文档库 最新最全的文档下载
当前位置:文档库 › 热电偶电路及其原理和使用

热电偶电路及其原理和使用

热电偶电路及其原理和使用
热电偶电路及其原理和使用

热电偶电路及其原理和使用

一、热电偶介绍:热电偶属于接触式温度测量仪表是工业生产中最常用的温度检测仪表之一。它直接测量温度,并把温度信号转热电偶换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质的温度。

二、热电偶工作原理:热电偶是一种感温元件,它把温度信号转换成热电动势信号,通过电气仪表转换成被测介质的温度。热电偶测温的基本原理是两种不同成份的均质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在Seebeck电动势——热电动势,这就是所谓的塞贝克效应。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系,制成热电偶分度表;分度表是自由端温度在0℃时的条件下得到的,不同的热电偶具有不同的分度表。在热电偶回路中接入第三种金属材料时,只要该材料两个接点的温度相同,热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。因此,在热电偶测温时,可接入测量仪表,测得热电动势后,即可知道被测介质的温度。

三、热电偶优点:热电偶是工业中常用的温度测温元件,具有如下特点:①测量精度高:热电偶与被

测对象直接接触,不受中间介质的影响。②热响应时间快:热电偶对温度变化反应灵敏。③测量范围大:热电偶从-40~+1600℃均可连续测温。④性能可靠,机械强度好。⑤使用寿命长,安装方便。四、热电偶的种类及结构:(1)热电偶的种类

热电偶有K型(镍铬-镍硅)WRN系列,N型(镍铬硅-镍硅

镁)WRM系列,E型(镍铬-铜镍)WRE系列,J型(铁-铜

镍)WRF系列,T型(铜-铜镍)WRC系列,S型(铂铑10-

铂)WRP系列,R型(铂铑13-铂)WRQ系列,B型(铂铑30-铂铑6)WRR系列等。

(2)热电偶的结构形式:热电偶的基本结构是热电极,绝缘材料和保护管;并与显示仪表、记录仪表或计算机等配套使用。在现场使用中根据环境,被测介质等多种因素研制成适合各种环境的热电偶。热电偶简单分为装配式热电偶,铠装式热电偶和特殊形式热电偶;按使用环境细分有耐高温热电偶,耐磨热电偶,耐腐热电偶,耐高压热电偶,隔爆热电偶,铝液测温用热电偶,循环硫化床用热电偶,水泥回转窑炉用热电偶,阳极焙烧炉用热电偶,高温热风炉用热电偶,汽化炉用热电偶,渗碳炉用热电偶,高温盐浴炉用热电偶,铜、铁及钢水用热电偶,抗氧化钨铼热电偶,真空炉用热电偶,铂铑热电偶等。热电偶也叫温差电偶,是最早出现的一种热电探测器件。其工作原理是温差电效应。

例如,由两种不同的导体材料构成的接点,在接点处可产生电动势。这个电动势的大小和方向与该接点处两种不同的导体材料的性质和两接点处的温差有关。如果把这两种不同的导体材料接成回路,当两个接头处温度不同时,回路中即产生电流。这种现象称为温差电效应或塞贝克效应。构成温差电偶的材料,既可以是金属,也可以是半导体。在结构上既可以是线、条状的实体,也可以是利用真空沉积技术或光刻技术制成的薄膜。实体型的温差电偶多用于测温,薄膜型的温差电堆(由许多个温差电偶串联而成)多用于测量辐射,例如,用来标定各类光源,测量各种辐射量,作为红外分光光度计或红外光谱仪的辐射接收元件等。

五、热电偶应用 1 热电偶的冷端温度补偿

在生产实际中,由于热电偶的工作端(测量端)与冷端(参比端)离得很近,而且冷端又暴露在工作环境之中,因而容易受到周围工作环境温度波动的影响,所以冷端温度难以保持恒定,造成测量不准。实际应用是用专用补偿导线,将热电偶的冷端延伸至温度较低和比较稳定的地方。在使用补偿导线时,要注意两个问题。其一,补偿导线的型号要与热电偶的型号相配。其二,热电偶与补偿导线连接端所处的温度不超过100℃,否则补偿导线所产生的金属导体的温差电势不能忽略。 2 热电偶的安装1、热电偶的安装应尽可

能保持垂直,以防止保护套管在高温下产生变形,但在有流

速的情况下,则必须迎着被测介质的流向插入,以保证测温元件与流体的充分接触。2、热电偶应安装在有保护层的管道内,以防止热量散失。3、热电偶安装在负压管道中时,必须保证测量处的密封性,以防止外界冷空气进入,使读数偏低。4、热电偶的接线盒面盖应向上,入线口应向下,以避免雨水或灰尘进入接线盒,影响测量精度。六、水泥企业常用热电偶的选择对于不同的测量系统或不同的工艺要求,我们可以根据其系统或工艺的测量范围、测量状态和介质情况选用不同类型的热电偶,工业热工(如新型干法生产线的窑)常用的热电偶见表1。1、WRR热电偶其热电特性在高温下最为稳定,适宜于在氧化性和中性介质中使用,但其产生的热电势小,因而灵敏度低,响应速度慢,而且价格昂贵。由于WRR在低温时热电势极小,因此当热电偶冷端温度在40℃以下时,一般不需要进行冷端温度补偿。2、WRP热电偶适宜于在氧化性或中性介质中使用,耐高温,不易氧化和腐蚀,有较好的化学稳定性和较高的测量精度,可用于精密温度测量和作基准热电偶(校准用热电偶)。3、WRN热电偶

适宜于在氧化性和中性介质中使用。500℃以下低温范围内,也可在还原性介质中进行测量。其突出优点是热电势大,灵敏度高,响应速度快,线性度好,测温范围较宽,造价低,因而在工矿企业应用广泛。4、WRE热电偶适

