文档库 最新最全的文档下载
当前位置:文档库 › 中考数学复习最值及动态问题

中考数学复习最值及动态问题

中考数学复习最值及动态问题
中考数学复习最值及动态问题

中考数学复习专题--最值与动态问题

【例题1】(点动题)如图,在矩形 ABCD 中,AB=6,BC=8,点E 是 BC 中点,

点 F 是边 CD 上的任意一点,当△AEF 的周长最小时,则 DF 的长为()

A.1

B.2

C.3

D.4

【答案】D

【解析】如图,作点E 关于直线CD 的对称点 E′,连接 AE′,交 CD 于点 F.

∵在矩形 ABCD 中,AB=6,BC=8,点 E 是 BC 中点,

∴BE=CE=CE′=4.

∵AB⊥BC,CD⊥BC,

∴CF∥AB,△CE′F∽△BE′A.

CE′/BE′=CF/AB

4/(8+4)=CF/6

解得 CF=2.

∴DF=CD-CF=6-2=4.

热点二:线动

【例题2】(线动题)如图,量角器的直径与直角三角板 ABC 的斜边 AB 重合,其中量角器 0 刻度线的端点 N 与点 A 重合,射线 CP 从 CA 处出发沿顺时针方向以每秒 3°的速度旋转,CP 与量角器的半圆弧交于点 E,第 24 秒,点 E 在量角器上对应的读数是________.

【答案】144°

【解析】连接 OE,∵∠ACB=90°,

∴A,B,C 在以点 O 为圆心,AB 为直径的圆上.

∴点 E,A,B,C 共圆.

∵∠ACE=3°×24=72°,

∴∠AOE=2∠ACE=144°.

∴点 E 在量角器上对应的读数是 144°.

【例题3】(面动题)如图 Z10-4,将一个边长为 2 的正方形 ABCD 和一个长为 2,宽为 1 的长方形 CEFD 拼在一起,构成一个大的长方形 ABEF.现将小长方形 CEFD 绕点 C 按顺时针旋转至 CE′F′D′,旋转角为α.

(1)当点 D′恰好落在 EF 边上时,求旋转角α的值;

(2)如图 Z10-5,G 为 BC 中点,且 0°<α<90°,求证:GD′=E′D;

(3)小长方形 CEFD 绕点 C 按顺时针旋转一周的过程中,△ DCD′与△CBD′能否全等?若能,直接写出旋转角α的值;若不能,请说明理由.

【答案】见解析。

【解析】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.也考查了正方形、矩形的性质以及三角形全

等的判定与性质.

(1)∵长方形 CEFD 绕点 C 顺时针旋转至 CE′F′D′,

∴CD′=CD=2.

在 Rt△CED′中,CD′=2,CE=1,∴∠CD′E=30°.

∵CD∥EF,∴∠α=30°.

(2)证明:∵G 为 BC 中点,∴CG=1.∴CG=CE.

∵长方形 CEFD 绕点 C 顺时针旋转至 CE′F′D′,

∴∠D′CE′=∠DCE=90°,CE=CE′=CG.

∴∠GCD′=∠E′CD=90°+α.

-2

-1

-1321

321

y

x

O

M

D

C

B

A -2

-1

-1321

3

21

y x

O

M

D

C

B A 图1

(3)能.理由如下:

∵四边形 ABCD 为正方形,∴CB =CD. ∵CD =CD ′,

∴△BCD ′与△ DCD ′为腰相等的两个等腰三角形. 当∠BCD ′=∠DCD ′时,△BCD ′≌△DCD ′. ①当△BCD ′与△DCD ′为钝角三角形时,

②当△BCD ′与△DCD ′为锐角三角形时,

综上所述,当旋转角a 的值为135°或315°时,△DCD ′与△CBD ′全等.

【例题4】(2019湖南张家界)已知抛物线y =ax 2

+bx +c (a ≠0)过点A (1,0),B (3,0)两点,与y 轴交于点C ,

OC =3.

(1)求抛物线的解析式及顶点D 的坐标;

(2)过点A 作AM ⊥BC ,垂足为M ,求证:四边形ADBM 为正方形;

(3)点P 为抛物线在直线BC 下方图形上的一动点,当△PBC 面积最大时,求P 点坐标及最大面积的值;

(4)若点Q 为线段OC 上的一动点,问AQ +QC 是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.

【解题过程】(1)∵抛物线y =ax 2

+bx +c (a ≠0)过点A (1,0),B (3,0)两点, ∴令抛物线解析为y =a (x -1)(x -3). ∵该抛物线过点C (0,3),

∴3=a ×(0-1)×(0-3),解得a =1.

∴抛物线的解析式为y =(x -1)(x -3),即y =x 2

-4x +3. ∵y =x 2

-4x +3=(x -2)2

-1, ∴抛物线的顶点D 的坐标为(2,-1).

综上,所求抛物线的解析式为y =x 2

-4x +3,顶点坐标为(2,-1). (2)如答图1,连接AD 、BD ,易知DA =DB .

∵OB =OC ,∠BOC =90°, ∴∠MBA =45°.

∵D (2,-1),A (3,0),∴∠DBA =45°.∴∠DBM =90°. 同理,∠DAM =90°.又∵AM ⊥BC ,∴四边形ADBM 为矩形. 又∵DA =DB ,∴四边形ADBM 为正方形.

(3)如答图2,过点P 作PF ⊥AB 于点F ,交BC 于点E ,令P (m ,m 2

-4m +3),易知直线BC 的解析式为y =-x +3,则E (m ,-m +3),PE =(-m +3)-(m 2

-4m +3)=-m 2

+3m .

∵S △PBC =S △PBE +S △CPE =PE ?BF +PE ?OF =PE ?OB =×3×(-m 2

+3m )

=- (m -)2

+,

∴当m =时,S △PBC 有最大值为,此时P 点的坐标为(,-).

(4)如答图3,设OQ =t ,则CQ =3-t ,AQ +QC =2

1

1(3)2

t t ++

-, 取CQ 的中点G ,以点Q 为圆心,QG 的长为半径作⊙Q ,则当⊙Q 过点A 时,AQ +QC =⊙Q 的直径最小,

此时,,解得t =-1,

于是AQ +QC 的最小值为3-t =3-(-1)=4-.

一.选择题

图2

F E P -2

-1

-1321

3

2

1

y x

O

M

D

C

B A G Q -2

-1

-13

213

21

y x

O

D

C

B A 图3

专题典型训练题

1.(2019?四川省达州市)如图,边长都为4的正方形ABCD和正三角形EFG如图放置,AB与EF在一条直线上,点A与点F重合.现将△EFG沿AB方向以每秒1个单位的速度匀速运动,当点F与B重合时停止.在这个运动过程中,正方形ABCD和△EFG重叠部分的面积S与运动时间t的函数图象大致是()

A.B.C.D.

