文档库 最新最全的文档下载
当前位置:文档库 › 笔记本导热管的作用

笔记本导热管的作用

笔记本导热管的作用

事实上,导热管的真正作用是加快热量的传导,导热管本身并不能起到冷却作用,导热管传出来的CPU热量仍需风扇最终排出机身,导热管越长,热量传导越慢,且导热管越长传送途中散失的热量就越多……

我们看到的某些品牌的笔记本,使用的导热管横贯机身,导致大量的热量被散失在机内,这样的设计真可谓费钱又费力

晶闸管的结构以及工作原理

一、晶闸管的基本结构 晶闸管(SemiconductorControlled Rectifier 简称SCR )是一种四层结构(PNPN )的大功率半导体器件,它同时又被称作可控整流器或可控硅元件。它有三个引出电极,即阳极(A )、阴极(K )和门极(G )。其符号表示法和器件剖面图如图1所示。 图1 符号表示法和器件剖面图 普通晶闸管是在N 型硅片中双向扩散P 型杂质(铝或硼),形成211P N P 结构,然后在2P 的大部分区域扩散N 型杂质(磷或锑)形成阴极,同时在2P 上引出门极,在1P 区域形成欧姆接触作为阳极。

图2、晶闸管载流子分布 二、晶闸管的伏安特性 晶闸管导通与关断两个状态是由阳极电压、阳极电流和门极电流共同决定的。通常用伏安特性曲线来描述它们之间的关系,如图3所示。

图3 晶闸管的伏安特性曲线 当晶闸管AK V 加正向电压时,1J 和3J 正偏,2J 反偏,外加电压几乎全部降落在2J 结上,2J 结起到阻断电流的作用。随着AK V 的增大,只要BO AK V V <,通过阳极电流A I 都很小,因而称此区域为正向阻断状态。当AK V 增大超过BO V 以后,阳极电流突然增大,特性曲线过负阻过程瞬间变到低电压、大电流状态。晶闸管流过由负载决定的通态电流T I ,器件压降为1V 左右,特性曲线CD 段对应的状态称为导通状态。通常将BO V 及其所对应的BO I 称之为正向转折电压和转折电流。晶闸管导通后能自身维持同态,从通态转换到断态,通常是不用门极信号而是由外部电路控制,即只有当电流小到称为维持电流H I 的某一临界值以下,器件才能被关断。 当晶闸管处于断态(BO AK V V <)时,如果使得门极相对于阴极为正,给门极通以电流G I ,那么晶闸管将在较低的电压下转折导通。转折电压BO V 以及转折电流BO I 都是G I 的函数,G I 越大,BO V 越小。如图3所示,晶闸管一旦导通后,即使去除门极信号,器件仍然然导通。 当晶闸管的阳极相对于阴极为负,只要RO AK V V <,A I 很小,且与G I 基本无关。但反向电压很大时(RO AK V V ≈),通过晶闸管的反向漏电流急剧增大,表现出晶闸管击穿,因此称RO V 为反向转折电压和转折电流。 三、晶闸管的静态特性 晶闸管共有3个PN 结,特性曲线可划分为(0~1)阻断区、(1~2)转折区、(2~3)负阻区及(3~4)导通区。如图5所示。

导热硅脂的运用

CPU的散热硅脂怎么涂才是正确的? 回答; 1.在cpu外壳中央点少量导热硅脂,硅脂的容器不一定是针管,也可能是小瓶,可以用牙签等挑少量硅脂置于相同位置。 2.如果硅脂粘稠度低,可以直接安装散热器,依靠散热器底座将硅脂压开,扩散为薄薄的一层。如果硅脂粘稠度较高就用小纸板或塑料片刮硅脂,使硅脂均匀的在cpu外壳上,摊开为薄薄的一层(注意尽量不要弄到手上,导热硅脂粘到手上很难洗掉)。 3.硅脂不易涂太厚,因为它的导热系数毕竟没有金属高,更不要溢出cpu外壳边缘,粘到主板上。 4.两块金属紧密的直接接触的导热效果是最好的。但现实总是“残酷”的,肉眼看着光滑无比的cpu金属外壳,在显微镜下的真实表面状态,硅脂的作用就是为了填补这些微小坑洼。如果没有硅脂的存在,那么这些坑洼内导热介质就是空气,而导热能力的强弱排位是这样的:金属(铜、铝)>硅脂>空气。因此,薄薄的一层硅脂,才是正确的涂法。 cpu导热硅脂一般多久换一次? 回答 ; 一般来说CPU温度65度算是很正常的温度,应该不可能引起关机才对。如果你查看CPU温度不上90的话关机应该不是cpu温度高引起的。可以找找其他原因。 当然要是长时间90度左右还是很高了。需要改善散热。

如果你已经把风扇拔下来清理过后,那确实要重新涂抹硅脂。如果只是把风扇上的灰清理了就不用动了。硅脂抹上,安装好风扇后,没什么问题的话一般是不需要更换的。 CPU导热硅脂导电吗? 回答 ; 那种最普通白色的硅脂是不导电的,但硅脂有很多产品,不同的硅脂其电气特性,导热能力也是不相同的。为了提高导热率,就有了渗银硅脂,渗铜硅脂,这样掺入金属颗粒的硅脂,其就有了导电性,像笔记本CPU,涂抹硅脂就需要注意不能流出cpu芯片顶盖,到CPU四周的电容上, 导热硅脂是不是绝缘的? 回答 ; 导热硅脂是绝缘的。 导热硅脂俗称散热膏,导热硅脂以有机硅酮为主要原料,添加耐热、导热性能优异的材料,制成的导热型有机硅脂状复合物,用于功率放大器、晶体管、电子管、CPU等电子原器件的导热及散热,从而保证电子仪器、仪表等的电气性能的稳定。