宜在还原性或中性介质中使用,其热电势比较大,灵敏度高,线性度非常好,价格便宜,缺点是测温上限不高。在进行热电偶的选型时,除要注意上述热电偶的使用环境、测量范围、测量精度、灵敏度和响应速度之外,还要注意热电偶保护套管的结构、材料、耐压强度及保护套管的插入深度等。对于精度要求较高,响应速度和灵敏度要求较高的工艺测量点,必须选用较贵重的S型热电偶;对于温度较高,响应速度和灵敏度要求不很高的工艺测量点,选用B型热电偶:一般的工艺参数测量,我们选用经济实用的K型或E型热电偶。例如:我公司窑尾烟室和分解炉的温度测量,我们多选用S型或K型热电偶。因为这两处为动态温度场,其温度随喷煤量的变化而变化,要准确、快速地检测此两处的温度,则热电偶必须有较高的灵敏度和热响应速度。我公司窑头和三次风管(入窑尾烟室处)的温度测量多选用B型热电偶;而一、二、三级预热器出口处的温度测量多选用K型热电偶;旋风分离器出口、烘干破碎机出口、窑尾电除尘器出入口的温度测量多选用E型热电偶。

热电偶及其补偿电路的设计

热电偶及其补偿电路的设计 引言 温度是工业生产中重要的物理量, 产品的产量、质量、能耗等都直接与温度有关, 因此, 准确地测量温度具有十分重要的现实意义。测温的方法很多, 例如, 利用水银温度计、有机液体温度计、双金属温度计、液体压力温度计、铂电阻温度计、热敏电阻温度计、热电偶温度计、光学高温计、红外温度计、辐射温度计、比色温度计等等都可实现对温度的测量[1 ] 。其中, 热电偶温度计具有结构简单、测温范围广(低至负180 ℃, 高至1800 ℃) 、耐高温、准确度高、价格便宜、使用方便、适于远距离测量与自动控制等优点。因而, 它在高温测量方面得到较广泛的应用。 1 热电偶的工作原理 热电温度计是由热电偶、补偿导线及测量仪表构成的。其中热电偶是敏感元件, 它由两种不同的导体A 和B 连接在一起, 构成一个闭合回路, 当两个连接点 1 与 2 的温度不同时, 由于热电效应,回路中就会产生零点几到几十毫伏的热电动势, 记为EAB 。接点1 在测量时被置于测场所, 故称为测量端或工作端。接点 2 则要求恒定在某一温度下,称为参考端或自由端, 如图1 所示。 实验证明, 当电极材料选定后, 热电偶的热电动势仅与两个接点的

温度有关, 即 d EAB ( t1 , t2 ) = SAb ×d t , 比例系数SAB 称为热电动势率, 它是热电偶最重要的特征量。当两接点的温度分别为t1 , t2 时, 回路总的热电动势为 式中eAB ( t1 ) 、eAB ( t2 ) 分别为接点的分热电动势。 对于已选定材料的热电偶, 当其自由端温度恒定时, eAB ( t2 ) 为常数, 这样回路总的热电动势仅为工作温度t1 的单值函数。所以, 通过测量热电动势的方法就可以测量工作点的实际温度。 2 热电偶测量温度的使用方法 图 1 中我们把自由端2 画成虚线, 是想说明热电偶在使用时 2 点实际上不是直接相接的。由热电偶的中间金属定律: “在热电偶测温回路中, 串接第三种导体, 只要其两端温度相同, 则热电偶所产生的热电动势与串接的中间金属无关”, 那么, 我们把较短的测量导线和仪表串接在2 点并视其为第三种金属, 就可认为它们不影响热电偶所产生的热电动势即工作温度的测量。 实际使用时, 测量场所与测量仪表往往相距很远, 又因为组成热电偶的材料比较贵重, 所以常加导线来连接。这里有两种使用方法: 第一种, 两根连接导线具有相同的热电性质, 如在一根导线(如常用的紫铜线) 上取下的两段线, 它们的化学成分和物理性质就很相近, 这时, 可根据中间金属定律判断出电偶的热电动势只取决于电偶两端温度t1 ,t2 , 其它环境温度的影响就可忽略。第二, 热电

热电偶放大电路图

热电偶放大电路图 图3-47是热电偶放大电路。电路中,LTC2053是仪用放大器,它为低功率仪器产品提供了一个极好的平台,例如,电池供电的热电偶放大电路等。由于采用了与开关电容的组合以及零漂移运算放大器的工艺,因此,LTC2053的输入偏移电压最大为10μV,共模抑制比CMRR和电源抑制比PSRR达到116dB。最理想的工作电源采用低电压到llV 的单电源或±5V的双电源,另外,由于消耗电流非常低,典型值为85μpA,因此,应用于电池供电的放大器非常理想。调节R1、RP1和R2可方便对电路增益进行编程。 作为热电偶放大器必须满足一些特殊要求,通常采用的K型热电偶的灵敏度为μ℃,而电路的输出一般要求为lOmV/℃,因此,要选用额定增益为246的精密放大器。另外,热电偶一般容易受到工业环境中电子噪声的影晌,因此,仪用放大器允许输入不同的电压有助于消除由于共模噪声引起的误差。为了避免出故障,采取的保护措施是不能让热电偶无意识地接触到瞬变电源或高电压,但保护措施不能兼顾到精度。LTC2053有满足这些要求的补偿特性,它在任何引脚上都可以承受10mA的故障电流,因此,在不损坏集成芯片的情况下,10kΩ(R4和R5)保护电阻允许承受±100V故障电压。 本模块包括电压式温度传感器TMP35和K型热电偶。其中热电偶的工作原理是根据热端和冷端的温度差而产生电势差。由于实际测量时,冷端的温度往往不是O℃,所以要对热电偶进行温度补偿。热电偶温度补偿公式如下: E(t,0)=E(t,t0)+E(t0,0) 其中,E(t0,0)是实际测量的电动势,t代表热端温度,t0代表冷端温度,0代表O℃。在现场温度测量中,由于热电偶冷端温度一般不为O℃,而是在一定范围内变化着,因此测得的热电势为E(t,t0)。如果要测得真实的被测温度所对应的热电势

