文档库 最新最全的文档下载
当前位置:文档库 › 气动第4章粘性流体动力学基础

气动第4章粘性流体动力学基础

气动第4章粘性流体动力学基础
气动第4章粘性流体动力学基础

流体力学龙天渝课后答案第三章一元流体动力学基础

第三章 一元流体动力学基础 1.直径为150mm 的给水管道,输水量为h kN /7.980,试求断面平均流速。 解:由流量公式vA Q ρ= 注意:()vA Q s kg h kN ρ=?→// A Q v ρ= 得:s m v /57.1= 2.断面为300mm ×400mm 的矩形风道,风量为2700m 3/h,求平均流速.如风道出口处断面收缩为150mm ×400mm,求该断面的平均流速 解:由流量公式vA Q = 得:A Q v = 由连续性方程知2211A v A v = 得:s m v /5.122= 3.水从水箱流经直径d 1=10cm,d 2=5cm,d 3=2.5cm 的管道流入大气中. 当出口流速10m/ 时,求 (1)容积流量及质量流量;(2)1d 及2d 管段的流速 解:(1)由s m A v Q /0049.0333== 质量流量s kg Q /9.4=ρ (2)由连续性方程: 33223311,A v A v A v A v == 得:s m v s m v /5.2,/625.021== 4.设计输水量为h kg /294210的给水管道,流速限制在9.0∽s m /4.1之间。试确定管道直径,根据所选直径求流速。直径应是mm 50的倍数。 解:vA Q ρ= 将9.0=v ∽s m /4.1代入得343.0=d ∽m 275.0 ∵直径是mm 50的倍数,所以取m d 3.0= 代入vA Q ρ= 得m v 18.1= 5.圆形风道,流量是10000m 3/h,,流速不超过20 m/s 。试设计直径,根据所定直径求流速。直径规定为50 mm 的倍数。 解:vA Q = 将s m v /20≤代入得:mm d 5.420≥ 取mm d 450= 代入vA Q = 得:s m v /5.17= 6.在直径为d 圆形风道断面上,用下法选定五个点,以测局部风速。设想用和管轴同心但不同半径的圆周,将全部断面分为中间是圆,其他是圆环的五个面积相等的部分。测点即位于等分此部分面积的圆周上,这样测得的流速代表相应断面的平均流速。(1)试计算各测点到管心的距离,表为直径的倍数。(2)若各点流速为54321u u u u u ,,,,,空气密度为ρ,求质量流量G 。

三流体动力学基础作业题

第三章流体动力学基础复习题 一、概念部分 1、描述流体运动的方法有和;前者以为研究对象,而后者以为研究对象。 2、流体运动的几何描述有:,,和。 3、流线有什么特点?流线、脉线和迹线有什么区别和联系? 4、流体微团基本运动形式有,和变形运动等, 而变形运动又包括和两种。 5、描述有旋运动几何要素有、和。 6、判断正误:理想流体不存在有旋运动是否正确?为什么?试举例说明。 7、表征涡流的强弱的参数有和。 8、在无涡流空间画出的封闭周线上的速度环量为。 9、简述汤姆孙定理的内容 10、速度势函数?存在的条件是什么?流函数存在的条件是什么? 11、简述流函数的物理意义的内容,并证明。 12、流网存在的条件是什么?简述流网的性质所包含的内容? 13、无环量圆柱绕流运动由流、流和流叠加而成,有环量的圆柱绕流运动是无环量的圆柱绕流运动与流叠加而成。 14、是驻点。通过驻点的流线一定是零流线,是否正确?为什么?零流线是。轮廓线是。 15、描述流体运动的微分方程有、和。 写出它们的表达式。 16、纳维-斯托克斯方程中的速度只能是平均速度,是否正确?为什么? 17、写出总水头和测压管水头的表达式,并说明各项的物理意义。 18、写出总压、全压和势压得表达式,并说明各项的物理意义。 19、简述系统和控制体的定义和特点 二、计算部分 1、已知拉格朗日描述:求速度与加速度的欧拉描述 2、试判断下列流场的描述方式:并转换成另一种描述方式 3、已知用欧拉法表示的流场速度分布规律为: 试求在t=0时刻位于点(a,b)的流体质点的运动轨迹及拉格朗日法表示的速度场 4、粘性流体在半径为R 的直圆管内做定常流动。设圆管截面(指垂直管轴的平面截面)上?????==-t t be y ae x ()()?????+-=+-=-t y t x e b u e a u 1111???+=+=t y u t x u y x

