文档库 最新最全的文档下载
当前位置:文档库 › 高中函数解题技巧方法总结(高考)

高中函数解题技巧方法总结(高考)

高中函数解题技巧方法总结(高考)
高中函数解题技巧方法总结(高考)

高中数学函数知识点总结

9. 求函数的定义域有哪些常见类型?

()()

例:函数的定义域是

y x x x =

--432

lg ()()()(答:,,,)022334

函数定义域求法:

● 分式中的分母不为零; ● 偶次方根下的数(或式)大于或等于零; ● 指数式的底数大于零且不等于一; 对数式的底数大于零且不等于一,真数大于零。 ● 正切函数x y tan = ???

??∈+≠∈Z ππk k x R x ,2,且

● 余切函数x y cot = ()Z π∈≠∈k k x R x ,,且 ●

反三角函数的定义域

函数y =arcsinx 的定义域是 [-1, 1] ,值域是

,函数y =arccosx 的定义域是 [-1, 1] ,

值域是 [0, π] ,函数y =arctgx 的定义域是 R ,值域是.,函数y =arcctgx 的定义域是 R ,

值域是 (0, π) .

当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。 10. 如何求复合函数的定义域?

复合函数定义域的求法:已知)(x f y =的定义域为[]n m ,,求[])(x g f y =的定义域,可由n x g m ≤≤)(解出x 的范围,即为[])(x g f y =的定义域。

11、函数值域的求法

1、直接观察法

对于一些比较简单的函数,其值域可通过观察得到。

例 求函数y=x

1

的值域

2、配方法

配方法是求二次函数值域最基本的方法之一。

例、求函数y=2x -2x+5,x ∈[-1,2]的值域。

3、判别式法

对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进行化简,不必拘泥在判别式上面

下面,我把这一类型的详细写出来,希望大家能够看懂

.1

12..2

22

22222

b

a y 型:直接用不等式性质k+x bx

b. y 型,先化简,再用均值不等式

x mx n

x 1 例:y 1+x x+x

x m x n c y 型 通常用判别式

x mx n x mx n

d. y 型

x n

法一:用判别式 法二:用换元法,把分母替换掉

x x 1(x+1)(x+1)+1 1

例:y (x+1)1211

x 1x 1x 1

=

=++==≤

''

++=++++=+++-===+-≥-=+++

13. 反函数存在的条件是什么?

求反函数的步骤掌握了吗?

(①反解x ;②互换x 、y ;③注明定义域)

()

()

如:求函数的反函数f x x

x x

x ()=+≥-

()()

(答:)f x x x x x -=->--

110() 14. 反函数的性质有哪些? 反函数性质: 1、 反函数的定义域是原函数的值域 (可扩展为反函数中的x 对应原函数中的y ) 2、 反函数的值域是原函数的定义域(可扩展为反函数中的y 对应原函数中的x ) 3、 反函数的图像和原函数关于直线=x 对称(难怪点(x,y )和点(y ,x )关于直线y=x 对称 ①互为反函数的图象关于直线y =x 对称; ②保存了原来函数的单调性、奇函数性;

③设的定义域为,值域为,,,则y f(x)A C a A b C f(a)=b f 1=∈∈?=-()b a [][]

∴====---f f a f b a f f b f a b 111()()()(),

15 . 如何用定义证明函数的单调性? (取值、作差、判正负) 判断函数单调性的方法有三种: (1)定义法:

根据定义,设任意得x 1,x 2,找出f(x 1),f(x 2)之间的大小关系

可以变形为求

1212

()()f x f x x x --的正负号或者12()

()f x f x 与1的关系

(2)参照图象:

①若函数f(x)的图象关于点(a ,b)对称,函数f(x)在关于点(a ,0)的对称区间具有相同的单调性; (特例:奇函数)

②若函数f(x)的图象关于直线x =a 对称,则函数f(x)在关于点(a ,0)的对称区间里具有相反的单调性。(特例:偶函数)

(3)利用单调函数的性质:

①函数f(x)与f(x)+c(c 是常数)是同向变化的

②函数f(x)与cf(x)(c 是常数),当c >0时,它们是同向变化的;当c <0时,它们是反向变化的。 ③如果函数f1(x),f2(x)同向变化,则函数f1(x)+f2(x)和它们同向变化;(函数相加)

④如果正值函数f1(x),f2(x)同向变化,则函数f1(x)f2(x)和它们同向变化;如果负值函数f1(2)与f2(x)同向变化,则函数f1(x)f2(x)和它们反向变化;(函数相乘) ⑤函数f(x)与

1

()

f x 在f(x)的同号区间里反向变化。

⑥若函数u =φ(x),x[α,β]与函数y =F(u),u ∈[φ(α),φ(β)]或u ∈[φ(β),φ(α)]同向变化,则在[α,β]上复合函数y =F[φ(x)]是递增的;若函数u =φ(x),x[α,β]与函数y =F(u),u ∈[φ(α),φ(β)]或u ∈[φ(β),φ(α)]反向变化,则在[α,β]上复合函数y =F[φ(x)]是递减的。(同增异减)

⑦若函数y =f(x)是严格单调的,则其反函数x =f -1(y)也是严格单调的,而且,它们的增减性相同。

()

如:求的单调区间y x x =-+log 12

22

(设,由则u x x u x =-+><<22002 ()且,,如图:log 12

2

11u u x ↓=--+

u

O 1 2 x

当,时,,又,∴x u u y ∈↑↓↓(]log 0112

当,时,,又,∴x u u y ∈↓↓↑[)log 1212

∴……)

f(g ) g(x ) f[g(x )] f(x)+g(x) f(x)*g(

x) 都是

正数

增 增 增 增 增

增 减 减 / /

减 增 减 / /

减 减 增 减 减

17. 函数f(x)具有奇偶性的必要(非充分)条件是什么? (f(x)定义域关于原点对称)

若总成立为奇函数函数图象关于原点对称f x f x f x ()()()-=-?? 若总成立为偶函数函数图象关于轴对称f x f x f x y ()()()-=?? 判断函数奇偶性的方法

一、 定义域法

一个函数是奇(偶)函数,其定义域必关于原点对称,它是函数为奇(偶)函数的必要条件.若函数的定义域不关于原点对称,则函数为非奇非偶函数. 二、 奇偶函数定义法

在给定函数的定义域关于原点对称的前提下,计算)(x f -,然后根据函数的奇偶性的定义判断其奇偶性.

