文档库 最新最全的文档下载
当前位置:文档库 › 继电保护用电流互感器10%误差曲线的计算方法及其应用

继电保护用电流互感器10%误差曲线的计算方法及其应用

继电保护用电流互感器10%误差曲线的计算方法及其应用
继电保护用电流互感器10%误差曲线的计算方法及其应用

继电保护用电流互感器10%误差曲线的计算方法及其应用

作者:师淑英郭增光常小冰

河北大唐国际王滩发电有限公司 063611

摘要

电流互感器是电力系统中非常重要的一次设备,而掌握其误差特性及10%误差曲线,对于继电保护人员来说是十分必要的,它可避免继电保护装置在被保护设备发生故障时拒动,保证电力系统稳定.可靠的运行,对提高继电保护装置的正确动作率有着十分重要的意义。本文就用在电流互感器二次侧通电流法,如何绘制电流互感器的10%误差曲线,并对其如何应用,加以说明。

关键词:电流互感器 10%误差曲线应用

1 电流互感器的误差

电流互感器,用来将一次大电流变换为二次小电流,并将低压设备与高压线路隔离,是一种常见的电气设备。其等值电路如图1所示,向量图如图2所示。

图中I ’1为折算到二次侧的一次电流,R ’1、X ’

1为折算到二次侧的一次电阻和漏抗;R 2、X 2为二次电阻和漏抗;I 0为电流互感器的励磁电流。在理想的电流互感器中I 0的值为零,I ’

1=I 2。但实际

上Z 2为Z 0相比不能忽略,所以,0I .=1I .-0I .

2≠;

由电流互感器的向量图中可看出,电流互感器的误差主要是由于励磁电流I 0的存在,它使二次电流与换算到二次侧后的一次电流I ’

1不但在数值上不相等,而且相位也不相同,这就造成了电流互感器的误差。电流互感器的比误差f=

100I

I

I

'

1

2

'1

?-

;角误差为I ’

1与I 2间的夹角。

做为标准和测量用的电流互感器,要考虑到在正常运行状态下的比误差和角误差;做为保护用的电流互感器,为保证继电保护及自动装置的可靠运行,要考虑当系统出现最大短路电流的情况下,继电保护装置能正常工作,不致因为饱和及误差带来拒动,因而规程的规定,应用于继电保护的电流互感器,在其二次侧负载和一次电流为已知的情况下,电流误差不得超过10%。

2 电流互感器的10%误差及10%误差曲线

设Ki 为电流互感器的变比,其一次侧电流与二次电流有I 2=I 1/Ki 的关系,在Ki 为常数(电源互感器I 2不饱和)时,就是一条直线,如图3所示。当电流互感器铁芯开始饱和后,与I 1/Ki 就不再保持线性关系,而是如图中的曲线2所示,呈铁芯的磁化曲线状。继电保护要求电流互感器的一次电流I 1等于最大短路电流时,其变比误差小于或等于10%。因此,我们可以在图中找到一个电流值I 1.b ,自I 1.b 作垂线与曲线1、2分别相交于B 、A 两点,且BA =0.1I ’

1(为折算到二次的I 1值)。如果电流互感器的一次I 1电流,其变比误差就不会大于10%;如果,其变比误差就大于10%。

图3 图4

另外,电流互感器的变比误差还与其二次负载阻抗有关。为了便于计算,制造厂对每种电流互感器提供了在m10下允许的二次负载阻抗值Zen,曲线m10=f(Zen)就称为电流互感器的10%误差曲线,如图4所示,已知m10的值后,从该曲线上就可很方便地得出允许的负载阻抗。如果它大于或等于实际的负载阻抗,误差就满足要求,否则,应设法降低实际负载阻抗,直至满足要求为止。当然,也可在已知实际负载阻抗后,从该曲线上求出允许的m10,用以与流经电流互感器一次线绕组的最大短路电流作比较。

通常电流互感器的10%误差曲线是由制造厂实验作出,并且在产品说明书中给出。若在产品说明书中未提供,或经多年运行,需重新核对电流互感器的特性时,就要通过试验的方法绘制电流互感器的10%误差曲线。

3 10%误差曲线的绘制方法

测定电流互感器10%误差曲线最直接方法是一次测定电流法,此项方法由于所需电源及设备容量较大,电流测量很难用于现场测验。

另一种方法是二次侧通电流法,此项方法由电流互感器二次侧通入电流,所需电源及设备容量较小,其结果与一次电流法所得相同,现场测量很易实现。下面就介绍用二次侧通电流法,绘制电流互感器10%误差曲线的方法。

3.1收集数据

保护装置类型、整定值、电流互感器的变比、接线方式和流过电流互感器的最大故障电流等。

3.2测量电流互感器二次绕组的直流电阻R2

3.3求二次绕组漏抗Z2

用经验公式计算:对于油浸式LCCWD型,一般取Z2=(1.3~1.4)R2;对于套管式LRD型电流互感器,一般取Z2=2R2。

3.4测定电流互感器的二次负荷阻抗

电流互感器的二次阻抗是指电流互感器二次端子所呈现的负荷阻抗。它包括继电器阻抗,连接导线阻抗。

3.4.1计算电流互感器二次负荷

电流互感器二次的负荷为其输出电压的与输出的电流之比;Zfh=U2/I2。其值的大小与电流互感器的接线方式、故障类型有关:

3.4.1.1完全星形接线

见图5,常用于大接地电流系统中,能够反映各种相间故障和接地故障。为提高接地故障的灵敏度,常在中性线中加装零序电流继电器。

ZL:导线阻抗 Zφ:继电器线圈阻抗

ZN:零序回路继电器线圈阻抗

图5

①三相短路时:(I0=0)

Zfh= U2/I2 = UA/IA= IA(ZL+Zφ)/IA = ZL+Zφ

②两相短路时:(AC相)

Zfh= U2/I2 = UA/IA = [IA(ZL+Zφ)+IC(ZL+Zφ)]/(2IA) = ZL+Zφ

③单相接地时:(A相)

Zfh= U2/I2 = UA/IA = IA(ZL+Zφ+ZN+ZL)]/IA = 2ZL+Zφ+ZN

3.4.1.2不完全星形接线

见图6,常用于小接地电流系统中,只能够反映相间故障和接地故障。当线路上设有Y,d接线的变压器,并在变压器线路侧发生故障时,电源侧的电流保护采用不完全星形接线时,保护装置的灵敏度比完全星形接线方式降低一半,为此对装于电源侧的过电源保护装置,若要求作为变压器的后线路的后备时,通常在中性线上再装一个电流继电器,第三个继电器能够反应最大相电流,使保护灵敏度提高一倍。

图6

①三相短路:(中线—B相电流)

Zfh= |U2/I2| = |UA/IA| = |IA(ZL+Zφ)-IC(ZL+Zφ)]/IA| = 3(ZL+Zφ)

②两相短路:

AB相: Zfh= U2/I2 = UA/IA= [IA(ZL+Zφ)+IB(ZL+Zφ)]/IA = 2(ZL+Zφ)

AC相: (中线无电流) 同完全星形接线 Zfh= ZL+Zφ

③单相接地:同两相短路 Zfh = 2(ZL+Zφ)

3.4.1.3 两相差接线

见图7,与不完全星形接线相比,可节省一个电流继电器,但对和种相间故障,灵敏度不同,在10kV以上的线路保护中很采用。

图7

Zfh= |U2/I2| = |UA/IA| = |IA(ZL+Zφ)-IC(ZL+Zφ)]/IA| = 3(ZL+Zφ)

①三相短路:

Zfh= |U2/I2| = |UA/IA| = |(IA-IC)(2ZL+Zφ)/IA| = 3(2ZL+Zφ)