2018《粘性流体力学》复习提纲

粘流复习大纲 1 卡门涡街、阻力危机和马格努斯效应等基本概念 2 流线、迹线、时间线和烟线的概念和物理含义(坐标系的影响) 3 涡量输运方程各项的物理意义,涡动力学亥姆霍兹三定理的内容、涵义及成立的条件,涡量以及流动‘有旋’或‘无旋’的定义,能判断简单流动是否有旋 4 推导N-S方程时所用到的Stokes三假设的内容 5 一些无量纲参数的定义和物理意义(Re, Ec, Pr),及其与速度边界层和温度边界层特性之间的内在关联,壁面恢复温度的概念 6 库特剪切流、突然起动平板流解的主要结论,库特剪切流的速度分布、温度分布,能够运用能量方程来分析库特剪切流的能量平衡 7 边界层的各种特征厚度及形状因子,边界层动量积分方程和计算,基于控制体积分方法分析边界层的流动 8 普朗特边界层理论,边界层微分方程的导出及主要结论,相似解的概念,布拉休斯解的主要结论 9 湍流的基本概念及主要特征(四个),湍流脉动与分子随机运动之间的差别 10 层流稳定性的基本思想,瑞利定理和费约托夫定理,中性稳定线,平板边界层稳定性研究得到的主要结果 11 猝发现象,能叙述边界层转捩的主要过程(典型流动现象) 12 影响转捩过程的主要因素以及控制边界层转捩的主要方法、判别转捩的试验方法 13 湍流的两种统计理论,能谱分析方法的主要结论,半经验理论中流场参数平均的三种方法 14 耗散涡、含能涡的尺度、特征与主要作用,及其特征尺度的描述参数 15 均匀剪切湍流、均匀湍流、各向同性湍流和局部平衡湍流的概念、特征和典型示例 16 不可压下的时均连续方程、动量方程,以及由此而来的方程组封闭性问题,雷诺应力的概念和物理意义 17时均动能方程、湍动能方程中各项的物理意义和特点,及能量平衡 18 目前,湍流的数值模拟的3个层次及各自的特点 19 湍流模型建立的基本法则和各项模化的一般方法 20 湍流模型的分类,涡粘模型的基本假设(布希内斯克的涡粘假定),普朗特混合长度理论,科尔莫果洛夫-普朗特理论,能量方程模型、k-e模型、k-w模型的湍流粘性系数的求法 21 湍流模型近壁区处理的几种方法及对计算网格的要求 22 ASM模型的优点和得出的基本假设 23湍流边界层的宏观结构和速度分布特性 湍流边界层内的湍动特性及能量平衡(包括时均动能和湍动能)

第三章 流体动力学基础

第三章 流体动力学基础 习 题 一、单选题 1、在稳定流动中,在任一点处速度矢量是恒定不变的,那么流体质点是 ( ) A .加速运动 B .减速运动 C .匀速运动 D .不能确定 2、血管中血液流动的流量受血管内径影响很大。如果血管内径减少一半,其血液的流量将变为原来的( )倍。 A .21 B .41 C .81 D .161 3、人在静息状态时,整个心动周期内主动脉血流平均速度为0.2 m/s ,其内径d =2×10-2 m ,已知血液的粘度η =×10-3 Pa·S,密度ρ=×103 kg/m 3 ,则此时主动脉中血液的流动形态处于( )状态。 A .层流 B .湍流 C .层流或湍流 D .无法确定 4、正常情况下,人的小动脉半径约为3mm ,血液的平均速度为20cm/s ,若小动脉某部分被一硬斑阻塞使之变窄,半径变为2mm ,则此段的平均流速为( )m/s 。 A .30 B .40 C .45 D .60 5、有水在同一水平管道中流动,已知A 处的横截面积为S A =10cm 2 ,B 处的横截面积为 S B =5cm 2,A 、B 两点压强差为1500Pa ,则A 处的流速为( )。 A .1m/s B .2m/s C .3 m/s D .4 m/s 6、有水在一水平管道中流动,已知A 处的横截面积为S A =10cm 2 ,B 处的横截面积为S B =5cm 2 ,A 、B 两点压强之差为1500Pa ,则管道中的体积流量为( )。 A .1×10-3 m 3 /s B .2×10-3 m 3 /s C .1×10-4 m 3 /s D .2×10-4 m 3 /s 7、通常情况下,人的小动脉内径约为6mm ,血流的平均流速为20cm/s ,若小动脉某处被一硬斑阻塞而变窄,测得此处血流的平均流速为80cm/s ,则小动脉此处的内径应为( )mm 。 A .4 B .3 C .2 D .1 8、正常情况下,人的血液密度为×103 kg/m 3 ,血液在内径为6mm 的小动脉中流动的平均速度为20cm/s ,若小动脉某处被一硬斑阻塞而变窄,此处内径为4mm ,则小动脉宽处与窄处压强之差( )Pa 。 二、判断题

流体力学龙天渝课后答案第三章一元流体动力学基础(供参考)

