文档库 最新最全的文档下载
当前位置:文档库 › 迈克尔逊干涉实验预习报告

迈克尔逊干涉实验预习报告

迈克尔逊干涉实验预习报告
迈克尔逊干涉实验预习报告

迈克耳干涉仪的使用

09材物2班陈骋学号:200910240212

一实验目的

(1).了解迈克耳逊干涉仪的基本构造,学习其调节和使用方法,学习按照一定原理组装仪器的技能,通过自行组装迈克耳干涉仪学习光路的调

整。

(2).观察各种干涉条纹,加深对薄膜干涉原理的理解,开拓学习应用的技能。

(3).学会用迈克耳逊干涉仪测量物理量,在组装好的个迈克耳干涉仪上进行压电晶片电致伸缩效应的观测。粗略测出压电晶片的压电系数。

二实验原理

1、迈克耳逊干涉仪的原理。

迈克耳逊干涉仪是应用分振幅法产生双光束以实现干涉的仪器,仪器的光学系统由两个平面反射镜M1和M2及两

块材质相同、厚度相等的平行平面玻璃板G1和

G2所组成,如上图所示。从光源S发出的光,

射到分光板G1上,分光板G1后表面有半反射膜,

将一束光分解成两束光;一束为反射光(1),另

一束为透射光

(2),他们的强度近似相等。由于G1与M1、

M2均成45度角,所以两束光都垂直的射到M1

和M2,并经反射后回到G1上的半反射膜,再在观察处E相遇。因为光束(1)、(2)是相干光,若仪器调整得当,便可在E处观察到干涉图样。

G2为补偿板,其物理性能和几何形状与G1相同,它的作用是为了补偿光束(2)的光程,使光束(1)和光束(2)在玻璃中的光程完全相等。

2、干涉条纹的形成。

由于半反射膜

实质上是一块反射镜,它

使M2在M1附M2近形

成一个虚像M'2。由于是

从观察处E看到的两束

光好像是从M1和M'2射

来的,故可将M'2看成一

个虚平面。因M'2不是实

物,它的表面和M1的表

面所夹的空气薄膜可以

任意调节如使其平行则形成等厚的空气薄膜,产生等倾干涉;若不平行则形成空气劈尖,成

等厚干涉。从而在实验过程中可以观察到不同的干涉图样。

(1)等倾干涉使M2垂直M1(即M1平行M'2),S又为面光源时,这就相当于空气平面板所产生的等倾干涉。自M1和M2反射后两光束的光程差(如果光束(1)、(2)在半反射膜上反射时无附加光程差)为

=

?2,式中d为M

dCos'

i

和M'2间的距离,即为空气膜厚度。I为入射光

1

M1、M'2镜表面的入射角。由上式可知,当d一定时,光程差只决定于入射角。面光源上具有相同倾角I的所有光束的光程差?也相同,它们在干涉区域里将形成同一条干涉条纹,这种干涉即为等倾干涉。对应不同入射角的光束光程差不相同,形成不同级次的干涉条纹,便得到一组明暗相间的同心圆环,条纹定域在无穷远处,在E处直接用眼睛就可以观察到等倾干涉的同心圆环。

(2)等厚干涉当M1、M'2相距很近,并把M'2调成与M1相交呈很小的角度时,就形成一空气劈尖。在劈尖很薄的情况下,从E处便可看到

等厚干涉条纹。这时,两相干光程差仍可近似

的表示为?=2dcosi,,在M1和M'2的交线处的直

线纹称为中央条纹。在交线上,d=0,光程差?

为零,条纹为一条直线;在交线附近d很小,i

的变化可以忽略,即cosi视为常数,条纹为一

组近似与中央条纹平行的等间距的直条纹,可

视为等厚条纹;离交线较远处d变大,光程差?

的改变,除了与膜厚度d有关外,还受i角的影

响,cosi的影响不能忽略。实际上i很小,

?=2dcosi≈2d(1-i2/2),条纹发生弯曲。

三实验背景

历史背景

迈克耳逊干涉仪,是1883年美国物理学家迈克耳逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。它是利用分振幅法产生双光束以实现干涉。通过调整该干涉仪,可以产生等厚干涉条纹,也可以产生等倾干涉条纹。主要用于长度和折射率的测量,若观察到干涉条纹移动一条,便是M2的动臂移动量为λ/2,等效于M1与M2之间的空气膜厚度改变λ/2。

在近代物理和近代计量技术中,如在光谱线精细结构的研究和用光波标定标准米尺等实验中都有着重要的应用。利用该仪器的原理,研制出多种专用干涉仪。

具体应用

1. 微小位移量和微振动的测量

采用迈克耳逊干涉技术,通过测量KDP晶体生长的法向速率和台阶斜率来研究其台阶生长的动力学系数、台阶自由能、溶质在边界层内的扩散特征以及激发晶体生长台阶的位错活性。He-Ne激光器的激光通过扩束和准直后射向分束镜,参考光和物光分别由反射镜和晶体表面反射,两束光在重叠区的干涉条纹通过物镜成像,该像用摄像机和录像机进行观察和记录.滤膜用于平衡参考光和物光的强度.

2. 压电材料的逆压电效应研究

压电陶瓷材料在电场作用下会产生伸缩效应,这就是所谓压电材料的逆压电现象,其伸缩量极微小。将迈克耳逊干涉仪的动镜粘在压电陶瓷片上,当压电陶瓷片受到电激励产生机械伸缩时就带动动镜移动。而动镜每移动λ/2的距离,就会到导致产生或消失一个干涉环条纹,根据干涉环条纹变化的个数就可以计算出压电陶瓷片伸缩的距离。

3. 引力波探测(超大型迈克耳逊干涉仪)

引力波存在是广义相对论最重要的预言,对爱因斯坦引力波的探测是近一个世纪以来最重大的基础探索项目之一。目前还没有直接证据来证明引力波的存在。目前,许多科学家正致力于利用激光干涉引力波探测仪来探测引力波。该仪器的主体是一台激光迈克耳逊干涉仪。在无引力波存在时,调整臂长使从互相垂直的两臂返回的两束相干光在分光镜处相干减弱,输出端的光电二极管接收的是暗纹,无输出信号。引力波的到来会使一个臂伸长另一臂缩短,使两束相干光有了光程差,破坏了相干减弱的初始条件,光电二极管有信号输出,该信号的大小与引力波的强度成正比。20世纪90年代中期,华盛顿州的Hanford和路易斯安娜州的Livingston开始建造引力波探测站,并于21世纪初相继建成臂长4000米、2000米的激光干涉仪引力波探测仪。

据估计,引力波探测极有可能在今后10-20年内取得重大突破。

四实验仪器

防振台氦氖激光光源凸透镜凹透镜可变光栏直尺光屏分束镜反射镜支架压电晶片等

五实验计划

每次做实验,我们都必须要有一个详细、具体的实验计划。在还没有去做实验之前,必须要对要做的实验进行了解学习,掌握其实验原理,并且对实验要用到的实验仪器要有详细的了解。下面,我就将我的具体的实验计划做一个简单的陈述。