笔记本散热器专利说明书

【发明创造名称】 笔记本电脑可折叠散热器。 【技术领域】 本实用新型涉及一种散热装置,特别涉及一种笔记本电脑可折叠散热器。 【背景技术】 在当今社会,笔记本电脑越来越多的进入大众家庭,电脑已经成为人们娱乐、信息交流、工作等不可或缺的一部分。 目前,笔记本电脑的外置散热器通常是放置在笔记本电脑下方,且与笔记本电脑的大小基本相等。在户外没有平台的情况下,往往是将笔记本电脑放置在双腿上进行支撑。这时候双腿不能分开,需要并拢来支撑笔记本电脑及散热底座,长时间使用会使双腿劳累酸胀,因此,现有的笔记本电脑可折叠散热器在使用范围上还具有一定的局限性。 现有笔记本电脑可折叠散热器的散热风扇往往是裸露在外,储存时往往由于挤压等原因将风扇压坏。因此不利于笔记本电脑的放置。【目的】 本实用新型公开了一种笔记本电脑可折叠散热器,该笔记本电脑可折叠散热器包括主体面板、支撑条、散热风扇以及多个USB接口。其中,主体面板进一步包括相互铰接的主体一和主体二;支撑条抽推式设于主体一的下方;散热风扇设于主体一的下方;多个USB接口设 于主体一的一侧,并与散热风扇电连接。该笔记本电脑可折叠散热器的支撑条弥补了在户外或膝上使用时散热器底座横向尺寸的不足;多个USB接口的设计弥补使用时笔记本电脑USB接口的不足;并且,折叠结构的设计即减小了体积,携带方便,

同时又对笔记本电脑可折叠散热器的风扇起到了保护的作用。此散热器底座采用高导热轻质金属或合金剞成,具有携带方便,使用舒适的优点。 【技术方案】 1.一种笔记本电脑可折叠散热器,其特征在于,所述笔记本电脑可折叠散热器包括:主体面板,所述主体面板进一步包括相互铰接的主体一和主体二;支撑条,抽推式设于所述主体一的下方;散热风扇,设于所述主体一的下方;多个USB接口,设于所述主体一的一侧,并与所述散热风扇电连接。 2.根据权利要求l所述的新型笔记本电脑可折叠散热器,其特征在于,所述主体一和主体二折叠时恰好护盖所述散热风扇。 3.根据权利要求l所述的新型笔记本电脑可折叠散热器,其特征在于,所述主体一下方没置有滑槽,所述支撑条抽推式设于所述滑槽内。 4.根据权利要求3所述的支撑条,其特征在于,所述支撑条在不用时,可从所述滑动槽中拆下。 5.根据权利要求l所述的支撑条,其特征在于,所述滑动条的下部轮廓呈适于与腿部匹配的形状。 为了解决以上问题,本实用新型提供了一种笔记本电脑可折叠 散热器,所述笔记本电脑可折叠散热器包括:主体面板,所述主体面板进一步包括相互铰接的主体一和主体二;支撑条,抽推式设于所述主体一的下方;散热风扇,设于所述主体一的下方;USB接口,设于所述主体一的一侧,并与所述散热风扇电连接。 根据本实用新型一优选实施倒,所述主体一和主体二折叠时恰好护盖所述散热风扇。

导热塑料与铝型材的优势对比

导热塑料与铝型材的优势对比 铝材料虽然作为散热系统技术方面已经比较成熟,但仍有一些不足,同样塑料导热材料也不是完全没有缺点,以下就是两者的优劣比较。首先是塑料导热材料相对铝来说存在的优点: (1)质量轻在室内照明中,灯具的重量对多方面都有影响,比如重量增加会加大灯具的安装、运输难度,也会对人身安全造成隐患等。纯铝的密度为2700kg/m3,铝合金的密度将会更大,而导热塑料的密度为1420kg/m3左右,约为铝合金的一半,所以在外形相同的情况下,重量也仅为铝合金的一半 左右。 (2)更加环保和安全在塑料 外壳的生产过程中,几乎不会 产生什么有毒污染,而铝壳在 生产中经常会有电镀的工序, 而电镀产生的废液中的金属会对水源和土壤造成严重的污染。安全方面塑料为绝缘材质,不用担心因为灯的外壳导电而产生的安全隐患。在耐高压测试方面,塑料具有绝对的优势。 (3)提高设计自由度塑料的流动性很好,所以可以生产很薄的部件,以及设计更加复杂的形状。铝壳的主要生产方法是压铸或拉伸成型,在生产过程中无法进行较复杂形状的加工。另外在表观效果来说,注塑产品会更加漂亮,还可以加上与其它企业不同的自身标志。

(4)加工方便,效率更高塑料导热材料与其他塑料件一样,可以一次成型,无需后加工,而且在注塑成型时,模具可设计为一出四,所以工作效率很高。铝材料在挤出成型后往往还要有去毛边的程序,如果对外形的要求比较高的话,铝材料还要进行镀镍等工序,加工周期还将增长。 (5)启动系统简化在外壳为铝合金时,由于外壳导电,内部必须采用隔离启动系统,塑料本身绝缘,没所以用作散热系统时可以采用非隔离启动系统,由于非隔离系统相对于隔离系统来说不仅成本较低而且体积较小,这样不仅可以降低成本而且所占空间会更小。 (6)降低系统成本就单价来说,单位质量的导热塑料价格必然是高于铝的,但系统成本却持平或较低,且数量越大,塑料的成本优势越明显。另外,塑料导热材料目前处于一个初级阶段,将来的价格随产业的发展和产品量的增加一定会降低,而铝作为有色金属的价格却不太可能有明显的降低。塑料降低成本主要体现在加工费用方面。 参考资料:东莞市指南者高分子材料科技有限公司