第三章 一元流体动力学基础 1.直径为150mm 的给水管道,输水量为h kN /7.980,试求断面平均流速。 解:由流量公式vA Q ρ= 注意:()vA Q s kg h kN ρ=?→// A Q v ρ= 得:s m v /57.1= 2.断面为300mm ×400mm 的矩形风道,风量为2700m 3/h,求平均流速.如风道出口处断面收缩为150mm ×400mm,求该断面的平均流速 解:由流量公式vA Q = 得:A Q v = 由连续性方程知2211A v A v = 得:s m v /5.122= 3.水从水箱流经直径d 1=10cm,d 2=5cm,d 3=2.5cm 的管道流入大气中. 当出口流速10m/ 时,求 (1)容积流量及质量流量;(2)1d 及2d 管段的流速 解:(1)由s m A v Q /0049.0333== 质量流量s kg Q /9.4=ρ (2)由连续性方程: 33223311,A v A v A v A v == 得:s m v s m v /5.2,/625.021== 4.设计输水量为h kg /294210的给水管道,流速限制在9.0∽s m /4.1之间。试确定管道直径,根据所选直径求流速。直径应是mm 50的倍数。 解:vA Q ρ= 将9.0=v ∽s m /4.1代入得343.0=d ∽m 275.0 ∵直径是mm 50的倍数,所以取m d 3.0= 代入vA Q ρ= 得m v 18.1= 5.圆形风道,流量是10000m 3/h,,流速不超过20 m/s 。试设计直径,根据所定直径求流速。直径规定为50 mm 的倍数。 解:vA Q = 将s m v /20≤代入得:mm d 5.420≥ 取mm d 450= 代入vA Q = 得:s m v /5.17= 6.在直径为d 圆形风道断面上,用下法选定五个点,以测局部风速。设想用和管轴同心但不同半径的圆周,将全部断面分为中间是圆,其他是圆环的五个面积相等的部分。测点即位于等分此部分面积的圆周上,这样测得的流速代表相应断面的平均流速。(1)试计算各测点到管心的距离,表为直径的倍数。(2)若各点流速为 54321u u u u u ,,,,,空气密度为ρ,求质量流量G 。 解:(1)由题设得测点到管心的距离依次为1r ……5r

第三章流体动力学基础

第三章流体动力学基础 描述流体运动的两种方法: 拉格朗日法和欧拉法。除个别质点的运动问题外,都应用欧拉法。 拉格朗日法:是以个别质点为研究对象,观察该质点在空间的运动,然后将每个质点的运动情况汇总,得到整个流体的运动。质点的运动参数是起始坐标和时间变量t的连续函数。 欧拉法:是以整个流动空间为研究对象,观察不同时刻各空间点上流体质点的运动,然后将每个时刻的情况汇总起来,描述整个运动。空间点的物理量是空间坐标)和时间变量t的连续函数。 恒定流:各空间点上的运动参数都不随时间变化的流动。 非恒定流:各空间点上的运动参数随时间变化的流动。 一(二、三)元流:流体流动时各空间点上的运动参数是一(二、三)个空间坐标和时间变量的连续函数。 均匀流:流线是平行直线的流动。 非均匀流:流线不是平行直线的流动。 流线:表示某时刻流动方向的曲线,曲线上各质点的速度矢量都与该曲线相切。迹线:流体质点在一段时间内的运动轨迹。 流管:某时刻,在流场内任意做一封闭曲线,过曲线上各点做流线,所构成的管状曲面。 流束:充满流体的流管。 过流断面:与所有流线正交的横断面。 元流:过流断面无限小的流束,断面上各点的运动参数均相同。

总流:过流断面为有限大小的流束,断面上各点的运动参数不相同。流量:单位时间内通过某一过流断面的流体量。以体积计为体积流量,简称流量;以质量计为质量流量;以重量计为重量流量 非均匀渐变流:在非均匀流中流线近似于平行直线的流动。 水头线:总流或元流沿程能量变化的几何图示。 水力坡度:单位流程内的水头损失。 (简答)流线有哪些主要性质?流线和迹线有无重合的情况?答:流线性质:(1)在恒定流中,流线的形状和位置不随时间变化;(2)在同一时刻,一般情况下流线不能相交或转折。在恒定流中流线与迹线重合,非恒定流中一般情况下两者不重合,但当速度方向不随时间变化只是速度大小随时间变化时,两者仍重合。 试述流动分类:(1)根据运动参数是否随时间变化,分为恒定流和非恒定流;(2)根据运动参数与空间坐标的关系,分为一元流、二元流和三元流;(3)根据流线是否平行,分为均匀流和非均匀流。 不可压缩流体的连续性微分方程:不可压缩流体运动必须满足该方程。

