文档库 最新最全的文档下载
当前位置:文档库 › 花瓶墩计算书

花瓶墩计算书

花瓶墩计算书
花瓶墩计算书

花瓶墩桥墩计算书

花瓶墩分类:

本线路花瓶墩分为:独柱花瓶墩、双柱花瓶墩、三柱花瓶墩、四柱花瓶墩、五柱花瓶墩。

桥墩计算项目表

1、花瓶墩墩头抗剪计算

1)统计基本信息

基本信息表

2)荷载

各墩柱取最大支座反力进行计算(基本组合)

取支座中心为最不利截面;支座反力按照均匀荷载分布于支座垫石范围;

3)计算图示

墩柱模板计算书

武汉美高钢模板有限公司
项目名称:中铁六局合福铁路工程
墩柱模板计算书
工程编号:GLTL-DZ-110328
设 计:
王奎
审 核:
批 准:
武汉美高钢模板有限公司
2011 年 3 月 28 日
1

中铁六局合福铁路工程墩柱模板
武汉美高钢模板有限公司
计 算 书
一、编制依据: 编制依据: 依据 1、 《铁路桥涵设计基本规范》(TB10002.1-2005) 2、 《钢结构设计规范》(GB50017—2003) 3、 《建筑钢结构焊接技术规程》 JGJ81-2002
4、 《钢筋混凝土工程施工及验收规范》(GBJ204-83) 5、 《铁路组合钢模板技术规则》(TBJ211-86) 6、 《铁路桥梁钢结构设计规范》(TB10002.2-2005) 7、 《铁路桥涵施工规范》(TB10203-2002) 8、 《客运专线铁路桥涵工程施工技术指南》(TZ213-2005) 9、 《建筑结构静力计算手册》 ( 第二版 ) 10、 《预应力混凝土用螺纹钢筋》 (GB/T20065-2006) 二、计算参数取值及要求 1、混凝土容重:25kN/m3; 2、混凝浇注入模温度:25℃; 3、混凝土塌落度:160~180mm; 4、混凝土外加剂影响系数取 1.2; 5、混凝土浇注速度:2m/h; 6、设计风力:8 级风; 7、模板整体安装完成后,混凝土泵送一次性浇注。
三、设计计算指标采用值 1、钢材物理性能指标 弹性模量 E=2.06×105N/mm ,质量密度ρ=7850kg/m ;
2 3
2

花瓶墩柱计算书

目录 一、基本资料 (1) 二、面板检算 (2) 三、竖肋检算 (4) 四、背架检算 (4) 五、对拉拉杆检算 (5) 六、连接螺栓检算 (5)

一、基本资料 1、模板基本尺寸 桥墩浇筑时采用全钢模板,模板由平面模板和平面接倒角的端侧莫组成,模板设计高度按全高一次浇注配模,最高墩(浇注高度最大值)H=8.8m ,面板为h=6㎜厚钢板;竖肋[8,间距为325mm ;背架为双[14b (较宽部分不适合对拉拉杆则用[16b ),间距为1000mm ;对拉拉杆Ф30圆钢,间距为1250mm ;说明:间距均取值最大值。综合计算时,取截面最大,型钢最小进行计算。 2、模板计算主要参数 (1)砼自重c γ=2.5 t/m 3=25KN/m 3; (2)钢材弹性模量E s =2.1×105 MPa ; 重力加速度取10N/kg ; (3)容许挠度:1/400 (4)Q235材料强度设计值: 抗拉、压和弯:[f]=215Mpa 抗剪:[f v ]= 125Mpa (5)恒荷载分项系数1.2 (6)活荷载分项系数1.4 (7)施工最高高度:按平坡截面取值H=8.8 m 3、计算荷载 当采用内部振捣器,混凝土的浇筑速度在6m/h 以下时,新浇的普通混凝土作用于模板的最大侧压力可以按照下列二式计算,并取二式中的较小值。 2 1 21022.0v t F c ββγ= ⑴

h F c γ= ⑵ 式中: F ─新浇筑混凝土对模板的最大侧压力(kN/m 2); v ─浇注速度(m/h );取4m/h ; γc ─混凝土的重力密度(kN/m 3);取25KN/m 3 ; 0t ─新浇混凝土的初凝时间,取200/(T+15),取0t =5h ; T ─混凝土的入模温度,取25℃; H ─混凝土侧压力计算总高度(m );取8.8m ; β1─外加剂影响修正系数,不掺外加剂时取为1.0,掺具有缓凝作 用的外加剂时取为1.2;取β 1 =1.2; β2─混凝土坍落度影响修正系数,当坍落度小于30mm 时, 取为0.85;50-90mm 时,取为1.10;110-150mm 时,取为1.15;取β 2 =1.15 1 2 012132 2 0.220.2225/5 1.2 1.154/76/c F t v kN m h m h kN m γββ==?????= 32c F γh 25/m 8.8220kN/m kN m ==?= 取F1=76 kN/m 2。 混凝土有效压头高度:H1=F1/γc=76/25=3 m ; 均布荷载计算H2=8.8m-3m=5.8m ; 倾倒混凝土产生的冲击荷载:F2=4km/m 2; 振捣混凝土产生的水平荷载平均值:F3=4km/m 2; 二、面板检算 面板支承于横肋和竖肋之间,竖肋间距为32.5cm ,计算有效压头下最