塑料导热

世界上导热最好的材料是石墨,大概1200W/m-K左右,不改性的塑料一般最高也就0.3W/m-K左右。 导热绝缘高分子材料(P9) 1.2导热绝缘聚合物的研究 解释绝缘高分子材料导热物理特性的声子理论认为,热能是通过材料中的声子的无规则扩散进行传递的。当声子的运动速度恒定时,其平均自由路径的大小取决于具有晶体点阵结构的材料中声子的几何散射,以及与其它声子的碰撞散射,这就是说,有序晶格结构的材料(如晶体)具有较高的导热率;在较高温度下,由于声子相互碰撞速度加快,所以热传递速度减慢‘6’。 按材料制备工艺将导热绝缘高分子大致分为本体型导热绝缘高分子和填充型导热绝缘高分子。本体导热绝缘高分子是在材料合成及成型加工过程中通过改变材料分子和链节结构获得特殊物理结构,从而获得导热性能;填充型是在普通高分子中加入导热绝缘填料,通过一定方式复合而获得导热性能‘7’。纯聚合物导热率很低,本体高分子材料制备工艺繁琐,难度大,成本高。目前制备导热绝缘聚合物主要采用导热绝缘填料如AIN、SIC、BeO等填充聚合物,通过物理共混赋予聚合物以导热性能,此法制得的材料价格低廉,加工容易,成本低,经适当工艺处理可用于某些特殊领域,并可进行工业化生产,是目前国内广泛采用的一种制备方法。 1.2.1本体导热绝缘聚合物的研究 绝缘聚合物材料热导率主要取决于树脂的结晶性和取向方向,即声子散射程度。分子和晶格非谐性振动、树脂界面及缺陷等现象都将引起声子散射,如果树脂链结构是有序的,热量将沿分子链方向迅速传输,沿分子链方向的热导率数值远高于垂直方向。然而,各向异性树脂沿分子链垂直方向热导率近似或低于相应的各同性树脂【8’。绝缘聚合物材料热导率取决于含极性基团的多少和极性基团偶极化的程度,这种极化所需要的时间为10、 左右。一般极性高的聚合物都有这种变化,如聚酞亚胺所含极性基团多,且较易极化,所 1.绪论 以热导率(在有机薄膜里)最高0.37W/m?K,而聚四氟乙烯则相反,它无极性,导热性就差,为0.25W/m.K。另外,导热性还取决于分子内部紧密程度。绝缘高分子材料由于没有电子流动,导热性要比金属材料相差500一1000倍,到目前为止,还没有一种纯高分子材料同时具有好的导热性和绝缘性‘”’。可通过化学合成制备具有高导热率的结构高分子,如具有良好导热性能的聚乙炔、聚苯胺、聚毗咯等,主要依靠分子内的大共辘键通过电子导热机制实现导热,这类材料同时具备导电性。绝缘导热高分子的导热机理为分子内的晶格的声子振动,外界的定向拉伸或模压,可以提高其热导率,故制备具有完整结晶性高聚物,可通过声子振动获得绝缘导热高分子,如平行高倍拉伸HDPE‘’。’。Grishchenko‘”’研究了聚氨酷塑料拉伸过程中的热导率及结构变化情况;关于光引发的具有取向液晶双丙烯酸基结构的交联各向异性聚合物也有报道‘’2’。蔡忠龙‘’3’研究了超拉伸聚乙烯的弹性模量和导热性能,当拉伸比为200时,聚乙烯轴向模量达钢的88%,热导率增加2倍以上,甚至成为热的良导体,这是由于在拉伸时形成了相当数量的拉伸分子链构成的针状晶体一晶桥,并提出了晶桥作为短纤维分散相的取向聚合物的结构模型。对于简单分子链结构的聚乙烯,经一定拉伸后热导率可达37W/m?K,对于完善晶型的材料,经拉伸后热导率甚至超过70W/m?K。

晶闸管的结构以及工作原理教学内容

晶闸管的结构以及工 作原理

一、晶闸管的基本结构 晶闸管(SemiconductorControlled Rectifier 简称SCR )是一种四层结构 (PNPN )的大功率半导体器件,它同时又被称作可控整流器或可控硅元件。它有三个引出电极,即阳极(A )、阴极(K )和门极(G )。其符号表示法和器件剖面图如图1所示。 图1 符号表示法和器件剖面图 普通晶闸管是在N 型硅片中双向扩散P 型杂质(铝或硼),形成211P N P 结构,然后在2P 的大部分区域扩散N 型杂质(磷或锑)形成阴极,同时在2P 上引出门极,在1P 区域形成欧姆接触作为阳极。

图2、晶闸管载流子分布 二、晶闸管的伏安特性 晶闸管导通与关断两个状态是由阳极电压、阳极电流和门极电流共同决定的。通常用伏安特性曲线来描述它们之间的关系,如图3所示。

图3 晶闸管的伏安特性曲线 当晶闸管AK V 加正向电压时,1J 和3J 正偏,2J 反偏,外加电压几乎全部降落在2J 结上,2J 结起到阻断电流的作用。随着AK V 的增大,只要BO AK V V <,通过阳极电流A I 都很小,因而称此区域为正向阻断状态。当AK V 增大超过BO V 以后,阳极电流突然增大,特性曲线过负阻过程瞬间变到低电压、大电流状态。晶闸管流过由负载决定的通态电流T I ,器件压降为1V 左右,特性曲线CD 段对应的状态称为导通状态。通常将BO V 及其所对应的BO I 称之为正向转折电压和转折电流。晶闸管导通后能自身维持同态,从通态转换到断态,通常是不用门极信号而是由外部电路控制,即只有当电流小到称为维持电流H I 的某一临界值以下,器件才能被关断。 当晶闸管处于断态(BO AK V V <)时,如果使得门极相对于阴极为正,给门极通以电流G I ,那么晶闸管将在较低的电压下转折导通。转折电压BO V 以及转折电流BO I 都是G I 的函数,G I 越大,BO V 越小。如图3所示,晶闸管一旦导通后,即使去除门极信号,器件仍然然导通。