流体动力学基础

3 流体运动学基础 流体运动学主要讨论流体的运动参数(例如速度和加速度)和运动描述等问题。运动是物体的存在形式,是物体的本质特征。流体的运动无时不在,百川归海、风起云涌是自然界流体运动的壮丽景色。而在工程实际中,很多领域都需要对流体运动规律进行分析和研究。因此,相对于流体静力学,流体运动学的研究具有更加深刻和广泛的意义。 3.1 描述流体运动的二种方法 为研究流体运动,首先需要建立描述流体运动的方法。从理论上说,有二种可行的方法:拉格朗日(Lagrange)方法和欧拉(Euler)方法。流体运动的各物理量如位移、速度、加速度等等称为流体的流动参数。对流体运动的描述就是要建立流动参数的数学模型,这个数学模型能反映流动参数随时间和空间的变化情况。拉格朗日方法是一种“质点跟踪”方法,即通过描述各质点的流动参数来描述整个流体的流动情况。欧拉方法则是一种“观察点”方法,通过分布于各处的观察点,记录流体质点通过这些观察点时的流动参数,同样可以描述整个流体的流动情况。下面分别介绍这二种方法。 3.1.1拉格朗日(Lagrange)方法 这是一种基于流体质点的描述方法。通过描述各质点的流动参数变化规律,来确定整个流体的变化规律。无数的质点运动组成流体运动,那么如何区分每个质点呢?区分各质点方法是根据它们的初始位置来判别。这是因为在初始时刻(t =t 0),每个质点所占的初始位置(a,b,c )各不相同,所以可以据此区别。这就像长跑运动员一样,在比赛前给他们编上号码,在任何时刻就不至于混淆身份了。当经过△t 时间后,t = t 0+△t ,初始位置为a,b,c )的某质点到达了新的位置(x ,y ,z ),因此,拉格朗日方法需要跟踪质点的运动,以确定该质点的流动参数。拉格朗日方法在直角坐标系中位移的数学描述是: ?? ? ?? ===),,,(),,,(),,,(t c b a z z t c b a y y t c b a x x (3-1) 式中,初始坐标(a,b,c )与时间变量t 无关,(a,b,c,t )称为拉格朗日变数。类似地,对任一 物理量N ,都可以描述为: ),,,(t c b a N N = (3-2) 显然,对于流体使用拉格朗日方法困难较大,不太合适。 3.1.2欧拉(Euler)方法 欧拉方法描述适应流体的运动特点,在流体力学上获得广泛的应用。欧拉方法利用了流场的概念。所谓流场,是指流动的空间充满了连续的流体质点,而这些质点的某些物理量的分布在整个流动空间,形成物理量的场,如速度场、加速度场、温度场等,这些场统称为流场。通过在流场中不同的空间位置(x ,y ,z )设立许多“观察点”,对流体的流动情况进行观察,来确定经过该观察点时流体质点的流动参数,得到物理量随时间的函数(x ,y ,z,t ),(x ,y ,z,t )称为欧拉变数。欧拉方法在直角坐标系中速度的数学描述是:

5第五章-实际流体动力学基础

第五章 实际流体动力学基础 5—1设在流场中的速度分布为u x =2ax ,u y =-2ay ,a 为实数,且a >0。试求切应力τxy 、τyx 和附加压应力p ′x 、p ′y 以及压应力p x 、p y 。 解:0y x xy yx u u x y ττμ??? ?==+= ????? 24x x u p a x μμ?'=-=-?,24y y u p a y μ μ?'=-=?, 4x x p p p p a μ'=+=-,4y y p p p p a μ'=+=+ 5-2 设例5-1中的下平板固定不动,上平板以速度 v 沿x 轴方向作等速运动(如图所示),由于上平板运动而引起的这种流动,称柯埃梯(Couette )流动。试求在这种流动情况下,两平板间的速度分布。(请将 d 0d p x =时的这一流动与在第一章中讨论流体粘性时的流动相比较) 解:将坐标系ox 轴移至下平板,则边界条件为 y =0,0X u u ==;y h =,u v =。 由例5-1中的(11)式可得 2d (1)2d h y p y y u v h x h h μ=- - (1) 当d 0d p x =时,y u v h =,速度u为直线分布,这种特殊情况的流动称简单柯埃梯流动或简单剪切流动。它只是由于平板运动,由于流体的粘滞性带动流体发生的流动。 当 d 0d p x ≠时,即为一般的柯埃梯流动,它是由简单柯埃梯流动和泊萧叶流动叠加而成,速度分布为 (1)u y y y p v h h h =-- (2) 式中2d ()2d h p p v x μ= - (3) 当p >0时,沿着流动方向压强减小,速度在整个断面上的分布均为正值;当p <0时,沿流动方向压强增加,则可能在静止壁面附近产生倒流,这主要发生p <-1的情况. 5-3 设明渠二维均匀(层流)流动,如图所示。若忽略空气阻力,试用纳维—斯托克斯方程和连续性方程,证明过流断面上的速度分布为2sin (2)2 x g u zh z ,单宽流量 3 sin 3 gh q 。

流体力学讲义 第三章 流体动力学基础.