【答案】C.

【解析】根据题意和函数图象可以写出各段对应的函数解析式,从而可以判断哪个选项中的图象符合题意,本题得以解决.

当0≤t≤2时,S==,即S与t是二次函数关系,有最小值(0,0),开口向上,

当2<t≤4时,S=﹣=,即S与t是二次函数关系,开口向下,

由上可得,选项C符合题意。

2.(2019?山东泰安)如图,矩形ABCD中,AB=4,AD=2,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是()

A.2 B.4 C.D.

【答案】D.

当点F与点C重合时,点P在P1处,CP1=DP1,

当点F与点E重合时,点P在P2处,EP2=DP2,

∴P1P2∥CE且P1P2=CE

当点F在EC上除点C、E的位置处时,有DP=FP

由中位线定理可知:P1P∥CE且P1P=CF

∴点P的运动轨迹是线段P1P2,

∴当BP⊥P1P2时,PB取得最小值

∵矩形ABCD中,AB=4,AD=2,E为AB的中点,

∴△CBE、△ADE、△BCP1为等腰直角三角形,CP1=2

∴∠ADE=∠CDE=∠CP1B=45°,∠DEC=90°

∴∠DP2P1=90°

∴∠DP1P2=45°

∴∠P2P1B=90°,即BP1⊥P1P2,

∴BP的最小值为BP1的长

在等腰直角BCP1中,CP1=BC=2

∴BP1=2

∴PB的最小值是2

3.(2019?山东潍坊)如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从点B开始

运动到点D.设运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是()

A B.

C.D.

【答案】D.

【解析】由题意当0≤x≤3时,y=3,当3<x<5时,y=×3×(5﹣x)=﹣x+.由此即可判断.

由题意当0≤x≤3时,y=3,

当3<x<5时,y=×3×(5﹣x)=﹣x+.

4.(2019?湖北武汉)如图,AB是⊙O的直径,M、N是(异于A.B)上两点,C是上一动点,∠ACB的角平分线交⊙O于点D,∠BAC的平分线交CD于点E.当点C从点M运动到点N时,则C.E两点的运动路径长的比是()

A.B.C.D.

【答案】A.

如图,连接E B.设OA=r.易知点E在以D为圆心DA为半径的圆上,运动轨迹是,点C的运动轨迹是,由题意∠MON=2∠GDF,设∠GDF=α,则∠MON=2α,利用弧长公式计算即可解决问题.

∵AB是直径,∴∠ACB=90°,

∵E是△ACB的内心,∴∠AEB=135°,

∵∠ACD=∠BCD,

∴=,∴AD=DB=r,∴∠ADB=90°,

易知点E在以D为圆心DA为半径的圆上,运动轨迹是,点C的运动轨迹是,

∵∠MON=2∠GDF,设∠GDF=α,则∠MON=2α

∴==.

5.(2019?湖南衡阳)如图,在直角三角形ABC中,∠C=90°,AC=BC,E是AB的中点,过点E作AC和BC的垂线,垂足分别为点D和点F,四边形CDEF沿着CA方向匀速运动,点C与点A重合时停止运动,设运动时间为t,运动过程中四边形CDEF与△ABC的重叠部分面积为S.则S关于t的函数图象大致为()

A B C D

【答案】C.

根据已知条件得到△ABC是等腰直角三角形,推出四边形EFCD是正方形,设正方形的边长为a,当移动的距离<a 时,如图1,S=正方形的面积﹣△EE′H的面积=a2﹣t2;当移动的距离>a时,如图2,S=S△AC′H=(2a﹣t)2=t2﹣2at+2a2,根据函数关系式即可得到结论;

∵在直角三角形ABC中,∠C=90°,AC=BC,∴△ABC是等腰直角三角形,

∵EF⊥BC,ED⊥AC,∴四边形EFCD是矩形,

∵E是AB的中点,∴EF=AC,DE=BC,∴EF=ED,∴四边形EFCD是正方形,

设正方形的边长为a,

如图1当移动的距离<a时,S=正方形的面积﹣△EE′H的面积=a2﹣t2;

当移动的距离>a时,如图2,S=S△AC′H=(2a﹣t)2=t2﹣2at+2a2,

∴S关于t的函数图象大致为C选项。

6.(2019?浙江衢州)如图所示,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿E→A→D→C移动至终点C,设P点经过的路径长为x,△CPE的面积为y,则下列图象能大致反映y与x函数关系的是()

A B C D

【答案】 C

【解析】动点问题的函数图象。结合题意分情况讨论:①当点P在AE上时,②当点P在AD上时,③当点P在DC 上时,根据三角形面积公式即可得出每段的y与x的函数表达式.

①当点P在AE上时,

∵正方形边长为4,E为AB中点,

∴AE=2,

∵P点经过的路径长为x,

∴PE=x,

∴y=S△CPE= ·PE·BC= ×x×4=2x,

②当点P在AD上时,

∵正方形边长为4,E为AB中点,

∴AE=2,

∵P点经过的路径长为x,

∴AP=x-2,DP=6-x,

∴y=S△CPE=S正方形ABCD-S△BEC-S△APE-S△PDC,

=4×4- ×2×4- ×2×(x-2)- ×4×(6-x),

=16-4-x+2-12+2x,

=x+2,

③当点P在DC上时,

∵正方形边长为4,E为AB中点,

∴AE=2,

∵P点经过的路径长为x,

∴PD=x-6,PC=10-x,

∴y=S△CPE= ·PC·BC= ×(10-x)×4=-2x+20,

综上所述:y与x的函数表达式为:

y= .

7.(2019?甘肃武威)如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动.设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图②所示,则AD边的长为()

A.3 B.4 C.5 D.6

【答案】B.

当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP面积最大为3.

∴AB?=3,即AB?BC=12.

当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,

∴AB+BC=7.

则BC=7﹣AB,代入AB?BC=12,得AB2﹣7AB+12=0,解得AB=4或3,

因为AB<AD,即AB<BC,

所以AB=3,BC=4.

8.(2019甘肃省天水市)已知点P为某个封闭图形边界上一定点,动点M从点P出发,沿其边界顺时针匀速运动一周,设点M的运动时间为x,线段PM的长度为y,表示y与x的函数图象大致如图所示,则该封闭图形可能是()

A. B. C. D.

【答案】D

【解析】y与x的函数图象分三个部分,而B选项和C选项中的封闭图形都有4条线段,其图象要分四个部分,所以B.C选项不正确;

A选项中的封闭图形为圆,开始y随x的增大而增大,然后y随x的减小而减小,所以A选项不正确;

D选项为三角形,M点在三边上运动对应三段图象,且M点在P点的对边上运动时,PM的长有最小值.