热电偶测温基本原理

1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B 的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 A,B 两种导体,一端通过焊接形成结点,为工作端,位于待测介质。另一端接测温仪表,为参考端。为更好地理解下面的内容,我们将以上测温回路中形成的热电动势表示为EAB(T1,T0),理解为:A、B两种导体组成的热电偶,工作端温度为T1,参考端温度为T0,形成的热电动势为EAB(T1,T0)。 需要特别强调的是:热电偶测温,归根结底是测量热电偶两端的热电动势。测量仪表能够让我们看到温度数值,是因为它已经将热电动势转换成了温度。 图中,工作端温度T1, A、B与C、D连接处温度为T2,测量仪表端(参考端)温度为T0。 我们可以把总回路的总电动势E 分成两段热电动势的和,即A、B为一段,热电动势为EAB(T1,T2),C、D为另一段,热电动势为ECD(T2,T0), 即: E= EAB(T1,T2)+ ECD(T2,T0) (热电偶中间导体定律) (1)

在上图中,如果C、D的材质和A、B完全一样,即C即为A,D即为B,相当于热电偶A、B 在T2(中间温度)处产生了一个连接点,此时,回路总电势为: E= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (热电偶中间温度定律) (2) 从式(2)我们可以看出,只要是相同的热电偶,中间产生了连接点,则总电势与连接点的温度(中间温度)无关,而只与工作端和参考端的温度有关。这正是我们希望得到的。我们在热电偶布线中,不需要考虑中间有没有连接点,也不需要考虑连接点的温度,而是和一根热电偶连接到介质和测量仪表一样。 再来比较式(2)和式(1)。如果我们能找到某种材料C、D,它能满足: ECD(T2,T0)= EAB(T2,T0) (3) 则式(1)成为: E= EAB(T1,T2)+ ECD(T2,T0)= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (4) 满足式(3)的材料C、D我们称为热电偶A、B的补偿导线。 式(4)还告诉我们,使用了补偿导线,我们将T2延伸到了T0,但最后我们的测量结果与T2无关,这样我们也可以理解为,因为我们使用了导线C、D,是它补偿了T2处连接所产生的附加电势,而使得我们最终测量不需要再考虑T2,这也是C、D为什么叫补偿导线的原因, 2.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。

基于热电偶的温度测量电路设计

燕山大学 课程设计说明书题目:基于热电偶的温度测量电路设计 学院(系):电气工程学院 年级专业: 学号: 学生: 指导教师: 教师职称:

燕山大学课程设计(论文)任务书院(系):电气工程学院基层教学单位:

说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。 2011年6 月26 日燕山大学课程设计评审意见表

目录 第1章摘要 (2) 第2章引言 (2) 第3章电路结构设计 (2) 3.1 热电偶的工作原理 (2) 3.2 冷端补偿电路设计 (5) 3.3 运算放大器的设计 (6) 第4章参数设计及运算 (8) 4.1 补偿电路的计算 (8) 4.2 运算放大器的计算 (9) 4.3 仿真器仿真图示 (10) 心得体会 (12) 参考文献 (13)

第一章摘要 本文所要设计的是基于运算放大器的具有冷端补偿的热电偶测温。 所要设计包括三部分,热电偶,冷端补偿,运算放大器。热电偶选用的为K型热电偶,补偿采用是桥式补偿电路,运算放大器则用的是运放比例较大而输出阻抗比较小的仪器仪表放大器。 第二章引言 在工业生产过程中,温度是需要测量和控制的重要参数之一,在温度测量中,热点偶的应用极为广泛,它具有结构简单,制作方便,测量围广,精度高,惯性小和输出信号便于远传等许多优点。另外,由于热电偶是一种有源传感器,测量时不需外加电源,使用十分方便,所以常被用作测量炉子,管道的气体或液体的温度及固体的表面温度。热电偶作为一种温度传感器,热电偶通常和显示仪表,记录仪表和电子调节器配套使用。热电偶可以直接测量各种生产中从0℃到1300℃围的液体蒸汽和气体介质以及固体的表面温度。 第三章电路结构设计 3.1热电偶的工作原理 热电偶是一种感温元件,是一次仪表,它直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质的温度。 热电偶测温的基本原理是两种不同成份的材质导体(称为热电偶丝材或热电极)组成闭合回路,当接合点两端的温度不同,存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应。两种不同成份的均质导体为热电极,温度较高的一端为工作端(也称为测量端),温度较低的一端为自由端(也称为补偿端),自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系,制成热电偶分度表;分度表是自由端温度在0℃时的条件下得到的,不同的热电

热电偶测温原理及常见故障

热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。其优点是: ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 常用的热电偶材料有: 热电偶分度号热电极材料 正极负极 S 铂铑10 纯铂 R 铂铑13 纯铂 B 铂铑30 铂铑6 K 镍铬镍硅 T 纯铜铜镍 J 铁铜镍 N 镍铬硅镍硅 E 镍铬铜镍 2.热电偶的种类及结构形成

(1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ①组成热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。 3.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。 热电偶冷端补偿原理 热电偶测量温度时要求其冷端(测量端为热端,通过引线与测量电路连接的端称为冷端)的温度保持不变,其热电势大小才与测量温度呈一定的比例关系。若测量时,冷端的(环境)温度变化,将影响严重测量的准确性。在冷端采取一定措施补偿由于冷端温度变化造成的影响称为热电偶的冷端补偿。 热电偶的冷端补偿通常采用在冷端串联一个由热电阻构成的电桥。电桥的三个桥臂为标准电阻,另外有一个桥臂由(铜)热电阻构成。当冷端温度变化(比如升高),热电偶产生的热电势也将变化(减小),而此时串联电桥中的热电阻阻值也将变化并使电桥两端的电压也发生变化(升高)。如果参数选择得好且接线正确,电桥产生的电压正好与热电势随温度变化而变化的量相等,整个热电偶测量回路的总输出电压(电势)正好真实反映了所测量的温度值。这就是热电偶的冷端补偿原理。