在要做迈克耳逊干涉实验的前两天,我就在积极的了解有关迈克耳逊干涉实验的有关知识,其中包括实验原理、实验仪器和实验中要注意

的问题等。准备好这一切之后,下面就要进入正式的实验阶段了。

在进入实验室之后,我们就要开始熟悉我们实验要用的仪器。在正式开始实验之前,我们一般还需要对迈克耳逊干涉仪进行组装调试。而

在实验室,实验仪器的基本组装已经基本完成,我们只需要对相应的性

能进行调整调试。在调试好仪器之后,我们才能进行等厚、等倾干涉实

验,以及做其它的相关实验。

在实验室,面对零散的实验仪器,要进行迈克耳逊干涉仪实验,我们需要先对仪器进行组装调试。在试验台上,有一个氦氖激光源。首先

我们就要打开光源的电源,让氦氖激光器发射光源。然后将带有支架的

凸透镜放在发射激光仪器前端的小孔前,调节凸透镜的高度让反射的部

分光束正好聚焦在小孔上。调好之后,继续将带有支架的分光板放在与

凸透镜和光源在同一条直线上,并目测调整使三者的高度一致。然后调

整支架上的分光板,使其与三者所在直线成45度角。调好之后,将凸透

镜和分光板分别固定在实验台上。之后,按照上面的迈克耳逊干涉仪的

光路图,将两反射镜和光屏分别摆放在相应的位置并目测调整使其高度与凸透镜、分光板相同。然后,先分别对反射镜M 1 、M 2进行调节,使其反射通过分光镜之后的光线能够打到光屏上。在光屏上出现了两个光斑之后,先粗调反射镜使两光斑靠近。调好后,就可以将两反射镜M 1、M 2 分别固定在相应的位置。为了观察到干涉现象,接下来我们就要通过微调反射镜使两个光斑相交并产生干涉条纹图样。经过微调之后,就可以在光屏上看到干涉图样了。

等倾干涉和等厚干涉是面光源产生的定域干涉。所以,在实验中不

需要在光源发射器前面加一凸透镜对光束进行聚焦形成点光源。在打开电源发射光束之后,将分光板放在与光源同一直线上并目测调整其高度与发射光束的光孔相同。然后也是按照实验原理图将两个反射镜和光屏放在相应位置。对两反射镜分别进行粗调,使反射通过分光镜之后的光束打在光屏上。然后将反射镜进行固定,固定之后再对反射镜进行微调,使两个光斑相交产生干涉条纹图样。在实验中要十分注意两反射镜必须完全垂直,否则将不能形成等倾干涉。等厚干涉实验仪器的组装步骤与等倾干涉基本一致。只是在两反射镜的反射光束时不需要将两反射镜摆放的完全垂直,而是应该有细微的偏斜。在进行反射镜微调的过程中就可以在光屏上看到等厚和等倾干涉条纹图样。

在测压电晶片的压电系数时,首先需要将压电晶片固定在一反射镜

的背面。由于压电系数K=?d/?U ,要测压电系数,只要测出通电后电压晶片的伸缩量?d ,而?d 的测量可以利用等倾干涉的实验原理来进行。先将仪器按照上述等倾干涉的步骤组装,将固定有压电晶片的反射镜组装固定好后,先不对压电晶片通电进行实验。利用迈克耳逊干涉仪,调整反射镜使光屏上可看到同心圆干涉条纹。然后再给压电晶片通电,改变压电晶片上的电压,使其由零逐渐上升,干涉条纹便由中心向外不断增加,当条纹中心正好出现N 个条纹时,记下此时压电晶片的两端的电压U 。由于光束的波长实验室已经给出,所以可以根据公式求得压电晶片的伸长量为?d=N λ/2,从而可求得压电系数k=d/?U 。

实验内容及步骤

1、迈克耳逊干涉仪的基本调节

(1)点燃氦氖激光器,调节其高度和方向,使激光束大致照到两

平面镜1M 、2M 及屏E 的中部,并使从两平面镜反射来的两束光能尽

量原路返回,即尽可能回到激光器的出光口。

(2 )屏上可以看到两排光点,都以最亮者居中。调节1M 和2M 后

的三个螺丝,使两个最亮点重合(此时1M 和2M 相互垂直)。此

时要检查回到激光器的两束光是否仍照在出光口或附近。

2、粗略测出压电晶片的压电系数

压电陶瓷材料在电场作用下会产生伸缩效应,这就是所谓压电

材料的逆压电现象,其伸缩量极微小。将迈克耳逊干涉仪的动镜粘在

压电陶瓷片上,当压电陶瓷片受到电激励产生机械伸缩时就带动动镜移动。而动镜每移动λ/2的距离,就会到导致产生或消失一个干涉环条纹,根据干涉环条纹变化的个数就可以计算出压电陶瓷片伸缩的距离。

3 注意事项

(1 )实验中,请勿正视激光光源,以免损伤眼睛。

(2)仪器上的光学元件精度极高,不要用手抚摩或让赃物沾上,切勿正对着光学表面讲话。

(3)一起传动机构相当精密,使用时要轻缓小心,在实验过程中,保持安静,动作要轻,不可有大,重动作,不能随意走动和对着防震台说话。否则,会引起震动,影响实验,调好光路后,应静止1分钟,让防震台静止下来。

(4)测量过程中,由于仪器存在空程误差,一定要条纹的变化稳定后才能开始测量。而且,测量一旦开始,微调鼓轮的转动方向就不能中途改变

结论:迈克耳孙干涉仪结构简单、光路直观、精度高,其调整和使用

具有典型性。且迈克耳孙-莫雷实验实验否定了特殊参考系的

存在,这就意味着不存在以太,光速不依赖于观察者所在的参

考系。到目前为止,所有实验都指出:光速不依赖于观察者所

在的参考系,而且与光源的运动无关。该实验的结果成为了狭

义相对论一个坚实基础,为新的时空观理论提供了依据,打破

了数百年来人们对以太从而对于力的作用方式需要介质的坚

执。它巧妙的构思成为物理学史上一个杰出的典范。

参考文献:《光学》山大出版社(周玉芳,蔡履中)

《实验光学》山大出版社(魏爱俭,马宝民)

《大学物理实验》江西高校出版社(罗圆圆)

《大学物理》国防工业出版社(彭庶修,朱华)

光通信实验报告

竭诚为您提供优质文档/双击可除 光通信实验报告 篇一:光通信实验报告 信息与通信工程学院 光纤通信实验报告 班姓学 级:名:号: 班内序号:17 日 期:20XX年5月 一、oTDR的使用与测量 1、实验原理 oTDR使用瑞利散射和菲涅尔反射来表征光纤的特性。瑞利散射是由于光信号沿着光纤产生无规律的散射而形成。oTDR就测量回到oTDR端口的一部分散射光。这些背向散射信号就表明了由光纤而导致的衰减(损耗/距离)程度。形成的轨迹是一条向下的曲线,它说明了背向散射的功率不断减小,这是由于经过一段距离的传输后发射和背向散射的信

号都有所损耗。 给定了光纤参数后,瑞利散射的功率就可以标明出来,如果波长已知,它就与信号的脉冲宽度成比例:脉冲宽度越长,背向散射功率就越强。瑞利散射的功率还与发射信号的波长有关,波长较短则功率较强。也就是说用1310nm信号产生的轨迹会比1550nm信号所产生的轨迹的瑞利背向散射要高。 在高波长区(超过1500nm),瑞利散射会持续减小,但另外一个叫红外线衰减(或吸收)的现象会出现,增加并导致了全部衰减值的增大。因此,1550nm是最低的衰减波长;这也说明了为什么它是作为长距离通信的波长。很自然,这些现象也会影响到oTDR。作为1550nm波长的oTDR,它也具有低的衰减性能,因此可以进行长距离的测试。而作为高衰减的1310nm或1625nm波长,oTDR的测试距离就必然受到限制,因为测试设备需要在oTDR轨迹中测出一个尖锋,而且这个尖锋的尾端会快速地落入到噪音中。 菲涅尔反射是离散的反射,它是由整条光纤中的个别点而引起的,这些点是由造成反向系数改变的因素组成,例如玻璃与空气的间隙。在这些点上,会有很强的背向散射光被反射回来。因此,oTDR就是利用菲涅尔反射的信息来定位连接点,光纤终端或断点。 oTDR的工作原理就类似于一个雷达。它先对光纤发出一