②两相短路:

Zfh= U2/I2 = UA/IA = (IA-IC)(2ZL+Zφ)/IA = 2(2ZL+Zφ)

③单相接地:(A相)

Zfh= U2/I2 = UA/IA = IA (2ZL+Zφ)/IA = 2ZL+Zφ

3.4.1.4三角形接线:见图8,用三相差动接线中。

①三相短路:

图8

Zfh= |UA/IA| = |[(IA-IB)(ZL+Zφ)-(IC-IA)(ZL+Zφ)]/IA|

= (ZL+Zφ)|2IA-IB-IC |/IA = 3(ZL+Zφ)

②两相短路:(AB相)

Zfh= UA/IA = [(IA+IB)(ZL+Zφ)+IB(ZL+Zφ)]/IA

= (ZL+Zφ)(IA+2IB)/IA = 3(ZL+Zφ)

③单相接地:(A相)

Zfh= UA/IA = IA(2ZL+2Zφ)/IA = 2(ZL+Zφ)

各种接线方式下的电流互感器的二次计算负荷汇总见表1。

表1:四种接线方式,在不同的短路状态下电流互感器的二次计算负荷

3.4.2用电流.电压法测定最大负荷阻抗

在电流互感器根部用电流电压法,分别测量电流互感器二次回路AB、BC、CA和A0相的阻抗。注意测量接线最好采用高内阻电压法。对于差动保护接线,由于外部故障时,继电器内仅流过不平衡电流,故障电流并不流过继电器,所以在实测时,应将差动继电器的线圈短接。计算公式为:

2BC

CA

AB

A Z

Z

Z

Z -

+

=

2CA

BC

AB

B Z

Z

Z

Z -

+

=

2AB

CA

BC

C Z

Z

Z

Z -

+

=

3.5用伏安特性法测试电流互感器的U=f(I0)曲线

采用低内阻电流法或采用高内阻电压法均可。试验时要注意,电流互感器一次侧开路,断开二次侧所有负荷后加电压,由零逐渐上升,中途不得降低后再升高以免因磁滞回线使伏安特性曲线不平滑,影响到计算的准确性。一般做到5A,有特殊需要时做到饱和为止。

3.6根据U=f(I0)曲线,求出励磁电压、励磁阻抗、电流倍数与允许

负荷的关系,绘出10%误差曲线

根据电工理论,当电流互感器一次线圈开路,在二次线圈加电压时,流经二次线圈的电流即为电流互感器的的励磁电流。对于同一台电流互感器的不同二次绕组,在同样的励磁电流下,其铁芯的的饱和程度不相同,反映到磁通的变化率dΦ/dt上也不相同,在绕组中产生的感应电势E0=W(d Φ/dt)就不相同(这里E0又约等于二次线圈上的电压值U2)。饱和程度深的,其dΦ/dt小,E0也小;饱和程度浅的,dΦ/dt大,E0也大。根据等值电路图3得:

E 0=U

2

-I

Z

2

当电流互感器的变比误差为10%时,励磁电流应I0为一次侧电流变换到二次侧电流I ’

1的10%。

即I ’

1为100%时,I0为10%,I2为90%。所以一次电流变换到二次侧时为励磁电流的10倍,二次侧

电流为励磁电流的9倍,即图1所示:

I0i

i

i

K I K I I K I 11211.0)9.01(=

-=

-=

(Ki 为电流互感器变比)

I1=10 Ki I0 I2=9I0

当电流互感器二次侧额定电流I2N 为5A 时:

m10=

5

10100

2011I I K I K I I N

i i N

==

=2I0

而二次侧阻抗:Z2+Zfh=E0/I2=E0/(9I0) 因此,Zfh=E0/(9I0)-Z2

3.7 电流倍数m10的计算

为保证电流互感器变比误差不大于10%,选用的电流互感器一次侧能承受的电流对于额定电流的倍数不应小于以下各式计算值:

1)发电机纵差保护:m10=(KkIkmax)/I1N

Ikmax :外部短路时,流过电流互感器的最大电流,即等于发电机出口处三相短路

时的短路电流;

I1N : 电流互感器的额定一次电流;

Kk : 可靠系数。考虑到差动保护中采用带速饱和变流器的继电器,保护装置对短

路开始瞬间的短路电流 中出现的非周期性分量是不灵敏的;而当可靠系数取为2时,需将控制电缆的截面加大很多,很不经济,所以可靠系数取1.3;

2) 变压器纵差、发电机变压器组纵差保护:m10=(KkIkmax)/I1N

Ikmax :外部短路时,流过电流互感器的最大电流。对于双绕组变压器、发电机双

绕组变压器组,当发电厂与大电力系统联系时,短路电流可按系统容量等于无限大条件来计算。对三绕组变压器和发电机三绕组变压器组,短路电流则按各种实际的系统容量条件来计算;

Kk : 可靠系数。取1.3;当采用不带速饱和变流器的继电器时取1.5。

3) 母线纵差保护:m10=(KkIkmax)/I1N

Ikmax :外部短路时,流过电流互感器的最大电流。需求按电源分支线内电流实际

分布来计算短路电流;

Kk : 可靠系数。取1.3;当采用不带速饱和变流器的继电器时取1.5。

4) 35~110kV 线路星形接线的电流速断保护、3~220kV 线路星形接线的过电流保护、厂

用变压器的速断和过流保护(含零序过流保护):m10=(KkIdz2)/IN

Idz2:保护装置的动作电流;

IN:电流互感器额定电流

Kk:可靠系数。考虑到电流互感器的10%误差;取1.1。

5)具有方向性的保护装置:m10=(KkIkmax)/I1N

Ikmax:当保护安装处的前方或后方引出线短路时,流过电流互感器的最大电流的

周期分量;

Kk:可靠系数。当保护动作时限为0.1S时取2;0.3S时取1.5;大于是1S时取1。

6)非方向性的阻抗保护:

7)线路差动保护(纵差、横差和方向横差):m10=(KkIkmax)/I1N

Kk:可靠系数。考虑短路电流非周期分量对电流互感器励磁的影响,当差动保护

不采用速饱和变流器时取2;采用速饱和变流器时取1.3。

Ikmax:外部短路时,流过所接电流互感器的最大电流的周期分量;对于双回线横

差保护,因双回线阻抗相等,在外部短路时,流过每回线的短路电流只是

Ikmax的一半。

3.8分析结果

将实测阻抗值按最严重的短路类型换算成Z;然后根据计算出的电流倍数m10,找出与m10倍数相对应的允许阻抗值Zfh,如果Z≤Zfh时为合格。

3.9当电流互感器不满足10%误差要求时,应采取以下措施

1)改用伏安特性较高的电流互感器二次绕阻,提高代负荷的能力;

2)提高电流互感器的变比,或采用额定电流小的电流互感器;以减小电流倍数m10;

3)串联备用相同级别电流互感器二次绕组,使负荷能力增大一倍;

4)增大二次电缆截面,或采用消耗功率小的继电器;以减小二次侧负荷Zfh;

5)将电流互感器的不完全星形接线方式改为完全星形接线方式;差电流接线方式改为

不完全星形接线方式;