这种方法可以做如下变形f(x)+f(-x) =0 奇函数f(x)-f(-x)=0 偶函数f(x)

1 偶函数 f(-x)f(x)

1 奇函数f(-x)

==- 三、 复合函数奇偶性

18. 你熟悉周期函数的定义吗?

()(若存在实数(),在定义域内总有,则为周期T T f x T f x f x ≠+=0()() 函数,T 是一个周期。) ()如:若,则

f x a f x +=-()

(答:是周期函数,为的一个周期)f x T a f x ()()=2

我们在做题的时候,经常会遇到这样的情况:告诉你f(x)+f(x+t)=0,我们要马上反应过来,这时说这

个函数周期2t. 推导:()()0

()(2)()(2)0f x f x t f x f x t f x t f x t ++=?

=>=+?+++=?

f(g) g(x) f[g(x

)]

f(x)+g(

x) f(x)*g(x) 奇 奇 奇 奇

偶 奇 偶 偶

非奇非偶

奇 偶 奇 偶 非奇非偶 奇 偶

同时可能也会遇到这种样子:f(x)=f(2a-x),或者说f(a-x)=f(a+x).其实这都是说同样一个意思:函数f(x)关于直线对称, 对称轴可以由括号内的2个数字相加再除以2得到。比如,f(x)=f(2a-x),或者说f(a-x)=f(a+x)就都表示函数关于直线x=a 对称。 如:

()()()()()

()(2)(2)(2)()(2)2,222,()(22)()(22)

,()2||(,,,f x x a x b f a x f a x f b x f b x f x f a x f a x f b x f x f b x t a x b x t b a f t f t b a f x f x b a f x b a a b ==+=-+=-=-??=>=>-=-??=-??

=--=+-=+-=+--又如:若图象有两条对称轴,即,令则即所以函数以为周期因不知道的大小关系为保守起见我加了一个绝对值

19. 你掌握常用的图象变换了吗?

f x f x y ()()与的图象关于轴对称- 联想点(x,y ),(-x,y) f x f x x ()()与的图象关于轴对称- 联想点(x,y ),(x,-y) f x f x ()()与的图象关于原点对称-- 联想点(x,y ),(-x,-y) f x f x y x ()()与的图象关于直线对称-=1 联想点(x,y ),(y,x) f x f a x x a ()()与的图象关于直线对称2-= 联想点(x,y ),(2a-x,y) f x f a x a ()()()与的图象关于点,对称--20 联想点(x,y ),(2a-x,0)

将图象左移个单位右移个单位y f x a a a a y f x a y f x a =>?→????????>=+=-()()()()()00上移个单位下移个单位

b b b b y f x a b

y f x a b ()()()()>?→????????>=++=+-00

(这是书上的方法,虽然我从来不用, 但可能大家接触最多,我还是写出来吧。对于这种题目,其实根本不用这么麻烦。你要判断函数y-b=f(x+a)怎么由y=f(x)得到,可以直接令y-b=0,x+a=0,画出点的坐标。 看点和原点的关系,就可以很直观的看出函数平移的轨迹了。) 注意如下“翻折”变换:

()|()|x ()(||)y f x f x f x f x ??→??→把轴下方的图像翻到上面

把轴右方的图像翻到上面 ()如:f x x ()log =+21

()作出及的图象y x y x =+=+log log 2211

y

y=log 2x

O 1 x

19. 你熟练掌握常用函数的图象和性质了吗?

(k<0) y (k>0)

y=b

O’(a,b)

O x

x=a

()()一次函数:10y kx b k =+≠ (k 为斜率,b 为直线与y 轴的交点)

()()()反比例函数:推广为是中心,200y k x k y b k x a

k O a b =≠=+-≠'() 的双曲线。

()()二次函数图象为抛物线302442

2

2y ax bx c a a x b a ac b a

=++≠=+?? ???+

- 顶点坐标为,,对称轴--?? ???=-b a

ac b a x b

a 24422

开口方向:,向上,函数a y ac b a

>=-0442

min

a y ac

b a

<=-0442,向下,max

1212122,,||||

b x a

b c x x x x x x a a a -±=

+=-?=-=

根的关系:

2212121212()()

()()(m n ()()()(,2()()()(,)(,)

f x ax bx c f x a x m n f x a x x x x x x f x a x x x x h x h x h =++=-+=--=--+二次函数的几种表达形式:一般式顶点式,(,)为顶点是方程的个根)函数经过点(

应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程

ax bx c x x y ax bx c x 212200++=>=++,时,两根、为二次函数的图象与轴? 的两个交点,也是二次不等式解集的端点值。ax bx c 200++><()

②求闭区间[m ,n ]上的最值。

2

max (),min ()2max (),min ()

2224min ,max max((),())

4m,n 0b

n f f m f f n a b

m f f n f f m a b

n m a

c b a f f f m f n a

a <-==>-==<-<-==>区间在对称轴左边() 区间在对称轴右边() 区间在对称轴边 () 也可以比较和对称轴的关系,距离越远,值越大

(只讨论的情况)

③求区间定(动),对称轴动(定)的最值问题。 ④一元二次方程根的分布问题。

如:二次方程的两根都大于ax bx c k b a k f k 2

0020

++=?≥->>????????() y

(a>0)

O k x 1 x 2 x

一根大于,一根小于k k f k ?<()0

y

O x

-k k 0m n 22()0

()0

m n ()()0

b m n a

f m f n f m f n ?≥???<-

???>?>???<在区间(,)内有根在区间(,)内有1根 ()()指数函数:,401y a a a x =>≠ ()()对数函数,501y x a a a =>≠log

由图象记性质! (注意底数的限定!)

y

y=a x (a>1)

(01) 1

O 1 x

(0

()()“对勾函数”60y x k

x

k =+

> 利用它的单调性求最值与利用均值不等式求最值的区别是什么?(均值不等式一定要注意等号成立的条件)

20. 你在基本运算上常出现错误吗?