迈克尔逊干涉仪实验报告87789

迈克耳逊干涉仪 一.实验目的 1.了解迈克尔逊干涉仪的结构和原理,掌握调节方法; 2.用迈克尔逊干涉仪测量钠光波长和精细结构。 二.实验仪器 迈克尔逊干涉仪、钠光灯、透镜等。 三.实验原理 迈克耳孙干涉仪原理如图所示。两平面反射镜M1、M2、光源 S和观察点E (或接收屏)四者北东西南各据一方。M1、M2相互垂直,M2是固定的,M1可沿导轨做精密移动。G1和G2是两块材料相同薄厚均匀相等的平行玻璃片。G1的一个表面上镀有半透明的薄银层或铝层,形成半反半透膜,可使入射光分成强度基本相等的两束光,称G1为分光板。G2与G1平行,以保证两束光在玻璃中所走的光程完全相等且与入射光的波长无关,保证仪器能够观察单、复色光的干涉。可见G2作为补偿光程用,故称之为补偿板。G1、G2与平面镜M1、M2倾斜成45°角。

如上图所示一束光入射到G1上,被G1分为反射光和透射光,这两束光分别经M1和M2反射后又沿原路返回,在分化板后表面分别被透射和反射,于E处相遇后成为相干光,可以产生干涉现象。图中M′2是平面镜M2由半反膜形成的虚像。观察者从E处去看,经M2反射的光好像是从M′2来的。因此干涉仪所产生的干涉和由平面M1与M′2之间的空气薄膜所产生的干涉是完全一样的,在讨论干涉条纹的形成时,只需考察M1和M2两个面所形成的空气薄膜即可。两面相互平行可到面光源在无穷远处产生的等倾干涉,两面有小的夹角可得到面光源在空气膜近处形成的等厚干涉。若光源是点光源,则上述两种情况均可在空间形成非定域干涉。设M1和M′2之间的距离为d,则它们所形成的空气薄膜造成的相干光的光程差近似用下式表示 若M1与M′2平行,则各处d相同,可得等倾干涉。系统具有轴对称不变性,故屏E上的干涉条纹应为一组同心圆环,圆心处对应的光程差最大且等于2d,d 越大圆环越密。反之中心圆斑变大圆环变疏。若d增加则中心“冒出”一个条纹,反之d减小则中心“缩进”一个条纹。故干涉条纹在中心处“冒出”或“缩进”的个数N与d的变化量△d之间有下列关系 根据该关系式就可测量光波波长λ或长度△d。 钠黄双线的精细结构测量原理简介: 干涉条纹可见度定义为:当,时V=1, 此时干涉条纹最清晰,可见度最大;时V=0,可见度最小。 从一视见度最低的位置开始算起,测量一次视见度最低处的位置,者其间的光程差 为,且由关系算出谱线的精细结构。 四.实验结果计与分析 次数初读数 d1(mm) 末读数 d2(mm) △ d=|d1-d2| (mm) (nm)(nm ) 137.7247937.754420.02963592.6592.6

迈克尔逊干涉仪实验报告精品

1 2 1 2 1 2 1 2 1 2 实验目的: 1) 学会使用迈克尔逊干涉仪 2) 观察等倾、等厚和非定域干涉现象 3) 测量氦氖激光的波长和钠光双线的波长差。 实验仪器: 氦氖激光光源、钠光灯、迈克尔逊干涉仪、毛玻璃屏实验原理: 1:迈克尔逊干涉仪的原理: 迈克尔逊干涉仪的光路图如图所示,光源 S 出 发的光经过称 45。 放置的背面镀银的半透玻璃板 P 1 被分成互相垂直的强度几乎相等的两束光, 光 路 1 通过 M 1 镜反射并再次通过 P 1 照射在观察平 面 E 上,光路 2 通过厚度、折射率与 P 1 相同的玻 璃板 P 2 后由 M 2 镜反射再次通过 P 2 并由 P 1 背面的 反射层反射照射在观察平面 E 上。图中平行于 M 的M ' 是M 经 P 反射所成的虚 1 2 2 1 像,即 P 到 M 与 P 到 M ' 的光程距离相等,故从 P 到M 的光路可用 P 到M ' 等 价替代。这样可以认为 M 与 M ' 之间形成了一个空气间隙, 这个空气间隙的厚度 可以通过移动 M 1 完成,空气间隙的夹角可以通过改变 M 1 镜或 M 2 镜的角度实现。 当 M 与M ' 平行时可以在观察平面 E 处观察到等倾干涉现象,当 M 与M ' 有一 1 2 1 2 定的夹角时可以在观察平面 E 处观察到等厚干涉现象。 2:激光器激光波长测量原理: 由等倾干涉条纹的特点,当 θ =0 时的光程差 δ 最大,即圆心所对应的

1 2 1 2 干 涉级别最高。转动手轮移动 M1,当 d 增加时,相当 于增大了和 k 相应的θ 角 ,可以看到圆 环一个个从中心 “冒出” ;若 d 减小时,圆环逐渐 缩小, 最后“淹没”在中心处。 每“冒” 出或“ 缩”进一个干涉环,相应的光程差改变了一个波长, 也就是 M 与 M ’ 之间距离 变化了半个波长。 若将 M 与 M ’ 之间距离改变了 △d 时,观察到 N 个干涉环变化,则 △d=N 由此可测单色光 的波长。 3:钠光双线波长差的测定: 在使用迈克尔逊干涉仪观察低压钠黄灯双线的等倾干涉条纹时,可以看到 随着动镜 M 1 的移动,条纹本身出现了由清晰到模糊再到清晰的周期性变化,即 反衬度从最大到最小再到最大的周期性变化, 利用这一特性, 可测量钠光双线波长差,对于等倾干涉而言,波长差的计算公式为: 实验内容与数据处理: (1) )观察非定域干涉条纹 1) 通过粗调手轮打开激光光源, 调节激光器使其光束大致垂直于平面反光镜 M 2 入射,取掉投影屏 E ,可以看到两排激光点 2) 粗调手轮移动 M 1 镜的位置,使得通过分光板分开的两路光光程大致相等 3) 调节M 1 、M 2 镜后面的两个旋钮, 使两排激光点重合为一排,并使两个最 亮的光点重合在一起。此时再放上投影屏 E ,就可以看到干涉条纹。 4) 仔细调节 M 、 M 镜后面的两个旋钮,使 M 与 M ' 平行,这时在屏上可 以看到同心圆条纹,这些条纹为非定域条纹。 5) 转动微调手轮,观察干涉条纹的形状、疏密及中心“吞” 、“吐”条纹随光程差 改变的变化情况。

迈克尔逊干涉实验报告

φ M 1 d L 2d S 1’ S 2’ G S M 1’ M 2 迈克尔逊干涉实验 39042122 吴淼 摘要:迈克尔逊干涉仪是一个经典迈克尔逊和莫雷设计制造出来的精密光学仪器,在近代物理和近代计量技术中都有着重要的应用。通过迈克尔逊干涉的实验,我们可以熟悉迈克尔逊干涉仪的结构并掌握其调整方法,认识电光源非定域干涉条纹的形成与特点,部分从并利用干涉条纹的变化测定光源的波长。 实验原理: (1)迈克尔逊干涉仪的光路 迈克尔逊干涉仪的光路图如图(一)所示。从光源S 发出的一束光 摄在分束板G1上,将光束分为两部分:一部分从G1半反射膜处反射,射向平面镜M2;另一部分从G1透射,射向平面镜M1。因G1和全反射平面镜M1、M2均成45°角,所以两束光均垂直射到M1、M2上。从M2反射回来的光,透过半反射膜;从M2反射回来的光,为半反射膜反射。二者汇集成一束光,在E 处即可观察到干涉条纹。光路中另一平行平板G2与G1平行,其材料厚度与G1完全相同,以补偿两束光的光程差,称为补偿板。在光路中,M1’是M1被G1半反射膜反射所形成的虚像,两束相干光相当于从M1’和M2反射而来,迈克尔逊干涉仪产生的干涉条纹如同M2和M1’之间的空气膜所产生的干涉条纹一样。 (2)单色电光源的非定域干涉条纹 M2平行M1’且相距为d , S 发出的光对M2来说,如S’发出的光,而对于E 处的观察者来说,S’如位于S2’一样。又由于半反 射膜G 的作用,M1如同处于S1’的位 图(一) 迈克尔孙干涉仪光路