6)改变二次负荷元件的接线方式,将部分负荷移至互感器备用绕组,以减小计算负荷。

参考文献

1.杨奇逊.微机型继电保护基础。北京:水利电力出版社,1988

2.电气系统继电保护实用技术问答。国家电力调度中心编,1997

作者简介:郭增光(1981- ) 男助理工程师,从事发电厂继电保护检修维护工作。

师淑英(1971—)女高级工程师,从事发电厂继电保护检修维护工作。常小冰(1980- ) 男助理工程师,从事发电厂继电保护检修维护工作。

浅谈电流互感器误差及影响

浅谈电流互感器误差及影响 摘要:电流互感器是一次系统和二次系统电流间的联络元件,将一次回路的大电流转换为小 电流,供给测量仪表和保护装置使用。电流反应系统故障的重要电气量,而保护装置是通过电流互感器来间接反应一次电流的,因此电流互感器的性能直接决定保护装置的运行。然而从互感器本身和运行使用条件方面来看,电流互感器存在不可避免的误差,本文分别从这两个方面分析了误差,并结合实际工作阐述了误差带来的影响,以便在工作中加强重视,并做出正确的分析。 关键词:电流互感器 励磁电流 误差 一、电流互感器的误差 在理想条件下,电流互感器二次电流I 2=I 1/Kn ,Kn=N 2/ N 1 ,N 1 、N 2 为一、二次绕组的 匝数,不存在误差。但实际上不论在幅值上(考虑变比折算)和角度上,一二次电流都存在差异。这一点我们可以从图中看到。 从图一看,实际流入互感器二次负载的电流I’2 =I 1-Ie ,其中I’2 = I 2 * Kn,Ie 为励 磁电流,即建立磁场所需的工作电流。正是因为励磁损耗的存在,使得I 1 和I’2 在数值上和 相位上产生了差异。正常运行时励磁阻抗很大,励磁电流很小,因此误差不是很大,经常可以被忽略。但在互感器饱和时,励磁阻抗会变小,励磁电流增大,使误差变大。 图二相量图,以I’2 为基准,E 2 较-I’2超前φ角(二次总阻抗角,即Z 2 和Z 阻抗角), 如果不考虑铁磁损耗,励磁阻抗一般被作为电抗性质处理,Ie 超前E 2 为90度, I’2与Ie 合成I 1。图中I’2与I 1不同相位,两者夹角δ即为角度误差。 对互感器误差的要求一般为,幅值误差小于10%,角度误差小于7度。 二、电流互感器的饱和 电流互感器的误差主要是由励磁电流Ie 引起的。正常运行时由于励磁阻抗较大,因此Ie 很小,以至于这种误差是可以忽略的。但当CT 饱和时,饱和程度越严重,励磁阻抗越小, Z 图一 等值电路 E 图二 相量图

计算方法的课后答案

《计算方法》习题答案 第一章 数值计算中的误差 1.什么是计算方法?(狭义解释) 答:计算方法就是将所求的的数学问题简化为一系列的算术运算和逻辑运算,以便在计算机上编程上机,求出问题的数值解,并对算法的收敛性、稳定性和误差进行分析、计算。 2.一个实际问题利用计算机解决所采取的五个步骤是什么? 答:一个实际问题当利用计算机来解决时,应采取以下五个步骤: 实际问题→建立数学模型→构造数值算法→编程上机→获得近似结果 4.利用秦九韶算法计算多项式4)(5 3 -+-=x x x x P 在3-=x 处的值,并编程获得解。 解:400)(2 3 4 5 -+?+-?+=x x x x x x P ,从而 所以,多项式4)(5 3 -+-=x x x x P 在3-=x 处的值223)3(-=-P 。 5.叙述误差的种类及来源。 答:误差的种类及来源有如下四个方面: (1)模型误差:数学模型是对实际问题进行抽象,忽略一些次要因素简化得到的,它是原始问题的近似,即使数学模型能求出准确解,也与实际问题的真解不同,我们把数学模型与实际问题之间存在的误差称为模型误差。 (2)观测误差:在建模和具体运算过程中所用的一些原始数据往往都是通过观测、实验得来的,由于仪器的精密性,实验手段的局限性,周围环境的变化以及人们的工作态度和能力等因素,而使数据必然带有误差,这种误差称为观测误差。 (3)截断误差:理论上的精确值往往要求用无限次的运算才能得到,而实际运算时只能用有限次运算的结果来近似,这样引起的误差称为截断误差(或方法误差)。 (4)舍入误差:在数值计算过程中还会用到一些无穷小数,而计算机受机器字长的限制,它所能表示的数据只能是一定的有限数位,需要把数据按四舍五入成一定位数的近似的有理数来代替。这样引起的误差称为舍入误差。 6.掌握绝对误差(限)和相对误差(限)的定义公式。 答:设* x 是某个量的精确值,x 是其近似值,则称差x x e -=* 为近似值x 的绝对误差(简称误差)。若存在一个正数ε使ε≤-=x x e * ,称这个数ε为近似值x 的绝对误差限(简称误差限或精度)。 把绝对误差e 与精确值* x 之比* **x x x x e e r -==称为近似值x 的相对误差,称

电流互感器误差引起事故分析(正式版)

文件编号:TP-AR-L8432 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 电流互感器误差引起事故分析(正式版)

电流互感器误差引起事故分析(正式 版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 1 事故简述 20xx年6月18日,某110kV变电所35kV线路 遭到雷击,该线路定时速断跳闸,重合成功;同时该 110kV变电所分段370断路器定时速断跳闸(重合闸 停用),造成35kVⅡ段母线失电。 2 原因分析及采取措施 2.1原因分析

该35kV线路与分段370断路器的保护定值配置如图1,从定值的配置分析,保护的定值是满足选择性的,即当35kV线路近端故障时,由该线路速断保护切除故障;当35kV线路远处故障时,由该线定时速断保护及过流切除故障。分段370断路器保护作为35kV线路的后备保护,只有在35kV线路保护拒动时才动作跳闸。显然,分段370断路器保护越级跳闸属于不正确动作。故障发生后,分别从该线路及分段370断路器保护装置本身、开关机构、接线等方面逐一进行了检查。检查结果发现保护装置的采样精度、定值、跳闸逻辑均正确,由于分段370断路器定时速断、该35kV线路速断电流定值比较大,一次升流设备无法达到该电流值,因此,采用适当降低定值后,

定位误差的计算方法.

定位误差的计算方法: (1)合成法 为基准不重合误差和基准位移误差之和; (2)极限位置法 工序基准相对于刀具(机床)的两个极限位置间的距离就是定位误差; (3)微分法 先用几何方法找出工序基准到定位元件上某一固定点的距离,然后对其全微分,用微小增量代替微分,将尺寸误差视为微小增量代入,就可以得到某一加工尺寸的定位误差。 注:基准不重合误差和基准位移误差它们在工序尺寸方向上的投影之和即为定位误差。 例如:用V 型块定位铣键槽,键槽尺寸标注是轴的中心到键槽底面的尺寸H 。T D 为工件定位外圆的公差;α为V 型块夹角。 1. 工序基准为圆柱体的中心线。 表示一批工件依次放到V 型块上定位时所处的两个极端位置情形,当工件外圆直径尺寸为极大和极小时,其工件外圆中心线分别出于点 O '和点O ''。 因此工序基准的最大位置变动量O O ''',便是对加工尺寸H 1所产生的定位误差: 故得:O E O E H H O O 11DH 1 ''-'='-''='''=ε O A E Rt 1''?中: max 1 D 2 1A O ='' 2 sin A O O E 1α''= ' O A E Rt 1''''?中:min 1 D 2 1 A O ='''' 2 sin A O O E 1α''''= '' 2 sin 2T 2sin 2T 2sin A O A O O E O E D D 11DH 1 α=α=α''''-''=''-'=ε

2. 工序基准为圆柱体的下母线: 工件加工表面以下母线C 为其工序基准时,工序基准的极限位置变动量C C '''就是加工尺寸H2所产生的定位误差。 C S C S C O O O H H 22DH 2 '-''=''-'''='-''=ε C O C O O O ) C O O S ()C O O S (' '-''''+'''=''+'-'''+'= 而 2 sin 2T O O D α= ''' min D 2 1C O ='''' max D 2 1 C O ='' 所以:C O C O O O 2 DH ''-''''+'''=ε ) 12 sin 1(2T 2T 2sin 2T 2D D 2 sin 2T )D (21 )D (212sin 2T D D D max min D max min D DH 2 -α=-α=-+ α=-+α=ε

电流互感器10差校验的计算方法.