第三章流体动力学基础 本章是流体动力学的基础。主要阐述了流体运动的两种描述方法,运动流体的基本类别与基本概念,用欧拉法解决运动流体的连续性微分方程、欧拉运动微分方程及N-S方程。此外,还阐述了无旋流与有旋流的判别,引出了流函数与势函数的概念,并且说明利用流网与势流叠加原理可解决流体的诸多复杂问题。 第一节流体流动的基本概念 1.流线 (1)流线的定义 流线(stream line)是表示某一瞬时流体各点流动趋势的曲线,曲线上任一点的切线方向与该点的流速方向重合。图3-1为流线谱中显示的流线形状。 (2)流线的作法: 在流场中任取一点(如图3-2),绘出某时刻通过该点的流体质点的流速矢量u1,再画出距1点很近的2点在同一时刻通过该处的流体质点的流速矢量u2…,如此继续下去,得一折线1234 …,若各点无限接近,其极限就是某时刻的流线。 流线是欧拉法分析流动的重要概念。 图3-1 图3-2 (3)流线的性质(图3-3) a.同一时刻的不同流线,不能相交。图3-3 因为根据流线定义,在交点的液体质点的流速向量应同时与这两条流线相切,即一个质点不可能同时有两个速度向量。 b.流线不能是折线,而是一条光滑的曲线。 因为流体是连续介质,各运动要素是空间的连续函数。 c.流线簇的疏密反映了速度的大小(流线密集的地方流速大,稀疏的地方流速小)。 因为对不可压缩流体,元流的流速与其过水断面面积成反比。 (4)流线的方程(图3-4) 根据流线的定义,可以求得流线的微分方程:图3-4

设d s为流线上A处的一微元弧长: u为流体质点在A点的流速: 因为流速向量与流线相切,即没有垂直于流线的流速分量,u和d s重合。 所以即 展开后得到:——流线方程(3-1) (或用它们余弦相等推得) 2.迹线 (1)迹线的定义 迹线(path line)某一质点在某一时段内的运动轨迹线。 图3-5中烟火的轨迹为迹线。 (2)迹线的微分方程 (3-2) 式中,u x,u y,u z均为时空t,x,y,z的函数,且t是自变量。图3-5 注意:流线和迹线微分方程的异同点。 ——流线方程 3.色线(colouring line) 又称脉线,是源于一点的很多流体质点在同一瞬时的连线。 例如:为显示流动在同一点投放示踪染色体的线,以及香烟线都是色线。图3-6 考考你:在恒定流中,流线、迹线与色线重合。 流线、迹线、色线的比较: 概念名 流线是表示流体流动趋势的一条曲线,在同一瞬时线上各质点的速度向量都与其相切,它描述了流场中不同质点在同一时刻的运动情况。

流体力学考试复习资料

一、填 空 题 1.流体力学中三个主要力学模型是(1)连续介质模型(2)不可压缩流体力学模型(3)无粘性流体力学模型。 2.在现实生活中可视为牛顿流体的有水 和空气 等。 3.流体静压力和流体静压强都是压力的一种量度。它们的区别在于:前者是作用在某一面积上的总压力;而后者是作用在某一面积上的平均压强或某一点的压强。 4.均匀流过流断面上压强分布服从于水静力学规律。 5.和液体相比,固体存在着抗拉、抗压和抗切三方面的能力。 6.空气在温度为290K ,压强为760mmHg 时的密度和容重分别为 1.2a ρ= kg/m 3 和 11.77a γ=N/m 3 。 7.流体受压,体积缩小,密度增大 的性质,称为流体的压缩性 ;流体受热,体积膨胀,密度减少 的性质,称为流体的热胀性 。 8.压缩系数β的倒数称为流体的弹性模量 ,以E 来表示 9.1工程大气压等于98.07千帕,等于10m 水柱高,等于735.6毫米汞柱高。 10.静止流体任一边界上压强的变化,将等值地传到其他各点(只要静止不被破坏),这就是水静压强等值传递的帕斯卡定律。 11.流体静压强的方向必然是沿着作用面的内法线方向。 12.液体静压强分布规律只适用于静止、同种、连续液体。 13.静止非均质流体的水平面是等压面,等密面和等温面。 14.测压管是一根玻璃直管或U 形管,一端连接在需要测定的容器孔口上,另一端开口,直接和大气相通。 15.在微压计测量气体压强时,其倾角为?=30α,测得20l =cm 则h=10cm 。 16.作用于曲面上的水静压力P 的铅直分力z P 等于其压力体内的水重。 17.通过描述物理量在空间的分布来研究流体运动的方法称为欧拉法。 18. 流线不能相交(驻点处除外),也不能是折线,因为流场内任一固定点在同一瞬间只能有一个速度向量,流线只能是一条光滑的曲线或直线。 19.静压、动压和位压之和以z p 表示,称为总压。 20.液体质点的运动是极不规则的,各部分流体相互剧烈掺混,这种流动状态称为紊流。 21.由紊流转变为层流的临界流速k v 小于 由层流转变为紊流的临界流速k v ',其中k v '称为上临界速度,k v 称为下临界速度。