置,所以E 处观察到的干涉条纹,犹如S1’、S2’发出的球面波,它们在空间处处相干,把观察屏放在E 空间不同位置,都可以看到干涉花纹,因此 这一干涉为非定域干涉。 如果把观察屏放在垂直于S1’、S2’的位置上,则可以看到一组同心圆,而圆心就是S1’,、S2’的连线与屏的交点E 。设E 处 (ES2’=L )的观察屏上,离中心E 点远处某一点P ,EP 的距离为R ,则两束光的光程差为 2222)2(R L R d L L +-++=? L>>d 时,展开上式并略去d 2/L 2,则有 ?cos 2/222d R L Ld L =+=? 式中φ是圆形干涉条纹的倾角。所以亮纹条件为 2dcos φ=k λ (k=0,1,2,…) ① 由此式可知,当k 、φ一定时,如果d 逐渐减小,则cos φ将增大,即φ角逐渐减小。也就是说,同一k 级条纹,当d 减小时,该圆环半径减小,看到的现象是干涉圆环内缩;如果d 逐渐增大,同理看到的现象是干涉条纹外扩。对于中央条纹,若内缩或外扩N 次,则光程差变化为2Δd=Nλ.式中,Δd 为d 的变化量,所以有 λ=2Δd/N ② 通过此式则能有变化的条纹数目求出光源的波长。 实验仪器: 迈克尔逊干涉仪、氦氖激光器、小孔、扩束镜、毛玻璃。

迈克尔逊干涉仪实验报告

实验目的: 1)学会使用迈克尔逊干涉仪 2)观察等倾、等厚和非定域干涉现象 3)测量氦氖激光的波长和钠光双线的波长差。 实验仪器: 氦氖激光光源、钠光灯、迈克尔逊干涉仪、毛玻璃屏 实验原理: 1:迈克尔逊干涉仪的原理: 迈克尔逊干涉仪的光路图如图所示,光源S 出发的光经过称。45放置的背面镀银的半透玻璃板1P 被分成互相垂直的强度几乎相等的两束光,光 路1通过1M 镜反射并再次通过1P 照射在观察平 面E 上,光路2通过厚度、折射率与1P 相同的玻 璃板2P 后由2M 镜反射再次通过2P 并由1P 背面 的反射层反射照射在观察平面E 上。图中平行于1M 的'2M 是2M 经1P 反射所成的虚像,即1P 到2M 与1P 到'2M 的光程距离相等,故从1P 到2M 的光路可用1P 到'2M 等价替代。这样可以认为1M 与'2M 之间形成了一个空气间隙,这个空气间隙的厚度可以通过移动1M 完成,空气间隙的夹角可以通过改变1M 镜或2M 镜的角度实现。当1M 与' 2M 平行时可以在观察平面E 处观察到等倾干涉现象,当1M 与'2M 有一定的夹角时可以在观察平面E 处观察到等厚干涉现象。 2:激光器激光波长测量原理: 由等倾干涉条纹的特点,当θ =0 时的光程差δ 最大,即圆心所对应的干

涉级别最高。转动手轮移动 M1,当 d 增加时,相当 于增大了和 k 相应的θ 角 ,可以看到圆 环一个个从中心“冒出” ;若 d 减小时,圆环逐渐 缩小,最后“淹没”在中心处。 每“冒”出或“缩”进一个干涉环,相应的光程差改变了一个波长,也就是 M 与M ’之间距离 变化了半个波长。 若将 M 与 M ’之间距离改变了△d 时,观察到 N 个干涉环变化,则△d =N 由此可测单色光的波长。 3:钠光双线波长差的测定: 在使用迈克尔逊干涉仪观察低压钠黄灯双线的等倾干涉条纹时,可以看到随着动镜1M 的移动,条纹本身出现了由清晰到模糊再到清晰的周期性变化,即反衬度从最大到最小再到最大的周期性变化,利用这一特性,可测量钠光双线波长差,对于等倾干涉而言,波长差的计算公式为: 实验内容与数据处理: (1)观察非定域干涉条纹 1)通过粗调手轮打开激光光源,调节激光器使其光束大致垂直于平面反光镜2M 入射,取掉投影屏E ,可以看到两排激光点 2)粗调手轮移动1M 镜的位置,使得通过分光板分开的两路光光程大致相等 3)调节1M 、2M 镜后面的两个旋钮,使两排激光点重合为一排,并使两个最亮的光点重合在一起。此时再放上投影屏E ,就可以看到干涉条纹。 4)仔细调节1M 、2M 镜后面的两个旋钮,使1M 与' 2M 平行,这时在屏上可以看到同心圆条纹,这些条纹为非定域条纹。 5)转动微调手轮,观察干涉条纹的形状、疏密及中心“吞”、“吐”条纹随光程差改变的变化情况。

OTDR实验报告

实验名称:自构建光纤链路的otdr测试实验实验日期:指导老师:林远芳学生姓 名:同组学生姓名:成绩: 一、实验目的和要求二、实验内容和原理三、主要仪器设备四、实验结果记录 与分析 五、数据记录和处理六、结果与分析七、讨论、心得 一、实验目的和要求 1. 了解瑞利散射及菲涅尔反射的概念及特点; 2. 熟练掌握裸纤端面切割、清洁、连接对准方法及熔接技术; 3. 熟悉光时域反射仪(optical time domain reflectometer,以下简称 otdr)的工 作原理、操作方法和使用要点,能利用 otdr 测试、判断和分析光纤链路中的事件点位置及 其产生原因,提高工程应用能力。 二、实验内容和原理 1.otdr 测试基本理论 散射:光遇到微小粒子或不均匀结构时发生的一种光学现象,此时光传输不再具有良好 的方向性。 瑞利散射:当光在光纤中传播时,由于光纤的基本结构不完美(光纤本身的缺陷、制作 工艺和材料组分存在着分子级大小的结构上的不均匀性),一部分光纤会改变其原有传播方向 而向四周散射(图 1-3-1),引起光能量损失,其强度与波长的 4 次方成反比,随着波长的 增加,损耗迅速下降。 后向或背向散射:瑞利散射的方向是分布于整个立体角的,其中一部分散射光纤和原来 的传播方向相反,返回到光纤的注入端,形成连续的后向散射回波。光纤中某一点的后向回 波可以反映出光纤中光功率的分布情况,椐此可以测试出光纤的损耗。 菲涅尔反射:当光纤由一种媒质进入另一种媒质时会产生的一种反射,其强度与两种媒 质的相对折射率的平方成正比。如图1-3-2 所示,一束能量为p0 的光,由媒质 1(折射率 为nl)进入媒质 2(折射率为 n2)产生的反射信号为p1,则 ?n1?n2p1???n?n2?1? ???2 衰减:指信号沿链路传输过程中损失的量度,以 db 表示。衰减是光纤中光功率减少量 的一种度量,光纤内径中的瑞利散射是引起光纤衰减的主要原因。通常,对于均匀光纤来 说,可用单位长度的衰减,即衰减系数来反映光纤的衰减性能的好坏。 当光脉冲通过光纤传输时,沿光纤长度上的每一点均会引起瑞利散射。这种散射向着四 面八方,其中总有一部分会沿着纤轴反向传输到输入端。由于主要的散射是瑞利散射,并且 瑞利散射光的波长与入射光的波长相同,其光功率与该散射点的入射光功率成正比,光纤中 散射光的强弱反映了光纤长度上各点衰减大小,光纤长度上的某一点散射信号的变化,可以 通过后向散射方法独立地探测出来,而不受其它点散射信号改变的影响,所以测量沿纤轴返 回的后向瑞利散射光功率就可以获得光沿着光纤传输时的衰减及其它信息。 基于后向散射法设计的测量仪器称为 otdr,其突出优点在于它是一种非破坏性的单端测 量方法,测量只需在光纤的一端进行。它利用激光二极管产生光脉冲,经定向耦合器注入被 测光纤,然后在同一端测量沿光纤轴向向后返回的散射光功率返回信号与时间的关系,将时 间值乘以光在光纤中的传播速度以计算出距离,在屏幕上显示返回信号的相对功率与距离之 间的关系曲线和测试结果。国内厂家主要是中国电子科技集团公司第四十一研究所,国外的 品牌主要有安捷伦(agilent)、安立(anritsu)、exfo、wavetek 等。 2.光纤的连接 光纤连接时的耦合损耗因素基本上可分为两大类:一类是固有的,是被连接光纤本身特 性参数的差异,比如纤芯直径、模场直径、数值孔径差异、纤芯或模场的同心度偏差、纤芯