导热塑料的优点

导热塑料的优点 导热改性是塑料改性中常见的一种,利用导热填料对高分子基体材料进行均匀填充,以提高其导热性能的塑料叫做导热塑料。导热塑料一般用于LED照明、汽车、加热/冷却/制冷等领域。 导热塑料可用于替代有散热需要的金属零部件的材料,比如铝等。使用导热塑料主要有以下优点: 1、可实现均匀散热。在使用过程中可实现均匀散热,有效避免了灼热点,可减少零部件因局部或全部产生高温而造成的变形,可调整导热塑料的各项物理性能,如可提高机械性能,增加强度和硬挺度;可根据需要调整其导电性能,制成绝缘型、导电型或抗静电型导热塑料。 2、比重轻。导热塑料比铝材轻50%左右,可减少对成品装置的震动,设备的稳定性提高。 3、基材选择广泛,应用广泛。导热塑料有相当宽广的选择范围,可在PP、ABS、PC、PA、PPA、PBT、LCP、PPS、PEI、PEEK等多种基础树脂甚至是弹性体中选择,根据产品需要选择相关塑料的物性,也可选择成本相对低廉的塑料基材,降低产品成本。应用也因此非常广泛。 4、导热塑料的热膨胀系数和成型收缩率低,可适应对尺寸稳定要求较高的产品。 5、加工成型非常方便。导热塑料与普通塑料的加工工艺相同,可大批量快速成型,无须二次加工,大大缩短产品的成型周期。可制成比较复杂的形状,从而提高产品的设计自由度和产品附加值。 6、工作温度低,耐温度高,可提高组件和设备的使用寿命。 目前聚赛龙导热塑料主要有无卤阻燃导热塑料、高性能导热塑料和导热PPS,应用LED和电动工具等领域。 无卤阻燃导热材料 特点:导热、绝缘、无卤阻燃V0 @1.6mm 应用:LED灯杯、电池外壳、电动工具外壳、马达线圈骨架 典型牌号:SE8912TC、SE8915TC、SE8918TC、SE8922TC 高性能导热材料 特点:导热系数高、高电磁屏蔽效率、低频和射频屏蔽 应用:电池外壳、LED灯罩、电动工具外壳、马达线圈骨架 典型牌号:SHJ7035、SHJ7038、SHJ70310、SHJ70453 导热PPS 特点:高导热、无卤阻燃、力学性能优异 应用:LED灯具外壳、导热电路板、散热元件

晶闸管(可控硅)的结构与工作原理

一、晶闸管的基本结构 晶闸管(Semi co ndu cto rC ont roll ed Re ctifier 简称SCR)是一种四层结构(PNPN )的大功率半导体器件,它同时又被称作可控整流器或可控硅元件。它有三个引出电极,即阳极(A )、阴极(K)和门极(G)。其符号表示法和器件剖面图如图1所示。 图1 符号表示法和器件剖面图 普通晶闸管是在N 型硅片中双向扩散P型杂质(铝或硼),形成211P N P 结构,然后在2P 的大部分区域扩散N 型杂质(磷或锑)形成阴极,同时在2P 上引出门极,在1P 区域形成欧姆接触作为阳极。 图2、晶闸管载流子分布 二、晶闸管的伏安特性 晶闸管导通与关断两个状态是由阳极电压、阳极电流和门极电流共同决定

的。通常用伏安特性曲线来描述它们之间的关系,如图3所示。 图3 晶闸管的伏安特性曲线 当晶闸管AK V 加正向电压时,1J 和3J 正偏,2J 反偏,外加电压几乎全部降落在2J 结上,2J 结起到阻断电流的作用。随着AK V 的增大,只要BO AK V V <,通过阳极电流A I 都很小,因而称此区域为正向阻断状态。当AK V 增大超过BO V 以后,阳极电流突然增大,特性曲线过负阻过程瞬间变到低电压、大电流状态。晶闸管流过由负载决定的通态电流T I ,器件压降为1V左右,特性曲线CD段对应的状态称为导通状态。通常将BO V 及其所对应的BO I 称之为正向转折电压和转折电流。晶闸管导通后能自身维持同态,从通态转换到断态,通常是不用门极信号而是由外部电路控制,即只有当电流小到称为维持电流H I 的某一临界值以下,器件才能被关断。 当晶闸管处于断态(BO AK V V <)时,如果使得门极相对于阴极为正,给门极通以电流G I ,那么晶闸管将在较低的电压下转折导通。转折电压BO V 以及转折电流BO I 都是G I 的函数,G I 越大,BO V 越小。如图3所示,晶闸管一旦导通后,即使去除门极信号,器件仍然然导通。 当晶闸管的阳极相对于阴极为负,只要RO AK V V <, A I 很小,且与G I 基本无关。但反向电压很大时(RO AK V V ≈),通过晶闸管的反向漏电流急剧增大,表现出晶闸管击穿,因此称RO V 为反向转折电压和转折电流。

笔记本电脑散热系统的热分析

笔记本电脑内热管散热系统的热分析 作者:乔俊生 陈江平 陈芝久 0.前言 当今电子产品的热设计中,由于热流量的不断提高,仅采用标准的翅片式散热片很难满足要求。在笔记本电脑中,由于空间的限制以及对笔记本重量的高要求,都导致不易采用大的散热片,而小的散热片又不能满足热设计的要求。热管由于其导热性能好,热阻小,可将热量稳定地由一处传递到另一处,故通过热管将热量由空间小处传递到一定距离外的相对大空间里的散热片上,再利用风扇迫使周围空气强制对流过散热片的翅片表面以提高换热性能,并最终将热量散发到周围环境中,如下图1中所示,即为一种目前广泛应用与笔记本电脑中的CPU热管散热系统。殷际英[1]对热管型CPU散热器总传热性能的研究表明热管型散热系统可以远距离传递热量,适合与在有限空间内大功率CPU芯片的散热。孔巧玲和贺建华[2]对热管在笔记本中的不同布置位置对散热性能的影响进行了研究,主要为三种方式:通过底板散热,通过键盘散热与通过显示器散热。陶汉中,张红,庄骏[3]通过软件Ansys对热管型翅片散热方式和传统的翅片散热方式的比较分析显示热管型散热器性能明显优于传统的翅片散热器,最高温差下降10K,最大热流密度下降100000w/m2。除了对整个热管散热系统得研究外,对各个部件的研究也很多。Leonard L.Vasiliev[4]对目前热管发展的情况进行了比较详细的介绍。文献[5,6]对板翅式散热片的设计进行了研究。本文通过CFD软件Flotherm建立了整个热管式散热系统得模型,并用实验结果对模型的准确性进行了验证,在其基础上对散热系统进行了一些数值分析。 1.CFD模型的建立 图1 笔记本电脑中热管散热系统