热电偶使用方法

文档说明:MAXIM6675是MAXIM公司推出的具有冷端补偿的单片K型热电偶数字转换器。本文主要介绍了MAX6675的特性和工作原理, 详细阐述了该芯片在铝水平温度测量仪中的应用,给出了与89C51单片机的接口电路和程序设计。 K型热电偶是工业生产中最常用的温度传感器,具有结构简单、制造容易、使用方便、测温范围宽等特点。目前,在以K型热电偶为测温元件的工业测温系统中,热电偶输出的热电势信号必须经过中间转换环节,才能输入基于单片机的嵌入式系统。中间转换环节包括信号放大、冷端补偿、线性化及数字化等几个部分,实际应用中,由于中间环节较多,调试较为困难,系统的抗干扰性能往往也不理想。在铝水平温度测量仪的研制中,我们采用了MAXIM公司新近推出的MAX6675,它是一个集成了热电偶放大器、冷端补偿、A/D转换器及SPI串口的热电偶放大器与数字转换器,可以直接与单片机接口,大大简化系统的设计,保证了温度测量的快速、准确。 1 MAX6675特性 1.1 特性 MAX6675是具有冷端补偿和A/D转换功能的单片集成K型热电偶变换器,测温范围0℃~1024℃,主要功能特点如下: ·直接将热电偶信号转换为数字信号 ·具有冷端补偿功能 ·简单的SPI串行接口与单片机通讯 ·12位A/D转换器、0.25℃分辨率 ·单一+5V的电源电压 ·热电偶断线检测 ·工作温度范围-20℃~+85℃ 1.2 引脚功能 MAX6675采用SO-8封装形式,有8个引脚,脚1(GND)接地,脚2(T-)接热电偶负极,脚3(T+)接热电偶正极,脚4(VCC)电源端,脚5(SCK)串行时钟输入端,脚6(CS)片选端,使能启动串行数据通讯,脚7(SO)串行数据输出端,脚8(NC)未用。在VCC和GND之间接0.1μF电容。 MAX6675的引脚如图1所示。 1.3 工作原理 MAX6675是一复杂的单片热电偶数字转换器,其内部结构如图2所示。主要包括:低噪声电压放大器A1、电压跟随器A2、冷端温度补偿二极管、基准电压源、12位AD 转换器、SPI串行接口、模拟开关及数字控制器。 其工作原理如下:K型热电偶产生的热电势,经过低噪声电压放大器A1和电压跟随器A2放大、缓冲后,得到热电势信号U1,再经过S4送至ADC。。对于K型热电偶,电压变化率为(41μV/℃),电压可由如下公式来近似热电偶的特性。 U1=(41μV/℃)×(T-T0) 上式中,U1为热电偶输出电压(mV),T是测量点温度;T0是周围温度。 在将温度电压值转换为相应的温度值之前,对热电偶的冷端温度进行补偿,冷端温度即是MAX6675周围温度与0℃实际参考值之间的差值。通过冷端温度补偿二极管,产生补偿电压U2经S4输入ADC转换器。 U2=(41μV/℃)×T0 在数字控制器的控制下,ADC首先将U1、U2转换成数字量,即获得输出电压U0的数据,该数据就代表测量点的实际温度值T。这就是MAX6675进行冷端温度补偿和测量温度的原理。

热电偶、热电阻工作原理及特点

热电偶、热电阻工作原理及特点 热电偶工作原理 将两种不同的金属导体焊接在一起,构成闭合回路,如在焊接端(即测量端)加热产生温差,则在回路中就会产生热电动势,此种现象称为塞贝克效应(Seebeck-effect)。如将另一端(即参考端)温度保持一定(一般为0℃),那么回路的热电动势则变成测量端温度的单值函数。这种以测量热电动势的方法来测量温度的元件,即两种成对的金属导体,称为热电偶。 热电偶产生的热电动势,其大小仅与热电极材料及两端温差有关,与热电极长度、直径无 关。 热电偶工作原理图 热电阻工作原理 工业用热电阻分铂热电阻和铜热电阻两大类。 热电阻是利用物质在温度变化时自身电阻也随着发生变化的特性来测量温度的。热电阻的受热部份(感温元件)是用细金属丝均匀地双绕在绝缘材料制成的骨架上。当被测介质中有温度发生变化时,所测得的温度是感温元件所在范围内介质中的平均温度。 热电偶、热电阻特点 热电偶热电阻 热电偶同其它种温度计相比具有如下特点: a、优点 ·热电偶可将温度量转换成电量进行检测,对于温度的测量、控制,以及对温度信号的放大、变换等都很方便, ·结构简单,制造容易, ·价格便宜, ·惰性小,热电阻同其它种温度计相比具有如下特点:a、优点 ·准确度高。在所有常用温度计中,准确度最高,可达1mk。 ·输出信号大,灵敏度高。如在0℃用Pt100铂热电阻测温,当温度变化1℃时,其电阻值约变化0.4Ω,如果通过电流为2mA,则其电压输出量变化为800μV。在相同条件下,即使灵敏度比较高的K型热电偶,其热电动势变化也只有

热电偶热电阻 热电偶同其它种温度计相比具有如下特点: a、优点 ·热电偶可将温度量转换成电量进行检测,对于温度的测量、控制,以及对温度信号的放大、变换等都很方便, ·结构简单,制造容易, ·价格便宜, ·惰性小, ·准确度高, ·测温范围广, ·能适应各种测量对象的要求(特定部位或狭小场所),如点温和面温的测量,·适于远距离测量和控制。 b、缺点 ·测量准确度难以超过0.2℃, ·必须有参考端,并且温度要保持恒定。·在高温或长期使用时,因受被测介质影响或气氛腐蚀作用(如氧化、还原)等而发生劣化。热电阻同其它种温度计相比具有如下特点:a、优点 ·准确度高。在所有常用温度计中,准确度最高,可达1mk。 ·输出信号大,灵敏度高。如在0℃用Pt100铂热电阻测温,当温度变化1℃时,其电阻值约变化0.4Ω,如果通过电流为2mA,则其电压输出量变化为800μV。在相同条件下,即使灵敏度比较高的K型热电偶,其热电动势变化也只有40μV左右。由此可见,热电阻的灵敏度较热电偶高一个数量级。 ·测温范围广,稳定性好。在振动小而适宜的环境下,可在很长时间内保持0.1℃以下的稳定性。 ·无需参考点。温度值可由测得的电阻值直接求出。 ·输出线性好。只用简单的辅助回路就能得到线性输出,显示仪表可均匀刻度。 b、缺点 ·采用细金属丝的热电阻元件抗机械冲击与振动性能差。 ·元件结构复杂,制造困难大,尺寸较大,因此,热响应时间长。·不适宜测量体积狭小和温度瞬变区域。