迈克尔逊干涉仪(实验报告)

一、实验目的 1、掌握迈克尔逊干涉仪的调节方法并观察各种干涉图样。 2、区别等倾干涉、等厚干涉和非定域干涉,测定 He-Ne 激光波长 二、实验仪器 迈克尔逊干涉仪、 He-Ne 激光器及光源、小孔光阑、扩束镜(短焦距会聚镜)、毛玻璃屏等。 (图一) (图二) 三、实验原理 ①用 He-Ne 激光器做光源,使激光通过扩束镜会聚后发散,此时就得到了一个相关性很好的点光源,射到分光板 P1和 P2上后就将光分成了两束分别射到 M1 和 M2 上,反射后通过 P1 、 P2 就可以得到两束相关光,此时就会产生干涉条纹。 ②产生干涉条纹的条件,如图 2 所示, B 、 C 是两个相干点光源,则到 A 点的光程差δ =AB-AC=BCcosi , 若在 A 点出产生了亮条纹,则δ =2dcosi=k λ (k 为亮条纹的级数 ) ,因为 i 和 k 均为不可测的量,所以取其差值,即λ =2 Δ d/ Δ k。 四、实验步骤 1、打开激光电源,先不要放扩束镜,让激光照到分光镜 P1 上,并调节激光的反射光照射到激光筒上。 2、调节 M2 的位置使屏上两排光中最亮的两个光点重回,并调至其闪烁。 3、将扩束镜放于激光前,调节扩束镜的高度和偏角,使光能照在 P1分光镜上,看显示屏上有没有产生同心圆的干涉条纹图案。没有的话重复 2 、 3 步骤,直到产生同心圆的干涉条纹图案。 4、微调 M2是干涉图案处于显示屏的中间。 5、转动微量读数鼓轮,使 M1 移动,可以看到中心条纹冒出或缩进,若看不到此现象,先转动可度轮,再转动微量读数鼓轮。记下当前位置的读数 d0 ,转动微量读数鼓轮,看到中心条纹冒出或缩进 30 次则记一次数据,共记录 10 次数据即 d0、 d1 (9)

迈克尔逊干涉仪实验报告

迈克尔逊和法布里-珀罗干涉仪 摘要:迈克尔逊干涉仪是一种精密光学仪器,在近代物理和近代计量技术中都有着重要的应用。通过迈克尔逊干涉的实验,我们可以熟悉迈克尔逊干涉仪的结构并掌握其调整方法,了解电光源非定域干涉条纹的形成与特点和变化规律,并利用干涉条纹的变化测定光源的波长,测量空气折射率。本实验报告简述了迈克尔逊干涉仪实验原理,阐述了具体实验过程与结果以及实验过程中的心得体会,并尝试对实验过程中遇到的一些问题进行解释。 关键词: 迈克尔逊干涉仪;法布里-珀罗干涉仪;干涉;空气折射率; 一、引言 【实验背景】 迈克尔逊干涉仪是1883年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。它是利用分振幅法产生双光束以实现干涉。通过调整该干涉仪,可以产生等厚干涉条纹,也可以产生等倾干涉条纹,主要用于长度和折射率的测量。法布里-珀罗干涉仪是珀罗于1897年所发明的一种能现多光束干涉的仪器,是长度计量和研究光谱超精细结构的有效工具; 它还是激光共振腔的基本构型,其理论也是研究干涉光片的基础,在光学中一直起着重要的作用。在光谱学中,应用精确的迈克尔逊干涉仪或法布里-珀罗干涉仪,可以准确而详细地测定谱线的波长及其精细结构。 【实验目的】 1.掌握迈克尔逊干涉仪和法布里-珀罗干涉仪的工作原理和调节方法; 2.了解各类型干涉条纹的形成条件、条纹特点和变化规律; 3.测量空气的折射率。 【实验原理】 (一) 迈克尔逊干涉仪 1M 、2M 是一对平面反射镜,1G 、2G 是厚度和折射率都完全相同的一对平行玻璃板,1G 称 为分光板,在其表面 A 镀有半反射半透射膜,2G 称为补偿片,与1G 平行。 当光照到1G 上时,在半透膜上分成两束光,透射光1射到1M ,经1M 反射后,透过2G ,在1G 的半透膜上反射到达E ;反射光2射到2M ,经2M 反射后,透过1G 射向E 。两束光在玻璃中的 光程相等。当观察者从E 处向1G 看去时,除直接看到2M 外还可以看到1M 的像1 M 。于是1、2

“迈克尔逊干涉仪”实验报告

“迈克尔逊干涉仪”实验报告 【引言】 迈克尔逊干涉仪是美国物理学家迈克尔逊(A.A.Michelson)发明的。1887年迈克尔逊和莫雷(Morley)否定了“以太”的存在,为爱因斯坦的狭义相对论提供了实验依据。迈克尔逊用镉红光波长作为干涉仪光源来测量标准米尺的长度,建立了以光波长为基准的绝对长度标准,即1m=1 553 164.13个镉红线的波长。在光谱学方面,迈克尔逊发现了氢光谱的精细结构以及水银和铊光谱的超精细结构,这一发现在现代原子理论中起了重大作用。迈克尔逊还用该干涉仪测量出太阳系以外星球的大小。 因创造精密的光学仪器,和用以进行光谱学和度量学的研究,并精密测出光速,迈克尔逊于1907年获得了诺贝尔物理学奖。 【实验目的】 (1)了解迈克尔逊干涉仪的原理和调整方法。 (2)测量光波的波长和钠双线波长差。 【实验仪器】 迈克尔逊干涉仪、He-Ne激光器、钠光灯、扩束镜 【实验原理】 1.迈克尔逊干涉仪结构原理 图1是迈克尔逊干涉仪光路图,点光源 S发出的光射在分光镜G1,G1右表面镀有半 透半反射膜,使入射光分成强度相等的两束。 反射光和透射光分别垂直入射到全反射镜M1 和M2,它们经反射后再回到G1的半透半反射 膜处,再分别经过透射和反射后,来到观察区 域E。如到达E处的两束光满足相干条件,可 发生干涉现象。 G2为补偿扳,它与G1为相同材料,有 相同的厚度,且平行安装,目的是要使参加干 涉的两光束经过玻璃板的次数相等,波阵面不会发生横向平移。 M1为可动全反射镜,背部有三个粗调螺丝。 M2为固定全反射镜,背部有三个粗调螺丝,侧面和下面有两个微调螺丝。 2.可动全反镜移动及读数 可动全反镜在导轨上可由粗动手轮和微动手轮的转动而前后移动。可动全反镜位置的读数为: ××.□□△△△ (mm) (1)××在mm刻度尺上读出。