导热塑料调研报告材料

导热塑料调研报告 导热塑料是以PP、ABS、PC、PA、PPA、PBT、LCP、PPS、PEI、P EEK等通用塑料或工程塑料为基材,将高导热复合材料添加在塑料基材中共混复合、通过热传导改性而成的新型高性能塑料。未经改性普通塑料的热传导率或导热系数很低,一般为0.2-0.46W/(m.K)左右,而经过热传导改性的导热塑料可依据产品要求大大提高其热传导率或 导热系数,一般为2-20W/(m.K),某些特殊品级导热塑料的导热系数可达50W/(m.K)或更高,最高可达100W/(m.K)。通过热传导改性的塑料其导热系数是传统普通塑料的5-100倍甚至更高,这使得导热塑料的热传导率或导热系数可与某些金属媲美,如不锈钢[15W/m.K]和某些铸铝合金[50-100W/m.K]。 导热塑料的优点: 1、在使用过程中可实现均匀散热,有效避免了灼热点,可减少零部件因局部或全部产生高温而造成的变形,可调整导热塑料的各项物理性能,如可提高机械性能,增加强度和硬挺度;可根据需要调整其导电性能,制成绝缘型、导电型或抗静电型导热塑料; 2、导热塑料的重量轻,比铝材轻50%左右,可减少对成品装置的震动,设备的稳定性提高; 3、有相当宽广的选择围,可在PP、ABS、PC、PA、PPA、PBT、LCP、PPS、PEI、PEEK等多种基础树脂甚至是弹性体中选择,根据产品需要

选择相关塑料的物性,也可选择成本相对低廉的塑料基材,降低产品成本; 4、导热塑料的热膨胀系数和成型收缩率低,可适应对尺寸稳定要求较高的产品; 5、加工成型非常方便,可使用普通注塑成型设备象热塑性塑料一样进行简单加工,与普通塑料的加工工艺相同,可大批量快速成型,无须二次加工,大大缩短产品的成型周期; 6、工作温度低,耐温度高,可提高组件和设备的使用寿命; 7、成型加工方便,可制成比较复杂的形状,从而提高产品的设计自由度和产品附加值; 8、应用广泛。有多种基材可选择,可根据需要调整相关物性,故导热塑料的应用相当广泛。 技术特征 提高塑料导热性的途径主要有两种:第一改变高分子结构;第二,通过填充高导热无机物,制备无机物/聚合物复合材料。现今导热塑料基本采用第二种方法。导热塑料按树脂基体分为热塑性及热固性;按填充粒子类型可分为金属填充、金属氧化物填充、金属氮化物填充、无机非金属填充及纤维填充;按绝缘电性能分为绝缘性和非绝缘型。由于塑料为绝缘体,因此绝缘性和非绝缘性导热塑料主要是由填料的种类所决定,非绝缘性导热材料的填料主要是:金属粉、石墨、炭黑及碳纤维等,这类材料兼具导热性的同时又有利于抗静电、电磁屏蔽等;而绝缘性材料填料主要包括:金属氧化物、金属氮化物、碳化物

可控硅元件的工作原理及基本特性

可控硅元件的工作原理及基本特性 1、工作原理 可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示 图1 可控硅等效图解图 当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。 由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。 由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件见表1 状态条件说明 从关断到导通1、阳极电位高于是阴极电位 2、控制极有足够的正向电压和电流 两者缺一不可 维持导通1、阳极电位高于阴极电位 2、阳极电流大于维持电流 两者缺一不可 从导通到关断1、阳极电位低于阴极电位 2、阳极电流小于维持电流 任一条件即可 2 可控硅的基本伏安特性见图2 图2 可控硅基本伏安特性 (1)反向特性 当控制极开路,阳极加上反向电压时(见图3),J2结正偏,但J1、J2结反偏。此时只能流过很小的反向饱和电流,当电压进一步提高到J1结的雪崩击穿电压后,接差J3结也击穿,电流迅速增加,图3的特性开始弯曲,如特性OR段所示,弯曲处的电压URO叫“反向转折电压”。此时,可控硅会发生永久性反向击穿。

导热硅脂产品说明

。 LS系列导热硅脂也叫散热膏、导热膏,是一种高导热绝缘有机硅材料。 导热硅脂使用方法: Ⅰ、清洗待涂覆表面,除去油污。 Ⅱ、然后将导热硅脂直接挤出,均匀的涂覆在待涂覆表面即可。 使用说明: 1、施工:用刮刀、刷子、玻璃棒或注射器等方法将导热硅脂均匀涂敷于处理过的固体接触面后,再将二表面略施压锁紧即可。 如有挤出的硅脂可用布擦净。每次用完应密封以备后用。由于硅脂不固化,不影响接触面的装卸,拆装后可重新涂脂。 注意事项 贮存及运输 1、在阴凉干燥处贮存,贮存期:12个月(25℃)。 2、本产品属于非危险品,可按一般化学品运输。 3、超过保存期产品应确认有无异常后方可使用。 包装: 针管装:0.5g-50g 罐装:500g,1000g 桶装:5kg,10kg,20kg 保质期:常温下保存两年 本公司主营:导热硅脂,导热膏,导热硅胶,导热硅胶片,散热硅脂,散热膏,散热硅胶片,散热硅胶,绝缘硅脂,绝缘硅胶,绝缘膏,绝缘硅胶片等系列产品。 欢迎各位新老顾客朋友前来或来电来信指导工作。销售部许杰180********恭候您!