指数运算:,a a a a

a p p 0101

0=≠=≠-(())

a

a

a a

a

a m n

m

n m n

m

n

=≥=

>-

((01

0)),

()log ()log log 00a a a M N M N M N ?=+>>对数运算:

log log log log log a

a a a n a M N M N M n

M =-=,1

对数恒等式:a x a x log =

log log log log log 1

log log m n c a a a c a x b n

b b b a m

x a

=

?==

对数换底公式:

21. 如何解抽象函数问题? (赋值法、结构变换法)

如:(),满足,证明为奇函数。1x R f x f x y f x f y f x ∈+=+()()()()() (先令再令,……)x y f y x ==?==-000()

(),满足,证明是偶函数。2x R f x f xy f x f y f x ∈=+()()()()() [](先令·x y t f t t f t t ==-?--=()()() ∴f t f t f t f t ()()()()-+-=+ ∴……)f t f t ()()-=

()[]

()证明单调性:……32212f x f x x x ()=-+=

(对于这种抽象函数的题目,其实简单得都可以直接用死记了 1、 代y=x ,

2、 令x=0或1来求出f(0)或f(1)

3、 求奇偶性,令y=—x ;求单调性:令x+y=x 1

几类常见的抽象函数

1. 正比例函数型的抽象函数

f (x )=kx (k ≠0)---------------f (x ±y )=f (x )±f (y ) 2. 幂函数型的抽象函数

f (x )=x a

----------------f (xy )= f (x )f (y );f (y x )=)

()(y f x f 3.

指数函数型的抽象函数

f (x )=a x ------------------- f (x +y )=f (x )f (y );f (x -y )=)

()

(y f x f 4.

对数函数型的抽象函数

f (x )=lo

g a x (a >0且a ≠1)-----f (x ·y )=f (x )+f (y );f (

y

x

)= f (x )-f (y )

5. 三角函数型的抽象函数

f (x )=t gx-------------------------- f (x +y )=

)

()(1)

()(y f x f y f x f -+

f (x )=cot x------------------------ f (x +y )=

)

()(1

)()(y f x f y f x f +-

例1已知函数f (x )对任意实数x 、y 均有f (x +y )=f (x )+f (y ),且当x >0时,f (x )>0,f (-1)= -2求f (x )在区间[-2,1]上的值域.

分析:先证明函数f (x )在R 上是增函数(注意到f (x 2)=f [(x 2-x 1)+x 1]=f (x 2-x 1)+f (x 1));再根据区间求其值域.

例2已知函数f (x )对任意实数x 、y 均有f (x +y )+2=f (x )+f (y ),且当x >0时,f (x )>2,f (3)= 5,求不等式 f (a 2-2a -2)<3的解.

分析:先证明函数f (x )在R 上是增函数(仿例1);再求出f (1)=3;最后脱去函数符号.

例3已知函数f (x )对任意实数x 、y 都有f (xy )=f (x )f (y ),且f (-1)=1,f (27)=9,当0≤x <1时,f (x )∈[0,1]. (1)判断f (x )的奇偶性;

(2)判断f (x )在[0,+∞]上的单调性,并给出证明; (3)若a ≥0且f (a +1)≤39,求a 的取值范围. 分析:(1)令y =-1;

(2)利用f (x 1)=f (21x x ·x 2)=f (2

1

x x )f (x 2);

(3)0≤a ≤2.

例4设函数f (x )的定义域是(-∞,+∞),满足条件:存在x 1≠x 2,使得f (x 1)≠f (x 2);

对任何x 和y ,f (x +y )=f (x )f (y )成立.求: (1)f (0);

(2)对任意值x ,判断f (x )值的符号. 分析:(1)令x= y =0;(2)令y =x ≠0.

例5是否存在函数f (x ),使下列三个条件:①f (x )>0,x ∈N ;②f (a +b )= f (a )f (b ),a 、b ∈N ;③f (2)=4.同时成立?若存在,求出f (x )的解析式,若不存在,说明理由.

分析:先猜出f (x )=2x ;再用数学归纳法证明.

例6设f (x )是定义在(0,+∞)上的单调增函数,满足f (x ·y )=f (x )+f (y ),f (3)=1,求:

(1) f (1);

(2) 若f (x )+f (x -8)≤2,求x 的取值范围. 分析:(1)利用3=1×3;

(2)利用函数的单调性和已知关系式.

例7设函数y = f (x )的反函数是y =g (x ).如果f (a b )=f (a )+f (b ),那么g (a +b )=g (a )·g (b )是否正确,试说明理由.

分析:设f (a )=m ,f (b )=n ,则g (m )=a ,g (n )=b , 进而m +n =f (a )+f (b )= f (a b )=f [g (m )g (n )]….

例8已知函数f (x )的定义域关于原点对称,且满足以下三个条件: ①

x 1、x 2是定义域中的数时,有f (x 1-x 2)=

)

()(1

)()(1221x f x f x f x f -+;

② f (a )= -1(a >0,a 是定义域中的一个数); ③ 当0<x <2a 时,f (x )<0. 试问: (1) f (x )的奇偶性如何?说明理由; (2) 在(0,4a )上,f (x )的单调性如何?说明理由. 分析:(1)利用f [-(x 1-x 2)]= -f [(x 1-x 2)],判定f (x )是奇函数; (3) 先证明f (x )在(0,2a )上是增函数,再证明其在(2a ,4a )上也是增函数. 对于抽象函数的解答题,虽然不可用特殊模型代替求解,但可用特殊模型理解题意.有些抽象函数问题,对应的特殊模型不是我们熟悉的基本初等函数.因此,针对不同的函数要进行适当变通,去寻求特殊模型,从而更好地解决抽象函数问题. 例9已知函数f (x )(x ≠0)满足f (xy )=f (x )+f (y ), (1) 求证:f (1)=f (-1)=0; (2) 求证:f (x )为偶函数;

(3) 若f (x )在(0,+∞)上是增函数,解不等式f (x )+f (x -2

1

)≤0.

分析:函数模型为:f (x )=lo g a |x |(a >0) (1) 先令x =y =1,再令x =y = -1; (2) 令y = -1; (3) 由f (x )为偶函数,则f (x )=f (|x |).