用双棱镜干涉测光波波长的实验报告

用双棱镜干涉测光波波长的实验报告 【实验目的】 1.掌握用双棱镜获得双光束干涉的方法,加深对干涉条件的理解. 2.学会用双棱镜测定钠光的波长. 【实验仪器】 光具座,单色光源(钠灯),可调狭缝,双棱镜,辅助透镜(两片),测微目镜,白屏. 【实验原理】 如果两列频率相同的光波沿着几乎相同的方向传播,并且它们的位相差不随时间而变化,那么在两列光波相交的区域,光强分布是不均匀的,而是在某些地方表现为加强,在另一些地方表现为减弱(甚至可能为零),这种现象称为光的干涉. 菲涅耳利用图1所示的装置,获得了双光束的干涉现象.图中AB 是双棱镜,它的外形结构如图2所示,将一块平玻璃板的一个表面加工成两楔形板,端面与棱脊垂直,楔角A 较小(一般小于10).从单色光源发出的光经透镜L 会聚于狭缝S ,使S 成为具有较大亮度的线状光源.从狭缝S 发出的光,经双棱镜折射后,其波前被分割成两部分,形成两束光,就好像它们是由虚光源S1和S2发出的一样,满足相干光源条件,因此在两束光的交叠.区域P1P2内产生干涉.当观察屏P 离双棱镜足够远时,在屏上可观察到平行于狭缝S 的、明暗 相间的、等间距干涉条纹. 图1 图2 设两虚光源S1和S2之间的距离为d ',虚光源所在的平面(近似地在光源狭缝S 的平面内)到观察屏P 的距离为d ,且d d <<',干涉条纹间距为x ?,则实验所用光源的波长λ为 x d d ?'= λ 因此,只要测出d '、d 和x ?,就可用公式计算出光波波长. 【实验内容】 1.调节共轴 (1)按图1所示次序,将单色光源M ,会聚透镜L ,狭缝S ,双棱镜AB 与测微目镜P 放置在光具座上.用目视法粗略地调节它们中心等高、共轴,棱脊和狭缝S 的取向大体平行. (2)点亮光源M ,通过透镜L 照亮狭缝S ,用手执白纸屏在双棱镜后面检查:经双棱镜折射后的光束,有否叠加区P1P2 (应更亮些)?叠加区能否进入测微目镜? 当移动白屏时,叠加

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报 告 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

迈克耳逊干涉仪 一. 实验目的 1.了解迈克尔逊干涉仪的结构和原理,掌握调节方法; 2.用迈克尔逊干涉仪测量钠光波长和精细结构。 二. 实验仪器 迈克尔逊干涉仪、钠光灯、透镜等。 三. 实验原理 迈克耳孙干涉仪原理如图所示。两平面反射镜M1、M2、光源 S和观察点E (或接收屏)四者北东西南各据一方。M1、M2相互垂直,M2是固定的,M1可沿导轨做精密移动。G1和G2是两块材料相同薄厚均匀相等的平行玻璃片。G1的一个表面上镀有半透明的薄银层或铝层,形成半反半透膜,可使入射光分成强度基本相等的两束光,称G1为分光板。G2与G1平行,以保证两束光在玻璃中所走的光程完全相等且与入射光的波长无关,保证仪器能够观察单、复色光的干涉。可见G2作为补偿光程用,故称之为补偿板。G1、G2与平面镜M1、M2倾斜成45°角。 如上图所示一束光入射到G1上,被G1分为反射光和透射光,这两束光分别经M1和M2反射后又沿原路返回,在分化板后表面分别被透射和反射,于E处相遇后成为相干光,可以产生干涉现象。图中M′2是平面镜M2由半反膜形成的虚像。观察者从E处去看,经M2反射的光好像是从M′2来的。因此干涉仪所产生的干涉和由平面M1与M′2之间的空气薄膜所产生的干涉是完全一样的,在讨论干涉条纹的形成时,只需考察M1和M2两个面所形成的空气薄膜即可。两面相互平行可到面光源在无穷远处产生的等倾干涉,两面有小的夹角可得到面光源在空气膜近处形成的等厚

干涉。若光源是点光源,则上述两种情况均可在空间形成非定域干涉。设M1和M ′2之间的距离为d ,则它们所形成的空气薄膜造成的相干光的光程差近似用下式表示 若M1与M ′2平行,则各处d 相同,可得等倾干涉。系统具有轴对称不变性,故屏E 上的干涉条纹应为一组同心圆环,圆心处对应的光程差最大且等于2d,d 越大圆环越密。反之中心圆斑变大圆环变疏。若d 增加 则中心“冒出”一个条纹,反之d 减小 则中心“缩进”一个条纹。故干涉条纹在中心处“冒出”或“缩进”的个数N 与d 的变化量△d 之间有下列关系 根据该关系式就可测量光波波长λ或长度△d 。 钠黄双线的精细结构测量原理简介: 干涉条纹可见度定义为: 当,时V=1,此时干涉条纹最清晰,可见度最大;时V=0,可见度最小。 从一视见度最低的位置开始算起,测量一次视见度最低处的位置,者其间的光程差为,且由关系算出谱线的精细结构。 四. 实验结果计与分析 钠光的平均波长 次数 初读数 d 1(mm ) 末读数 d 2(mm ) △d=|d 1-d 2| (mm) (nm) (nm) 1 其中λ=2*Δd/100,根据λ0=; = E=% 钠光的精细结构:

微波光学实验报告

微波光学实验报告 一、实验目的与实验仪器 1.实验目的 (1)学习一种测量微波波长的方法。 (2)观察微波的衍射现象并进行定量测量。 (3)测量微波的布拉格衍射强度分布。 2.实验仪器 微波分光仪、分束玻璃板、固定和移动反射板、单缝板、双缝板、模拟晶体等。 二、实验原理 (要求与提示:限400字以内,实验原理图须用手绘后贴图的方式) 微波是一种波长处于1mm~1m之间的电磁波,范围为3×102~3×105MHz之间。微波也具有衍射、干涉等性质。 1.用微波分光仪(迈克尔逊干涉 仪)测微波波长 用迈克尔逊干涉仪测波长 光路图如上。设微波波长为λ, 若经M1和M2反射的两束波波 程差为Δ,则当满足 Δ = kλ(k = ±1,±2,…) 时,两束波干涉加强,得到各级 极大值;当满足 Δ = (k +)λ(k = 0,±1,±2,…) 时,两束波干涉减弱,得到各级极小值。

将反射板M2沿着微波传播的方向移动d,则波程差改变了2d. 若从某一极小值开始移动可动反射板M2,使接收喇叭收经过N个极小值信号,即电流示数出现N个极小值,读出M2移动的总距离L,则有: 2L = N·λ 从而λ = 由此可见,只要测定金属板位置的该变量L和出现接收到信号幅度最小值的次数N,可以求出微波波长。 2.微波的单缝衍射实验 当微波入射到宽度和其波长差不多的一个狭缝时,会发生衍射现象。在狭缝后面的衍射屏上出现衍射波强度不均匀,中央最强且最宽,从中央向两边微波衍射强度迅速减小。 当θ = 0时,衍射波强度最大,为中央零级极大; 其他次级强所在位置为: asinθ = ±(k + )λ(k = 1,2,…) 暗条纹位置为: asinθ = kλ(k = ±1,±2,…) 式中a为单缝的宽度。因此可以画出单缝衍射的强度分布曲线如上图。 3.微波的双缝干射实验 当微波入射到一块开有两个缝的铝板时,会发生 衍射现象,两缝面内波是同相位的。由惠更斯原理, 来自两缝波面向同一方向传播的子波叠加决定该方向 的强度。 强度极小所在位置(干涉相消): dsinθ = (k + )λ(k = 0,±1,±2,…) 强度极大所在位置(干涉相长): asinθ = kλ(k =0,±1,±2,…) 4.微波的布拉格衍射 晶体中的原子按一定规律形成高度规则的空间排列,称为晶格。最简单的晶格为立方晶格,具有三维的空间点阵结构,它如同一个三维光栅。晶体点阵中原子排列成许多具有不同取向的晶面,每个取向都由许多互相平行的晶面构成晶面族。由于晶体面间距与X射线