流体力学-第3章流体运动学

第3章流体运动学 选择题: 【3.1】 用欧拉法表示流体质点的加速度a 等于:(a )22 d d t r ;(b )v t ??;(c )()v v ??; (d )()t ?+???v v v 。 解:用欧拉法表示的流体质点的加速度为 () d d t t ?= =+??v v a v v (d ) 【3.2】 恒定流是:(a )流动随时间按一定规律变化;( b )各空间点上的运动要 素不随时间变化;(c )各过流断面的速度分布相同;(d )迁移加速度为零。 解:恒定流是指用欧拉法来观察流体的运动,在任何固定的空间点若 流体质点的所有物理量皆不随时间而变化的流动. (b ) 【3.3】 一元流动限于:(a )流线是直线;(b )速度分布按直线变化;(c )运 动参数是一个空间坐标和时间变量的函数;(d )运动参数不随时间变化的流动。 解:一维流动指流动参数可简化成一个空间坐标的函数。 (c ) 【3.4】 均匀流是:(a )当地加速度为零;(b )迁移加速度为零;(c )向心加 速度为零;(d )合加速度为零。 解:按欧拉法流体质点的加速度由当地加速度和变位加速度(亦称迁移加速度)这两部分组成,若变位加速度等于零,称为均匀流动 (b ) 【3.5】 无旋运动限于:(a )流线是直线的流动;(b )迹线是直线的流动;(c ) 微团无旋转的流动;(d )恒定流动。 解:无旋运动也称势流,是指流体微团作无旋转的流动,或旋度等于零的流动。 (d ) 【3.6】 变直径管,直径1320mm d =,2160mm d =,流速1 1.5m/s V =。2V 为:(a ) 3m/s ;(b )4m/s ;(c )6m/s ;(d )9m/s 。 解:按连续性方程, 22 1 12 2 4 4 V d V d π π =,故

流体动力学基础word版

第3章 流体动力学基础 一、单项选择题 1、当液体为恒定流时,必有( )等于零。 A .当地加速度 B.迁移加速度 C.向心加速度 D.合加速度 2、均匀流过流断面上各点的( )等于常数。 A.p B.z+g p ρ C. g p ρ+g u 22 D. z+g p ρ+g u 22 3、过流断面是指与( )的横断面。 A .迹线正交 B.流线正交 C.流线斜交 D.迹线斜交 4、已知不可压缩流体的流速场为Ux=f(y,z),Uy=f(x),Uz=0,则该流动为( )。 A.一元流 B.二元流 C.三元流 D.均匀流 5、用欧拉法研究流体运动时,流体质点的加速度a=( ). A. 22dt r d B.t u ?? C.(u ·▽)u D. t u ??+(u ·▽)u 6、在恒定流中,流线与迹线在几何上( )。 A.相交 B.正交 C.平行 D.重合 7、控制体是指相对于某个坐标系来说,( ). A .由确定的流体质点所组成的流体团 B.有流体流过的固定不变的任何体积 C.其形状,位置随时间变化的任何体积 D.其形状不变而位置随时间变化的任何体积. 8、渐变流过流断面近似为( ). A.抛物面 B.双曲面 C.对数曲面 D.平面 9、在图3.1所示的等径长直管流中,M-M 为过流断面,N-N 为水平面,则有( ). A.p1=p2 B.p3=p4 C.z1+g p ρ1 =z2+g p ρ2 D.z3+g p ρ3 =z4+g p ρ4 10、已知突然扩大管道突扩前后管段的管径之比 21d d =0.5, 则突扩前后断面平均流速之比v1:v2=( ). A. 4 B.2 C.1 D.0.5 11、根据图3.2 所示的三通管流,可得( )。 A .qv 1+qv 2=qv 3 B.qv 1-qv 2=qv 3 C.qv 1=qv 2+qv 3 D.qv 1+qv 2+qv 3=0 12、根据图3.3 所示的三通管流,可得( )。 A .qv 1+qv 2=qv 3 B.qv 1-qv 2=qv 3 C.qv 1=qv 2+qv 3 D.qv 1+qv 2+qv 3=0 13、测压管水头坡度Jp=( )。

流体动力学基础[1]

流体力学基础 2008.9 (授课老师:河口海岸国家重点实验室丁平兴教授36学时,2学分) 一、流体力学的基本概念 1.1流体力学的研究对象 1.2流体力学的研究方法 1.3流体力学的应用 1.4流体的宏观性质 1.5如何学好这门课程 二、流体运动学 2.1 描写流体运动的两种方法 1.拉格朗日方法 2.欧拉方法 3.拉格朗日变数与欧拉变数之间的相互转换 4.两种描述方法的比较 2.2 轨迹与流线 1.轨迹 2.流线 3.轨迹与流线的联系与区别 2.3 连续方程 1.系统和控制体 2.用欧拉观点推导连续方程 3.用通量法推导连续方程 2.4 流体元(微团)的速度分解 2.5 有旋运动学 2.6 无旋运动及速度势 1.速度势 2.单连通与多连通 3.单连通中的速度势 4.不可压流体的无旋运动