例10已知函数f (x )对一切实数x 、y 满足f (0)≠0,f (x +y )=f (x )·f (y ),且当x <0时,f (x )>1,求证: (1) 当x >0时,0<f (x )<1; (2) f (x )在x ∈R 上是减函数. 分析:(1)先令x =y =0得f (0)=1,再令y =-x ; (3) 受指数函数单调性的启发: 由f (x +y )=f (x )f (y )可得f (x -y )=

)

()

(y f x f , 进而由x 1<x 2,有

)

()

(21x f x f =f (x 1-x 2)>1. 练习题:

1.已知:f (x +y )=f (x )+f (y )对任意实数x 、y 都成立,则( ) (A )f (0)=0 (B )f (0)=1 (C )f (0)=0或1 (D )以上都不对

2. 若对任意实数x 、y 总有f (xy )=f (x )+f (y ),则下列各式中错误的是( )

(A )f (1)=0 (B )f (x

1

)= f (x ) (C )f (

y

x

)= f (x )-f (y ) (D )f (x n )=nf (x )(n ∈N ) 3.已知函数f (x )对一切实数x 、y 满足:f (0)≠0,f (x +y )=f (x )f (y ),且当x <0时,f (x )>1,则当x >0时,f (x )的取值范围是( ) (A )(1,+∞) (B )(-∞,1) (C )(0,1) (D )(-1,+∞)

4.函数f (x )定义域关于原点对称,且对定义域内不同的x 1、x 2都有

f (x 1-x 2)=

)

()(1)

()(2121x f x f x f x f +-,则f (x )为( )

(A )奇函数非偶函数 (B )偶函数非奇函数 (C )既是奇函数又是偶函数 (D )非奇非偶函数

5.已知不恒为零的函数f (x )对任意实数x 、y 满足f (x +y )+f (x -y )=2[f (x )+f (y )],则函数f (x )是( )

(A )奇函数非偶函数 (B )偶函数非奇函数 (C )既是奇函数又是偶函数 (D )非奇非偶函数 参考答案:

1.A 2.B 3 .C 4.A 5.B

知识讲解对数函数及其性质提高

对数函数及其性质 【学习目标】 1.理解对数函数的概念,体会对数函数是一类很重要的函数模型; 2.探索对数函数的单调性与特殊点,掌握对数函数的性质,会进行同底对数和不同底对数大小的比较; 3.了解反函数的概念,知道指数函数x y a =与对数函数log a y x =互为反函数()0,1a a >≠. 【要点梳理】 要点一、对数函数的概念 1.函数y=log a x(a>0,a≠1)叫做对数函数.其中x 是自变量,函数的定义域是()0,+∞,值域为R . 2.判断一个函数是对数函数是形如log (0,1)a y x a a =>≠且的形式,即必须满足以下条件: (1)系数为1; (2)底数为大于0且不等于1的常数; (3)对数的真数仅有自变量x . 要点诠释: (1)只有形如y=log a x(a>0,a≠1)的函数才叫做对数函数,像log (1),2log ,log 3a a a y x y x y x =+==+等函数,它们是由对数函数变化得到的,都不是对数函数. (2)求对数函数的定义域时应注意:①对数函数的真数要求大于零,底数大于零且不等于1;②对含有字母的式子要注意分类讨论. 要点二、对数函数的图象与性质 a >1 0<a <1 图象

性 质 定义域:(0,+∞) 值域:R 过定点(1,0),即x=1时,y=0 在(0,+∞)上增函 数 在(0,+∞)上是减函数 当0<x<1时,y<0, 当x≥1时,y≥0 当0<x<1时,y>0, 当x≥1时,y≤0 要点诠释: 关于对数式log a N的符号问题,既受a的制约又受N的制约,两种因素交织在一起,应用时经常出错.下面介绍一种简单记忆方法,供同学们学习时参考. 以1为分界点,当a,N同侧时,log a N>0;当a,N异侧时,log a N<0. 要点三、底数对对数函数图象的影响 1.底数制约着图象的升降. 如图 要点诠释: 由于底数的取值范围制约着对数函数图象的升降(即函数的单调性),因此在解与对数函数单调性有关的问题时,必须考虑底数是大于1还是小于1,不要忽略. 2.底数变化与图象变化的规律

高考数学导数题型归纳(_好)

导数题型归纳 请同学们高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数, 4323()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332x mx f x x '=-- 2 ()3g x x mx ∴=-- (1) ()y f x =Q 在区间[]0,3上为“凸函数”, 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < (0)030 2(3)09330g m g m <-? ?<--

高中数学函数解题技巧方法总结(高考)

高中数学函数知识点总结 1. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) 2. 求函数的定义域有哪些常见类型? ()() 例:函数的定义域是 y x x x = --432 lg ()()()(答:,,,)022334Y Y 函数定义域求法: ● 分式中的分母不为零; ● 偶次方根下的数(或式)大于或等于零; ● 指数式的底数大于零且不等于一; 对数式的底数大于零且不等于一,真数大于零。 ● 正切函数x y tan = ??? ??∈+≠∈Z ππk k x R x ,2,且 ● 余切函数x y cot = ()Z π∈≠∈k k x R x ,,且 ● 反三角函数的定义域 函数y =arcsinx 的定义域是 [-1, 1] ,值域是 ,函数y =arccosx 的定义域是 [-1, 1] , 值域是 [0, π] ,函数y =arctgx 的定义域是 R ,值域是.,函数y =arcctgx 的定义域是 R , 值域是 (0, π) . 当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。 3. 如何求复合函数的定义域? [] 的定,则函数,,的定义域是如:函数)()()(0)(x f x f x F a b b a x f -+=>-> 义域是_____________。 [] (答:,)a a - 复合函数定义域的求法:已知)(x f y =的定义域为[]n m ,,求[])(x g f y =的定义域,可由n x g m ≤≤)(解出x 的范围,即为[])(x g f y =的定义域。 例 若函数)(x f y =的定义域为?? ? ???2,21,则)(log 2x f 的定义域为 。 分析:由函数)(x f y =的定义域为?? ? ???2,21可知:221≤≤x ;所以)(log 2x f y =中有2log 212≤≤x 。 解:依题意知: 2log 2 1 2≤≤x 解之,得 42≤≤x ∴ )(log 2x f 的定义域为{} 42|≤≤x x