迈克尔逊干涉仪实验报告南昌大学

南昌大学物理实验报告 课程名称:大学物理实验 实验名称:迈克尔逊干涉仪 学院:机电工程学院专业班级:能源与 动力工程162班 学生姓名:韩杰学号: 51 实验地点:基础实验大楼座位号:

再分别经过透射和反射后,来到观察区域E。如到达E处的两束光满足相干条件,可发生干涉现象。 G2为补偿扳,它与G1为相同材料,有相同的厚度,且平行安装,目的是要使参加干涉的两光束经过玻璃板的次数相等,波阵面不会发生横向平移。 M1为可动全反射镜,背部有三个粗调螺丝。 M2为固定全反射镜,背部有三个粗调螺丝,侧面和下面有两个 微调螺丝。 2.可动全反镜移动及读数 可动全反镜在导轨上可由粗动手轮和微动手轮的转动而前 后移动。可动全反镜位置的读数为: ××.□□△△△ (mm) (1)××在mm刻度尺上读出。 (2)粗动手轮:每转一圈可动全反镜移动1mm,读数窗口内刻度盘转动一圈共100个小格,每小格为0.01mm,□□由读数窗口内刻度盘读出。 (3)微动手轮:每转一圈读数窗口内刻度盘转动一格,即可动全反镜移动0.01mm,微动手轮有100格,每格0.0001mm,还可估读下一位。△△△由微动手轮上刻度读出。 注意螺距差的影响。 激光器激光波长测试原理及方法

光程差为: 2cos d δθ= (2cos (21) ()2 k d k λδθλ ==+?? ???明纹)暗纹 当θ=0时的光程差δ最大,即圆心所对应的干涉级别最高。转动手轮移动M 1,当d 增加时,相当于增大了和k 相应的θ角(或圆锥角),可以看到圆环一个个从中心“冒出” ;若d 减小时,圆环逐渐缩小,最后“淹没”在中心处。 每“冒”出或“缩”进一个干涉环,相应的光程差改变了一个波长,也就是M 1与M 2 ’之间距离变化了半个波长。 若将M 1与M 2 ’之间距离改变了△d 时,观察到N 个干涉环变化,则 2 d N λ ?=? 或 2d N λ?= 由此可测单色光的波长。 4.钠双线波长差的测量原理和测量方法 从条纹最清晰到条纹消失由于M 1移动所附加的光程差: 1212()m L k k λλ==+ 钠双线波长差:2 2m L λλ?= L m 是视场中的条纹连续出现两次反衬度最低时M 1所移动的距离。 二、 实验仪器: 迈克尔逊干涉仪、He-Ne 激光器、钠光灯、扩束镜

(完整版)迈克尔逊干涉研究性实验报告

研究性实验报告 迈克逊干涉

迈克尔逊干涉 摘要:迈克尔逊干涉仪是一个设计非常巧妙的分振幅双光束干涉装置,有光源发出的光,经过分光束镜分成相互垂直的两束光;它们反射回来又经分光束镜相遇发生干涉,其光路实际上是在M1、M2’之间形成了一个空气薄膜,并且这个薄膜的厚度和形状可以根据需要而变化,光源,物光,参考光和观察屏四者在布局上彼此完全分开,每一路都有充分的空间,可以安插其他器件进行调整测量,测量上有很大的灵活性,加上精密的机械传动和读数测量系统,迈克尔逊干涉仪构成了现代各种干涉仪的基础,迈克逊干涉仪既可以使用点光源,也可以使用扩展光源,既可以观察非定域干涉条纹,也可以研究定域干涉条纹,既可以实现等倾干涉,也可以获得等厚干涉条纹。本实验利用迈克尔逊干涉仪来测量氦氖激光波长。 一、实验目的 1.了解迈克尔逊干涉仪的结构和调整方法; 2.观察等倾干涉现象; 3.测量氦氖激光波长。 二、实验仪器 迈克尔逊干涉仪,氦氖激光器,小孔,扩束镜,毛玻璃 三、实验原理 1.仪器光路原理 1 G1和G2是两块平行放置的平行平面玻璃板,它们的折射率和厚度都完全相同。G1的背面镀有半反射膜,称作分光板。G2称作补偿板。M1和M2是两块平面反射镜,它们装在与G1成45o角的彼此互相垂直的两臂上。M2固定不动,M1可沿臂轴方向前后平移。 由扩展光源S发出的光束,经分光板分成两部分,它们分别近于垂直地入射在平面反射镜M1和M2上。经M1反射的光回到分光板后一部分透过分光板沿E的方向传播,而经M2反射的光回到分光板后则是一部分被反射在E方向。由于两者是相干的,在E处可观察到相干条纹。 光束自M1和M2上的反射相当于自距离为d的M1和M2ˊ上的反射,其中M2ˊ是平面镜M2为分光板所成的虚像。因此,迈克尔逊干涉仪所产生的干涉与厚度为d、没有多次反射的空气平行平面板所产生的干涉完全一样。经M1反射的光三次穿过分光板,而经M2反射的光只通过分光板一次,补偿板就是为消除这种不对称性而设置的。 双光束在观察平面处的光程差由下式给定: Δ=2dcosi 式中:d是M1和M2ˊ之间的距离,i是光源S在M1上的入射角。

迈克尔逊干涉仪测量空气折射率实验报告

测量空气折射率实验报告 一、 实验目的: 1.进一步了解光的干涉现象及其形成条件,掌握迈克耳孙干涉光路的原理和调节方法。 2.利用迈克耳孙干涉光路测量常温下空气的折射率。 二、 实验仪器: 迈克耳孙干涉仪、气室组件、激光器、光阑。 三、 实验原理: 迈克尔逊干涉仪光路示意图如图1所示。其中,G 为平板玻璃,称为分束镜,它的一个表面镀有半反射金属膜,使光在金属膜处的反射光束与透射光束的光强基本相等。 M1、M2为互相垂直的平面反射镜,M1、M2镜面与分束镜G 均成450角; M1可以移动,M2固定。2 M '表示M2对G 金属膜的虚像。 从光源S 发出的一束光,在分束镜G 的半反射面上被分成反射光束1和透射光束2。光束1从G 反射出后投向M1镜,反射回来再穿过G ;光束2投向M2镜,经M2镜反射回来再通过G 膜面上反射。于是,反射光束1与透射光束2在空间相遇,发生干涉。 由图1可知,迈克尔逊干涉仪中,当光束垂直入射至M1、M2镜时,两束光的光程差δ为 )(22211L n L n -=δ (1) 式中,1n 和2n 分别是路程1L 、2L 上介质的折射率。 M 2M 图1 迈克尔逊干涉仪光路示意图