导热硅脂也叫散热膏、导热膏,是一种高导热绝缘有机硅材料。 LS系列产品同时具有低油离度(趋向于零),耐高低温、耐水、臭氧、耐气候老化。 可在-50℃—+230℃的温度下长期保持使用时的脂膏状态。 产品性能:导热硅脂具有高导热率,极佳的导热性,良好的电绝缘性,较宽的使用温度,很好的使用稳定性,较低的稠度和良好的施工性能 1、导热硅脂的使用不是涂的越多越好,而是在保证填满间隙的前提下越薄越好。多涂并无益处,反而会影响热传导效率。 2、远离儿童存放。 3、若不慎接触皮肤,擦拭干净,然后用清水冲洗;若不慎接触眼睛,立即用清水冲洗并到医院检查。 导热硅脂使用方法: Ⅰ、清洗待涂覆表面,除去油污。 Ⅱ、然后将导热硅脂直接挤出,均匀的涂覆在待涂覆表面即可。 贮存及运输 1、在阴凉干燥处贮存,贮存期:12个月(25℃)。 2、本产品属于非危险品,可按一般化学品运输。 3、超过保存期产品应确认有无异常后方可使用。 包装: 针管装:0.5g-50g 罐装:500g,1000g 桶装:5kg,10kg,20kg 保质期:常温下保存两年 本公司主营:导热硅脂,导热膏,导热硅胶,导热硅胶片,散热硅脂,散热膏,散热硅胶绝缘硅脂,绝缘硅胶,绝缘膏,绝缘硅胶片等系列产品。

笔记本散热垫类型和工作原理

笔记本散热垫类型和工作原理 普通托盘型多功能型 散热剂型简易型 平行送风型悬空支架型 以上形态各异的笔记本散热垫虽然主要目的都是为笔记本散热,但设计理念与产品特性却不尽相同。此篇将对上述六类产品的特点一一解析。 普通托盘型 市面上最常见的笔记本散热器设计。顾名思意,它们的托盘面积较大,材质主要有铝合金和塑料,受成本影

响,这两种选材的售价差异较大。 代表产品:安耐美AEOLUS 普通托盘型反面安装有散热风扇,风扇尺寸或大或小,风扇数量可能是一个,也可能是两个,甚至更多个。但风道模式都是相同的,气流由风扇产生,透过托盘上的蒙网或是镂空吹拂在笔记本底壳上。 超频3黑马(70)Tt海啸(130) 反面风扇特写

散热器风道示意 由于大多数笔记本电脑都设计有自带的脚垫,所以无论托盘面积大小,是何材质,想让托盘表面与笔记本底壳完全贴合是不太可能的。因此散热垫材料的导热性能对散热性能的影响可忽略不计,当笔记本距离托盘表面较远时,因为风道受到的阻力减小,反弹气流得到缓解,这类散热器反而能发挥更好的效果。 多功能型 多功能型笔记本散热垫实际上应该算是普通托盘型的豪华版,因为托盘形散热垫的体积较大,内部有足够的空间容纳多功能设备。这种散热器的结构设计通常与普通托盘形相同。 Glacialtech的X-wing具有极其丰富的功能 从理论上来说,笔记本散热器最需要的功能就是USB HUB。大多数笔记本电脑能够提供的USB插口很少,只有两个,如果再被散热垫取电的USB插头占去一个,那么很可能会产生诸多不便。携带USB HUB的笔记本散热垫不但能解决这个问题,还可增加USB接口的数量。

导热塑料综述

导热塑料综述 1.前言 随着工业生产和科学技术的不断发展,人们对导热材料综合性能的要求已越来越高,传统的金属材料已经无法满足某些特殊场合的使用要求。如电子设备产生的热量迅速积累和增加,会导致器件不能正常工作,故及时散热已成为影响其寿命的重要因素。所以急需研制高可靠性、高散热性的综合性能优异的导热绝缘材料代替传统材料。导热高分子材料尤其是导热塑料由于具有轻质、耐化学腐蚀、易加工成型、电绝缘性能优异、力学及抗疲劳性能优良等特点,越来越受到人们的重视,逐渐成为导热领域新的角色,近些年国际国内研究和发展的热点。2. 提高塑料导热性能的途径 2.1 传统方法 高分子材料绝缘好,但作为导热材料,纯的高分子材料一般是不能胜任的,因为高分子材料大多是热的不良导体。高分子材料的导热系数小(见表1),要拓展其在导热领域的应用,必须对高分子材料进行改性,以提高高分子材料的导热性能。 目前有两种途径可以提高塑料导热性能。提高聚合物导热性能的途径有两种:第一,合成具有高导热系数的结构聚合物,如具有良好导热性能的聚乙炔、聚苯胺、聚吡咯等,主要通过电子导热机制实现导热,或具有完整结晶性,通过声子实现导热的聚合物;第二,通过高导热无机物对聚合物进行填充,制备聚合物∕无机物导热复合材料。由于良好导热性能有机高分子价格昂贵,填充制备导热聚合是目前广泛采用的方法。