电流互感器10%误差校验的计算方法 简介:本文对<<工业与民用配电手册>>中关于电流互感器10%误差校验的方法提出疑问,并结合<<手册>>中的例题,给出了作者认为的计算方法. 关键字:电流互感器 10%误差校验计算方法 由中国航空工业规划设计研究院组编,中国电力出版社出版的《工业与民用配电设计手册》(以下简称手册)自1983年11月第一版到2005年10月的第三版,发行量近16万册,该手册的权威性、指导性,对工业与民用配电设计行业的影响是勿庸置疑的。正因为广大设计者对该手册的重视和尊重,更要求它是完美的。本文就手册中关于“电流互感器10%误差校验的计算方法”提出不同的意见,供大家参考。尽管如此,本人仍然认为,暇不掩玉,该手册仍然是广大设计者必备的案头参考书。 手册给出的电流互感器允许误差计算步骤如下: 道频 2,根据电流互感器的型号、变比和一次电流倍数,在10%误差曲线上确定控m自电流互感器的允许二次负荷。 oc网.s师i3,按照对电流互感器二次负荷最严重的短路类型计算电流互感器的实际二次负j计eh荷。设s.国k中w.z 4,比较实际二次负荷与允许二次负荷,如实际二次负荷小于允许二次负荷, 表示电流互感器的误差不超过ww10%。 1,按照保护装置类型计算流过电流互感器的一次电流倍数 对于步骤1、2、4,本文并无异议,对步骤3,有值得商榷的地方。现引用《工业与民用配电设计手册》例题【7-9】,6KV线路过流与速断保护为例来说明问题。已知条件如下(对原例题中与本讨论无关的给予了简化):某6KV单侧放射式单回路线路,工作电流Ig.xl为100A,电动机起动时的过负荷电流Igh为181A。经校验实际线路长度能满足瞬时电流速断选择性动作,且短路时母线上有规定的残压。采用DL-11型电流继电器、DL-13型继电器、DSL-12型时间继电器和ZJ6型中间继电器作为线路的电流速断保护和过电流保护(交流操作),电流互感器选用LFZB6-10型,变比150/5,三相星型接线方式。另采用ZD-4型小电流接地信号装置作为线路单相接地保护。已知最大运行方式下,线路末端三相短路时的超瞬态电流I”2k3.MAX=1752A。最小运行方式下,线路末端三相短路时的超瞬态电流I”2k3.Min=1674A。 计算过程为: 1)瞬时电流速断保护的整定: IopK=KrelKjxI”2k3.MAX/nTA=1.2x1x1752/30=70.1A (式1) 式中Krel:可靠系数,取1.2;Kjx:接线系数,接于相电流时取1;IopK:继电器动作值,计算值为70.1A,取70A,装设DL-11/200型继电器。 2)过电流保护整定:

土方量计算方法及误差分析讲解

学校代码: 学号:毕业(设计)论文土方量计算方法及误差分析 姓名: 专业:工程测量技术 班级: 指导教师: 二○一四年六月二十日

土方量计算方法及误差分析 姓名: 指导老师: 摘要 土方量计算是工程施工和设计中一个经常而重要的工作,目前在各种工程建设中,土方量算精度是大家在土方量算中最关心的问题,本文是基于对工程土方量计算中常用的几种方法:方格网法、断面法、等高线法及基于数字地面模型(DEM)法的基本原理比较分析,探讨它们的适用范围及精度分析。 关键词:方格网法;断面法;等高线法; DEM

目录 第一章绪论 (1) 第二章土方量计算的基本方法 (3) 2.1 方格网法 (3) 2.2 等高线法 (5) 2.3 断面法 (7) 2.4 DTM法 (7) 第三章误差分析 (9) 3.1 方格法分析 (9) 3.2 断面法分析 (13) 3.3 等高线法分析 (18) 3.4 DTM 分析 (19) 第四章案例分析及总结 (23) 4.1 案例分析 (23) 4.2 案例总结 (25) 结束语 (26) 致谢 (27) 参考文献 (28)

第一章绪论 随着我国经济的飞速发展,国家根据需要加大对工程建设的投入,无论是公路还是铁路,城市规划中,土方工程是主要项目,土方量计算是工程设计与施工中经常遇到的问题,需要精确计算土方量,土方计算是这些工程的一个重要组成部分,也是最关键的一部分,土方量直接关系到工程造价,同时土方量的计算方法的选取对施工机械,人力的配置起直接影响作用,因此对于土方计算符合实际。在国家经济建设快速发展的今天,不断完善国家基础建设和改善人民水平一样的至关重要,基础建设离不开工程施工,土方量的计算是水土建筑工程施工的一个组成部分,工程施工前得设计阶段必须对土方量进行预算,直接关系到工程的费用概算和方案选优,现实中的一些工程项目中,因土方量计算的精确性而产生的纠纷也是常遇到的,如何利用现场测出的地形数据或原有的数字地形数据快速而准确计算出土方成了人们日益关心的问题。在 当今社会发展前提下,越来越多未开垦的地区被国家投入大量的建筑施工计划。对于中国西部一直贫穷落后的状况,国家投入大量的金钱进行改善。西部地区“十大工程”,青藏铁路的开工建设;从西气东输,到西电东送工程的稳步实施;从西部地区大规模的机场建设,到铁路、公路建设的全面启动;从大规模的城市基础设施建设,到大面积的退耕还林还草试点。西部开发—这一跨世纪的伟大工程,正在广大西部地区扎扎实实地推进,土方工程是这些项目中的主体部分,每个工程的实施都牵涉到工程费用的概算,对于国家来说,合理安排好各项工程的施工费用是关键,国家每年投入西部开发的费用不计其数,但对于一个发展中的国家来说,经济是发展中的重中之重,对于一个经济赤字的国家来说,发展无从谈起,为了大型施工项目的正常实工,其工程预算是必不可少,这无论对于国家还是个人都同样重要。 研究现状: 自九十年代以来,随着基础建设需求的加大,土方计算越来越受人们的重视,传统的土方计算方法越来越不能满足人们的要求,而伴随着计算机编程技术的飞速发展,通过计算机中的图像处理技术与土方理论的结合已成为现今提高土方量计算精度和效率的新的一个有效途径,与此同时国内的研究学者在提高精度,改进公式方面进行大量探讨。对于传