9.(2019?山东潍坊)如图,直线y=x+1与抛物线y=x2﹣4x+5交于A,B两点,点P是y轴上的一个动点,当△P AB 的周长最小时,S△P AB=.

【答案】

【解析】本题考查二次函数的性质、一次函数的性质、轴对称﹣最短路径问题,解答本题的关键是明确题意,利用数形结合的思想解答.

根据轴对称,可以求得使得△P AB的周长最小时点P的坐标,然后求出点P到直线AB的距离和AB的长度,即可求得△P AB的面积,本题得以解决.

解得,或,

∴点A的坐标为(1,2),点B的坐标为(4,5),

∴AB==3,

作点A关于y轴的对称点A′,连接A′B与y轴的交于P,则此时△P AB的周长最小,

点A′的坐标为(﹣1,2),点B的坐标为(4,5),

设直线A′B的函数解析式为y=kx+b,

,得,

∴直线A′B的函数解析式为y=x+,

当x=0时,y=,

即点P的坐标为(0,),

将x=0代入直线y=x+1中,得y=1,

∵直线y=x+1与y轴的夹角是45°,

∴点P到直线AB的距离是:(﹣1)×sin45°==,

∴△P AB的面积是:=,

10.(2018云南)如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为.

【答案】2.

【解析】过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,由对称的性质可知=,再由圆周角定理可求出∠A′ON的度数,再由勾股定理即可求解.过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,

连接OB,OA′,AA′,

∵AA′关于直线MN对称,

∴=,

∵∠AMN=40°,

∴∠A′ON=80°,∠BON=40°,

∴∠A′OB=120°,

过O作OQ⊥A′B于Q,

在Rt△A′OQ中,OA′=2,

∴A′B=2A′Q=2,

即PA+PB的最小值2.

A

B

C

D

E F

11. 如图,在等腰△ACB 中,AC =BC =5,AB =8,D 为底边AB 上一动点(不与点A ,B 重合),DE ⊥AC ,DF ⊥BC ,垂足分别为E ,F ,则DE +DF = .

12.如图,在锐角△ABC 中,AB=6,∠BAC=45°,∠BAC 的平分线交BC 于点D ,M,N 分别是AD 和AB 上的动点,则BM+MN 的最小值是 ( )

A .62

B . 6

C . 32

D . 3

如图,作BH ⊥AC ,垂足为H ,交AD 于M 点,过M 点作MN ⊥AB ,垂足为N . ∵AD 是∠BAC 的平分线, ∴MH=MN ,

∴BM+MN=BM+MH=BN ,

∴BH 是点B 到直线AC 的最短距离(垂线段最短), ∴BH 就是BM+MN 的最小值, ∵AB=6,

∠BAC=45°, ∴BH=AB ?sin45°=6×2

2

=32

∴BM+MN 的最小值是32

13. (2019广东深圳)如图所示,抛物线过点A(-1,0),点C(0,3),且OB=OC.(1)求抛物线的解析式及其对称轴;

(2)点D,E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长的最小值,(3)点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为3∶5两部分,求点P的坐标.

【解题过程】(1)∵点C(0,3),OB=OC,∴点B(3,0).

把A(-1,0),C(0,3),B(3,0)代入,得

解得

∴抛物线的解析式为y=-x2+2x+3.

∵y=-x2+2x+3=-(x-1)2+4,

∴抛物线的对称轴为x=1.

(2)如图,作点C关于x=1的对称点C′(2,3),则CD=C′D.

取A′(-1,1),又∵DE=1,可证A′D=AE.

在Rt△AOC中,AC===.

四边形ACDE的周长=AC+DE+CD+AE =+1+CD+AE.

要求四边形ACDE的周长的最小值,就是求CD+AE的最小值.

∵CD+AE=C′D+A′D,

∴当A′D,C′三点共线时,C′D+A′D有最小值为,

∴四边形ACDE的周长的最小值=+1+.

(3)方法1:由题意知点P在x轴下方,连接CP,设PC与x轴交于点E,

∵直线CP把四边形CBPA的面积分为3:5两部分,

又∵S△CBE:S△CAE=S△PBE:S△PAE=BE:AE,

∴BE:AE=3:5或5:3,

∴点E1(,0),E2(,0).

设直线CE的解析式为y=kx+b,(,0)和(0,3)代入,得

解得

∴直线CE的解析式为y=-2x+3.

同理可得,当E2(,0)时,直线CE的解析式为y=-6x+3.

由直线CE的解析式和抛物线的解析式联立解得P1(4,-5),P2(8,-45).

方法2:由题意得S△CBP=S四边形CBPA或S△CBP=S四边形CBPA.

令P(x,-x2+2x+3),

S四边形CBPA=S△CAB+S△PAB=6+×4·(x2-2x-3)=2x2-4x.

直线CB的解析式为y=-x+3,

作PH∥y轴交直线CB于点H,则H(x,-x+3),

S△CBP=OB·PH=×3·(-x+3+x2-2x-3)=x2-x.

当S△CBP=S四边形CBPA时,x2-x=(2x2-4x),

解得x1=0(舍),x2=4,

∴P1(4,-5).

当S△CBP=S四边形CBPA时,x2-x=(2x2-4x),

解得x3=0(舍),x4=8,

∴P2(8,-45).

2021年中考数学总复习:专题52 中考数学最值问题(解析版)

2021年中考数学总复习:专题52 中考数学最值问题 在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要分为几何最值和代数最值两大部分。 一、解决几何最值问题的要领 (1)两点之间线段最短; (2)直线外一点与直线上所有点的连线段中,垂线段最短; (3)三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)。 二、解决代数最值问题的方法要领 1.二次函数的最值公式 二次函数y ax bx c =++2 (a 、b 、c 为常数且a ≠0)其性质中有 ①若a >0当x b a =-2时,y 有最小值。y ac b a min =-442; ②若a <0当x b a =-2时,y 有最大值。y ac b a max =-442。 2.一次函数的增减性.一次函数y kx b k =+≠()0的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;但当m x n ≤≤时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。 3. 判别式法.根据题意构造一个关于未知数x 的一元二次方程;再根据x 是实数,推得?≥0,进而求出y 的取值范围,并由此得出y 的最值。 4.构造函数法.“最值”问题中一般都存在某些变量变化的过程,因此它们的解往往离不开函数。 5. 利用非负数的性质.在实数范围内,显然有a b k k 22 ++≥,当且仅当a b ==0时,等号成立,即a b k 22++的最小值为k 。 6. 零点区间讨论法.用“零点区间讨论法”消去函数y 中绝对值符号,然后求出y 在各个区间上的最大值,再加以比较,从中确定出整个定义域上的最大值。 7. 利用不等式与判别式求解.在不等式x a ≤中,x a =是最大值,在不等式x b ≥中,x b =是最小值。

(完整版)中考数学动点问题专题讲解

动点及动图形的专题复习教案 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想函数思想方程思想数形结合思想转化思想 注重对几何图形运动变化能力的考查 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点. 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.