对数知识点整理

1对数的概念 如果a(a>0,且a ≠1)的b 次幂等于N ,即N a b =,那么数b 叫做以a 为底N 的对数,记作:b N a =log ,其中a 叫做对数的底数,N 叫做真数. 由定义知: ①负数和零没有对数; ②a>0且a ≠1,N>0; ③01log =a , 1log =a a , b a b a =log ,b a b a =log 特别地,以10为底的对数叫常用对数,记作N 10log ,简记为lgN ;以无理数e(e=2.718 28…) 为底的对数叫做自然对数,记作N e log ,简记为N ln 2对数式与指数式的互化 式子名称指数式N a b =(底数)(指数)(幂值)对数式b N a =log (底数)(对数)(真数) 3对数的运算性质 如果a>0,a ≠1,M>0,N>0,那么 (1)N M MN a a a log log )(log +=(2N M a a log log N)(M log a -=÷(3)M b M a b a log log = 问:①公式中为什么要加条件a>0,a ≠1,M>0,N>0? ②=n a a log ______ (n ∈R) ③对数式与指数式的比较.(学生填表) 运算性质 n m n m a a a +=?,n m n m a a a -=÷ mn n m a a =)((a>0且a ≠1,n ∈R) N M MN a a a log log )(log +=, N M a a log log N)(M log a -=÷(a>0,a ≠1,M>0,N>0) 难点疑点突破 对数定义中,为什么要规定a >0,,且a ≠1? 理由如下: ①若a <0,则N 的某些值不存在,例如log-28 ②若a=0,则N ≠0时b 不存在;N=0时b 不惟一,可以为任何正数 ③若a=1时,则N ≠1时b 不存在;N=1时b 也不惟一,可以为任何正数 为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数

高中数学函数解题技巧及方法

专题1 函数 (理科) 一、考点回顾 1.理解函数的概念,了解映射的概念. 2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法. 3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 二、经典例题剖析 考点一:函数的性质与图象 函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫. 复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是: 1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性. 2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法. 3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力. 这部分内容的重点是对函数单调性和奇偶性定义的深入理解. 函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制. 对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映.这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求. 函数的图象是函数性质的直观载体,函数的性质可以通过函数的图像直观地表现出来。

高考三角函数重要题型总结

1.已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+ (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)求函数()f x 在区间[,]122ππ -上的值域。 2.已知函数2()sin sin()(0)2f x x x x πωωωω=+f 的最小正周期为π. (Ⅰ)求ω的值; (Ⅱ)求函数f (x )在区间[0,23 π]上的取值范围. 3.(本小题满分12分)已知向量(sin ,cos ),(1,2)m A A n ==-,且0.m n =g (Ⅰ)求tan A 的值; (Ⅱ)求函数()cos 2tan sin (f x x A x x =+∈R )的值域. 4..(本小题满分13分)已知函数()sin()(00π)f x A x A ??=+><<,,x ∈R 的最 大值是1,其图像经过点π1 32M ?? ???,. (1)求()f x 的解析式; (2)已知π02αβ??∈ ??? ,,,且3()5f α=,12()13f β= ,求()f αβ-的值. 5. 已知函数2()sin cos cos 2.222 x x x f x =+- (Ⅰ)将函数()f x 化简成sin()(0,0,[0,2))A x B A ω???π++>>∈的形式,并指出()f x 的周期; (Ⅱ)求函数17()[, ]12 f x ππ在上的最大值和最小值 6..已知函数x x x x f sin 2 sin 2cos )(22+-=. (I )求函数)(x f 的最小正周期; (II )当)4,0(0π ∈x 且524)(0=x f 时,求)6 (0π+x f 的值。 7.已知1tan 3 α=-,cos β=,(0,)αβπ∈ (1)求tan()αβ+的值; (2)求函数())cos()f x x x αβ=-++的最大值. 8.已知函数())cos()f x x x ω?ω?=+-+(0π?<<,0ω>)为偶函数,且函数()y f x =图象的两相邻对称轴间的距离为π2 . (Ⅰ)求π8f ?? ???的值; (Ⅱ)将函数()y f x =的图象向右平移π 6 个单位后,得到函数()y g x =的图象,

高中数学函数解题思路多元化方式.doc

高中数学函数解题思路多元化方式- 一、函数解题思路的现状和重要性 正确把握高中函数的解题思路,可以有效地锻炼学生的数学思维方法。高中是学生思维能力培养的重要阶段,函数解题过程,正是学生发散思维、创新思维的过程,能够提高学生独立思考的能力。想要提高解答函数问题的能力,解题思路的训练是重要的,在解题中要多思考为什么会想到这个解题办法。通过把握函数的解题思路,能够提高学生的数学应用能力。函数中最重要的学习方法是数形结合,通过数形结合,培养学生的观察意识以及转化的思想,通过联系学过的知识,融会贯通,提高学生解决问题的能力。 二、函数解题思路多元化的方式 1.培养学生的发散思维 发散思维又称扩散思维和求异思维,培养学生的发散思维就是鼓励学生从不同的角度思考问题,用不同的方法和途径解决问题,追求多样化的解题方法和多元化的解题思路。在解决高中数学函数的问题时,要能够触类旁通,能够举一反三。在高中函数解题思路中,能够从不同的角度思考问题,就体现了学生的发散思维。 例如,求f(x)=x2+1x(x0)的值域。学生经过思考,可以用不同的方法进行解题。第一种是配方,消除未知数,第二种是通过拆解变形,进行解题。具体过程如下: 第一,f(x)=x+1x=x-1x2+2,当x=1x,f(x)的最小值是2,所以值域是\[2,+)。 第二,f(x)=x+1x=(x)2+1x22x1x=2,因此值域是\[2,

+)。 2.培养学生的创新思维 培养学生的创新思维,能够促进学生函数解题思路的多元化。培养学生的创新思维,就是要发现别人没有发现的问题,思考别人没有想到的问题,要充分展开联想,有逆向思维的能力以及直觉思维的能力。直觉思维的能力主要借助想象,根据函数题目中的条件能够依靠直觉发现其中的内在联系,综合思考,寻找隐藏的条件,进行合理的判断。逆向思维也是创新思维的一种方式,通过思维角度的逆向转换,对函数问题进行思考,改变问题的结构,增加解题的思路,最终解决函数问题。 例如,已知数列{an}满足an=nn+2,nn*,比较an与an+1的大小关系。 第一,利用单调性判断,an=nn+2=n+2-2n+2=1-2n+2,数列具有递增性,所以an+1an。 第二,可以将an=nn+2看做浓度,利用浓度法解决,n增大代表溶液中溶质增加,因此浓度增加,所以an+1an。 第三,作差解决。an+1-an=n+1n+3-nn+2=2(n+2)(n+3)0,可得答案。 第四,作商解决。anan+1=n(n+3)(n+2)(n+1)=n2+3nn2+3n+21,可得答案。 总之,高中数学函数是重要的学习内容,不仅关系着学生的高考成绩,而且关系着学生利用函数解决实际问题的能力。掌握函数的解题思路是解决函数问题的基础,学生要全面、准确地把握函数的相关基础知识,将其运用到解题思路中。

高中数学函数解题技巧与方法

专题1 函数(理科) 一、考点回顾 1.理解函数的概念,了解映射的概念. 2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法. 3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 二、经典例题剖析 考点一:函数的性质与图象 函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫. 复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是: 1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性. 2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法. 3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力. 这部分内容的重点是对函数单调性和奇偶性定义的深入理解. 函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制. 对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映.这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求.