三、理想流体运动学 3. 1 压强和压强梯度力 1.作用于流体上的力 2.压强 3.表面力的合力:压强梯度力3.2 理想流体运动方程式 1.欧拉型运动方程 2.状态方程 3.拉格朗日型运动方程 3.3 边界方程 1.初始条件 2.边界条件 3. 4 运动方程的积分定理 1.动量定理 2.能量定理 3.伯努利定理 4.拉格朗日积分 四、平面问题 4.1 流函数的定义及其性质 1.流函数的定义 2.流函数的一些性质 4.2复势与复速度 1.复势与复速度的定义 2.复势的几个性质 4.3 基本流动及组合原理 1.基本流动 2.基本流动的组合 4.4 平面壁镜像与圆定理 1.平面壁镜像 2.圆柱面的镜像-圆定理

五、粘性流体动力学 5.1 应力分析 1.应力 2.应力性质 5.2 Naiver-Stokes 方程 1.粘性流体的运动方程 2.直角坐标系中的N-S方程5.3 N-S方程的几个解析解 5.4 柯氏力场中的N-S方程 六、相似理论与量纲分析 6.1 相似理论 1.研究意义 2.相似律 6.2 量纲分析 1.基本概念 2.基本方法 七、边界层理论简介 7.1 基本概念 1.边界层概念 2.边界层特征 7.2 普朗特边界层方程 八、湍流运动简介 8.1 平均运动理论 1.雷诺实验 2.湍流的随机性 3.湍流的平均方法 4.湍流的基本方程-雷诺方程8.2普朗特混合长度理论

工程流体力学课后答案 第三章 流体动力学基础

第3章流体动力学基础 3.1 解: z u u y u u x u u t u a x z x y x x x x? ? + ? ? + ? ? + ? ? = ()() 34 2 2 4 6 2 2 2 2 2 2 2 2 2 = + + + + = + - + + + + = + + = z y x t z y t y x t u u y x z u u y u u x u u t u a y z y y y x y y? ? + ? ? + ? ? + ? ? = ()() 3 2 1 1 1 = - + + = - + + + - - = + - = z y x z x t z y t u u x y z u u y u u x u u t u a z z z y z x z z? ? + ? ? + ? ? + ? ? = ()() 11 2 1 2 2 2 1 1 = + + + + = - + - + + + = - + = z y x t z y t y x t u u z x 2 2 2 286 . 35s m a a a a z y x = + + = 3.2 解: (1)32 35 6 2 3= - = + =xy xy u xy y u a y x x 2 2 2 5 2 7310 . 33 3 32 3 1 s m a a a y u y a y x y y = + = = = - = (2)二元流动 (3)恒定流 (4)非均匀流 3.3 解: bh u y h u bdy h y u udA Q h h A max 7 8 7 1 max 7 1 max8 7 8 7 = = ? ? ? ? ? = =? ?

西南交大流体力学复习资料

一、填 空 题 1.流体力学中三个主要力学模型是(1)连续介质模型(2)不可压缩流体力学模型(3)无粘性流体力学模型。 2.在现实生活中可视为牛顿流体的有水 和空气 等。 3.流体静压力和流体静压强都是压力的一种量度。它们的区别在于:前者是作用在某一面积上的总压力;而后者是作用在某一面积上的平均压强或某一点的压强。 4.均匀流过流断面上压强分布服从于水静力学规律。 5.和液体相比,固体存在着抗拉、抗压和抗切三方面的能力。 6.空气在温度为290K ,压强为760mmHg 时的密度和容重分别为 1.2a ρ= kg/m 3和11.77a γ=N/m 3。 7.流体受压,体积缩小,密度增大 的性质,称为流体的压缩性 ;流体受热,体积膨胀,密度减少 的性质,称为流体的热胀性 。 8.压缩系数β的倒数称为流体的弹性模量 ,以E 来表示 9.1工程大气压等于98.07千帕,等于10m 水柱高,等于735.6毫米汞柱高。 10.静止流体任一边界上压强的变化,将等值地传到其他各点(只要静止不被破坏),这就是水静压强等值传递的帕斯卡定律。 11.流体静压强的方向必然是沿着作用面的内法线方向。 12.液体静压强分布规律只适用于静止、同种、连续液体。 13.静止非均质流体的水平面是等压面,等密面和等温面。 14.测压管是一根玻璃直管或U 形管,一端连接在需要测定的容器孔口上,另一端开口,直接和大气相通。 15.在微压计测量气体压强时,其倾角为?=30α,测得20l =cm 则h=10cm 。 16.作用于曲面上的水静压力P 的铅直分力z P 等于其压力体内的水重。 17.通过描述物理量在空间的分布来研究流体运动的方法称为欧拉法。 18. 流线不能相交(驻点处除外),也不能是折线,因为流场内任一固定点在同一瞬间只能有一个速度向量,流线只能是一条光滑的曲线或直线。 19.静压、动压和位压之和以z p 表示,称为总压。 20.液体质点的运动是极不规则的,各部分流体相互剧烈掺混,这种流动状态称为紊流。 21.由紊流转变为层流的临界流速k v 小于 由层流转变为紊流的临界流速k v ',其中k v '称为上临界速度,k v 称为下临界速度。