中考数学复习 利用辅助圆求解动点最值问题

利用辅助圆求解动点最值问题 许多几何问题虽然与圆无关,但是如果能结合条件补作辅助圆,就能利用圆的有关性质、结论,将某些最值问题通过圆中的几何模型求解.笔者经过研究,归纳为以下情况可考虑作辅助圆: 一、同一端点出发的等长线段 例1 如图1,在直角梯形ABCD 中,90,3,4,6DAB ABC AD AB BC ∠=∠=?=== ,点E 是线段AB 上一动点,将EBC ?沿CE 翻折到EB C '?,连结,B D B A ''.当点E 在AB 上运动时,分别求,,B D B A B D B A ''''+的最小值. 解析 如图1,当点E 在点B 时,B '与B 重合;当点E 在点A 时,设点B '在点F 处,由翻折可知BC B C FC '==.所以,点B '在以C 为圆心,BC 为半径的圆上,运动轨迹为弧BF . 如图2,点D 在⊙C 内,延长CD 交⊙C 于点1B .当点B '在点1B 时B D '最小,最小值为11B C DC -=. 点A 在⊙C 外,设AC 交⊙C 于点2B ,当点B '在点2B 时B A '最小,最小值为22136AC B C -=-. 设AD 与⊙C 交点为3B ,当点B '在点3B 时B D B A ''+最小,最小值为3AD =. 点评 当条件中有同一端点出发的等长线段时,根据圆的定义,以该端点为圆心,等长为半径构造圆,将原问题转化为定点与圆上点的距离问题.

模型1 如图3,点A 在⊙O 外,A 到⊙O 上各点连线段中AB 最短;如图4,点A 在⊙O 内,A 到⊙O 上各点连线段中AB 最短. 证明 在⊙O 上任取一点C ,不与点B 重合,连结,CA CO ,如图3. ,,OC CA OA OC OB CA AB +>=∴> ,得证. 如图4, ,,OC OA CA OC OB AB CA -<=∴<,得证. 二、动点对定线段所张的角为定值 模型2 如图5 , AB 为定线段,点C 为AB 外一动点,ACB ∠为定值,则点C 形成的轨迹是弧ACB 、弧AmB (不含点,A B ). 证明 设⊙O 为ABC ?的外接圆,在AB 上方任取三点,点,,D E F 分别在⊙O 外、⊙O 上、⊙O 内. ,,D AGB C E C AFB H C ∠<∠=∠∠=∠∠>∠=∠, ∴当ACB ∠为定值时,点C 形成的轨迹是弧ACB 、弧ADB (不含点,A B ). 1.动点时定线段所张的角为直角 例2 如图6,正方形ABCD 边长为2,点E 是正方形ABCD 内一动点,90AEB ∠=?,连结DE ,求DE 的最小值. 解析 90,AEB AB ∠=?为定线段, 由模型2可知,点E 在以AB 为直径的圆上.连OD 交⊙O 于点F ,由模型1,当E 在点F 处时DE 最短,最小值是51-.

中考数学要点难点分析整理复习总结

初一上册 有理数、整式的加减、一元一次方程、图形的初步认识。 (1)有理数:是初中数学的基础内容,中考试题中分值约为3-6分,多以选择题,填空题,计算题的形式出现,难易度属于简单。 考察内容:复数以及混合运算(期中、期末必考计算)数轴、相反数、绝对值和倒数(选择、填空)。 (2)整式的加减:中考试题中分值约为4分,题型以选择和填空题为主,难易度属于易。 考察内容: ①整式的概念和简单的运算,主要是同类项的概念和化简求值 ②完全平方公式,平方差公式的几何意义 ③利用提公因式发和公式法分解因式。 (3)一元一次方程:是初一学习重点内容,主要学习内容有(归纳、总结、延伸)应用题思维、步骤、文字题,根据已知条件求未知。中考分值约为1-3分,题型主要以选择和填空题为主,极少出现简答题,难易度为易。 考察内容: ①方程及方程解的概念 ②根据题意列一元一次方程 ③解一元一次方程。题型:追击、相遇、时间速度路程的关系、打折销售、利润公式。 (4)几何:角和线段,为下册学三角形打基础 初一下册

相交线和平行线、实数、平面直角坐标系、二元一次方程组、不等式和不等式组和数据库的收集整理与描述。 (1)相交线和平行线:相交线和平行线是历年中考中常见的考点。通常以填空,选择题形式出现。分值为3-4分,难易度为易。 考察内容: ①平行线的性质(公理) ②平行线的判别方法 ③构造平行线,利用平行线的性质解决问题。 (2)平面直角坐标系:中考试题中分值约为3-4分,题型以选择,填空为主,难易度属于易。 考察主要内容: ①考察平面直角坐标系内点的坐标特征 ②函数自变量的取值范围和球函数的值 ③考察结合图像对简单实际问题中的函数关系进行分析。 (3)二元一次方程组:中考分值约为3-6分,题型主要以选择,解答为主,难易度为中。 考察内容:①方程组的解法,解方程组②根据题意列二元一次方程组解经济问题。 (4)不等式和不等式组:中考试题中分值约为3-8分,选择,填空,解答题为主。 主要考察内容: ①一元一次不等式(组)的解法,不等式(组)解集的数轴表示,不等式(组)的整数解等,题型以选择,填空为主。 ②列不等式(组)解决经济问题,调配问题等,主要以解答题为主。 ③留意不等式(组)和函数图像的结合问题。

(完整)初三数学几何的动点问题专题练习

动点问题专题训练 1、如图,已知ABC △中,10 AB AC ==厘米,8 BC=厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q 在线段CA上由C点向A点运动. ①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q第一次在ABC △的哪条边上相遇? 2、直线 3 6 4 y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O点出发, 同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度, 点P沿路线O→B→A运动. (1)直接写出A B 、两点的坐标; (2)设点Q的运动时间为t秒,OPQ △的面积为S,求S与t之间的函数关系式; (3)当 48 5 S=时,求出点P的坐标,并直接写出以点O P Q 、、为顶点的平行四 边形的第四个顶点M的坐标.