定位误差计算

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 3.2.3 定位误差的分析与计算 在成批大量生产中,广泛使用专用夹具对工件进行装夹加工。加工工艺规程设计的工序图则是设计专用夹具的主要依据。由于在夹具设计、制造、使用中都不可能做到完美精确,故当使用夹具装夹加工一批工件时,不可避免地会使工序的加工精度参数产生误差,定位误差就是这项误差中的一部分。判断夹具的定位方案是否合理可行,夹具设计质量是否满足工序的加工要求,是计算定位误差的目的所在。 1.用夹具装夹加工时的工艺基准 用夹具装夹加工时涉及的基准可分为设计基准和工艺基准两大类。设计基准是指在设计图上确定几何要素的位置所依据的基准;工艺基准是指在工艺过程中所采用的基准。与夹具定位误差计算有关的工艺基准有以下三种: (1)工序基准在工序图上用来确定加工表面的位置所依据的基准。工序基准可简单地理解为工序图上的设计基准。分析计算定位误差时所提到的设计基准,是指零件图上的设计基准或工序图上的工序基准。 (2)定位基准在加工过程中使工件占据正确加工位置所依据的基准,即为工件与夹具定位元件定位工作面接触或配合的表面。为提高工件的加工精度,应尽量选设计基准作定位基准。 (3)对刀基准(即调刀基准)由夹 具定位元件的定位工作面体现的,用于调 整加工刀具位置所依据的基准。必须指出, 对刀基准与上述两工艺基准的本质是不 同,它不是工件上的要素,它是夹具定位 元件的定位工作面体现出来的要素(平面、 轴线、对称平面等)。如果夹具定位元件是 支承板,对刀基准就是该支承板的支承工 a) 作面。在图3.3中,刀具的高度尺寸由对 导块2的工作面来调整,而对刀块2工作 面的位置尺寸7.85±0.02是相对夹具体4 的上工作面(相当支承板支承工作面)来 确定的。夹具体4的上工作面是对刀基准, 它确定了刀具在高度方向的位置,使刀具 加工出来的槽底位置符合设计的要求。图 3.3中,槽子两侧面对称度的设计基准是工 b 图3.21 钻模加工时的基准分析

电流互感器准确级大全

精心整理 电流互感器的准确级 一:电流互感器的准确级:电流互感器根据测量误差的大小可划分为不同的准确级。准确级是指在规定的二次负荷变化范围内,一次电流为额定值时的最大电流误差。 带S(special特殊)特殊电流互感器,要求再1%——120%负荷范围内精度足够高,一般取5个负荷点测量其误差小于规定的范围,不带S的是取4个负荷点测量其误差小于规定的范围之内。 0.2级和0.2S级圴是针对测量用电流互感器,其最大的区别是在小负荷时,0.2S级比0.2级有更高的测量精度;主要是用于负荷变动范围比较大,而有些时候几乎空载的场合。在实际负荷电流小于额定电流的30%时,0.2S级的综合误差明显小于0.2级电流互感器。 准确级一次电流为额定 的百分数(%) 误差限值二次负荷变化 范围 电流误差(%)相位差(’) 0.2 10 20 100—120 ±0.5 ±0.35 ±0.2 ±20 ±15 ±10 (0.25-1)S2n 0.5 10 20 100—120 ±1 ±0.75 ±0.5 ±60 ±45 ±30 1 10 20 100—120 ±2 ±1.5 ±1 ±120 ±90 ±60 3 50—120 ±3 不规定(0.5-1)S2n 二:保护型准确级:保护用电流互感器按用途分为稳态保护用(P代表保护)和暂态保护用的两类。 1、护用电流互感器的准确级常用的有5P和10P。由于短路过程中I1和I2的关系复杂,故保护级的准确级是以额定准确限值一次电流下的误差标称的。所谓额定准确限值一次电流即一次电流为额定一次电流的倍数。? 5P20的含义为:该保护CT一次流过的电流在其额定电流的20倍以下时,此CT的误差应小于±5%。 准确级电流误差(%)相位差(’)复合误差(%) 在额定准确限值一次电流下 在额定一次电流下

电流互感器10%误差曲线计算及应用

继电保护用电流互感器10%误差曲线的计算方法及其应用 1 电流互感器的误差 电流互感器,用来将一次大电流变换为二次小电流,并将低压设备与高压线路隔离,是一种常见的电气设备。其等值电路如图1所示,向量图如图2所示。 图中I ’1为折算到二次侧的一次电流,R ’1、X ’ 1为折算到二次侧的一次电阻和漏抗;R 2、X 2为二次电阻和漏抗;I 0为电流互感器的励磁电流。在理想的电流互感器中I 0的值为零,I ’ 1=I 2。但实际 上Z 2 为Z 0 相比不能忽略,所以,0I .=1I .-0I . 2≠; 由电流互感器的向量图中可看出,电流互感器的误差主要是由于励磁电流I 0的存在,它使二次电流与换算到二次侧后的一次电流I ’ 1不但在数值上不相等,而且相位也不相同,这就造成了电流互感器的误差。电流互感器的比误差f= 100I I I ' 1 2 ' 1 ?-;角误差为I ’ 1与I 2间的夹角。 做为标准和测量用的电流互感器,要考虑到在正常运行状态下的比误差和角误差;做为保护用的电流互感器,为保证继电保护及自动装置的可靠运行,要考虑当系统出现最大短路电流的情况下,继电保护装置能正常工作,不致因为饱和及误差带来拒动,因而规程的规定,应用于继电保护的电流互感器,在其二次侧负载和一次电流为已知的情况下,电流误差不得超过10%。

2 电流互感器的10%误差及10%误差曲线 设Ki为电流互感器的变比,其一次侧电流与二次电流有I2=I1/Ki的关系,在Ki为常数(电源互感器I2不饱和)时,就是一条直线,如图3所示。当电流互感器铁芯开始饱和后,与I1/Ki 就不再保持线性关系,而是如图中的曲线2所示,呈铁芯的磁化曲线状。继电保护要求电流互感器的一次电流I1等于最大短路电流时,其变比误差小于或等于10%。因此,我们可以在图中找到一个 电流值I1.b,自I1.b作垂线与曲线1、2分别相交于B、A两点,且BA=0.1I ’ 1(为折算到二次的I1 值)。如果电流互感器的一次电流小于I1,其变比误差就不会大于10%;如果电流互感器的一次电流大于I1,其变比误差就大于10%。 图3 图4 另外,电流互感器的变比误差还与其二次负载阻抗有关。为了便于计算,制造厂对每种电流互感器提供了在m10下允许的二次负载阻抗值Zen,曲线m10=f(Zen)就称为电流互感器的10%误差曲线,如图4所示,已知m10的值后,从该曲线上就可很方便地得出允许的负载阻抗。如果它大于或等于实际的负载阻抗,误差就满足要求,否则,应设法降低实际负载阻抗,直至满足要求为止。当然,也可在已知实际负载阻抗后,从该曲线上求出允许的m10,用以与流经电流互感器一次线绕组的最大短路电流作比较。 通常电流互感器的10%误差曲线是由制造厂实验作出,并且在产品说明书中给出。若在产品说明书中未提供,或经多年运行,需重新核对电流互感器的特性时,就要通过试验的方法绘制电流互

定位误差分析

(3)定位误差的计算 由于定位误差ΔD是由基准不重合误差和基准位移误差组合而成的,因此在计算定位误差时,先分别算出Δ B和ΔY ,然后将两者组合而得ΔD。组合时可有如下情况。 1)Δ Y ≠ 0,Δ B=O时Δ D= Δ B (4.8) 2)ΔY =O,Δ B ≠ O时Δ D= Δ Y (4.9) 3)Δ Y ≠ 0, Δ B ≠ O时 如果工序基准不在定位基面上Δ D=Δ y + Δ B (4.10) 如果工序基准在定位基面上Δ D=Δ y ±Δ B (4.11) “ + ” ,“—” 的判别方法为: ①设定位基准是理想状态,当定位基面上尺寸由最大实体尺寸变为最小实体尺寸 (或由小变大)时, 判断工序基准相对于定位基准的变动方向。 ②② 设工序基准是理想状态,当定位基面上尺寸由最大实体尺寸变为最小实体尺寸 (或由小变大) 时,判断定位基准相对其规定位置的变动方向。 ③③ 若两者变动方向相同即取“ + ” ,两者变动方向相反即取“—”。 -、定位误差及其组成 图9-21a 图9-21 工件在V 形块上的定位误差分析 工序基准和定位基准不重合而引起的基准不重合误差,以表示由于定位基准和定位元件本身的 制造不准确而引起的定位基准位移误差,以表示。定位误差是这两部分的矢量和。 二、定位误差分析计算 (一)工件以外圆在v形块上定位时定位误差计算 如图9-16a所示的铣键槽工序,工件在v 形块上定位,定位基准为圆柱轴心线。如果忽略v形块的制造误差,则定位基准在垂直方向上的基准位移误差