可以用作导热粒子的金属和无机填料(导热系数见表2)大体有以下几种: (1)金属粉末填料:铜粉、铝粉、金粉、银粉; (2)金属氧化物:氧化铝、氧化铋、氧化铍、氧化镁、氧化锌; (3)金属氮化物:氮化铝、氮化硼; (4)无机非金属:石墨、碳化硅。 无机非金属材料作为导热填料填充高分子材料基体时,填充效果的好坏主要取决于以下几个因素:(1)聚合物基体的种类、特性;(2)填料的形状、粒径、尺寸分布;(3)填料与基体的界面结合特性及两相的相互作用。以往常采用的方法有:利用有一定长径比的颗粒、晶须形成连续的导热网链;选用不同的粒径的填料组合,达到较高填充致密度;利用偶联剂改善填料与基体的界面,以减少界面处的热阻;用纳米材料填充塑料提高导热系数是近年来研究的热点。 导热高分子复合材料的导热性能最终取决于填料及其在高分子基体中的分布情况。当填料含量较少时,其对材料导热性能的贡献不大;当填料含量过多时,复合材料的力学性能受到影响。当填料含量增至某一值时,填料之间相互作用并在体系中形成类似网状和链状的导热网链,当导热网链的方向与热流方向一致时,热阻最小、导热性能最好;反之最差。 2.2 提高导热高分子导热性新的途径 通过对填充型导热高分子材料导热机理的简单讨论,试提出以下几点提高导热高分子材料导热性的途径及手段。 2.2.1 新型导热填料 ( 1 ) 导热填料超细微化

导热硅脂研究进展

导热硅脂研究进展 徐荣王梓廖崇山 摘要:介绍了导热硅脂的导热机制。分别阐述了聚合物和导热填料的选择,同时建立了简易的导热填料填充示意图,并综述了金属氧化物填充、金属氮化物填充以及其他特种导热材料填充等制备导热硅脂的最新研究进展。最后对导热硅脂的发展方向进行了展望。 关键词:导热硅脂;导热机制;热导率 Research progress of thermal conductive silicone grease XuRong WangZi LiaoChongShan Abstract:The thermal conductive mechanism of thermal conductive silicone grease was introduced. The selections of polymers and thermal conductive fillers were respectively expounded,the simple filling diagram of thermal conductive filler was established,and the latest research progress was summarized in thermal conductive silicone grease prepared by metal oxide,metal nitride or other special thermal conductive materials. Finally,the development direction of thermal conductive silicone grease was expected. Keywords:thermal conductive silicone grease;thermal conductive mechanism;thermal conductivity 前言 随着电子产品的日益密集化、微型化和高效率化,其耐用性能显得尤为重要。然而,电子产品普遍存在着热聚集问题,即其在使用过程中会产生大量热能,从而直接影响了其可靠性和使用寿命。有关研究结果表明:电气元件的温度每升高2 ℃,其可靠性将会下降10%。因此,电气元件的及时散热性,已成为影响其使

LED行业塑料导热材料与铝材料对比报告

当LED结温升高时,发光材料的禁带宽度将减小,导致LED发生波长变长,颜色向红色偏移。当LED结温不超过其临界温度时,正向压降随温度的变化是可逆的。一旦LED的结温超过器件所能承受的最高临界温度时,LED的光输出特性将会永久性的衰减。 LED是继白炽灯、荧光灯和HID灯之后的第四代新型光源。LED光源的出现和发展,将引发照明领域的一次革命,具有划时代的意义。概括的讲,LED具有以下几方面的优点: ①LED是环保性能最好的光源。LED的眩光少,光谱中没有多余的紫外线和红外线,不含汞等有害物质,在运输、安装和使用中不会破碎,废弃物可回收,没有污染。 ②LED为固态冷光源,十分坚固耐用寿命非常长。 ③单色性好,色彩鲜艳丰富,灯光清晰柔和,并且可任意混合,从而使光色变幻多端。 ④体积小,重量轻,应用灵活。 ⑤响应速度快。白炽灯加电后需140-200ms的时间才能达到设定亮度,而LED通电后无需热启动时间,灯亮时间仅约60ns。 ⑥发光效率高,能量消耗低,较同样发光效率的白炽灯可节电80%。 基于以上优点,LED灯具将会是照明行业的一大发展趋势,用于室内照明的大功率LED 灯具在数量上也将有很大的发展。 一、LED灯具散热系统的作用 当电流通过LED时,其PN结的温度将升高。结温的变化势必引起内部电子和空穴浓度、禁带宽度和电子迁移率等微观参数的变化,从而使LED的光输出、发光波长以及正向电压等宏观参数发生相应的变化。(禁带宽度是指一个能带宽度(单位是电子伏特(ev)).固体中电子的能量是不可以连续取值的,而是一些不连续的能带。要导电就要有自由电子存在。自由电子存在的能带称为导带(能导电)。被束缚的电子要成为自由电子,就必须获得足够能量从而跃迁到导带,这个能量的最小值就是禁带宽度。) 实验发现,当LED结温升高时,发光材料的禁带宽度将减小,导致LED发生波长变长,颜色向红色偏移。当LED结温不超过其临界温度时,正向压降随温度的变化是可逆的。一旦LED的结温超过器件所能承受的最高临界温度时,LED的光输出特性将会永久性的衰减。 下图为结温不同时,光输出与时间的关系,其中,红色为结温74℃,蓝色为结温为63℃。

单向晶闸管的基本结构及工作原理

单向晶闸管的基本结构及工作原理 晶闸管有许多种类,下面以常用的普通晶闸管为例,介绍其基本结构及工作原理。 单向晶闸管内有三个PN 结,它们是由相互交叠的4 层P区和N区所构成的.如图17-1(a) 所示。晶闸管的三个电极是从P1引出阳极A,从N2引出阳极K ,从P2引出控制极G ,因此可以说它是一个四层三端 半导体器件。 为了便于说明.可以把图17-1 (a) 所示晶闸管看成是由两部分组成的[见图17-1(b)],这样可以把晶闸管等效为两只三极管组成的一对互补管.左下部分为NPN型管,在上部分为PNP 型管[见图17-1 (c)]。 当接上电源Ea后,VT1及VT2都处于放大状态,若在G 、K 极间加入一个正触发信号,就相当于在V T1基极与发射极回路中有一个控制电流IC,它就是VT1的基极电流IB1。经放大后,VT1产生集电极电流ICI。此电流流出VT2 的基极,成为VT2 的基极电流IB2。于是, VT2 产生了集电极电流IC2。IC2再流入VT1 的基极,再次得到放大。这样依次循环下去,一瞬间便可使VT1和VT2全部导通并达到饱和。所以,当晶闸管加上正电压后,一输入触发信号,它就会立即导通。晶闸管一经导通后,由于导致VT1基极上总是流过比控制极电流IG大得多的电流,所以即使触发信号消失后,晶闸管仍旧能保持导通状态。只有降低电源电压Ea,使VT1、VT2 集电极电流小于某一维持导通的 最小值,晶闸管才能转为关断状态。 如果把电源Ea反接,VT1 和VT2 都不具备放大工作条件,即使有触发信号,晶闸管也无法工作而处于关断状态。同样,在没有输入触发信号或触发信号极性相反时,即使晶闸管加上正向电压.它也无法导通。 上述的几种情况可参见图17-2 。