3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P. (1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形? 4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4), 点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式; (2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围); (3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.

中考数学压轴题解题方法大全和技巧

中考数学压轴题解题技巧 湖北竹溪城关中学明道银 解中考数学压轴题秘诀(一) 数学综合题关键是第24题和25题,我们不妨把它分为函数型综合题和几何型综合题。 (一)函数型综合题:是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线; ③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。此类题基本在第24题,满分12分,基本分2-3小题来呈现。 (二)几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。几何型综合题基本在第25题做为压轴题出现,满分14分,一般分三小题呈现。 在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。 解中考数学压轴题秘诀(二) 具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。

中考数学专题复习最值问题

两点之间线段最短关系密切.在求最短路线时,一般我们先用“对称”的方法化成两点之间的最短距离问题,而两点之间直线段最短,从而找到所需的最短路线.像这样将一个问题转变为一个和它等价的问题,再设法解决,是数学中一种常用的重要思想方法. 类型1 利用“垂线段最短”求最短路径问题 如图所示,AB 是一条河流,要铺设管道将河水引到C ,D 两个用水点,现有两种铺设管道的方案.方案一:分别过C ,D 作AB 的垂线,垂足分别为E ,F ,沿CE ,DF 铺设管道;方案二:连接CD 交AB 于点P ,沿PC 、PD 铺设管道.问:这两种铺设管道的方案中哪一种更节省材料,为什么? 【思路点拨】 方案一管道长为CE +DF ,方案二管道长为PC +PD ,利用垂线段最短即可比较出大小. 本题易错误的利用两点之间线段最短解决,解答时需要准确识图,找到图形对应的知识点. 1.如下左图,点A 的坐标为(-1,0),点B(a ,a),当线段AB 最短时,点B 的坐标为( ) A .(0,0) B .(22,-22) C .(-22,-22) D .(-12,-12 ) 2.在直角坐标系中,点P 落在直线x -2y +6=0上,O 为坐标原点,则|OP|的最小值为( ) A.352 B .3 5 C.655 D.10 3.如上中图,在平面直角坐标系xOy 中,以原点O 为圆心的圆过点A(13,0),直线y =kx -3k +4与⊙O 交于B 、C 两点,则弦BC 的长的最小值为________. 4.如上右图,平原上有A ,B ,C ,D 四个村庄,为解决缺水问题,政府准备投资修建一个蓄水池. (1)不考虑其他因素,请你画图确定蓄水池H 点的位置,使它到四个村庄距离之和最小; (2)计划把河水引入蓄水池H 中,怎样开渠最短并说明根据. 类型2 利用“两点之间线段最短”求最短路径问题 (1)如图1,直线同侧有两点A ,B ,在直线MN 上求一点C ,使它到A 、B 之和最小;(保留作图痕迹不写作法) (2)知识拓展:如图2,点P 在∠AOB 内部,试在OA 、OB 上分别找出两点E 、F ,使△PEF 周长最短;(保留作图痕迹不写作法) (3)解决问题:①如图3,在五边形ABCDE 中,在BC ,DE 上分别找一点M ,N ,使得△AMN 周长最小;(保留作图痕迹不写作法)

中考数学重难点专题讲座动态几何与函数问题含答案(终审稿)

中考数学重难点专题讲座动态几何与函数问题 含答案 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

中考数学重难点专题讲座 第八讲动态几何与函数问题 【前言】 在第三讲中我们已经研究了动态几何问题的一般思路,但是那时候没有对其中夹杂的函数问题展开来分析。整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。但是这两种侧重也没有很严格的分野,很多题型都很类似。所以相比昨天第七讲的问题,这一讲将重点放在了对函数,方程的应用上。其中通过图中已给几何图形构建函数是重点考察对象。不过从近年北京中考的趋势上看,要求所构建的函数为很复杂的二次函数可能性略小,大多是一个较为简单的函数式,体现了中考数学的考试说明当中“减少复杂性”“增大灵活性”的主体思想。但是这也不能放松,所以笔者也选择了一些较有代表性的复杂计算题仅供参考。 【例1】 如图①所示,直角梯形OABC的顶点A、C分别在y轴正半轴与x轴负半轴上.过点B、C作直线l.将直线l平移,平移后的直线l与x轴交于点D,与y轴交于点E. (1)将直线l向右平移,设平移距离CD为t(t≥0),直角梯形OABC被直线l扫过的面积(图中阴影部份)为s,s关于t的函数图象如图②所示,OM为线段,MN为抛物线的一部分,NQ为射线,且NQ平行于x轴,N点横坐标为4,求梯形上底AB的长及直角梯形OABC的面积. (2)当24 t<<时,求S关于t的函数解析式.

中考数学动点问题十大题型

1、如图,已知ABC ==厘米,8 BC=厘米,点D为AB的中 AB AC △中,10 点. (1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动. ①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD △ 与CQP △是否全等,请说明理由; ②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速 度为多少时,能够使BPD △全等? △与CQP (2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P与点Q第一次在ABC △的哪条边上相遇?

2、直线与坐标轴分别交于两点,动点同时从点出发,同时到达点,运动停止.点沿线段 运动,364y x =-+A B 、P Q 、O A Q OA

速度为每秒1个单位长度,点沿路线→→运动. (1)直接写出两点的坐标; (2)设点的运动时间为秒,的面积为,求出与之间的函数关系式; (3)当时,求出点的坐标,并直接写出以点为顶点的平行四边形的第四个顶点的坐标. P O B A A B 、Q t OPQ △S S t 485S P O P Q 、、M

3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P. (1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?

4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4), 点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式; (2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围); (3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.

初中数学最值问题典型例题(含解答分析)

中考数学最值问题总结 考查知识点:1、“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。 (2、代数计算最值问题3、二次函数中最值问题) 问题原型:饮马问题造桥选址问题(完全平方公式配方求多项式取值二次函数顶点)出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直” 几何基本模型: 条件:如下左图,A、B是直线l同旁的两个定点. 问题:在直线l上确定一点P,使PA PB +的值最小. 方法:作点A关于直线l的对称点A',连结A B'交l于 点P,则PA PB A B' +=的值最小 例1、如图,四边形ABCD是正方形,△ABE是等边三 角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM. (1)求证:△AMB≌△ENB; (2)①当M点在何处时,AM+CM的值最小; ②当M点在何处时,AM+BM+CM的值最小,并说明理由; (3)当AM+BM+CM的最小值为时,求正方形的边长。 A B A'′P l

例2、如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0) (1)求抛物线的解析式 (2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由. (3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线M N∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.