(完整版)高中数学三角函数解题技巧和公式(已整理)

关于三角函数的几种解题技巧 本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处理技巧以及心得、体会。下面尝试进行探讨一下: 一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用: 1、由于ααααααααcos sin 21cos sin 2cos sin )cos (sin 222±=±+=±故知道)cos (sin αα±,必可推出)2sin (cos sin ααα或,例如: 例1 已知θθθθ33cos sin ,3 3cos sin -=-求。 分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=- ]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--= 其中,θθcos sin -已知,只要求出θθcos sin 即可,此题是典型的知sin θ-cos θ,求sin θcos θ的题型。 解:∵θθθθcos sin 21)cos (sin 2-=- 故:3 1cos sin 31)33(cos sin 212=?==-θθθθ ]cos sin 3)cos )[(sin cos (sin cos sin 233θθθθθθθθ+--=- 39 43133]313)33[(332=?=?+= 例2 若sin θ+cos θ=m 2,且tg θ+ctg θ=n ,则m 2 n 的关系为( )。 A .m 2=n B .m 2=12+n C .n m 22= D .22m n = 分析:观察sin θ+cos θ与sin θcos θ的关系: sin θcos θ=2 121)cos (sin 22-=-+m θθ 而:n ctg tg ==+θ θθθcos sin 1 故:1212122+=?=-n m n m ,选B 。 例3 已知:tg α+ctg α=4,则sin2α的值为( )。

高中数学函数与导数综合题型分类总结

函数综合题分类复习 题型一:关于函数的单调区间(若单调区间有多个用“和”字连接或用“逗号”隔开),极值,最值;不等式恒成立;此类问题提倡按以下三个步骤进行解决: 第一步:令0)('=x f 得到两个根;第二步:列表如下;第三步:由表可知; 不等式恒成立问题的实质是函数的最值问题,常见处理方法有四种: 第一种:变更主元(即关于某字母的一次函数)-----题型特征(已知谁的范围就把谁作为主元);第二种:分离变量求最值(请同学们参考例5);第三种:关于二次函数的不等式恒成立;第四种:构造函数求最值----题型特征)()(x g x f >恒成立 0)()()(>-=?x g x f x h 恒成立;参考例4; 例1.已知函数321()23 f x x bx x a =-++,2x =是)(x f 的一个极值点. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若当[1, 3]x ∈时,22()3 f x a ->恒成立,求a 的取值范围. 例2.已知函数b ax ax x x f +++=23)(的图象过点)2,0(P . (1)若函数)(x f 在1-=x 处的切线斜率为6,求函数)(x f y =的解析式;(2)若3>a ,求函数)(x f y =的单调区间。 例3.设2 2(),1 x f x x =+()52(0)g x ax a a =+->。 (1)求()f x 在[0,1]x ∈上的值域; (2)若对于任意1[0,1]x ∈,总存在0[0,1]x ∈,使得01()()g x f x =成立,求a 的取值范围。 例4.已知函数 32()f x x ax =+图象上一点(1,)P b 的切线斜率为3-, 326()(1)3(0)2 t g x x x t x t -=+-++> (Ⅰ)求,a b 的值;(Ⅱ)当[1,4]x ∈-时,求()f x 的值域; (Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。 例5.已知定义在R 上的函数 32()2f x ax ax b =-+)(0>a 在区间[]2,1-上的最大值是5,最小值是-11. (Ⅰ)求函数 ()f x 的解析式;(Ⅱ)若]1,1[-∈t 时,0(≤+'tx x f )恒成立,求实数x 的取值范围. 例6.已知函数2233)(m nx mx x x f +++=,在1-=x 时有极值0,则=+n m 例7.已知函数23)(a x x f =图象上斜率为3的两条切线间的距离为5102,函数33)()(22 +-=a bx x f x g . (1) 若函数)(x g 在1=x 处有极值,求)(x g 的解析式; (2) 若函数)(x g 在区间]1,1[-上为增函数,且)(42x g mb b ≥+-在区间]1,1[-上都成立,求实数m 的取值范围. 答案: 1、解:(Ⅰ)'2()22f x x bx =-+. ∵2x =是)(x f 的一个极值点, ∴2x =是方程2220x bx -+=的一个根,解得32 b =. 令'()0f x >,则2320x x -+>,解得1x <或2x >. ∴函数()y f x =的单调递增区间为(, 1)-∞,(2, +)∞. (Ⅱ)∵当(1,2)x ∈时'()0f x <,(2,3)x ∈时'()0f x >, ∴()f x 在(1,2)上单调递减,()f x 在(2,3)上单调递增. ∴(2)f 是()f x 在区间[1,3]上的最小值,且 2(2)3f a =+. 若当[1, 3]x ∈时,要使 22()3f x a ->恒成立,只需22(2)3f a >+, 即22233a a +>+,解得 01a <<. 2、解:(Ⅰ) a ax x x f ++='23)(2. 由题意知???=+-=-'==623)1(2)0(a a f b f ,得 ???=-=23b a . ∴233)(23+--=x x x x f . (Ⅱ)023)(2=++='a ax x x f . ∵3>a ,∴01242>-=?a a .