热电偶测温基本原理

A,B 两种导体,一端通过焊接形成结点,为工作端,位于待测介质。另一端接测温仪表,为参考端。为更好地理解下面的内容,我们将以上测温回路中形成的热电动势表示为EAB(T1,T0),理解为:A、B两种导体组成的热电偶,工作端温度为T1,参考端温度为T0,形成的热电动势为EAB(T1,T0)。 需要特别强调的是:热电偶测温,归根结底是测量热电偶两端的热电动势。测量仪表能够让我们看到温度数值,是因为它已经将热电动势转换成了温度。 图中,工作端温度T1, A、B与C、D连接处温度为T2,测量仪表端(参考端)温度为T0。 我们可以把总回路的总电动势E 分成两段热电动势的和,即A、B为一段,热电动势为EAB(T1,T2),C、D为另一段,热电动势为ECD(T2,T0), 即: E= EAB(T1,T2)+ ECD(T2,T0) (热电偶中间导体定律) (1) 在上图中,如果C、D的材质和A、B完全一样,即C即为A,D即为B,相当于热电偶A、B 在T2(中间温度)处产生了一个连接点,此时,回路总电势为: E= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (热电偶中间温度定律) (2) 从式(2)我们可以看出,只要是相同的热电偶,中间产生了连接点,则总电势与连接点的温度(中间温度)无关,而只与工作端和参考端的温度有关。这正是我们希望得到的。我们在热电偶布线中,不需要考虑中间有没有连接点,也不需要考虑连接点的温度,而是和一根热电偶连接到介质和测量仪表一样。 再来比较式(2)和式(1)。如果我们能找到某种材料C、D,它能满足: ECD(T2,T0)= EAB(T2,T0) (3 ) 则式(1)成为: E= EAB(T1,T2)+ ECD(T2,T0)= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (4) 满足式(3)的材料C、D我们称为热电偶A、B的补偿导线。 式(4)还告诉我们,使用了补偿导线,我们将T2延伸到了T0,但最后我们的测量结果与T2无关,这样我们也可以理解为,因为我们使用了导线C、D,是它补偿了T2处连接所产生的附加电势,而使得我们最终测量不需要再考虑T2,这也是C、D为什么叫补

热电阻的测温电路

Pt100热电阻的测温电路 [摘要] 热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。 热电阻传感器主要是利用电阻值随温度变化而变化这一特性来测量温度及与温度有关的参数。在温度检测精度要求比较高的场合,这种传感器比较适用。目前较为广泛的热电阻材料为铂、铜、镍等,它们具有电阻温度系数大、线性好、性能稳定、使用温度范围宽、加工容易等特点。用于测量-200℃~+500℃范围内的温度。 温度测量系统应用广泛,涉及到各行各业的各个方面,在各种不同的领域中都占有重要的位置。从降低开放成本扩大适用范围、系统运行的稳定性、可靠性出发,设计一种以Pt100铂热电阻为温度信号采集元件的传感器温度测量系统。才测量系统不但可以测量室内的温度,还可以测量液体等的温度,在实际应用中,该系统运行稳定、可靠,电路设计简单实用。 [关键字] 传感器 Pt100热电阻温度测量

目录 1 前言 (4) 1.1 传感器概况 (4) 1.2 设计目的 (7) 2 设计要求 (8) 2.1 设计内容 (8) 2.2 设计要求 (9) 3 原器件清单 (10) 4 Pt100热电阻的测温电路 (11) 4.1 总体电路图 (11) 4.2 工作原理 (11) 5 Pt100热电阻测温电路的原理及实现 (12) 5.1 测温电路的工作原理 (12) 5.2 测温电路的实现 (14) 5.3 测量结果及结果分析 (15) 6 制作过程及注意事项 (16) 6.1 制作过程 (16) 6.2 注意事项 (17) 7 总结 (18) 8 致谢 (19) 参考文献 (20)

热电偶工作原理

热电偶工作原理 中电华辰(天津)精密测器股份公司简述热电偶工作原理 热电偶的工作原理就是利用两种不同的材料组成的闭合电路;当2端的温度不同时,就会有电流产生;再通过测量仪表,就可以轻松的获得介质的温度。 中电华辰HC系列工业用铂铑热电偶又叫贵金属热电偶,它作为温度测量传感器,通常与温度变送器、调节器及显示仪表等配套使用,组成过程控制系统,用以直接测量或控制各种生产过程中0-1800℃范围内的流体、蒸汽和气体介质以及固体表面等温度。 铂铑热电偶是由两种不同成分的导体两端接合成回路时,当两接合点温度不同时,就会在回路内产生热电流。如果热电偶的工作端与参比端存在有温差时,显示仪表将会批示出热电偶产生的热电势所对应的温度值。 铂铑热电偶的热电动势将随着测量端温度升高而增长,它的大小只与热电偶材料和两端的温度有关、与热电极的长度、直径无关。 各种铂铑热电偶的外形常因需要而极不相同,但是它们的基本结构却大致相同,通常由热电极、绝缘套保护管和接线盒等。 中电华辰(天津)精密测器股份公司简述常用热电偶 适于制作热电偶的材料有300多种,其中广泛应用的有40~50种。国际电工委员会向世界各国推荐8 种热电偶作为标准化热电偶. 我国标准化热电偶也有8 种。分别是:铂铑10-铂(分度号为S)、铂铑13-铂(R)、铂铑30-铂铑6(B)、镍铬-镍硅(K)、镍铬-康铜(E)、铁-康铜(J)、铜-康铜(T)和镍铬硅-镍硅(N)。下面简要介绍其中几种: 五、几种常用的热电偶 1、铂铑10-铂热电偶组成:由φ0.5mm 的纯铂丝和直径相同的铂铑丝制成,分度号为 S 。铂铑丝为正极, 纯铂丝为负极。 2.特点:热电性能好,抗氧化性强,宜在氧化性、惰性气氛中连续使用。长期适用的温 度为1400℃,超过此温度时,即使在空气中纯铂丝也将再结晶而使晶粒增大。短期使用温度为1600℃。在所有的热电偶中,它的准确度等级最高,通常用作标准或测量高