中考数学专题(3)动态几何问题分析

中考数学专题3 动态几何问题 第一部分 真题精讲 【例1】如图,在梯形ABCD 中,AD BC ∥,3AD =,5DC =,10BC =,梯形的高为4.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t (秒). (1)当MN AB ∥时,求t 的值; (2)试探究:t 为何值时,MNC △为等腰三角形. 【思路分析1】本题作为密云卷压轴题,自然有一定难度,题目中出现了两个动点,很多同学看到可能就会无从下手。但是解决动点问题,首先就是要找谁在动,谁没在动,通过分析动态条件和静态条件之间的关系求解。对于大多数题目来说,都有一个由动转静的瞬间,就本题而言,M ,N 是在动,意味着BM,MC 以及DN,NC 都是变化的。但是我们发现,和这些动态的条件密切相关的条件DC,BC 长度都是给定的,而且动态条件之间也是有关系的。所以当题中设定MN//AB 时,就变成了一个静止问题。由此,从这些条件出发,列出方程,自然得出结果。 【解析】 解:(1)由题意知,当M 、N 运动到t 秒时,如图①,过D 作DE AB ∥交BC 于E 点,则四边形ABED 是平行四边形. A B M C N E D ∵AB DE ∥,AB MN ∥. ∴DE MN ∥. (根据第一讲我们说梯形内辅助线的常用做法,成功将MN 放在三角形内,将动态问题转化成平行时候的静态问题) ∴MC NC EC CD =. (这个比例关系就是将静态与动态联系起来的关键) ∴ 1021035t t -=-.解得5017t = . 【思路分析2】第二问失分也是最严重的,很多同学看到等腰三角形,理所当然以为是MN=NC 即可,于是就漏掉了MN=MC,MC=CN 这两种情况。在中考中如果在动态问题当中碰见等腰三角形,一定不要忘记分类讨论的思想,两腰一底一个都不能少。具体分类以后,就成为了较为简单的解三角形问题,于是可以轻松求解 【解析】 (2)分三种情况讨论:

中考数学压轴题归类复习(十大类型附详细解答)

中考数学压轴题辅导(十大类型) 目录 动点型问题 (3) 几何图形的变换(平秱、旋转、翻折) (6) 相似不三角函数问题9 三角形问题(等腰直角三角形、等边三角形、全等三角形等) (13) 不四边形有关的二次函数问题 (16) 刜中数学中的最值问题 (19) 定值的问题 (22) 存在性问题(如:平行、垂直,动点,面积等) (25) 不圆有关的二次函数综合题... .. (29) 其它(如新定义型题、面积问题等) (33) 参考答案 (36)

中考数学压轴题辅导(十大类型) 数学综压轴题是为考察考生综合运用知识的能力而设计的,集中体现知识的综合性和方 法的综合性,多数为函数型综合题和几何型综合题。 函数型综合题:是给定直角坐标系和几何图形,先求函数的解析式,再迚行图形的研究,求点的坐标戒研究图形的某些性质。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。 几何型综合题:是先给定几何图形,根据已知条件迚行计算,然后有动点(戒动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系迚行探索研究。一般有:在什么条件下图形是等腰三角形、直角三角形,四边形是平行四边形、菱形、梯形等,戒探索两个三角形满足什么条件相似等,戒探究线段乊间的数量、位置关系等,戒探索面积乊间满足一定关系时求 x 的值等,戒直线(圆) 不圆的相切时求自变量的值等。求未知函数解析式的关键是列出包含自变量和因变量乊间的 等量关系(即列出含有 x、y 的方程),变形写成 y=f(x)的形式。找等量关系的途径在刜中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求函数的自变量 的取值范围主要是寻找图形的特殊位置(极端位置)和根据解析式求解。而最后的探索问题千 变万化,但少丌了对图形的分析和研究,用几何和代数的方法求出 x 的值。 解中考压轴题技能:中考压轴题大多是以坐标系为桥梁,运用数形结合思想,通过建立点不数即坐标乊间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。关键是掌握几种常用的数学思想方法。 一是运用函数不方程思想。以直线戒抛物线知识为载体,列(解)方程戒方程组求其解 析式、研究其性质。 二是运用分类讨论的思想。对问题的条件戒结论的多变性迚行考察和探究。 三是运用转化的数学的思想。由已知向未知,由复杂向简单的转换。中考压轴题它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。因此,可把压轴题分离为相对独立而又单一的知识戒方法组块去思考和探究。 解中考压轴题技能技巡: 一是对自身数学学习状况做一个完整的全面的认识。根据自己的情况考试的时候重心定位准确,防止“捡芝麻丢西瓜”。所以,在心中一定要给压轴题戒几个“难点”一个时间上 的限制,如果超过你设置的上限,必须要停止,回头认真检查前面的题,尽量要保证选择、填空 万无一失,前面的解答题尽可能的检查一遍。 二是解数学压轴题做一问是一问。第一问对绝大多数同学来说,丌是问题;如果第一小问丌会解,切忌丌可轻易放弃第二小问。过程会多少写多少,因为数学解答题是按步骤给分的,写上去的东西必须要规范,字迹要巟整,布局要合理;过程会写多少写多少,但是丌要说废话,计算中尽量回避非必求成分;尽量多用几何知识,少用代数计算,尽量用三角函数,少在直角三角形中使用相似三角形的性质。 三是解数学压轴题一般可以分为三个步骤。认真审题,理解题意、探究解题思路、正确 解答。审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。解数学压轴题要善于总结解数学压轴题中所隐含的重

中考数学动点问题最值基本题型汇总

中考数学动点问题最值基本题型汇总 一、最值类型 1.饮马型:即将军饮马型,通常为两条线段之和的最值问题,利用对称性质将其中一条线段进行转换,再利用两点之间线段最短(或三角形三边关系)得到结果。 2.小垂型:即小垂回家型,通常为一条线段的最值问题,即动点的轨迹为直线,利用垂线段最短的性质得到结果。 3.穿心型:即一箭穿心型,通常为一条线段的最值问题,即动点的轨迹为圆或弧,利用点与圆的位置关系得到结果。 4.转换型:即一加半型,通常为一条线段与另一条线段一半的和的最值问题,即将那半条线段利用三角形中位线或30°的对边等知识进行转换,再利用饮马或小垂或穿心。 5.三边型:即三角形三边关系关系型,通常利用两边之和大于第三边、两边之差小于第三边求其最大(小)值。 6.结合型:即以上类型的综合运用,大多为饮马+小垂、小垂+穿心、饮马+穿心饮马+转换等 ※二、分类例析 一、饮马型 例1:如图,在正方形ABCD中,点E在CD上,CE=3, DE=1, 点P在AC上,则PE+PD 的最小值是_____ . 解析:如图 例2:如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD 内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为____.