墩柱模板计算书midascivil

墩柱模板计算书 一、计算依据 1、《铁路桥涵设计基本规范》(TB10002.1-2005) 2、《客运专线铁路桥涵工程施工技术指南》(TZ213-2005) 3、《铁路混凝土与砌体工程施工规范》(TB10210-2001) 4、《钢筋混凝土工程施工及验收规范》(GBJ204-83) 5、《铁路组合钢模板技术规则》(TBJ211-86) 6、《铁路桥梁钢结构设计规范》(TB10002.2-2005) 7、《铁路桥涵施工规范》(TB10203-2002) 8、《京沪高速铁路设计暂行规定》(铁建设[2004]) 9、《钢结构设计规范》(GB50017—2003) 二、设计参数取值及要求 1、混凝土容重:25kN/m3; 2、混凝土浇注速度:2m/h; 3、浇注温度:15℃; 4、混凝土塌落度:16~18cm; 5、混凝土外加剂影响系数取1.2; 6、最大墩高17.5m; 7、设计风力:8级风; 8、模板整体安装完成后,混凝土泵送一次性浇注。 三、荷载计算 1、新浇混凝土对模板侧向压力计算 混凝土作用于模板的侧压力,根据测定,随混凝土的浇筑高度而增加,当浇筑高度达到某一临界时,侧压力就不再增加,此时的侧压力即为新浇筑混凝土的最大侧压力。侧压力达到最大值的浇筑高度称为混凝土的有效压头。新浇混凝土对模板侧向压力分布见图1。

图1新浇混凝土对模板侧向压力分布图 在《铁路混凝土与砌体工程施工规范》(TB10210-2001)中规定,新浇混凝土对模板侧向压力按下式计算: 在《钢筋混凝土工程施工及验收规范》(GBJ204-83) 中规定,新浇混凝土对模板侧向压力按下式计算: 新浇混凝土对模板侧向压力按下式计算: Pmax=0.22γt 0K 1K 2V 1/2 Pmax =γh 式中: Pmax ------新浇筑混凝土对模板的最大侧压力(kN/m2) γ------混凝土的重力密度(kN/m3)取25kN/m3 t0------新浇混凝土的初凝时间(h ); V------混凝土的浇灌速度(m/h );取2m/h h------有效压头高度; H------混凝土浇筑层(在水泥初凝时间以内)的厚度(m); K1------外加剂影响修正系数,掺外加剂时取1.2; K2------混凝土塌落度影响系数,当塌落度小于30mm 时,取0.85;50~90mm 时,取1;110~150mm 时,取1.15。 Pmax=0.22γt0K1K2V1/2=0.22×25×8×1.2×1.15×21/2=85.87 kN/m2 h= Pmax/γ =87.87/25=3.43m max 72722 40kPa 1.62 1.6P υυ?===++

关于支墩推力的计算

关于室外直埋管固定墩选择的计算 室外直埋保温管热胀冷缩补偿工艺中,《施-S-04-02市政管线设计说明5.3附件》要求:敷设在市政管沟内的热水管每隔75米设复式拉杆式轴向型不锈钢波纹补偿器;组团内热水管道在地下室外边沿设不锈钢球形伸缩器;其工作压力应与所在管道工作压力一致。其它部位热水管道采用“门”形补偿器和管道敷设的自然弯曲吸收管道的自然变形。 直埋管道的“门”形补偿器设置时需同时配合设置固定支架、固定墩,可据各直埋管的规格,计算各单管推力后,依据《05R410 热水管道直埋敷设》确定固定墩尺寸。下面以“不锈钢无缝管57*3”为例,进行单管推力计算。 根据《CJJ /T81-98城镇直埋供热管道工程技术规程》附录E 确定,单管推力以max H=F l N +计算。 其中:max F ——轴线方向每米管道的摩擦力(N/m ); N ——管道工作循环最高温度下,锚固段内的轴向力(N/m ); 一、 抗外压稳定临界压力P cr (Mpa ) 依据《水电站压力钢管设计规范 DL t5141-2001》, 1.70.25612t P cr s r δ=() 其中:P cr ——抗外压稳定临界压力,Mpa ; t ——钢管壁计算厚度,mm ; r ——钢管内半径,mm ;

s δ——钢材屈服点,Mpa ;查《水电站压力钢管设计规范 DL t5141-2001》中表6.1.4-1可知,s δ=235 Mpa 。 故:323563.0225.5 1.70.25612MPa P cr ?==?()() 二、 径向均布外压力标准值ok P (Mpa ) 依据《水电站压力钢管设计规范 DL t5141-2001》, K P P c cr ok = 其中:K c ——抗外压安全稳定系数,1.8; 则:P ok =35.01(Mpa ) 三、 钢管管壁环向应力t σ(Mpa ) 依据《水电站压力钢管设计规范 DL t5141-2001》, ok P r t t σ?=- 其中:P cr ——抗外压稳定临界压力,Mpa ; t ——钢管壁计算厚度,mm ; r ——钢管内半径,mm ; P ok ——径向均布外压力标准值。 故:ok P r 35.0125.5297.61MPa t 3t σ??=- =-=-() 四、 钢管轴向推力(N ) 依据《CJJ /T81-98城镇直埋供热管道工程技术规程》, ()610t N aE t t A 10N νσ=--?????() 其中:a ——钢管的线性膨胀系数(m/m ·℃),查“常用钢材的弹性模量和线性膨胀系数表”可知,a=612.210-?(m/m ·℃); E ——钢材的弹性模量(Mpa ),查“常用钢材的弹性模量

墩身模板计算:

墩身模板计算书 墩身模板按双向面板设计,6mm钢板作为小肋,槽8作为大肋,2槽16作为围檩。 1、面板计算: 面板按最不利考虑,按三边固结,一边简支计算。 (1)强度验算: 取10mm宽板条作为计算单元,荷载为混凝土侧压力按50KN/m2=0.05N/mm2 q=0.05×10=0.5N/mm 因1 x /ly=1 M x0 =-0.06×0.5×4502=6075N/mm M y0 =-0.055×0.5×4502=5569N/mm 截面抵抗矩:W=bh2/6=10×62/6=60mm3 O X =M X /W=6075/60=101N/mm2<215 (2)挠度验算: f max =0.0016(ql4/K) K=Eh3b/12(1-V2)=2.06×105×63×10/12(1-0.32)=407×105=4.07×107 f max =0.0016×(0.5×4504/4.07×107)=0.0016(0.5×4.1×103/4.07)=0.81mm 2、小肋计算: 因大肋间距450mm,小肋焊在大肋上,按两端固定梁计算。 q=0.05×452=22.6N/mm (1)强度验算: 小肋与面板共同作用,计算板的有效宽度。 组合截面形式: y 1 =S/A S=6×452×3+80×6×(40+6) =30216mm3 A=452×6+80×6=3192mm2 y 1 =S/A=9.5mm 截面挠性矩:I=452×63/12+452×6×(9.5-3)2+80×63/12+80×6×(76.5

-40)2 =8136+114582+1440+639480 =763638mm 4 W 上=I/y 1=80383mm 3 W 下=I/y 2=9982mm 3 弯矩按两端固定梁计算: M=-(ql 2/12)=-1/12×22.6×4502=381375N.mm σ下=M/W 下=381375/9982=38.2N/mm 2 根据σ=38.2N/mm 2 b/h=450/6=75 查表 b 1/h=65 有效板宽b 1=65×6=390mm S=390×6×3+80×6×46=29100mm 3 A=2820 mm 2 y 1=S/A=10.3mm y 2=75.7mm I=390×63/12+390×6×(10.3-3)2+80×63/12+80×6×(75.7-40)2 =7020+124699+1440+611755 =744914mm 4 W 上=I/y 1=744914/10.3=72322mm 3 W 下=9840mm 3 σ下=I/w 下=744914/9840=757N/mm 2<215 (2)挠度验算 W =ql 4/384EI=22.6×4504/(384×205×105×744914)=22.6×4.1×105/384×2.05×744914 =0.7mm 3、大肋计算: (1)计算简图 围檀是大肋的支承,可简化三跨连续梁 q=450×0.05=22.5N/mm (2)强度验算: 板肋共同作用确定面板存放宽度

9米路宽30m连续箱梁下部结构计算书

桥涵通用图 30米现浇预应力混凝土箱梁 下部构造(路基宽9.0米,R=80m) 计 算 书 计算:汪晓霞 复核: 审核: 二〇一九年八月

第一部分基础资料 一、计算基本资料 1技术标准与设计规范: 1)中华人民共和国交通部标准《公路工程技术标准》(JTG B01-2014) 2)中华人民共和国交通部标准《公路桥涵设计通用规范》(JTG D60-2015) 3)中华人民共和国交通部标准《公路钢筋混凝土及预应力混凝土桥涵设计规 范》(JTG 3362-2018) 4)交通部标准《公路桥涵地基与基础设计规范》(JTG D63-2007) 2桥面净空:净-8.0米 3汽车荷载:公路Ⅰ级,结构重要性系数1.1 4材料性能参数 1)混凝土C30砼:墩柱、墩柱系梁, 主要强度指标: 强度标准值f ck=20.1MPa,f tk=2.01MPa 强度设计值f cd=13.8MPa,f td=1.39MPa 弹性模量E c=3.0x104Mpa 2)普通钢筋 a)HPB300钢筋其主要强度指标为: 抗拉强度标准值f sk=300MPa 抗拉强度设计值f sd=250MPa 弹性模量E s=2.1x105MPa b)HRB400钢筋其主要强度指标为: 抗拉强度标准值f sk=400MPa 抗拉强度设计值f sd=330MPa 弹性模量E s=2.0x105MPa c)HRB500钢筋其主要强度指标为: 抗拉强度标准值f sk=500MPa

抗拉强度设计值f sd=415MPa 弹性模量E s=2.0x105MPa 5主要结构尺寸 上部结构为2×30m~4×30m一联,现浇连续预应力箱形梁。每跨横向设2个支座。 桥墩墩柱计算高取10、15、17米,直径1.4、1.6米。因无法预计各桥的实际布置情况及地形、地质因素,墩顶纵向水平力,分别按2跨一联、3跨一联、4跨一联,墩柱取等高度及等刚度计算。应用本通用图时,应根据实际分联情况,核实桥墩构造尺寸及配筋是否满足受力要求。本次验算不含桩基计算。 二、计算采用程序 下部结构计算数据采用桥梁博士对上部结构的分析结果。 三、计算说明与计算模型 1.计算说明 计算中,外荷载数据取自上部结构电算结果。 2.桥墩计算模型 根据上部箱梁计算所得相关数据,进行手工计算。 第二部分墩柱计算结果 Ⅰ、墩柱计算 按2跨一联、3跨一联、4跨一联分别进行计算,一联两端为桥台,中间为双柱式墩桥台上设活动支座,桥墩墩顶均为盆式橡胶支座,一排支座为2个。桥墩墩柱D1=1.4、1.6m。 经核算2X30米箱梁下部因水平力(主要是制动力、离心力)过大,采用双圆柱墩无法满足受力要求,故墩柱形式拟采用花瓶墩,不进行本次双圆柱墩计算分析。经对3X30米及4X30米箱梁下部受力分析比较,以3跨一联下部构造双圆柱墩计