热电偶测温原理图20110412

热电偶测温控制显示系统 指导书 项目成员: 周海云

刘叶 李勇 项目班级:工业控制091班 项目指导老师:陈勇宏老师 2011年4月28日 目录 第一章:实验的目的及原理 1.1 实验目的 (01) 1.2 实验原理 (01) 1.3 实验计划 (01) 第二章:实验重要元件介绍 2.1 热电偶原理及应用 (02) 2.1.1 热电偶简 (02) 2.1.2 热电偶测温原理 (02) 2.1.3 有关热电偶测温的基本原则 (03) 2.1.4 常用热电偶 (04) 2.2 ICL7107 A/D数模转换器 (04) 2.2.1 ICL7107 的简介 (04) 2.2.2 辨认引脚 (04) 2.2.3 牢记关键点的电压 (05) 2.2.4 注意芯片 (05) 2.2.5 注意接地引脚 (06) 2.3 LM324 运算放大器 (06)

2.3.1 LM324 的简介 (06) 2.3.2 LM324 引脚图 (06) 第三章:热电偶测温系统的调试 3.1 调试的方法 (07) 3.2 注意事项 (07) 3.3 实验数据 (07) 3.3.1 温度上升时的数据 (07) 3.3.2 问的下降时的数据 (08) 实训总结 (09) 附录 (10) 第一章 实验的目的及原理 1.1 实验目的 1)了解热电偶测温的原理、方法及应用,注意事项。 2)了解热电偶测温系统的焊接方法及注意事项。 3)了解热电偶测温系统的调试方法及注意事项。 4)了解一些A/D转换芯片(ICL7107、DH7107GP、ICL7106、DH7106)。 1.2 实验原理 由热电偶热电效应产生的电流经电路处理转变成电压信号,并经过二级放大,放大至正比与温度的电压,送至ICL7107 31#脚,最后由数码管显示热电偶测量到的温度值。

热电偶放大电路图

热电偶放大电路图 2010年05月21日星期五 22:24 图3-47是热电偶放大电路。电路中,LTC2053是仪用放大器,它为低功率仪器产品提供了一个极好的平台,例如,电池供电的热电偶放大电路等。由于采用了与开关电容的组合以及零漂移运算放大器的工艺,因此,LTC2053的输入偏移电压最大为10μV,共模抑制比CMRR和电源抑制比PSRR达到116dB。最理想的工作电源采用低电压2.7V到llV的单电源或±5V的双电源,另外,由于消耗电流非常低,典型值为85μpA,因此,应用于电池供电的放大器非常理想。调节R1、RP1和R2可方便对电路增益进行编程。 作为热电偶放大器必须满足一些特殊要求,通常采用的K型热电偶的灵敏度为40.6μ℃,而电路的输出一般要求为lOmV/℃,因此,要选用额定增益为246的精密放大器。另外,热电偶一般容易受到工业环境中电子噪声的影晌,因此,仪用放大器允许输入不同的电压有助于消除由于共模噪声引起的误差。为了避免出故障,采取的保护措施是不能让热电偶无意识地接触到瞬变电源或高电压,但保护措施不能兼顾到精度。LTC2053有满足这些要求的补偿特性,它在任何引脚上都可以承受10mA的故障电流,因此,在不损坏集成芯片的情况下,10kΩ(R4和R5)保护电阻允许承受±100V故障电压。 电路中LTC1025对热电偶进行温度补偿,确保在各种环境条件下温度的测量精度,并要靠近热电偶的节点安装,以便对温度进行最佳的跟踪。LTC1025对不同的环境温度输出相应的电压,输出灵敏度为10mV/℃,因此,0℃时输出电压为lOmV,室温(25℃)时输出250mV。测量探头温度相应的电压是补偿电压和被放大的热电偶电压之和,补偿电路的输出端与LTC2053的REF(5脚)输入端连接的所有这一切都要加上这两种电压。对于这种电路结构,考虑的仅是校正的电压必需能供出或吸收反馈电阻中电流。由于,LTC1025只供出电流,因此,可采用缓冲器LTC2050驱动REF,LTC2050是一种零漂移的运算放大器。采用单电源的缺点是,对于有效的输出探头和放大器单元的温度都必须超过0℃。若需要对负温度进行调节的话,可采用简单的充电泵变换器,例如LTC1046构成负电源。 在常规的线性电源应用中,只要所有热电偶都连接上而LTC1025进行热跟踪,可以采用单个LTCl025和缓冲放大器去修正LTC2053热电偶放大器的不同通道。由于LTC2053工作于采样的输入信号,因此,感兴趣的频率一般低于几百Hz,这样,在反馈电路中增设0.1μF电容C1就可以加速放大器的响应。接在热电偶输入网络的电容C2和C3有助于吸收射频干扰及抑制在热电偶探头出现的采样干扰。接在热电偶中的电阻R6~R9提供高阻抗偏置,这样在探头无电压降的情况下使其抗干扰性达到最大。短的热电偶使共模信号最小,探头节点可以接地。5.1V的稳压管VD1构成电源保护电路,即防止电源出现过电压以及6V电池的极性接反,R3是限流电阻。

op07电路图设计

op07的功能介绍:Op07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。由于OP07具有非常低的输入失调电压(对于OP07A最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。OP07同时具有输入偏置电流低(OP07A为±2nA)和开环增益高(对于OP07A 为300V/mV)的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。 特点: 超低偏移:150μV最大。 低输入偏置电流: 1.8nA 。 低失调电压漂移:0.5μV/℃。 超稳定,时间:2μV/month最大 高电源电压范围:±3V至±22V 图1 OP07外型图片 图2 OP07 管脚图 OP07芯片引脚功能说明: 1和8为偏置平衡(调零端),2为反向输入端,3为正向输入端,4接地,5空脚6为输出,7接电源+

图3 OP07内部电路图 ABSOLUTE MAXIMUM RATINGS 最大额定值 Sym bol 符号 Parameter参数Value数值Unit 单位 VCC Supply Voltage 电源电压±22V Vid Differential Input Voltage差分输入电压±30V Vi Input Voltage 输入电压±22V Tope r Operating Temperature 工作温度 -40 to +105 ℃ Tstg Storage Tem perature 贮藏温度-65 to +150 ℃ 电气特性 虚拟通道连接= ± 15V ,Tam b = 25 ℃(除非另有说明)Sym bol 符号Parameter 参数及测试条件最小 典 型 最 大 Unit 单位 Vio Input Offset Voltage 输入失调电压0℃≤Tam b ≤-601μV

