺设计说明书

《焊接结构课程设计》 说 明 书 设计题目:支架焊接结构设计 院系:机电工程学院 专业:材料成型及控制工程 姓名:禹娟 学号:200805024 指导老师:史雪婷

目录 第一章支架焊接结构设计概述 (2) 1.1支架焊接结构设计简介 (3) 1.2 支架材料的选择 (3) 第二章支架焊接工艺设计 (4) 2.1确定焊缝的位置 (5) 2.2焊接接头形式的设计 (5) 2.3焊接方法的选择 (8) 2.4焊接材料的选择 (9) 2.5焊接工艺参数的选择 (9) 2.6 确定焊接顺序 (11) 2.7焊接工艺卡片的制定 (11) 第三章结构设计的工艺过程 (12) 3.1焊接原材料的准备 (12) 3.2焊前准备 (13) 3.3焊接过程 (13) 3.4焊后处理及检验 (13) 第四章课程设计总结 (14) 第五章参考文献 (14) 附表一: (15) 附表二: (16) 附表三: (17) 附表四: (18) 附表五: (19)

第一章支架焊接结构设计概述 1.1支架焊接结构设计简介 1.1.1 支架的结构组成及制造关键点 (1)组成 主要有底座、两侧支撑板、加强筋、圆筒体 (2)制造关键点 支架上各个焊缝的焊接。 1.1.2 支架的简介及设计要求 (1)简介: 支架是用于支承轴的机构,支架以Ф30孔套在轴上,此支架既传递运动并保持其他零件工作方式和保持互相之间的正确位置。 (2)设计要求: 壁厚:底座20mm、圆筒10mm、肋板12mm、两侧板20mm 。 生产类型:单件生产 1.2 支架材料的选择 铸件HT150的化学成分如下: C%:3.2-3.8 Si%:2.1-2.7 Mn%:0.5-0.8 P%:〈 2 S%:〈0.15 在HT150中,由于片状石墨的存在,使其抗拉强度和塑性大大低于钢材,但抗压强度和硬度均接近于钢材,属于中强度铸铁件,有一定机械强度和良好的减震性和消磨性,用于制造承受中等载荷的零件。 由以上叙述可知,如果将材料为HT150的铸造支架改为焊接结构,可采用物理性能和力学性能与HT150铸件相似的材料,并且具有良好的焊接性能。 支架是一种全焊结构,支架材料作为一种支撑轴的结构材料,应具有一定的抗压强度、减震性和消磨性。其次材料应具有良好的焊接性能。 1.2.1 支架材料的性能要求 (1)对强度性能的要求 由于支架是承受中等载荷的零件,因此采用屈服强度约大于150MPa的碳素

埋弧焊基础知识

第四章埋弧焊 第一节埋弧焊的工作原理及特点 埋弧焊也是利用电弧作为热源的焊接方法。埋弧焊时电弧是在一层颗粒状的可熔化焊剂覆盖下燃烧,电弧不外露,埋弧焊由此得名。所用的金属电极是不间断送进的光焊丝。 一、工作原理 图4—1是埋弧焊焊缝形成过程示意图。焊接电弧在焊丝与工件之间燃烧,电弧热将焊丝端部及电弧附近的母材和焊剂熔化。熔化的金属形成熔池,熔融的焊剂成为溶渣。熔池受熔渣和焊剂蒸汽的保护,不与空气接触。电弧向前移动时,电弧力将熔池中的液体金属推向熔池后方。在随后的冷却过程中,这部分液体金属凝固成焊缝。熔渣则凝固成渣壳,覆盖于焊缝表面。熔渣除了对熔池和焊缝金属起机械保护作用外,焊接过程中还与熔化金属发生冶金反应,从而影响焊缝金属的化学成分。 埋弧焊时,被焊工件与焊丝分别接在焊接电源的两极。焊丝通过与导电嘴的滑动接触与电源联接。焊接回路包括焊接电源、联接电缆、导电嘴、焊丝、电弧、熔池、工件等环节,焊丝端部在电弧热作用下不断熔化,因而焊丝应连续不断地送进,以保持焊接过程的稳定进行。焊丝的送进速度应与焊丝的熔化速度相平衡。焊丝一般由电动机驱动的送丝滚轮送进。随应用的不同,焊丝数目可以有单丝、双丝或多丝。有的应用中采用药芯焊丝代替实心焊丝,或是用钢带代替焊丝。 1—焊剂2—焊丝(电极) 3—电弧4—熔池5—熔渣6—焊缝7—母材8—渣壳 图4—1 埋弧焊焊缝形成过程示意图 埋弧焊有自动埋弧焊和半自动埋弧焊两种方式。前者的焊丝送进和电弧移动都由专门的机头自动完成,后者的焊丝送进由机械完成,电弧移动则由人工进行。焊接时,焊剂由漏斗铺撒在电弧的前方。焊接后,未被熔化的焊剂可用焊剂回收装置自动回收,或由人工清理回收。 二、埋弧焊的优点和缺点 1.埋弧焊的主要优点 (1)所用的焊接电流大,相应输入功率较大。加上焊剂和熔渣的隔热作用,热效率较高,熔深大。工件的坡口可较小,减少了填充金属量。单丝埋弧焊在工件不开坡口的情况下,一次可熔透20mm。 (2)焊接速度高,以厚度8~10mm的钢板对接焊为例,单丝埋弧焊速度可达50~80cm /min,手工电弧焊则不超过10~13cm/min。

相关文档