(9-3) 对于9-16中的三种尺寸标注,下面分别计算其定位误差。当尺寸标注为B1时,工序基准和定位基准重合,故基准不重合误差ΔB=0。所以B1尺寸的定位误差为 (9-4) 当尺寸标注为B2时,工序基准为上母线。此时存在基准不重合误差 所以△D应为△B与Δy的矢量和。由于当工件轴径由最大变到最小时,和Δy都是向下变化的,所以,它们的矢量和应是相加。故 (9-5) 当尺寸标注为B3时,工序基准为下母线。此时基准不重合误差仍然是,但当Δy向下变化时,ΔB 是方向朝上的,所以,它们的矢量和应是相减。故 (9-6) 通过以上分析可以看出:工件以外圆在V形块上定位时,加工尺寸的标注方法不同,所产生的定位误差也不同。所以定位误差一定是针对具体尺寸而言的。在这三种标注中,从下母线标注的定位误差最小,从上母线标注的定位误差最大。 四.计算题:(共 10 分) 如图所示套类工件铣键槽,要求保证尺寸94-0.20,分别采用图(b)所示的定位销定位方案和图(c)所示的V形槽定位方案,分别计算定位误差。

电流互感器选配过大或者过小对计量精度有影响吗

电流互感器选配过大或者过小对计量精度有影响吗 Prepared on 22 November 2020

电流互感器选配过大或者过小对计量精度有影响吗是否有影响主要看以下两种情况: 1、电流互感器的一次额定电流选择过大,流过电度表的实际电流就偏小,只要实际电路不低于电度表的“起始” 电流值,计量精度就不受影响的。 2、电流互感器的一次额定电流选择过小,则大电流时容易造成电流互感器的铁芯磁饱和,而使计量误差增大,也容易产生较大的热量。 1、例如:实际的额定电流约 45 A 选择常用的 150 / 5 电流互感器,倍率是 30 倍。当满载时(45 A),二次电流为 45 A ÷ 30 倍= 1.5 A ,计量还是准确的。 2、例如:实际的额定电流约 200 A 选择常用的 150 / 5 电流互感器,就属于过载运行了,满载时容易造成电流互感器的铁芯磁饱和,计量误差增大,也容易产生较大的热量。 追问 第一个二次电流不超过5A计量就是准确的吗谢谢 追答 你好:计量电度表的额定电流为 5 A ,在 5 A 以内是准确的。 追问 谢谢,发布问题的时候忘写采纳奖励分数,我给你补上 追答 不用谢。 追问

那如果把互感器换成500/5又会怎么样 追答 你可以算一下倍率:500 / 5 是100 倍,如果还是 45 A 的实际电流,那么二次输出电流就只有 0.45 A 了,如果高于电度表的起始电流,计量就是正常的,低于电度表的起始电流值,电度表就有可能不转了。 电流互感器如果选型太大或太小造成的误差大吗 保护用电流互感器可数十倍过载,但是,精度很低。 测量用电流互感器一般可过载20%,过载20%以内能保证测量精度。过载量超过20%以后,精度下降,并且可能损坏电流互感器。 电流互感器选型过大的话,对精度会有一定的影响。普通互感器一般要求被测电流在额定电流的30%以上。S级电流互感器在5%以上都能获得较高的精度。 电流互感器的误差产生的原因是什么,如何减少误差 测量误差就是电流互感器的二次输出量I2与其归算到一次输入量I’1的大小不相等、幅角不相同所造成的差值。因此测量误差分为数值(变比)误差和相位(角度)误差两种。 产生测量误差的原因一是电流互感器本身造成的,二是运行和使用条件造成的。 电流互感器本身造成的测量误差是由于电流互感器又励磁电流Ie存在,而Ie是输入电流的一部分,它不传变到二次侧,故形成了变比误差。

数值计算方法第一章

第一章 绪 论 本章以误差为主线,介绍了计算方法课程的特点,并概略描述了与算法相关的基本概念,如收敛性、稳定性,其次给出了误差的度量方法以及误差的传播规律,最后,结合数值实验指出了算法设计时应注意的问题. §1.1 引 言 计算方法以科学与工程等领域所建立的数学模型为求解对象,目的是在有限的时间段内利用有限的计算工具计算出模型的有效解答。 由于科学与工程问题的多样性和复杂性,所建立的数学模型也是各种各样的、复杂的. 复杂性表现在如下几个方面:求解系统的规模很大,多种因素之间的非线性耦合,海量的数据处理等等,这样就使得在其它课程中学到的分析求解方法因计算量庞大而不能得到计算结果,且更多的复杂数学模型没有分析求解方法. 这门课程则是针对从各种各样的数学模型中抽象出或转化出的典型问题,介绍有效的串行求解算法,它们包括 (1) 非线性方程的近似求解方法; (2) 线性代数方程组的求解方法; (3) 函数的插值近似和数据的拟合近似; (4) 积分和微分的近似计算方法; (5) 常微分方程初值问题的数值解法; (6) 优化问题的近似解法;等等 从如上内容可以看出,计算方法的显著特点之一是“近似”. 之所以要进行近似计算,这与我们使用的工具、追求的目标、以及参与计算的数据来源等因素有关. 计算机只能处理有限数据,只能区分、存储有限信息,而实数包含有无穷多个数据,这样,当把原始数据、中间数据、以及最终计算结果用机器数表示时就不可避免的引入了误差,称之为舍入误差. 我们需要在有限的时间段内得到运算结果,就需要将无穷的计算过程截断, 从而产生截断误差. 如 +++=! 21 !111e 的计算是无穷过程,当用 ! 1 !21!111n e n ++++= 作为e 的近似时,则需要进行有限过程的计算,但产生了 截断误差e e n -.

电流互感器工作原理

电流互感器 1、原理 一次电流I 1流过一次绕组,建立一次磁动势 (N 1I 1),亦被称为一次安匝,其中N 1为一次绕组的匝数;一次磁动势分为两部分,其中小一部分用于励磁,在铁心中产生磁通,另一部分用来平衡二次磁动势(N 2I 2),亦被称为二次安匝,其中N 2为二次绕组的匝数。励磁电流设为I 0,励磁磁动势(N 1I 0),亦被称为励磁安匝。平衡二次磁动势的这部分一次磁动势,其大小与二次磁动势相等,但方向相反。磁势平衡方程式如下: 120121I N I N I N ? ? ? += 在理想情况下,励磁电流为零,即互感器不消耗能量,则有 12120I N I N ? ? += 若用额定值表示,则 1212 N N I N I N ? ? =- 其中1N I ? ,2N I ? 为一次、二次绕组额定电流。

额定一次、二次电流之比为电流互感器额定电流比,12N N N I K I = P 1 1I ? P 2 2 I ? Z B 电流互感器工作原理 E 2 11I N ? 22I N ? 22I N ? - 01I N ?