高中数学求函数值域的解题方法总结(16种)

求函数值域的解题方法总结(16种) 在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。 一、观察法: 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例:求函数()x 323y -+=的值域。 点拨:根据算术平方根的性质,先求出 ()x 3-2的值域。 解:由算术平方根的性质知()0x 3-2≥,故()3x 3-23≥+。 点评:算术平方根具有双重非负性,即:(1)、被开方数的非负性,(2)、值的非负性。本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧发。 练习:求函数()5x 0x y ≤≤=的值域。(答案:{}5,4,3,2,1,0) 二、反函数法: 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。 例:求函数2 x 1x y ++=的值域。 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数2 x 1x y ++=的反函数为:y y --=112x ,其定义域为1y ≠的实数,故函数y 的值域为{}R y 1,y |y ∈≠。 点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。 练习:求函数x -x -x x 10101010y ++=的值域。(答案:{}1y 1-y |y 或)。 三、配方法: 当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求函数的值域。 例:求函数() 2x x -y 2++=的值域。 点拨:将被开方数配方成平方数,利用二次函数的值求。 解:由02x x -2≥++可知函数的定义域为{}2x 1-|x ≤≤。此时2x x -2++=

高一数学常见的对数函数解题方法教案

常见的对数函数解题策略 一、分类讨论 例1 若实数a 满足2log 13 a <,求a 的取值范围。 分析:需对a 进行分类讨论。 当1a >时,∵log 1a a =,∴2log log 3a a a <,∴23 a >; 当01a <<时,∵2log log 3a a a <,∴23a <,即203a <<。 故20,(1,)3a ??∈+∞ ??? 。 评注:解含有对数符号的不等式时,必须注意对数的底数是大于1还是小于1,然后再利用相应的对数函数的单调性进行解答。理解会用以下几个结论很有必要:①当1a >时,若log 0a x >,则1x >,若l o g 0a x <,则01x <<;②当01a <<时,若log 0a x >,则01x <<,若log 0a x <,则1x >。 二、数形结合 例2 若x 满足2log 3x x =-,则x 满足区间( ) A .(0,1) B .(1,2) C .(1,3) D .(3,4) 分析:本题左边是一个对数函数,右边是一个一次函数,可通过作图象求解。 解析:在同一直角坐标系中画出2log y x =,3y x =-的图象,如图所示,可观察两图象交点的横坐标满足13x <<,答案选C 。 评注:解决该类问题的关键是正确作出函数2log y x =,3y x =-的图象,从而观察交点的横坐标的取值范围。 三、特殊值法 2x x -x

例3 已知log (2)a y ax =-在[0,1]上为x 的减函数,则a 的取值范围为( ) A .(0,1) B .(1,2) C .(0,2) D .[2,)+∞ 分析:由函数的单调性求底数a 的取值范围,逆向考查,难度较大,可采用特殊值法进行判断。 解析:取特殊值0.5a =,10x =,21x =,则有10.5 l o g (2)l o g 2a ax - =,20.53log (2)log 2a ax -=,与y 是x 的减函数矛盾,排除A 和C ; 取特殊值3a =,11x =,则2230ax -=-<,所以3a ≠,排除D 。 答案选B 。 评注:本题由常规的具体函数判断其单调性,变换为已知函数的单调性反过来确定函数中底数a 的范围,提高了思维层次。 四、合理换元 例4 若28x ≤≤,求函数2 21144log log 5y x x ??=++ ???的值域。 分析:通过对函数式进行变形,此题是一个二次函数求值域问题,可换元进行求解。 解析:设14log t x =,∵28x ≤≤,∴114 4log 8log 2t ≤≤,即3122t - ≤≤-。 又2 21144log log 5y x x ??=++ ???21144 log 2log 5x x ??++ ???, ∴2225(1)4y t t t =++=++,∵3122 t -≤≤-, ∴当1t =-时,y 最小值为4;当32t =-或12 t =-时,y 值相等且最大,y 最大为174。 故函数y 的值域为174,4?????? 。 评注:换元法是一种常见的数学思想,也是一种常用的解题技巧,希望同学们在今后的学习中合理转化,灵活运用。

指数与对数函数题型总结

指数与对数函数题型总结 题型1 指数幂、指数、对数的相关计算 【例1】计算:3 5 3 log 1+-2 3 2 log 4++10 3lg3 +????1252log . 【例2】计算下列各式的值: (1)12lg 3249-43lg 8+lg 245; (2)lg 25+2 3lg 8+lg 5×lg 20+(lg 2)2. 变式: 1.计算下列各式的值: (1)(lg 5)2+2lg 2-(lg 2)2; (2)lg 3+25lg 9+3 5 lg 27-lg 3 lg 81-lg 27. 2.计算下列各式的值: (1)lg 2+lg 5-lg 8lg 5-lg 4 ; (2)lg 5(lg 8+lg 1 000)+(lg 2 3)2+lg 16+lg 0.06. 3.计算下列各式 (1)化简 a 4 3-8a 3 1b 4b 3 2 +23 ab +a 3 2÷? ?? ??1-2 3b a ×3ab ; (2)计算:2log 32-log 3329+log 38-253 5log . (3)求lg 8+lg 125-lg 2-lg 5log 54·log 25 +525log +1643 的值.(4)已知x >1,且x +x - 1=6,求x 21-x 21 -. 题型2指数与对数函数的概念 【例1】若函数y =(4-3a )x 是指数函数,则实数a 的取值范围为________. 【例2】指数函数y =(2-a )x 在定义域内是减函数,则a 的取值范围是________. 【例3】函数y =a x - 5+1(a ≠0)的图象必经过点________. 变式: 1.指出下列函数哪些是对数函数? (1)y =3log 2x ;(2)y =log 6x ; (3)y =log x 3;(4)y =log 2x +1. 题型3 指数与对数函数的图象 【例1】如图是指数函数①y =a x ,②y =b x ,③y =c x ,④y =d x 的图象,则a ,b ,c ,d 与1的大小关系是( ) A .a <b <1<c <d B .b <a <1<d <c C .1<a <b <c <d D .a <b <1<d <c 【例2】函数y =|2x -2|的图象是( )

三角函数解题技巧和公式(已整理)