水平垂直弯头支墩计算书

水平、垂直弯头支墩计算书 1.引言 本计算书为不同弯头的支墩尺寸计算提供了相关数据。 2.流体推力 2.1 弯头处的推力合力 假设弯头顶角为β(用百分度表示),横截面积为S,其所受流体压力为P。 作用于弯头两侧截面之间结构上的力分别为F p1和F P2,支墩的反作用力为R。在此结构上套用动量定理可得: 该弯头顶角为β,用百分度表示,其补角为α,即: 合力R由次可得:

2.2 管道的压力 流体推力随管道压力而发生变化,此压力存在一个正常值,即为管道的运行压力,用PS表示,此外还有一个较大的值,为管道的试验压力,用PE表示。管道的试验压力导致最大的流体推力。 3.支墩 支墩的形状取决于其所受合力的方向。 当为水平弯头时,合力位于水平方向,我们称该支墩为水平支墩。 当为垂直弯头时,分为两种情况,合力朝上时,我们称该支墩为垂直向上支墩,反之,当合力朝下,我们称之为下部垂直支墩垂直向下支墩。 3.1 水平支墩 3.1.1 水平支墩的一般形状 水平支墩的一般形状如下图所示。支墩之上需要铺设一定厚度的回填料(厚度用h表示)。 3.1.2稳定性的研究 支墩稳定性研究类似于挡土墙稳定性的研究,需检查其防滑稳定性、倾覆稳定性和基础稳定性。 根据弯头的位置,关于施工现场土壤力学特性的相关假设可根据地质研究报告确定:比重,内摩擦角,黏附系数Co:

●比重= 1,6 t/m3 ●内摩擦角=30° 作用于支墩上的力 下图呈现的便是支墩的受力情况: h回填↓超负荷 对支墩受力总结如下: ●P m为支墩的自重 ●P r为回填料的重量 ●F ph为流体推力 ●F Q1为超负荷支墩作用力 ●F Q2为与基座内壁相接触的土壤支墩作用力 N代表竖直方向上的合力: B代表支墩作用合力: 由于超负载而产生且作用在支墩壁中间位置的作用力可按照以下公式进行计算:

墩柱模板计算分析(实心)Word版

实心墩墩身钢模计算书 一、工程简介 京沪高铁六标五工区第四作业工区位于昆山境内,线路起点DK1252+017.79,终点DK1256+911.65,里程长度4.89km。 主要包括五座连续梁桥,分别为:跨娄江连续梁拱(70m+136m+70m)、跨沪宁铁路连续梁(40m+72m+40m)、跨江浦路连续梁(40m+72m+40m)、跨朝阳西路连续梁(40m+56m+40m)、跨通澄南路连续梁(40m+56m+40m)。钻孔桩1552根、承台140个、墩身140个,主要为矩形空心墩,双柱墩及实体墩。 二、计算分析内容: 1、墩身模板强度验算 2、墩身模板刚度分析 三、分析计算依据 1、钢结构设计规范:GB50017-2003 2、建筑工程大模板技术规程:JGJ74-2003 3、全钢大模板应用技术规范:DBJ01-89-2004 4、建筑工程模板施工手册杨嗣信中国建筑工业出版社 四、模板设计构件规格及布置 1、面板:δ6 2、竖肋:Ⅰ10,布置间距400mm,法兰:δ16×100 , 抱箍:[16 模板具体构造见后附图。 五、荷载分析

1、计算初值 浇注速度V=1m/h,混凝土溶重γ=25KN/m3,混凝土初凝时间t0=17h。 外加剂影响修正系数:β1=1.2 β2=1.15,混凝土浇注层的高度H=4m 2、荷载计算 ⑴按下列二式计算,取其中最小值: F=0.22γt0β1β2V1/2 =0.22×2.5×104×17×1.2×1.15×11/2 =1.29×105(N/m2) F=γH=2.5×104×4=1×105(N/m2) 取F1=1×105(N/m2) 其中:γ—砼密度,取γ=2.5×104 N/m3 t0—砼初凝时间,取t0 =17h β1—外加剂影响修正系数,不掺外加剂取β1=1.0, 掺具有缓凝作用外加剂取β1=1.2,这里取1.2 β2—砼坍落度影响修正系数,坍落度小于3cm,取0.85, 5cm~9cm 时取1.0, 11cm~15cm时取1.15, 这里取1.15 ⑵泵送混凝土浇注施工时(T>10℃)对侧面横板压力 F2=4.6V1/4 =4.6×1 =4.6×103(N/m2) ⑶振捣混凝土时对侧面横板的压力 F3=4×103(N/m2) ⑷侧面横板即承受的总压力

最新墩柱模板计算书

墩柱模板计算书

墩柱模板计算书

2010-03-10

*设计、施工规范* 模板的计算参照《建筑施工手册》第四版、《建筑施工计算手册》江正荣著、《建筑结构荷载规范》(GB 50009-2001)、《混凝土结构设计规范》GB50010-2002、《钢结构设计规范》(GB 50017-2003)、《公路桥涵设计通用规范》(JTJD60-2004)等规范。 根据规范,当采用溜槽、串筒或导管时,倾倒混凝土产生的荷载标准值为2.00kN/m2; 本计算数据采用贵单位给出的施工图纸中标准节段桥墩. *设计计算条件* 1.混凝土坍落度:150mm; 2.混凝土入模温度:25℃; 3. 混凝土初凝时间:6小时; 4.混凝土浇筑速度:约60.0m3/h; 一、参数信息 1.基本参数 内楞间距(mm):320; 外楞间距(mm):1000; 外楞设对拉螺杆,对拉螺栓直径(mm):Φ25精轧螺纹钢(fy=785 MPa); 模板连接螺栓采用4.8级M20螺栓. 2.内楞信息 内楞材料: 槽钢100×48×10.008kg/m; Ix = 198cm4, Wx = 39.7 cm3, 3.外楞信息 外楞材料:圆弧段:槽钢 2[280×84×35.823 kg/m; Ix = 2x5130cm4, Wx = 2x366 cm3, 4.面板参数