热电偶的工作原理及结构

热电偶工作原理及结构检修岗位 1.懂工作原理 1.1热电偶测温原理 两种电子密度不同的导体构成闭合回路,如果两接头的温度不同,回路中就有电流产生,这种现象成为热电现象,相应的电动势成为温差电势或热电势,它与温度有一定的函数关系,利用此关系就可测量温度。 这种现象包含的原理有: 帕尔帖定理----不同材料结合在一起,在其结合面产生电势。 汤姆逊定理---由温差引起的电势。 当组成热电偶的导体材料均匀时,其热电势的大小与导体本身的长度和直径大小无关,只与导体材料的成分及两端的温度有关。因此,用各种不同的导体或半导体可做成各种用途的热电偶,以满足不同温度对象测量的需要。 1.2热电偶三大定律 均质导体定律 由单一均质金属所形成 之封闭回路,沿回路上每一 点即使改变温度也不会有电 流产生。亦即,E = 0。 由2种均质金属材料A 与B所形成的热电偶回路中, 热电势E与接点处温度t1、 t2的相关函数关系,不受A 与B之中间温度t3与t4之影 响。 中间金属定律

在由A与B所形成之热电偶回路两接合点以外的任意点插入均质的第三金属C,C之两端接合点之温度t3若为相同的话,E不受C插入之影响。 在由A与B所形成之热电偶回路,将A与B的接合点打开并插入均质的金属C 时,A与C接合点的温度与打开前接合点的温度相等的话,E不受C插入的影响。 如右图所示,对由A 与B所形成之热电偶插入第3之中间金属C,形成由A与C、C与B之2组热电偶。接合点温度保持t1与t2的情况下,E AC + E CB = E AB。 中间温度定律

如右图所示任意数的异种金属A、B、C???G所形成的封闭回路,封闭回路之全体或是全部的接合点保持在相等的温度时,此回路的E=0。 如右图所示,A与B所形成之热电偶,两接合点之温度为t1与t2时之E为E12,t2与t3时之E为E13的话,E12 + E23 = E13。此时,称t2为中间温度。 以中间温度t2选择如0℃这样的标准温度,求得相对0℃任意的温度t1、t2、t3???tn之热电动势,任意两点间之热电动势便可以计算求得。 如右图所示,对于使用补偿导线之热电偶回路适用以上之观念。A与B为热电偶,C 与D为A、B用之补偿导线,M为数字电压计,计算后可得下面关系式: E = E AB (t1) - E AB (t3) 也就是说,M 所测定之电

LM321,LM308热电偶应用电路(温度检测电路)

LM321,LM308热电偶应用电路(温度检测电路) [收藏] 上传者:dolphin浏览次数:2226 分享到:0 关键词:LM321LM308热电偶应用温度检测 现在,温度传感器全部使用了铂测温电阻,但在300℃以上时,用热电偶会更方便。 在使用热电偶方面的要点是,镍铬一镍铝热电偶(JIS符号:K)、铜-康铜热电偶(JIS 符号:T)有40μV/℃感应电势,极其微小,以及需要冷接点补偿等两点。图1介绍巧妙地排除了这两点的有趣电路。 这竖际半导体公司的应用电路,前置放大器LM321A利用在补偿电压和补偿漂移之间有明确的相互关联,故意使它产生补偿电压,并取代冷接点补偿器。 图1使用军用级的LM121A和LM108A,但可以分别用LM321A和LM308A替换。 实际上组装了这个电路,并能良好地进行工作。 图1 冷接点补偿方法 图2是使用传统方法的热电偶放大器。冷接点补偿使用二极管的正向电压。这里,使用齐纳二级管。 使用的运算放大器为LM308A,所以有5μV/℃补偿漂移,若周围温度变化8℃则产生1℃的误差,好像不太合适。但是,由二极管的室温保证,只这部分好也不能综合改善。 当然,如果注意选择二级管,而且应当使用补偿漂移更好的运算放大器,图3就是这种情况的电路。

图2 标准冷接点补偿放大器 如果把LM308A和LM321A组合在一起,就可以期待得到0.3μV/℃左右的补偿漂移。若把换算成温度,即使周围温度变动20℃,误差也达不到0.2℃这样的好结果。可是为了实现这个指标,必须注意二极管和端子板的电路做成等温度。 因此,使用T热电偶和K热电偶的电路,不能希望得到图3更好的效果。 图3 用于更精密的用途 不用说,对于冷接点补偿的精度已变成关健问题,所以,一般测量精度不能提高。为此,对于高精密的用途,无论如何也不得不采用铂。

热电偶温度传感器信号调理电路设计与仿真

目录 第1章绪论 (1) 1.1 课题背景与意义 (1) 1.2 设计目的与要求 (1) 1.2.1 设计目的 (1) 1.2.2 设计要求 (1) 第2章设计原理与内容 (2) 2.1 热电偶的种类及工作原理 (3) 2.1.1热电偶的种类 (3) 2.1.2工作原理分析 (4) 2.2 设计内容 (4) 2.2.1 总体设计 (4) 2.2.2 原理图设计 (5) 2.2.3 可靠性和抗干扰设计 (7) 第3章器件选型与电路仿真 (8) 3.1 器件选型说明 (8) 3.2 电路仿真 (8) 第4章设计心得与体会 (9) 参考文献 (10) 附录1:电路原理图 (11) 附录2:PCB图 (11) 附录3:PCB效果图 (11)