设单色光在真空中的波长为λ,当 ,3 ,2 ,1 ,0 ,==K K λδ (2) 时干涉相长,相应地在接收屏中心的总光强为极大。由式(1)知,两束相 干光的光程差不但与几何路程有关,还与路程上介质的折射率有关。 当1L 支路上介质折射率改变1n ?时,因光程的相应改变而引起的干涉条纹的 变化数为N 。由(1)式和(2)式可知 1 12L N n λ = ? (3) 例如:取nm 0.633=λ和mm L 1001=,若条纹变化10=N ,则可以测得 0003.0=?n 。可见,测出接收屏上某一处干涉条纹的变化数N ,就能测出光路 中折射率的微小变化。 正常状态(Pa P C t 501001325.1,15?==)下,空气对在真空中波长为 nm 0.633的光的折射率00027652.1=n ,它与真空折射率之差为 410765.2)1(-?=-n 。用一般方法不易测出这个折射率差,而用干涉法能很方便地测量,且准确度高。 四、 实验装置: 实验装置如图2所示。用He-Ne 激光作光源(He-Ne 激光的真空波长为 nm 0.633=λ),并附加小孔光栏H 及扩束镜T 。扩束镜T 可以使激光束扩束。小孔光栏H 是为调节光束使之垂直入射在M1、M2镜上时用的。另外,为了测量空气折射率,在一支光路中加入一个玻璃气室,其长度为L 。气压表用来测量气室内气压。在O 处用毛玻璃作接收屏,在它上面可看到干涉条纹。 图2 测量空气折射率实验装置示意图 气压表

迈克尔逊干涉实验

精密干涉仪设计与组装 引言 根据麦克斯韦的电磁理论,光是一种电磁波,具有干涉、衍射和偏振等特性。行进的光波是电磁扰动在空间的传播,当空间的两束光波在某一区域相遇时,它们相互叠加,当满足相干条件时,可以观察到光的干涉现象,一般情况下是不满足相干条件的。 产生光干涉的三个必要条件(也就是相干条件)是:频率相同;(2)存在相互平行的振动分量;(3)位相差恒定。满足这些条件的光波称为相干光,产生相干光的光源称为相干光源。 两相干光源所发出的相干光波经过不同的光程在空间某点相遇而干涉,若它们的初位相相同,则它们在相遇点的位相差??与光程δ之间满足关系π?λδ2//?=,干涉极大为 ,....1,0,2=±=?k k π?;干涉极小条件为,....1,0,)12(=+±=?k k π?。 托马斯﹒杨是第一个观察到光的干涉现象的人,他的实验设计是这样的:用单色强光源照射狭缝S ,S 作为线光源再照射另外两个平行小狭缝S 1和S 2。S 与S 1、S 2的距离相等,由于S 1和S 2处在同一波阵面上的不同部分,它们作为子波源是相干的,S 1和S 2视为线光源,它们发出的光波由于衍射而相互交迭,在远处的屏P 上可以观察到一组近乎平行的明暗相间的干涉条纹。 托马斯﹒杨的装置可当作一个简单的干涉仪使用。如果两个狭缝S 1和S 2之间的间隔是已知的,极大值和极小值的间隔可用来测定波长。相反的,如果光的波长是已知的, 狭缝的间隔可以从干涉图样来确定。 实验目的 1、 了解三种干涉仪的工作原理; 2、 学习组装调试干涉仪; 3、 测量激光光源的波长、空气的折射率和玻璃的折射率。 干涉仪原理 1881年,也就是托马斯﹒杨公开了他的双缝实验78年之后,迈克尔逊利用相同的原理设计了一种干涉仪,他的设计原本是为了用来证实以太(一种光从中传播的假想的媒质)是否存在的。但他的设计却远远超越了这个意义,后来人们以迈克尔逊的干涉仪为原型,又设计出了用于各种目的的干涉仪。现在,迈克尔逊干涉仪已得到广泛地应用,通过测量可动镜的移动距离可以来求得光的波长;若已知光源的波长又可测量微小的距离;它也是光学媒质性质的研究工具。

光的干涉衍射综合实验报告

竭诚为您提供优质文档/双击可除光的干涉衍射综合实验报告 篇一:实验报告之仿真(光的干涉与衍射) 大学物理创新性试验 实验项目:单缝﹑双缝﹑多缝衍射现象 仿真实验 专业班级:材料成型及控制工程0903班姓名:曹惠敏学号:09020XX97 目录 1光的衍射2衍射分类3实验现象4仿真模拟5实验总结 光的衍射 光在传播路径中,遇到不透明或透明的障碍物,绕过障碍物,产生偏离直线传播的现象称为光的衍射。 光的衍射现象是光的波动性的重要表现之一.波动在传播过程中,只要其波面受到某种限制,如振幅或相位的突变等,就必然伴随着衍射的发生.然而,只有当这种限制的空间几何线度与波长大小可以比拟时,其衍射现象才能显著地表

现出来.所有光学系统,特别是成像光学系统,一般都将光波限制在一个特定的空间域内,这使得光波的传播过程实际上就是一种衍射过程.因此,研究各种形状的衍射屏在不同实验条件下的衍射特性,对于深刻理解衍射的实质,研究光波在不同光学系统中的传播规律分析复杂图像的空间频谱分布以及改进光学滤波器设计等具有非常重要的意义. 随着计算机技术的飞速发展,计算机仿真已深入各种领域。光的干涉与衍射既是光学的主要内容,也是人们研究与仿真的热点。由于光波波长较短,与此相应的复杂形状衍射屏的制作较困难,并且实验过程中对光学系统及环境条件的要求较高.因而在实际的实验操作和观察上存在诸多不便.计算机仿真以其良好的可控性、无破坏、易观察及低成本等优点,为数字化模拟现代光学实验提供了一种极好的手段.本次实验利用mATLAb软件实现对任意形状衍射屏的夫琅禾费衍射实验的计算机仿真。 衍射分类 ⒈菲涅尔衍射 菲涅尔衍射:入射光与衍射光不都是平行光的衍射 。 惠更斯提出,媒质上波阵面上的各点,都可以看成是发射子波的波源,其后任意时刻这些子波的包迹,就是该时刻新的波阵面。菲涅尔充实了惠更斯原理,他提出波前上每个

菲涅尔圆孔衍射实验分析

菲涅尔圆孔衍射光强测定的实验分析 xx (xx学院物理系 10级物理2班云南玉溪 653100) 指导教师:xx 摘要:本文主要分析了菲涅尔圆孔衍射图样的特点,设计实验对光强分布规律进行验证,通过对比证明理论值与实际值之间存在一定偏差。 关键词:菲涅尔圆孔衍射;光强 1.引言 “衍射”是生活中一种普遍的光学现象,但不常被人们发现和熟知。光的衍射现象是光的波动性的重要体现。姚启钧先生在第四版《光学教程》中指出,衍射是指光在传播过程中遇到障碍物,会绕过障碍物偏离直线传播而进入几何阴影,并在屏幕上出现光强分布不均匀的现象,这种现象我们就将其称为光的衍射[1]。衍射又可根据障碍物到光源和考察点到障碍物的距离的不同分为两种,障碍物到光源和考察点的距离都是有限的,或其中之一为有限,这就称为菲涅尔衍射,又称近场衍射,另一种是障碍物到光源和考察点的距离可以认为是无限远的,则称为夫琅禾费衍射,又称远场衍射[1]。 衍射实验大多集中在夫琅禾费衍射的研究,直到近些年对菲涅尔衍射光强测定的探究才日益多了起来。顾永建曾对菲涅尔圆孔衍射中心场点光强的表示方法和分布特点做出过研究,其分别从矢量图解法和积分法推导出菲涅尔圆孔衍射中心场点的光强的表示方法和分布特点[2]。侯秀梅,郭茂田,郭洪三人曾对菲涅尔圆孔衍射的轴上光强分布做出过研究,其从惠更斯——菲涅尔原理出发,在球面波入射的情况下,导出菲涅尔圆孔衍射时轴上光强分布的解析表达式,并对轴上光强分布进行定量分析讨论[3]。陈修斌也曾对平行光的菲涅尔圆孔衍射实验进行过探究,他通过实验观察到衍射图样的中心可亮可暗,并用“菲涅尔半周期带”原理加以分析,解释,通过分析总结出圆孔衍射图像的中心光强的变化规律[4]。范体贵,吕立君利用计算机对菲涅尔衍射问题进行了数值模拟,给出了接收屏上完整的衍射图样,计算结果

相关文档
相关文档 最新文档