面板类型:钢面板;面板厚度(mm):6.00; Ix = 1.8cm4, Wx = 6.0 cm3, A = 0.006m2 (取100cm长为计算单元) E = 210 GPa 5.对拉螺杆参数 对拉螺杆采用Φ25精轧螺纹钢Φ25 x 5000 mm 二、模板荷载标准值计算 按《施工手册》,新浇混凝土作用于模板的最大侧压力,按下列公式计算,并取其中的较小值: 其中γ -- 混凝土的重力密度,取24.000kN/m3; t -- 新浇混凝土的初凝时间,可按现场实际值取,输入0时系统按200/(T+15)计算,得5.0h,本工程去6.0h; T -- 混凝土的入模温度,取25℃; V -- 混凝土浇筑速度(m/h); H -- 混凝土侧压力计算位置处至新浇混凝土顶面的总高度(m); β1-- 外加剂影响修正系数,取1.2; β2-- 混凝土坍落度影响修正系数,当坍落度小于30mm时,取0.85,50-90mm时取1.0,110-150mm时取1.15。 根据以上两个公式计算的新浇筑混凝土对模板的最大侧压力F; 有效压力高度:h =

D匝道桥花瓶墩及支架计算

D匝道桥花瓶墩及支架 计算 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

D匝道桥花瓶墩支架及模板计算 计算:秦茂禄 审核:张川 2010年12月

D匝道桥花瓶墩支架及模板计算 计算依据:《路桥施工计算手册》、《建筑施工脚手架实用手册》 一、模板、支架受力分析 1、D匝道桥6#墩,是整个D匝道桥中花瓶墩身和墩帽截面尺寸最大的一个桥 墩,本花瓶墩支架及模板的计算具有代表性。 2、花瓶墩身及墩帽定型钢模,由专业的钢模生产厂家重庆特种起重机械制造 有限公司钢模公司生产,模板、对拉杆及连接高强螺栓的受力就不用再进 行计算了,都满足设计及规范要求。 3、花瓶墩身采用翻模施工,其模板最多一次可安装3节,每节2.1m,共计 6.3m高,按照安装3节模板计算其支架受力。 4、花瓶墩帽一次性浇筑砼,按照安装全部模板计算其支架受力。 二、花瓶墩身扣件式支架计算 1、小横杆计算 横桥向:钢管立柱的纵向间距为,横向间距为。 q=××6(钢模自重)+2××(倾倒、振捣砼荷载)=m W=×103mm3 E=×105Mpa I=×105mm4 弯曲强度: σn=ql2/10W=×5112/10××103=<[σw]=215MPa 满足强度要求 抗弯强度: f=ql4/150EI=×5114/150××105××105=0.134mm<3mm 满足变形要求 顺桥向:钢管立柱的纵向间距为,横向间距为。 q=××2(钢模自重)+2××(倾倒、振捣砼荷载)=m W=×103mm3 E=×105Mpa I=×105mm4 弯曲强度: σn=ql2/10W=×5722/10××103=<[σw]=215MPa 满足强度要求 抗弯强度: f=ql4/150EI=×5724/150××105××105=0.290mm<3mm 满足变形要求 2、大横杆计算

支架体系及临时支墩计算书

跨牤牛河32.6+48+32.6m 连续梁 支架体系及临时支墩计算书 一、0#块支架体系检算 1.支架设计 0#块采用φ48mmWDJ 碗扣型多功能钢管脚手架搭设满堂支架现浇,支架直接支承于承台顶面。立杆配置可调底座,立杆横桥向间距:翼缘板下为(4×90+60)cm 、腹板下为(4×30)cm 、底板下为(5×60)cm ,立杆顺桥向间距为(17×60)cm 。横杆步距全为120cm 。顶杆配置顶托,顶托上设10×12cm 纵向分配方木,其上设10×10cm 横向分配方木,横向方木间距30cm (腹板下为20cm )。具体布置见《跨牤牛河连续梁0#支架布置图》。 底模采用胶合板,侧模、翼缘板采用挂篮模板,内模(横隔板模板划定为内模)采用组合钢模板,堵头模板采用自制大块钢模板。外模大楞采用[10槽钢对口焊接而成,间距80cm 。内模大楞采用10×10cm 方木,间距80cm ;横隔板内模大楞间距控制在50cm 左右,拉杆采用φ20精轧螺纹钢筋。 主要检算翼缘模板、底模板及横向分配方木、侧模板及背方、纵向分配方木、立杆的强度稳定性。 2.荷载情况 模板计算荷载包括:模板及支架自重;新浇砼自重(含钢筋重量);施工人员及施工设备荷载;新浇砼对模板侧压力、倾倒砼时产生的荷载及振捣产生的荷载。 模板、支架等自重:2 1/2m KN q =; 新浇钢筋砼自重:32/26m KN q =; 施工人员及运输机具荷载: 23/5.2m KN q = 新浇砼对模板产生的侧压力按2 1 21022.0υββγt p =和 H p γ=计算,取二式中的较 小值。 倾倒混凝土时产生的竖向荷载:2 4/0.2m KN q =; 振捣混凝土时产生的竖向荷载: 25/0.2m KN q =; 振捣荷载,对垂直面每平方米按KPa 0.4计算; 3.模板面板检算