第1章绪论 1.1 课题背景与意义 温度是一个基本的物理量,在工业生产和实验研究中,如机械、食品、化工、电力、石油、等领域,温度常常是表征对象和过程状态的重要参数,温度传感器是最早开发、应用最广的一类传感器。本设计中正是关于温度的测量,采用热电偶温度测量具有很多的好处,它具有结构简单,制作方便,测量范围广,精度高,惯性小和输出信号便于远传等许多优点。 同时,热电偶作为有源传感器,测量时不需外加电源,使用十分方便,所以常在日常生活中被应用,如测量炉子,管道内的气体或液体温度及固体的表面温度。热电偶作为一种温度传感器,通常和显示仪表,记录仪表和电子调节器配套使用。热电偶可直接测量各种生产中从0℃到1300℃范围的液体蒸汽和气体介质以及固体的表面温度。 1.2 设计目的与要求 1.2.1 设计目的 (1) 了解常用电子元器件基本知识(电阻、电容、电感、二极管、三极管、集成电路); (2) 了解印刷电路板的设计和制作过程; (3) 掌握电子元器件选型的基本原理和方法; (4) 了解电路焊接的基本知识和掌握电路焊接的基本技巧; (5) 掌握热电偶温度传感器信号调理电路的设计,并利用仿真软件进行电路的调试。 1.2.2 设计要求 选用热电偶温度传感器进行温度测量,要求测温范围100-300℃、精度为0.1℃。设计传感器的信号调理电路,实现以下要求: (1)将传感器输出4.096-12.209mV的信号转换为0-5V直流电压信号; (2)对信号调理电路中采用的具体元器件应有器件选型依据; (3)电路的设计应当考虑可靠性和抗干扰设计内容; (4)电路的基本工作原理应有一定说明; (5)电路应当在相应的仿真软件上进行仿真以验证电路可行性

热电偶的工作原理及结构

热电偶工作原理及结构 检修岗位 1.懂工作原理 1.1热电偶测温原理 两种电子密度不同的导体构成闭合回路,如果两接头的温度不同,回路中就有电流产生,这种现象成为热电现象,相应的电动势成为温差电势或热电势,它与温度有一定的函数关系,利用此关系就可测量温度。 这种现象包含的原理有: 帕尔帖定理----不同材料结合在一起,在其结合面产生电势。 汤姆逊定理---由温差引起的电势。 当组成热电偶的导体材料均匀时,其热电势的大小与导体本身的长度和直径大小无关,只与导体材料的成分及两端的温度有关。因此,用各种不同的导体或半导体可做成各种用途的热电偶,以满足不同温度对象测量的需要。 1.2热电偶三大定律 均质导体定律 由单一均质金属所形成 之封闭回路,沿回路上每一 点即使改变温度也不会有电 流产生。亦即,E = 0。 由2种均质金属材料A 与B所形成的热电偶回路中, 热电势E与接点处温度t1、 t2的相关函数关系,不受A 与B之中间温度t3与t4之影 响。 中间金属定律

在由A与B所形成之热电偶回路两接合点以外的任意点插入均质的第三金属C,C之两端接合点之温度t3若为相同的话,E不受C插入之影响。 在由A与B所形成之热电偶回路,将A与B的接合点打开并插入均质的金属C 时,A与C接合点的温度与打开前接合点的温度相等的话,E不受C插入的影响。 如右图所示,对由A 与B所形成之热电偶插入第3之中间金属C,形成由A与C、C与B之2组热电偶。接合点温度保持t1与t2的情况下,E AC + E CB = E AB。 中间温度定律

如右图所示任意数 的异种金属A、B、C???G 所形成的封闭回路,封闭回路之全体或是全部的接合点保持在相等的温度时,此回路的E=0。 如右图所示,A与B 所形成之热电偶,两接合点之温度为t1与t2时之E为E12,t2与t3时之E为E13的话,E12 + E23 = E13。此时,称t2为中间温度。 以中间温度t2选择如0℃这样的标准温度,求得相对0℃任意的温度t1、t2、t3???tn之热电动势,任意两点间之热电动势便可以计算求得。 如右图所示,对于使用补偿导线之热电偶回路适用以上之观念。A与B为热电偶,C 与D为A、B用之补偿导线,M为数字电压计,计算后可得下面关系式: E = E AB (t1) - E AB (t3) 也就是说,M 所测定之电

简述集成运放的热电偶测温电路

简述集成运放的热电偶测温电路 【摘要】本文介绍了热电偶基本知识,重点简述了K型热电偶测温原理以及利用集成运算放大器构成测温电路的测温实验过程。 【关键词】热电偶;测温;集成运放 1.热电偶简介 热电温度记录仪常以热电偶作为测温元件,它广泛用来测量-200℃-1300℃范围内的温度,特殊情况下,可测至2800 ℃的高温或4K 的低温。它具有结构简单,价格便宜,准确度高,测温范围广等特点。由于热电偶将温度转化成电量进行检测,使温度的测量、控制、以及对温度信号的放大变换都很方便,适用于远距离测量和自动控制。在接触式测温法中,热电温度计的应用最普遍。 K型热电偶作为一种温度传感器,K型热电偶通常和显示仪表,记录仪表和电子调节器配套使用。K型热电偶可以直接测量各种生产中从0℃到1300℃范围的液体蒸汽和气体介质以及固体的表面温度。 K型热电偶通常由感温元件、安装固定装置和接线盒等主要部件组成。它是目前用量最大的廉金属热电偶,其用量为其他热电偶的总和。K型热电偶丝直径一般为1.2~4.0mm。具有线性度好,热电动势较大,灵敏度高,稳定性和均匀性较好,抗氧化性能强,价格便宜等优点,能用于氧化性惰性气氛中广泛为用户所采用。K型热电偶不能直接在高温下用于硫,还原性或还原,氧化交替的气氛中和真空中,也不推荐用于弱氧化气氛。 2.热电偶测温原理 1823年塞贝克(Seebeck)发现,在两种不同的金属所组成的闭合回路中,当两接触处的温度不同时,回路中就要产生热电势,称为塞贝克电势。 图1 热电偶原理图 如图1所示,两种不同材料的导体A和B,一端温度为T0,另外一端温度为T(设T>T0),这时在这个回路中将产生一个与温度T 、T0以及导体材料性质相关的电势EAB(T,T0),显然可以利用这个热电效应来测量温度。在测量技术中,把由两种不同材料构成的上述热电变换元件称为热电偶。A、B导体称为热电极,两个接点,一个为热端(T),又称为测量端;另一个为冷端(T0)又称为参比端。 热电偶的热电势EAB(T,T0)是由帕尔贴电势(接触电势)和汤姆逊电势(温差电势)合成的。接触电势是指两种不同的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。而温差电势是由

相关文档
相关文档 最新文档