解析:如下图 二、小垂型 例3:如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AB上的任意一点,作PD⊥AC于点D,PE⊥CB于点E,连接DE,则DE的最小值为_________. 解析:如下图 三、穿心型 例4:如图,在边长为4的菱形ABCD中,∠ABC=120°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN翻折得到△A′MN,连接A’C,则A’C长度的最小值是____. 解析:如下图

中考数学题型及方法总结

初中数学中的固定题型及惯性思维 一、角平分线的考点 1.定义 2.性质(垂直于角的两边) 3.对称性(垂直于角 平分线,构造全等,得到中点) 二、中点的三个考点 1.斜边中线(直角与中点) 2.三线合一(等腰与中点) 3.中位线(两个中点) 附注:中点常见作辅助线方法:过其中一个端点作另一个端点所在直线的平行线交延长线与一点。如果其中一个端点所在直线有多条,要结合题目已知条件进行判断,一般以已知线段长度的为主。 三、等腰三角形的考点 1.等角对等边 2.等边对等角 3.三线合一 四、全等三角形 1.五个全等三角形的判定定理 2.对应边对应角相等 五、轴对称图形 1.角的对称性(性质) 2.线段的对称性(性质) 3.等腰三角形的对称性(三线合一) 附注:对称轴是直线,轴对称图形既可以是一个图形本身,比如等腰三角形是轴对称图形,也可以说两个图形关于某条直线呈轴对称图形。 六、勾股定理 1.勾股定理的公式 2.勾股定理的逆定理(可以用来证明直角或者一个三角形是直角三角形) 附注:利用图形证明勾股定理一般都是利用部分面积之和等于整体面积,另外记住几组常见的勾股数,3,4,5;6,8,10; 5,12,13; 7,24,25 七、平面直角坐标系 1.平面直角坐标系是用来确定点及图像的位置的 2.坐标轴及象限的划分

附注:如果题目说不经过第二象限,应该有两种情况,一是经过一三四象限,二是经过一三象限,做此类题目不要思维定势。 八、二次根式 1.二次根式的非负性 2.同类二次根式 3.最简二次根式 4.二次根式的比较大小 5.二次根式的加减乘除 附注:如果题目的计算结果包含根式,一定要习惯性地判断是否是最简二次根式,切记因为细节问题失分;另外代数式有意义也要注意开方数大于等于0,千万不要漏掉等号。 九、一元二次方程 1.定义(二次项系数不为0) 2.四种解法(优先考虑因式分解法,主要是十字相乘) 3.一元二次方程根的个数的判别式 4.一元二次方程根与系数的关系,即韦达定理 附注:只要一个题目是求解有关一元二次方程的根的代数式的值的题目,只有两种方法,代入法与韦达定理,如果满足韦达定理的形式就用韦达定理,除此之外,一律使用代入法。 十、二次函数 1.定义(最高次为2,二次项系数不为0) 2.二次函数的图像(开口、与X轴的交点、对称轴、顶点坐标、与Y轴的交点位置) 3.二次函数的增减性 4.二次函数的动点问题 附注:初中阶段所有函数的知识点都比较少,更多的是知识点的迁移变化与综合应用。 十一、分式方程 1.分式方程的定义(有可能考选择题) 2.分式方程的解的情况 3.已知分式方程的解的情况,求未知实数的取值范围 附注:1.增根是分式方程无解的特殊情况 2.如果告诉分式方程的解为负数,解出X之后,一方面x<0,另外千万不要忘记x不能等于增根,这个是比较容易出错的一个点。 十二、圆 1.相关定义,比如直径、圆心、弦、切线、弧、圆周角、圆心角等等 2.切线长定理 3.垂径定理 直径:直径所对圆周角是90度

中考数学中的探究性问题动态几何(终审稿)

中考数学中的探究性问 题动态几何 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

中考数学中的《探究性问题——动态几何》 动态几何类问题是近几年中考命题的热点,题目灵活、多变,能够全面考查 学生的综合分析和解决问题的能力。 有关动态几何的概念,在很多资料上有说明,但是没有一个统一的定义,在这里就不在赘述了。本人只是用2005 年的部分中考数学试题加以说明。 一、知识网络 《动态几何》涉及的几种情况动点问题? 动线问题动形问题? ? 二、例题经典 1.【05 重庆课改】如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P 从点A 开始在线段AO 上以每秒1 个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2 个单位长度的速度向点A 移动,设点P、Q 移动的时间为t 秒. (1) 求直线AB 的解析式; y (2) 当t 为何值时,△APQ 与△AOB 相似 24 A (3) 当t 为何值时,△APQ 的面积为 个平方单位 5 P Q

【解】(1)设直线AB 的解析式为y=k x+b 由题意,得b=6 8k+b=0 3 解得k=-b=6 4 3 所以,直线AB 的解析式为y=-x+6. 4 (2)由AO=6,BO=8 得AB=10 所以AP=t ,AQ=10-2t 1°当∠APQ=∠AOB 时,△APQ∽△AOB. t 10 2t 30 所以=解得t= (秒) 6 10 11 2°当∠AQP=∠AOB 时,△AQP∽△AOB. t 10 2t 50 所以=解得t= 10 6 13 (秒) (3)过点Q 作QE 垂直AO 于点E. BO 4 在Rt△AOB 中,Sin∠BAO= = AB 5 O y y A P Q O A Q y B B B x x x

中考数学压轴题(含答案)

2016中考压轴题突破 训练目标 1.熟悉题型结构,辨识题目类型,调用解题方法; 2.书写框架明晰,踩点得分(完整、快速、简洁)。 题型结构及解题方法 压轴题综合性强,知识高度融合,侧重考查学生对知识的综合运用能力,对问题背景的研究能力以及对数学模型和套路的调用整合能力。

答题规范动作 1.试卷上探索思路、在演草纸上演草。 2.合理规划答题卡的答题区域:两栏书写,先左后右。 作答前根据思路,提前规划,确保在答题区域内写完答案;同时方便修改。 3.作答要求:框架明晰,结论突出,过程简洁。 23题作答更加注重结论,不同类型的作答要点: 几何推理环节,要突出几何特征及数量关系表达,简化证明过程; 面积问题,要突出面积表达的方案和结论; 几何最值问题,直接确定最值存在状态,再进行求解; 存在性问题,要明确分类,突出总结。 4.20分钟内完成。 实力才是考试发挥的前提。若在真题演练阶段训练过程中,对老师所讲的套路不熟悉或不知道,需要查找资源解决。下方所列查漏补缺资源集中训练每类问题的思路和方法,这些训练与真题演练阶段的训练互相补充,帮学生系统解决压轴题,以到中考考场时,不仅题目会做,而且能高效拿分。课程名称: 2014中考数学难点突破 1、图形运动产生的面积问题 2、存在性问题 3、二次函数综合(包括二次函数与几何综合、二次函数之面积问题、二次函数中的存在性问题) 4、2014中考数学压轴题全面突破(包括动态几何、函数与几何综合、点的存在性、三角形的存 在性、四边形的存在性、压轴题综合训练)