圆柱墩模板受力计算书

圆柱墩模板受力计算书

广东云浮(双凤)至罗定(榃滨)高速公路工程圆柱墩模板受力计算书 广西壮族自治区公路桥梁工程总公司 广东云浮至罗定高速公路第四合同段项目部 2011年11月

目录 1、圆柱墩设计概况 ------------------------------------------2 2、受力验算依据 --------------------------------------------3 3、圆柱墩模板方案 ------------------------------------------3 4、模板力学计算 --------------------------------------------3 4.1、模板压力计算 --------------------------------------3 4.2、面板验算 ------------------------------------------3 4.3、横肋验算 ------------------------------------------4 4.4、竖肋验算 ------------------------------------------4 4.5、螺栓强度验算 --------------------------------------5

圆柱墩模板受力计算书 1、圆柱墩设计概况 本标段范围内共设有竹沙大桥、国道G324跨线桥、双莲塘大桥、小垌大桥、及更大桥、培岭1#桥、培岭2#桥、培岭3#桥等8座大桥,共有圆柱墩149条,根据墩柱高度不同,圆柱墩直径有1.1m、1.3m、1.4m、1.6m、

桥墩模板计算

3#墩墩身模板计算书 一、基本资料: 1.桥墩模板的基本尺寸 桥墩浇筑时采用全钢模板,模板由平面模板和平面模板带半弧模板对接组成,单块模板设计高度为2250mm,面板为h=6㎜厚钢板;竖肋[10#,水平间距为L1=300mm;横肋为10mm厚钢板,高100mm,竖向间距L2=500mm;背楞:平面模板为双根[20#槽钢、平面模板带半弧模板为双根[14#槽钢,纵向间距为:800mm; 2.材料的性能 根据《公路桥涵施工技术规范JTG/T F50-2011》和《钢结构焊接规范GB 5066-2011》的规定,暂取: 砼的重力密度:26 kN/m3;砼浇筑时温度:10℃;砼浇筑速度:2m/h;不掺外加剂。 钢材取Q235钢,重力密度:78.5kN/m3;容许应力为215MPa,不考虑提高系数;弹性模量为206GPa。 3.计算荷载 对模板产生侧压力的荷载主要有三种: 1)振动器产生的荷载:4.0 kN/m2;或倾倒混凝土产生的冲击荷载: 4.0km/m2;二者不同时计算。 2)新浇混凝土对模板的侧压力; 荷载组合为:强度检算:1+2;刚度检算:2 (不乘荷载分项系数) 当采用内部振捣器,混凝土的浇筑速度在6m/h以下时,新浇的普通混凝土作用于模板的最大侧压力可按下式计算(《桥梁施工工程师手册》P171杨文渊): h Pγ =(1) k 当v/T<0.035时,h=0.22+24.9v/T; 当v/T>0.035时,h=1.53+3.8v/T; 式中:P-新浇混凝土对模板产生的最大侧压力(kPa);

h -有效压头高度(m ); v -混凝土浇筑速度(m/h ); T -混凝土入模时的温度(℃); γ-混凝土的容重(kN/m 3) ; k -外加剂影响修正系数,不掺外加剂时取k=1.0,掺缓凝作用的外加剂时k=1.2; 根据前述已知条件: 因为: v/T=2.0/10=0.2>0.035, 所以 h =1.53+3.8v/T=1.53+3.8×0.2=2.29m 最大侧压力为:h k P γ==26×2.29=59.54kN/㎡ 检算强度时荷载设计值为:='q 1.2×59.54+1.4×4.0=77 kN/m 2; 检算刚度时荷载标准值为:=''q 59.54 kN/m 2; 4. 检算标准 1) 强度要求满足钢结构设计规范; 2) 结构表面外露的模板,挠度为模板结构跨度的1/400; 3) 钢模板面板的变形为1.5mm ; 4) 钢面板的钢楞的变形为3.0mm ; 二、 面板的检算 1. 计算简图 面板支承于横肋和竖肋之间,横肋间距为50cm ,竖肋间距为30cm ,取横竖肋间的面板为一个计算单元,简化为四边嵌固的板,受均布荷载q ;则长边跨中支承处的负弯矩为最大,可按下式计算: y x l l Aq M 2'= (2) 式中:A -弯矩计算系数,与y x l l /有关,可查《建筑结构静力计算实用手册(第二版)》(中国建筑工业出版社2014)P154表5.2-4得A=0.0367; y x l l 、-分别为板的短边和长边; 'q -作用在模板上的侧压力。 板的跨中最大挠度的计算公式为:

桥梁工程中花瓶墩的设计分析

桥梁工程中花瓶墩的设计分析 摘要:由于社会经济的不断发展,城市规模的日益扩大,在很多高架桥建设中,都逐渐开始重视景观方面的需求;花瓶墩由于具有美观性而在城市高架桥建设中得到了广泛使用,不过其墩顶部位由于扩头受力较为复杂,因此在设计计算方面存在着很大的困难。基于此,本文结合实例对桥梁工程中花瓶墩的设计进行了分析。 关键词: 桥梁工程;花瓶墩;设计分析 Abstract: Many viaduct construction due to socio-economic development, the growing scale of the city, are gradually starting to focus on the needs of landscape; vase pier because of aesthetics has been widely used in urban viaduct construction, but the pier at the top bit expanding head force is more complex, and therefore there are great difficulties in the design calculations. Based on this, With examples vase pier of bridge engineering design analysis. Keywords: Design and analysis of bridge engineering; vase pier; 由于社会经济的日益发展,致使人们对桥梁建设提出了更高的要求,除了注重经济实用性外,还将重点放在了以环境协调,经济以及技术合理性为基础的景观效果方面。如果想设计出更加美观的桥梁,和附近环境更加协调的桥梁,则桥梁上部以及墩台结构是否美观合理是非常关键的。现今得到广泛使用的箱梁以及T梁等这些梁式桥结构,对桥梁上部结构设计是否平淡以及单调有直接的影响,不易于进行大幅度的改变。不管是在我国还是在国际上处于不断变化中的桥梁,其实是以桥墩结构为基础,在这之上结合了多种新型结构形式构建而成的一种结构。因此城市中很多桥梁墩台设计逐渐抛弃了以往的那种结构,即重力式圬工结构,逐渐朝着纤细以及美观的趋势前进,大量造型独特的桥墩在实践工程中得到了运用,比如花瓶墩、悬臂墩、T形墩以及门形墩等。因为这些桥墩选择了梁柱结构,该种结构受力异常复杂,不易于进行计算,所以对该异形桥墩进行设计以及计算时需选择合理的分析模型, 对构架所有构件的具体变形程度以及内力进行认真验算以及配筋,确保其稳定性,强度以及刚度等与要求相符。所以,本文主要举了某一大桥的例子,在文中介绍了引桥桥墩的计算以及设计,并重点讲解了异形桥墩的具体设计以及计算过程,分析了其受力特点。 1实例概况 某大桥所处地理位置非常关键,其不仅具备了交通功能,而且也属于城市桥梁的一部分,在设计时结合了景观以及交通这两方面的需求,努力使桥型与众不同。正是因为如此,该大桥主桥选择了(64+88)m长度的独塔而且是单索面的斜拉桥(天鹅型预应力混凝土),而且南北引桥各自选择4×25m以及2×25m的截面连续箱梁(预应力混凝土),桥梁长度合计达到了308.4m,图1 是其具体桥型布置

墩柱模板计算

墩柱模板计算 一、计算依据 1、《铁路桥涵设计基本规范》 2、《客运专线铁路桥涵工程施工技术指南》(TZ213-2005) 3、《铁路混凝土与砌体工程施工规范》(TB10210-2001) 4、《钢筋混凝土工程施工及验收规范》(GBJ204-83) 5、《铁路组合钢模板技术规则》(TBJ211-86) 6、《铁路桥梁钢结构设计规范》 7、《铁路桥涵施工规范》(TB10203-2002) 8、《京沪高速铁路设计暂行规定》(铁建设[2004]) < 9、《钢结构设计规范》(GB50017—2003) 二、设计参数取值及要求 1、混凝土容重:25kN/m3; 2、混凝土浇注速度:2m/h; 3、浇注温度:15℃; 4、混凝土塌落度:16~18cm; 5、混凝土外加剂影响系数取; 6、最大墩高17.5m; 7、设计风力:8级风; 8、模板整体安装完成后,混凝土泵送一次性浇注。 三、? 四、荷载计算 1、新浇混凝土对模板侧向压力计算 混凝土作用于模板的侧压力,根据测定,随混凝土的浇筑高度而增加,当浇筑高度达到某一临界时,侧压力就不再增加,此时的侧压力即为新浇筑混凝土的最大侧压力。侧压力达到最大值的浇筑高度称为混凝土的有效

压头。新浇混凝土对模板侧向压力分布见图1。 [ 图1新浇混凝土对模板侧向压力分布图 在《铁路混凝土与砌体工程施工规范》(TB10210-2001)中规定,新浇混凝土对模板侧向压力按下式计算: 在《钢筋混凝土工程施工及验收规范》(GBJ204-83) 中规定,新浇混凝土对模板侧向压力按下式计算: 新浇混凝土对模板侧向压力按下式计算: Pmax=γt 0K 1K 2V 1/2 Pmax =γh 式中: … Pmax ------新浇筑混凝土对模板的最大侧压力(kN/m2) γ------混凝土的重力密度(kN/m3)取25kN/m3 t0------新浇混凝土的初凝时间(h ); V------混凝土的浇灌速度(m/h );取2m/h h------有效压头高度; H------混凝土浇筑层(在水泥初凝时间以内)的厚度(m); K1------外加剂影响修正系数,掺外加剂时取; K2------混凝土塌落度影响系数,当塌落度小于30mm 时,取;50~ 90mm max 72722 40kPa 1.62 1.6P υυ?===++

D匝道桥花瓶墩及支架计算

D匝道桥花瓶墩及支架计 算 The latest revision on November 22, 2020

D匝道桥花瓶墩支架 及模板计算 计算:秦茂禄 审核:张川 2010年12月 D匝道桥花瓶墩支架及模板计算 计算依据:《路桥施工计算手册》、《建筑施工脚手架实用手册》 一、模板、支架受力分析 1、D匝道桥6#墩,是整个D匝道桥中花瓶墩身和墩帽截面尺寸最大的一个桥墩, 本花瓶墩支架及模板的计算具有代表性。 2、花瓶墩身及墩帽定型钢模,由专业的钢模生产厂家重庆特种起重机械制造有限 公司钢模公司生产,模板、对拉杆及连接高强螺栓的受力就不用再进行计算 了,都满足设计及规范要求。 3、花瓶墩身采用翻模施工,其模板最多一次可安装3节,每节,共计高,按照安 装3节模板计算其支架受力。 4、花瓶墩帽一次性浇筑砼,按照安装全部模板计算其支架受力。 二、花瓶墩身扣件式支架计算

1、小横杆计算 横桥向:钢管立柱的纵向间距为,横向间距为。 q=××6(钢模自重)+2××(倾倒、振捣砼荷载)=m W=×103mm3 E=×105Mpa I=×105mm4 弯曲强度: σn=ql2/10W=×5112/10××103=<[σw]=215MPa 满足强度要求 抗弯强度: f=ql4/150EI=×5114/150××105××105=<3mm 满足变形要求 顺桥向:钢管立柱的纵向间距为,横向间距为。 q=××2(钢模自重)+2××(倾倒、振捣砼荷载)=m W=×103mm3 E=×105Mpa