电流互感器的等值电路如下图所示: Z 1 Z 2 1 I ? 2I ? ? Z M 2U ? Z B ' 1 E ? 2E ? 根据电工原理,励磁电流在铁心中建立主磁通,它穿过一次、二次绕组的全部线匝。由于互感器铁心有磁滞和涡流损耗,励磁电流的一部分供给这些损耗,称为有功部分,另一部分用于励磁,称为无功部分。所以励磁电流与主磁通相差角,这个角称为铁损角。主磁通在二次绕组中感应出电动势2E ? ,相位相差90(滞后);则: 222()B E I Z Z ? ? =+ 式中 Z 2---二次绕组的内阻抗, Z 2= R 2 +jX2

定位误差计算

定位误差计算 定位误差计算是工艺设计中经常的事。下面的几个例题属于典型定位条件下的计算。 例题一:如下图所示零件,外圆及两端面已加工好(外 圆直径0 1.050-=D ) 。现加工槽 B ,要求保证位置尺寸 L 和 H ,不考虑槽底面斜度对加工质量的影响。试求: 1)确定加工时必须限制的自由度; 2)选择定位方法和定位元件,并在图中示意画出; 3)计算所选定位方法的定位误差。 解:① 必须限制4个自由度:Z X Z Y ,,, 。 ② 定位方法如下图所示。

③ 定位误差计算: 对于尺寸H : 工序基准是外圆下母线 定位基准是外圆下母线 限位基准是与外圆下母线重合的一条线(也可认为是一个平面) 因此: 基准不重合误差0=?B 基准位移误差0=?Y 所以定位误差0=?DW 同理,对于尺寸L 其定位误差 :0=DW ? 例题二:如下图所示齿轮坯,内孔及外圆已加工合格( 025 .00 35+=φD mm ,0 1.080-=φd mm ),现在插床 上以调整法加工键槽,要求保证尺寸2 .005.38+=H mm 。试计算图示定位方法的定位误差(忽略外圆与内孔同轴度误差)。

解:工序基准是D 孔下母线;定位基准是D 轴中心线;限位基准V 型块的对称中心(垂直方向上)。定位误差计算如下: 1、基准不重合误差:T D /2; 2、基准位移误差:0.707Td 0825 .0025.05.01.07.05.07.0=?+?=?+?=?D d DW T T (mm) 例题三:a )图工件设计图。试分别计算按b )、c )、d )三种定位方式加工尺寸A 时的定位误差。

误差基本知识及中误差计算公式

测量误差按其对测量结果影响的性质,可分为: 一.系统误差(system error) 1.定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均相同或按一定的规律变化,这种误差称为系统误差。 2.特点:具有积累性,对测量结果的影响大,但可通过一般的改正或用一定的观测方法加以消除。 二.偶然误差(accident error) 1.定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均不一定,这种误差称为偶然误差。但具有一定的统计规律。 2.特点: (1)具有一定的范围。 (2)绝对值小的误差出现概率大。 (3)绝对值相等的正、负误差出现的概率相同。 (4)数学期限望等于零。即: 误差概率分布曲线呈正态分布,偶然误差要通过的一定的数学方法(测量平差)来处理。 此外,在测量工作中还要注意避免粗差(gross error)(即:错误)的出现。 §2衡量精度的指标 测量上常见的精度指标有:中误差、相对误差、极限误差。 一.中误差 方差 ——某量的真误差,[]——求和符号。 规律:标准差估值(中误差m)绝对值愈小,观测精度愈高。 在测量中,n为有限值,计算中误差m的方法,有: 1.用真误差(true error)来确定中误差——适用于观测量真值已知时。 真误差Δ——观测值与其真值之差,有: 标准差 中误差(标准差估值), n为观测值个数。 2.用改正数来确定中误差(白塞尔公式)——适用于观测量真值未知时。 V——最或是值与观测值之差。一般为算术平均值与观测值之差,即有: 二.相对误差 1.相对中误差=

2.往返测较差率K= 三.极限误差(容许误差) 常以两倍或三倍中误差作为偶然误差的容许值。即:。 §3误差传播定律 一.误差传播定律 设、…为相互独立的直接观测量,有函数 ,则有: 二.权(weight)的概念 1.定义:设非等精度观测值的中误差分别为m1、m2、…m n,则有: 权其中,为任意大小的常数。 当权等于1时,称为单位权,其对应的中误差称为单位权中误差(unit weight mean square error) m0,故有:。 2.规律:权与中误差的平方成反比,故观测值精度愈高,其权愈大。

定位误差计算解析

3.2.3 定位误差的分析与计算 在成批大量生产中,广泛使用专用夹具对工件进行装夹加工。加工工艺规程设计的工序图则是设计专用夹具的主要依据。由于在夹具设计、制造、使用中都不可能做到完美精确,故当使用夹具装夹加工一批工件时,不可避免地会使工序的加工精度参数产生误差,定位误差就是这项误差中的一部分。判断夹具的定位方案是否合理可行,夹具设计质量是否满足工序的加工要求,是计算定位误差的目的所在。 1.用夹具装夹加工时的工艺基准 用夹具装夹加工时涉及的基准可分为设计基准和工艺基准两大类。设计基准是指在设计图上确定几何要素的位置所依据的基准;工艺基准是指在工艺过程中所采用的基准。与夹具定位误差计算有关的工艺基准有以下三种: (1)工序基准 在工序图上用来确定加工表面的位置所依据的基准。工序基准可简单地理解为工序图上的设计基准。分析计算定位误差时所提到的设计基准,是指零件图上的设计基准或工序图上的工序基准。 (2)定位基准 在加工过程中使工件占据正确加工位置所依据的基准,即为工件与夹具定位元件定位工作面接触或配合的表面。为提高工件的加工精度,应尽量选设计基准作定位基准。 (3)对刀基准(即调刀基准) 由夹具定位元件的定位工作面体现的,用于调整加工刀具位置所依据的基准。必须指出,对刀基准与上述两工艺基准的本质是不同,它不是工件上的要素,它是夹具定位元件的定位工作面体现出来的要素(平面、轴线、对称平面等)。如果夹具定位元件是支承板,对刀基准就是该支承板的支承工作面。在图3.3中,刀具的高度尺寸由对导块2的工作面来调整,而对刀块2工作面的位置尺寸7.85±0.02是相对夹具体 4的上工作面(相当支承板支承工作面)来确定 的。夹具体4的上工作面是对刀基准,它确定了 刀具在高度方向的位置,使刀具加工出来的槽底 位置符合设计的要求。图3.3中,槽子两侧面对 称度的设计基准是工件上大孔的轴线,对刀基准 则为夹具上定位圆柱销的轴线。再如图3.21所 示,轴套件以内孔定位,在其上加工一直径为φ d 的孔,要求保证φd 轴线到左端面的尺寸L 1及孔中心线对内孔轴线的对称度要求。尺寸L 1的 设计基准是工件左端面A ′,对刀基准是定位心 轴的台阶面A ;φd 轴线对内孔轴线的对称度的 设计基准是内孔轴线,对刀基准是夹具定位心轴 2的轴线OO 。 2.定位误差的概念 用夹具装夹加工一批工件时,由于定位不准 确引起该批工件某加工精度参数(尺寸、位置) 的加工误差,称为该加工精度参数的定位误差 (简称定位误差)。定位误差以其最大误差范围 来计算,其值为设计基准在加工精度参数方向上 的最大变动量,用dw 表示。 a) b 图3.21 钻模加工时的基准分析

影响电流互感器误差的因素(精)