浅论关于三角函数的几种解题技巧 本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处理技巧以及心得、体会。下面尝试进行探讨一下: 一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用: 1、由于α αααααααcos sin 21cos sin 2cos sin )cos (sin 222±=±+=±故知道 )cos (sin αα±,必可推出)2sin (cos sin ααα或,例如: 例1 已知θθθθ33cos sin ,3 3cos sin -=-求。 分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=- ]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--= 其中,θθcos sin -已知,只要求出θθcos sin 即可,此题是典型的知sin θ-cos θ,求sin θcos θ的题型。 解:∵θθθθcos sin 21)cos (sin 2-=- 故:3 1cos sin 31)33(cos sin 212=?==-θθθθ ]cos sin 3)cos )[(sin cos (sin cos sin 233θθθθθθθθ+--=- 39 43133]313)33[(332=?=?+= 2、关于tg θ+ctg θ与sin θ±cos θ,sin θcos θ的关系应用: 由于tg θ+ctg θ=θ θθθθθθθθθcos sin 1cos sin cos sin sin cos cos sin 22=+=+ 故:tg θ+ctg θ,θθcos sin ±,sin θcos θ三者中知其一可推出其余式子的值。 例2 若sin θ+cos θ=m 2,且tg θ+ctg θ=n ,则m 2 n 的关系为( )。 A .m 2=n B .m 2=12+n C .n m 22= D .22m n = 分析:观察sin θ+cos θ与sin θcos θ的关系: sin θcos θ=2 121)cos (sin 22-=-+m θθ

高中数学解题方法及解析大全

最全面的高考复习资料 目录 前言 (2) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第一章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案……………………………………

前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳和 演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想 等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想。最后谈谈解题中的有关策略和高考中的几个热点问题,并在附录部分提供了近几年的高考试卷。 在每节的内容中,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现。再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范。巩固性题组旨在检查学习的效果,起到巩固的作用。每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。

带答案对数与对数函数经典例题.

经典例题透析 类型一、指数式与对数式互化及其应用 1.将下列指数式与对数式互化: (1);(2);(3);(4);(5);(6). 思路点拨:运用对数的定义进行互化. 解:(1);(2);(3);(4);(5); (6). 总结升华:对数的定义是对数形式和指数形式互化的依据,而对数形式和指数形式的互化又是解决问题的重要手段. 举一反三: 【变式1】求下列各式中x的值: (1)(2)(3)lg100=x (4) 思路点拨:将对数式化为指数式,再利用指数幂的运算性质求出x. 解:(1); (2); (3)10x=100=102,于是x=2; (4)由. 类型二、利用对数恒等式化简求值 2.求值:解:. 总结升华:对数恒等式中要注意格式:①它们是同底的;②指数中含有对数形式;③其值为真数.举一反三: 【变式1】求的值(a,b,c∈R+,且不等于1,N>0) 思路点拨:将幂指数中的乘积关系转化为幂的幂,再进行运算. 解:. 类型三、积、商、幂的对数 3.已知lg2=a,lg3=b,用a、b表示下列各式. (1)lg9 (2)lg64 (3)lg6 (4)lg12 (5)lg5 (6) lg15 解:(1)原式=lg32=2lg3=2b(2)原式=lg26=6lg2=6a (3)原式=lg2+lg3=a+b(4)原式=lg22+lg3=2a+b (5)原式=1-lg2=1-a(6)原式=lg3+lg5=lg3+1-lg2=1+b-a

举一反三: 【变式1】求值 (1)(2)lg2·lg50+(lg5)2 (3)lg25+lg2·lg50+(lg2)2 解: (1) (2)原式=lg2(1+lg5)+(lg5)2=lg2+lg2lg5+(lg5)2=lg2+lg5(lg2+lg5)=lg2+lg5=1 (3)原式=2lg5+lg2(1+lg5)+(lg2)2 =2lg5+lg2+lg2lg5+(lg2)2=1+lg5+lg2(lg5+lg2)=1+lg5+lg2=2. 【变式2】已知3a=5b=c,,求c的值. 解:由3a=c得: 同理可得 . 【变式3】设a、b、c为正数,且满足a2+b2=c2.求证:. 证明: . 【变式4】已知:a2+b2=7ab,a>0,b>0. 求证:. 证明:∵a2+b2=7ab,∴a2+2ab+b2=9ab,即(a+b)2=9ab,∴lg(a+b)2=lg(9ab),∵a>0,b>0,∴2lg(a+b)=lg9+lga+lgb ∴2[lg(a+b)-lg3]=lga+lgb 即. 类型四、换底公式的运用 4.(1)已知log x y=a,用a表示; (2)已知log a x=m,log b x=n,log c x=p,求log abc x.

高考题历年三角函数题型总结

高考题历年三角函数题型总结 ?? ??? 正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{} 36036090,k k k αα?<,则sin y r α= ,cos x r α=,()tan 0y x x α=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正. 11、三角函数线:sin α=MP ,cos α=OM ,tan α=AT .

高考函数解题技巧方法总结(经典)

高中数学函数知识点总结 9. 求函数的定义域有哪些常见类型? ()() 例:函数的定义域是 y x x x = --432 lg ()()()(答:,,,)022334 函数定义域求法: ● 分式中的分母不为零; ● 偶次方根下的数(或式)大于或等于零; ● 指数式的底数大于零且不等于一; 对数式的底数大于零且不等于一,真数大于零。 ● 正切函数x y tan = ?? ? ? ?∈+≠∈Z π πk k x R x ,2 ,且 ● 余切函数x y cot = ()Z π∈≠∈k k x R x ,,且 ● 反三角函数的定义域 函数y =arcsinx 的定义域是 [-1, 1] ,值域是 ,函数y =arccosx 的定义域是 [-1, 1] ,值域是 [0, π] ,函数y =arctgx 的定义域是 R ,值域是.,函数y =arcctgx 的定义 域是 R ,值域是 (0, π) . 当以上几个方面有两个或两个以上同时出现时,先分别求出满足每

一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。 10. 如何求复合函数的定义域? 复合函数定义域的求法:已知)(x f y =的定义域为[]n m ,,求[])(x g f y =的定义域,可由n x g m ≤≤)(解出x 的范围,即为[])(x g f y =的定义域。 11、函数值域的求法 1、直接观察法 对于一些比较简单的函数,其值域可通过观察得到。 例 求函数y=x 1 的值域 2、配方法 配方法是求二次函数值域最基本的方法之一。 例、求函数y=2x -2x+5,x ∈[-1,2]的值域。 3、判别式法 对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进行化简,不必拘泥在判别式上面 下面,我把这一类型的详细写出来,希望大家能够看懂

相关文档
相关文档 最新文档