I=×105mm4 弯曲强度: σn=ql2/10W=×5722/10××103=<[σw]=215MPa 满足强度要求 抗弯强度: f=ql4/150EI=×5724/150××105××105=<3mm 满足变形要求 2、大横杆计算 横桥向:钢管立柱的纵向间距为,按三跨连续梁进行计算,由小横杆传递的集中力F=×= 最大弯矩: Mmax==××=弯曲强度: σn= Mmax /W=×106/×103=100Mpa<[σw]=215Mpa 满足强度要求 抗弯强度: f=100EI=×3350×5002/100××105××105=<3mm 满足变形要求

墩柱模板承载力计算

墩柱模板承载力计算 1 模板及支架自重 肋形楼板及无梁楼板的荷载:(见附表) 2 混凝土容重24 kN/ m3 钢筋混凝土容重(以体积计算的含筋量≤2%时)25 kN/ m3 3 施工人员及设备的自重 a、计算模板及直接支承模板的小楞时(均布荷载) 2.5 kN/ m2 以集中荷载验算(取大者) 2.5 kN b、计算直接支承小楞结构构件时(均布荷载) 1.5 kN/ m2 c、模板单块宽度小于150mm时,集中荷载可分布在相邻的两块板上。 4 振动混凝土时产生荷载 对水平面模板为 2 kN/ m2对垂直面模板为(作用在新浇混凝土有效侧压高度之内) 4 kN/ m2 5 新浇混凝土对模板的侧压力 新浇混凝土的初凝时间(h)t =200/(T+15) 5.41 H T为混凝土的温度,取T=22 ℃混凝土的浇注速度(V) 6 m/h 新浇混凝土顶面至侧压力计算处的总高度(H) 6 m 外加剂影响系数(β 1 ): 不掺外加剂时取 1 掺具有缓凝作用的外加剂时 1.2 混凝土塌落度影响修正系数(β 2 ): 当塌落度小于30mm时取0.85 50~90mm时取 1 110~150mm时取 1.15 新浇混凝土对模板的侧压力:F=0.22γt β 1 β 2 V1/2 68.22 kN/ m2 F=24H 144 kN/ m2 取二者中的小者,侧压力为:68.22 kN/ m2

6 倾倒混凝土时对垂直面模板的水平荷载: 用溜槽、串筒、或导管输出 2 kN/ m2用容量0.2及小于0.2m3的运输器具倾倒 2 kN/ m2用容量大于0.2至0.8m3的运输器具倾倒 4 kN/ m2用容量大于0.8m3的运输器具倾倒 6 kN/ m2本方案采用输送泵灌注,取值为 2 kN/ m2 由于灌注放料与混凝土振捣是交替进行的,此力不与新浇混凝土对 模板的侧压力同时计算。 7 墩柱模板有关数据: 肋间距:400 mm 面板厚度: 6 mm 肋高:90 mm 肋宽:8 mm 计算荷载值:27.29 kN/m 惯性矩:1769261.5 Mm4钢材弹性模量:210000000 pa 中性轴位置:81.92 mm 8 模板检算: 最大弯矩:qL2/10 0.5457 kN-m 强度计算:最大拉力25.27 Mpa 最大压力 4.34 Mpa 强度符合要求。 挠度计算:qL4/128EI 计算挠曲变形: 1.25 mm 模板允许变形为:[f]=l/800 1.875 mm 刚度符合要求。

某桥桥墩结构计算

设计计算书 设计人:日期:复核人:日期:审核人:日期: 2017年2月

F匝道桥桥墩计算 一、概述 本桥上部结构采用2×(4×25)+4×(3×25)PC连续箱梁+1×43.5简支钢箱梁+4×17钢筋砼连续箱梁+1×33简支钢箱梁+(18+20.5)+3×21+3×46+4×25米PC连续箱梁,下部桥墩采用花瓶墩、板式墩配桩基础。现选取其中有代表性的21#墩(花瓶墩(1.7x2.2米),上部为43.5米钢箱梁接4x17米钢筋砼现浇梁)、23#墩(板式墩(4x1.8米),上部为4x17米钢筋砼现浇梁)、25#墩(花瓶墩(1.5x2.0米),上部为33米钢箱梁接4x17米钢筋砼现浇梁),相应构造见下图: 21#墩构造(单位:cm)

23#墩构造(单位:cm) 25#墩构造(单位:cm) 材料:墩身:C40砼 承台:C30砼 桩基:C25砼 其中21#墩墩高:32.3m,23#墩墩高:33.4m,25#墩墩高:32.9m。 二、使用阶段荷载效应 1)结构恒载 2)活载:包含活载引起的竖向反力及引活载引起的纵横向弯矩

3)风荷载:按规范JTG D60-2004第4.3.7条计算:单独风荷载作用时选用27.4m/s(1/100),风荷载与其它荷载共同作用时选用25.8 m/s(1/50) 4)船撞击力:根据《荆东互通水中桥墩群防撞设施设计说明》确定,并考虑1.1的安全系数: ①恒载+活载+风荷载 ②恒载+活载+船撞力 ③恒载+风荷载+船撞力 ④恒载+风荷载(百年一遇) 三、结构内力计算 1)单项结构内力计算

根据上述计算,结构横桥向强度由恒载+风荷载+船撞力(偶然组合)控制,顺桥向强度由恒载+活载+船撞力(偶然组合)控制,结构正常使用阶段由恒载+活载+风荷载组合控制。 四、截面配筋验算

相关文档