使用导热硅脂的意义

使用导热硅脂LS-D801的意义 。 LS系列导热硅脂也叫散热膏、导热膏,是一种高导热绝缘有机硅材料。 导热硅脂使用方法: Ⅰ、清洗待涂覆表面,除去油污。 Ⅱ、然后将导热硅脂直接挤出,均匀的涂覆在待涂覆表面即可。 使用说明: 1、施工:用刮刀、刷子、玻璃棒或注射器等方法将导热硅脂均匀涂敷于处理过的固体接触面后,再将二表面略施压锁紧即可。 如有挤出的硅脂可用布擦净。每次用完应密封以备后用。由于硅脂不固化,不影响接触面的装卸,拆装后可重新涂脂。 注意事项 贮存及运输 1、在阴凉干燥处贮存,贮存期:12个月(25℃)。 2、本产品属于非危险品,可按一般化学品运输。 3、超过保存期产品应确认有无异常后方可使用。 包装: 针管装:0.5g-50g 罐装:500g,1000g 桶装:5kg,10kg,20kg 保质期:常温下保存两年 本公司主营:导热硅脂,导热膏,导热硅胶,导热硅胶片,散热硅脂,散热膏,散热硅胶片,散热硅胶,绝缘硅脂,绝缘硅胶,绝缘膏,绝缘硅胶片等系列产品。 欢迎各位新老顾客朋友前来或来电来信指导工作。销售部许杰180********恭候您!

银色导热硅脂LS-D831产品说明 LS系列导热硅脂也叫散热膏、导热膏,是一种高导热绝缘有机硅材料。 2.产品说明: 本公司产品导热系数有 1.0,1.2,-3.8W/m-K可供选择,无味、无毒、无刺激、无腐蚀,在-50℃-300℃条件下不硬化,也不流淌,耐温性好;该系列产品皆通过SGS国际环保认证,符合欧盟ROHS检测标准. 3.主要应用:主要用于电子电器(电磁炉、电冰箱、饮水机、电热水壶等)、电气(开关电源、继电器、变频器、可控硅等)、电脑CPU、控制板、显卡、液晶显示、光纤通讯器材、LED 等极为广泛的电子电器领域。 4.使用指南: Ⅰ、清洗待涂覆表面,除去油污。 Ⅱ、然后将导热硅脂直接挤出,均匀的涂覆在待涂覆表面即可。 Ⅲ、注意施工表面应该均匀一致,只要涂敷薄薄一层即可。 Ⅳ、使用过程中,有时会夹带少量空气,可通过静置、加压或真空排泡。 Ⅴ、导热硅脂的使用不是涂的越多越好,而是在保证填满间隙的前提下越薄越好。 5.包装说明: 针管装:0.5g-50g 罐装:500g,1000g 桶装:5kg,10kg,20kg 保质期:常温下两年 本公司主营:导热硅脂,导热膏,导热硅胶,导热硅胶片,散热硅脂,散热膏,散热硅胶片,散热硅胶,绝缘硅脂,绝缘硅胶,绝缘膏,绝缘硅胶片等系列产品。 公司现位于交通便利的上海市,公司生产的导热产品有导热填充材料、导热绝缘片、软性硅胶导热片、导热膏、矽胶制品等。 本公司秉承"质量第一,顾客至上"的原则,竭诚为国内外广大新老顾客朋友提供优质的产品和周到服务,希望通过我们的真诚努力能够成为您长期合作伙伴,共创辉煌! 欢迎各位新老顾客朋友前来或来电来信指导工作。销售部许杰180********恭候您!

导热塑料性能一览

导热塑料性能一览

导热塑料性能一览 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

黑色PPS基材导热塑料 ltems Method Units PPS Thermalconductivitythroughplane(层间导热系数) ASTM1461-07 W/m-k 2 Thermalconductivityinplane(层内导热系数) W/M-K 18 Flamererardancy(阻燃性) UL94 VO VolumeResistivity(体积电阻) D257 Ωcm <10000 Moldshrinkage(注塑收缩率) D955 % SpecificGravity(比重) D792 g/cm3 MeltFlowRate(熔融指数) D1238 g/10min / TesnileStrength(拉伸强度) D638 Mpa 64 ElongationatBreak(断裂伸长率) D638 % < FlexuralStrength(弯曲强度) D790 Mpa 101 FlexuralModulus(弯曲模量) D790 Mpa 10020 IzodImpact(悬臂梁冲击强度) J/M N-ChrpyImpact(简支梁冲击强度) ISO179/1eA KJ/m2 /白色PA6基材导热塑料 项目美国材料试验协会ASTM 单位性能 导热系数 W/M-K 板间2W/M-K 板内14W/M-K 密度Density D792 g/cm3 拉伸强度TensileStrength D638 MPa 65 断裂伸长率BreakingElongation D638 % 2 弯曲强度FlexuralStrength D790 MPa 112 弯曲弹性模量FlexuralModulus D790 MPa 5500 Izod缺口冲击IzodNotchedImpact D256 J/m 50-80

相关文档
相关文档 最新文档