《粘性流体力学》复习提纲

粘流复习大纲 1 涡量以及流动‘有旋’或‘无旋’的定义,能判断简单流动的有旋、无旋性 涡量w=rotu=0无旋, 反之为有旋。 2 推导N-S 方程时 所用到的Stokes 三假设的内容 ppt3,p.20 a) 流体是连续的,它的应力矩阵与变形率矩阵成线性关系,与流体的平动和转动无关。 b) 流体是各向同性的,其应力与变形率的关系与坐标系的选择和位置无关。 c) 当流体静止时,变形率为零,流体中的应力为流体静压强。 在静止状态下,流体的应力状态为 根据第一条假定,并受第三条假定的启发,可将应力矩阵与变形率矩阵写成如下线性关系式 参照牛顿内摩擦定理,系数a 只取决于流体的物理性质,可取 由于系数b 与坐标系的转动无关,因此可以推断,要保持应力与变形率成线性关系,系数b 只能由应力矩阵与变形率矩阵中的那些线性不变量构成。即令 式中, 为待定系数。将a 、b 代入 取等式两边矩阵主对角线上的三个分量之和,可得出 在静止状态下,速度的散度为零,且有 , 由于b1和b2均为常数(与p0无关),且要求p0在静止状态的任何情况均成立。则 , , 如果令 则本构关系为 上式即为广义牛顿内摩擦定理(牛顿流体的本构方程)。 3 一些无量纲参数的定义和物理意义(Re, Ec, Pr, St 等等) 雷诺数:流体流动的惯性力与粘性力之比. Re=ρνι/μ 埃克特数:表示在热传递中流体压缩性的影响,也就是推进功与对流热之比. p103 Ec=V 0^2/C p0*(T w -T 0)=(ρ0V 0^3/L)/ρ0V 0/LC p0(T w -T 0)。 [ ][]{} [] I b V b b zz yy xx 321)(2+??++++= τττεμτ [][][] I b a +=ετ 0p zz yy xx -===τττ[][] I p p 001 0 00 1 00 0 1 -=??? ? ? ?????-=τμ 2=a 321321)()()(b V b b b b b b b zz yy xx zz yy xx zz yy xx +??+++=++++++= τττεεετττ321b b b 3 2133)(32)( b V b b V zz yy xx zz yy xx +??++++??=++ τττμτττ3 213)32())(31(b V b b zz yy xx +??+=++- μτττ0 0 ()3xx yy zz V p τττ??=++=-013 (13)p b b --=3 1 b 013= =b μ3 2 2-=b 3 zz yy xx p τττ++-=[][][] I V p ?? ? ?? ??+-= μεμτ322

第三章水动力学基础

第三章水动力学基础 1、渐变流与急变流均属非均匀流。( ) 2、急变流不可能是恒定流。( ) 3、总水头线沿流向可以上升,也可以下降。( ) 4、水力坡度就是单位长度流程上的水头损失。( ) 5、扩散管道中的水流一定是非恒定流。( ) 6、恒定流一定是均匀流,非恒定流一定是非均匀流。( ) 7、均匀流流场内的压强分布规律与静水压强分布规律相同。( ) 8、测管水头线沿程可以上升、可以下降也可不变。( ) 9、总流连续方程v1A1 = v2A2对恒定流和非恒定流均适用。( ) 10、渐变流过水断面上动水压强随水深的变化呈线性关系。( ) 11、水流总是从单位机械能大的断面流向单位机械能小的断面。( ) 12、恒定流中总水头线总是沿流程下降的,测压管水头线沿流程则可以上升、下降或水平。( ) 13、液流流线和迹线总是重合的。( ) 14、用毕托管测得的点流速是时均流速。( ) 15、测压管水头线可高于总水头线。( ) 16、管轴高程沿流向增大的等直径管道中的有压管流,其管轴压强沿流向增大。( ) 17、理想液体动中,任意点处各个方向的动水压强相等。( ) 18、恒定总流的能量方程z1 + p1/g + v12 /2g = z2 +p2/g + v22/2g +h w1- 2 ,式中各项代表( ) (1) 单位体积液体所具有的能量;(2) 单位质量液体所具有的能量; (3) 单位重量液体所具有的能量;(4) 以上答案都不对。 19、图示抽水机吸水管断面A─A动水压强随抽水机安装高度h的增大而( ) (3) 不变(4) 不定 h1与h2的关系为( ) (1) h>h(2) h<h(3) h1 = h2(4) 无法确定 ( ) (1) 测压管水头线可以上升也可以下降(2) 测压管水头线总是与总水头线相平行 (3) 测压管水头线沿程永远不会上升(4) 测压管水头线不可能低于管轴线 22、图示水流通过渐缩管流出,若容器水位保持不变,则管内水流属( ) (3) 恒定非均匀流(4) 非恒定非均匀流 ( ) (1) 逐渐升高(2) 逐渐降低(3) 与管轴线平行(4) 无法确定 24、均匀流的总水头线与测压管水头线的关系是( ) (1) 互相平行的直线;(2) 互相平行的曲线;(3) 互不平行的直线;(4) 互不平行的曲线。

相关文档
相关文档 最新文档