影响电流互感器误差的因素 影响电流互感器误差的因素 1.电流互感器的内部参数是影响电流互感器误差的主要因素。 ⑴二次线圈内阻R2和漏抗X2对误差的影响: 当R2增大时比差和角差都增大; X2增大时比差增大,但角差减小。因此要改善误差应尽量减小R2和适当的X2值。由于二次线圈内阻R2和漏抗X2与二次负载Rfh和Xfh比较而言值很小,所以改变R2和X2对误差的影响不大,只有对小容量的电流互感器影响才较显著。 ⑵铁芯截面对误差的影响:铁芯截面增大使铁芯的磁通密度减少,励磁电流减小,从而改善比差和角差。没有补偿的电流互感器在额定条件下铁芯的磁通密度已经很小,所以减少磁通密度也相对减小了导磁系数,使励磁电流减小不多,而且磁通密度越小效果越差。 ⑶线圈匝数对误差的影响: 增加线圈匝数就是增加安匝,增加匝数可以使磁通密度减小,其改善误差的效果比增加铁芯截面显著得多。但是线圈匝数的增加会引起铜用量的增加,同时引起动稳定倍数的减少和饱和倍数的增加。此外,对于单匝式的电流互感器(如穿心型或套管型电流互感器一次线圈只允许一匝)不能用增加匝数的办法改善误差。 ⑷减少铁芯损耗和提高导磁率。在铁芯磁通密度不变的条件下,减少铁芯励磁安匝和损耗安匝也将改善比差和角差,因此采用优质的磁性材料和采取适宜的退火工艺都能达到提高导磁率和减少损耗的目的。铁芯磁性的优劣还影响饱和倍数,铁芯磁性差时饱和倍数较小。 2.运行中的电流互感器的误差 当电流互感器已经定型,其内部参数就确定了,那么它的误差大小将受二次电流(或一次电流)、二次负载、功率因数以及频率的影响。这些因素称为外部因素,在运行中的电流互感器的误差主要受这四个因素影响。 ⑴电流频率的变动对误差的影响比较复杂,一般系统频率变化甚小,其影响可忽略不计。假使频率变化过大,例如额定频率为50Hz的电流互感器用于60Hz的系统中,就应当考虑频率的影响,因为频率变动不但影响铁芯损耗、磁通密度和线圈漏抗的大小,也同时影响了二次侧负载电抗值的大小。 ⑵当一次电流减小时,磁通密度按比例相应减少,但在低磁通密度时,励磁安匝的减少比磁通密度减少要慢,因此比差和角差的绝对值就相对增大。 ⑶电流互感器误差具有以下特征:当一次电流在规定的范围内变化时,二次电流按比例变化,当二次负载阻抗在规定范围内变化时,不影响二次电流的大小。所以当二次负载在额定范围内减少时,磁通密度也减少,由于二次电流不变,励磁电流减小,误差也将减小。电流互感器的出厂说明书一般会标明额定二次负载阻抗值,在运行中其误差应按给定接线方式下的最大二次负载阻抗值来校核。 ⑷二次负载的功率因数增大,也就是Rfh增大,Xfh减小,角差将增大而比差将减少。对于饱和倍数而言,互感器厂家说明书注明的饱和倍数是指功率因数为0.8时的饱和倍数,此值相当于的饱和倍数的“极小值”,因此功率因数无论增大或减小,饱和倍数都增大。 3.减小误差的措施

继电保护用电流互感器10%误差曲线计算方法及应用

继电保护用电流互感器10%误差曲线的计算方法及其应 用 作者:师淑英郭增光常小冰 河北大唐国际王滩发电有限公司 摘要:电流互感器是电力系统中非常重要的一次设备,而掌握其误差特性及10%误差曲线,对于继电保护人员来说是十分必要的,它可避免继电保护装置在被保护设备发生故障时拒动,保证电力系统稳定.可靠的运行,对提高继电保护装置的正确动作率有着十分重要的意义。本文就用在电流互感器二次侧通电流法,如何绘制电流互感器的10%误差曲线,并对其如何应用,加以说明。关键词:电流互感器 10%误差曲线应用 1 电流互感器的误差 电流互感器,用来将一次大电流变换为二次小电流,并将低压设备与高压线路隔离,是

图中I ’1为折算到二次侧的一次电流,R ’1、X ’ 1为折算到二次侧的一次电阻和漏抗;R 2、X 2为二次电阻和漏抗;I 0为电流互感器的励磁电流。在理想的电流互感器中I 0的值为零,I ’ 1 =I 2。但实际上Z 2为Z 0相比不能忽略,所以,0I .=1I .-0I . 2≠; 由电流互感器的向量图中可看出,电流互感器的误差主要是由于励磁电流I 0的存在,它使二次电流与换算到二次侧后的一次电流I ’ 1不但在数值上不相等,而且相位也不相同,这就造成了电流互感器的误差。电流互感器的比误差f= 100I I I ' 1 2 '1 ?- ;角误差为I ’ 1 与I 2间的夹角。 做为标准和测量用的电流互感器,要考虑到在正常运行状态下的比误差和角误差;做为保护用的电流互感器,为保证继电保护及自动装置的可靠运行,要考虑当系统出现最大短路电流的情况下,继电保护装置能正常工作,不致因为饱和及误差带来拒动,因而规程的规定,应用于继电保护的电流互感器,在其二次侧负载和一次电流为已知的情况下,电流误差不得超过10%。 2 电流互感器的10%误差及10%误差曲线 设Ki 为电流互感器的变比,其一次侧电流与二次电流有I 2=I 1/Ki 的关系,在Ki 为常数(电源互感器I 2不饱和)时,就是一条直线,如图3所示。当电流互感器铁芯开始饱和后,与I 1/Ki 就不再保持线性关系,而是如图中的曲线2所示,呈铁芯的磁化曲线状。继电保护要求电流互感器的一次电流I 1等于最大短路电流时,其变比误差小于或等于10%。因此,我们可以在图中找到一个电流值I 1.b ,自I 1.b 作垂线与曲线1、2分别相交于B 、A 两点,且BA =0.1I ’ 1(为折算到二次的I 1值)。如果电流互感器的一次I 1电流,其变比误差就不会大于10%;如果,其变比误差就大于10%。

误差基本知识及中误差计算公式

测量中误差 测量误差按其对测量结果影响的性质,可分为: 一.系统误差(system error) 1.定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均相同或按一定的规律变化,这种误差称为系统误差。 2.特点:具有积累性,对测量结果的影响大,但可通过一般的改正或用一定的观测方法加以消除。 二.偶然误差(accident error) 1.定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均不一定,这种误差称为偶然误差。但具有一定的统计规律。 2.特点: (1)具有一定的范围。 (2)绝对值小的误差出现概率大。 (3)绝对值相等的正、负误差出现的概率相同。 (4)数学期限望等于零。即: 误差概率分布曲线呈正态分布,偶然误差要通过的一定的数学方法(测量平差)来处理。 此外,在测量工作中还要注意避免粗差(gross error)(即:错误)的出现。

§2衡量精度的指标 测量上常见的精度指标有:中误差、相对误差、极限误差。 一.中误差 方差 ——某量的真误差,[]——求和符号。 规律:标准差估值(中误差m)绝对值愈小,观测精度愈高。 在测量中,n为有限值,计算中误差m的方法,有: 1.用真误差(true error)来确定中误差——适用于观测量真值已知时。 真误差Δ——观测值与其真值之差,有: 标准差 中误差(标准差估值), n为观测值个数。 2.用改正数来确定中误差(白塞尔公式)——适用于观测量真值未知时。 V——最或是值与观测值之差。一般为算术平均值与观测值之差,即有: 二.相对误差 1.相对中误差=

2.往返测较差率K= 三.极限误差(容许误差) 常以两倍或三倍中误差作为偶然误差的容许值。即: 。 §3误差传播定律 一.误差传播定律 设、…为相互独立的直接观测量,有函数 ,则有: 二.权(weight)的概念 1.定义:设非等精度观测值的中误差分别为m1、m2、…m n,则有: 权其中,为任意大小的常数。 当权等于1时,称为单位权,其对应的中误差称为单位权中误差 (unit weight mean square error)m0,故有:。 2.规律:权与中误差的平方成反比,故观测值精度愈高,其权愈大。

相关文档
相关文档 最新文档