一、图形运动产生的面积问题 一、 知识点睛 1. 研究_基本_图形 2. 分析运动状态: ①由起点、终点确定t 的范围; ②对t 分段,根据运动趋势画图,找边与定点,通常是状态转折点相交时的特殊位置. 3. 分段画图,选择适当方法表达面积. 二、精讲精练 1. 已知,等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在△ABC 的边AB 上,沿AB 方向以1 厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M 、N 分别作AB 边的垂线,与△ABC 的其他边交于P 、Q 两点,线段MN 运动的时间为t 秒. (1)线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形并求出该矩形的面积. (2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围. 1题图 2题图 2. 如图,等腰梯形ABCD 中,AB ∥CD ,AB = CD 高CE =,对角线AC 、BD 交于点H .平 行于线段BD 的两条直线MN 、RQ 同时从点A 出发,沿AC 方向向点C 匀速平移,分别交等腰梯形ABCD 的边于M 、N 和R 、Q ,分别交对角线AC 于F 、G ,当直线RQ 到达点C 时,两直线同时停止移动.记 等腰梯形ABCD 被直线MN 扫过的面积为1S ,被直线RQ 扫过的面积为2S ,若直线MN 平移的速度为1单位/秒,直线RQ 平移的速度为2单位/秒,设两直线移动的时间为x 秒. (1)填空:∠AHB =____________;AC =_____________; (2)若213S S ,求x . 3. 如图,△ABC 中,∠C =90°,AC =8cm ,BC =6cm ,点P 、Q 同时从点C 出发,以1cm/s 的速度分别沿CA 、 CB 匀速运动,当点Q 到达点B 时,点P 、Q 同时停止运动.过点P 作AC 的垂线l 交AB 于点R ,连接PQ 、RQ ,并作△PQR 关于直线l 对称的图形,得到△PQ'R .设点Q 的运动时间为t (s ),△PQ'R 与△PAR 重叠部分的面积为S (cm 2). (1)t 为何值时,点Q' 恰好落在AB 上 (2)求S 与t 的函数关系式,并写出t 的取值范围. (3)S 能否为9 8 若能,求出此时t 的值; 若不能,请说明理由. C B A B C P R Q Q' l A C M N Q P B C H D C B A A B C H H D C B A A B C D M N R Q F G H E H D C B A H D C B A

中考数学--动点问题题型方法归纳

图 B 图 B 图动点问题 题型方法归纳 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、三角形边上动点 1(2009年齐齐哈尔市)直线3 64 y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标; (2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间 的函数关系式; (3)当48 5 S = 时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的 平行四边形的第四个顶点M 的坐标. 提示:第(2)问按点P 到拐点B 所有时间分段分类; 第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。然后画出各类的图形,根据图形性质求顶点坐标。 2.如图,AB 是⊙O 的直径,弦BC=2cm , ∠ABC=60o. (1)求⊙O 的直径; (2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切; (3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<

中考数学压轴选择题绝对经典(含答案)

法:从题目的已知条件出发,经过演算、推理或证明,得出与选择题的某一选项相同的结论,这种决定选择项的方法,称为直接法。 hh 例1.如图,⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM的长的取值围是()A.3≤OM≤5 B.4≤OM≤5C.3<OM<5 D.4<OM<5 例2:若X是4和9的比例中项,则X的值为() A、6 B、-6 C、±6 D、36 剖析:此题考查比例中项的概念,由于4和9的比例中项为X,即X2=4×9=36,所以,X=±6都符合比例中项的定义,即 62= 36 及(-6 )2 = 36,故4和9的比例中项应为±6,故应选择C。 2.图像法:在解答某些单项选择题时,可先根据题设作出相应的图形(或草图),然后根据图形的作法和性质,经过推理判断或必要的计算,选出正确的答案。 例3.若点(-2,y1)、(-1,y2)、(1,y3)都在反比例函数y=-的图象上,则()A.y1>y2>y3 B.y2>y1>y3C.y3>y1>y2 D.y1>y3>y2 3.排除法:经过推理判断,将四个备选答案中的三个迷惑答案一一排除,剩下一个答案是正确的答案,排除法也叫筛选法。 例4、若a>b,且c为实数,则下列各式中正确的是()A、ac>bc B、acbc2 D、ac2≥bc

例5、在下列四边形中,是轴对称图形,而不是中心对称图形的是( ) A 、矩形 B 、菱形 C 、等腰梯形 D 、一般平行四边形 4.赋值法:有些选择题,用常规方法直接求解较困难,若根据答案所提供的信息,选择某些 特殊值进行计算,或再进行判断往往比较方便。 例6在同一坐标系,直线l 1:y =(k -2)x +k 和l 2:y =kx 的位置可能为( ) 例7. 已知一次函数y 选=kx+(1-k),若k<1,则它的图象不经过第( )象限。 A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 选择题!!!!!!! 1、在实数123.0,330tan ,60cos ,7 22,2121121112.0,,14.3,64,3,80032----Λπ中,无理数有( ) A 、3个 B 、4个 C 、5个 D 、6个 2、下列运算正确的是( ) A 、x 2 x 3 =x 6 B 、x 2+x 2=2x 4 C 、(-2x)2 =4x 2 D 、(-2x)2 (-3x )3=6x 5 3、算式22222222+++可化为( ) A 、42 B 、28 C 、82 D 、16 2 4、“世界银行全球扶贫大会”于2004年5月26日在上海开幕.从会上获知,我国国民生产 总值达到11.69万亿元,人民生活总体上达到小康水平,其中11.69万亿用科学记数法表示 应为( ) A 、11.69×1410 B 、1410169.1? C 、 1310169.1? D 、14101169.0? 5、不等式2)2(2-≤-x x 的非负整数解的个数为( ) A 、1 B 、2 C 、3 D 、4 6、不等式组? ??-≤-->x x x 28132的最小整数解是( ) A 、-1 B 、0 C 、2 D 、3 7、为适应国民经济持续协调的发展,自2004年4月18日起,全国铁路第五次提速,提速 后,火车由天津到上海的时间缩短了7.42小时,若天津到上海的路程为1326千米,提速前 火车的平均速度为x 千米/小时,提速后火车的平均速度为y 千米/时,则x 、y 应满足的关 系式是( )

相关文档
相关文档 最新文档