文档库 最新最全的文档下载
当前位置:文档库 › 使用水滴模板法制造具有微结构聚二甲基硅氧烷介质的柔性压力传感器

使用水滴模板法制造具有微结构聚二甲基硅氧烷介质的柔性压力传感器

使用水滴模板法制造具有微结构聚二甲基硅氧烷介质的柔性压力传感器
使用水滴模板法制造具有微结构聚二甲基硅氧烷介质的柔性压力传感器

使用水滴模板法制造具有微结构聚二甲基硅氧烷介质的柔性压力传感器

目标:具有高灵敏度的柔性触觉传感器,用于生物医学诊断、人工的“电子皮肤”机器人、假肢。

需求:低成本、在中等压力(10-100kPa)和较低的压力(10kPa)下均能生产。

方法:水滴模板法,一种可广泛适用于聚合物和纳米材料的动态可控的自组装模板图案化方法,利用成膜溶液溶剂挥发过程中所凝结的水滴阵列作为模板,可以实现一步法制备有序多孔膜。

多孔聚苯乙烯薄膜作为电介质结构的聚二甲基硅氧烷的模板。

一、简介

【Ⅰ】压力传感器制造过程中,水滴模板法工艺的微观示意图

a)水滴模板法形成机制:

1)高分子聚合物溶液的蒸发溶剂在其表面上的潮湿空气中冷却→2)水滴在溶液上方凝结→3)液滴在溶液表面成核并生长,形成有序的六角形阵列→4)完全蒸发后,在剩下的聚合物膜中留下蜂窝结构的孔隙→得到多孔BFs聚合物膜

b)压力传感器的制造

BFs膜被用作微观构建PDMS膜的模板,PDMS膜被用作具有柔性ITO/PET电极的电容式压力传感器的介电层。

(ITO/PET是指采用磁控溅射技术,在聚对苯二甲酸乙二醇酯PET基底材料上溅射透明氧化铟锡ITO导电薄膜镀层,并经高温退火处理得到的高技术产品)

BFs膜和PDMS膜的SEM图像,一个具有代表性的压力传感器的压力响应曲线

二、实验

A)材料

聚苯乙烯,单端羧基聚苯乙烯,锌粉,钠、二硫化碳、聚(苯乙烯-丁二烯-苯乙烯),聚(苯乙烯-乙烯-苯乙烯)、氯仿、二氯甲烷、甲苯、聚苯乙烯培养皿(100毫米和150毫米直径),和普通的显微镜玻片(30*20*1.2毫米,以及30*10*1毫米)、盐酸、磺基琥珀酸二辛酯钠、PDMS

B)实验过程

【2】静态环境下制备BFs的装置

(a)加热盘(b) 干燥的氮气流入饮水口(c)盛水的饮水管放置在装有温水的烧杯中(d)潮湿的氮气从饮水口流出,进入反应室内(e)供BFs反应的塑胶室,有一个滑动门,供样品放入和取出(f)带有探针的塞子(g)供FBs成型的硅基片(h) 湿度探头和仪表(i)潮湿空气出口

流程:

1、用水滴模板法为微图案化介电材料制作BFs模板

2、微观构建PDMS材料

3、制成压力传感器

三、结果和讨论

【3】BFs膜和其构建的PDMS膜

a)光学显微镜下BFs图像b)光学显微镜下PDMS图像c)BFs的SEM俯视图d)PDMS的SEM俯视图e)BFs的SEM横截面图f)PDMS的SEM横截面图

【Ⅵ】具有PDMS微结构介质的压力传感器,电容-压力响应曲线

共测试5次,选取后四次数据。

四种不同微结构的PDMS材料,在100KPa下灵敏度分别降低86% (a), 90% (b), 90% (c), and 99%(d)

A)BFs法制备的多孔薄膜材料模型观察

B)PDMS上的多孔结构观察

C)具有BFs微结构材料的压力传感器

柔性可穿戴电子传感器常用材料

毕业论文设计

柔性可穿戴电子传感器常用材料 摘要随着智能终端的普及,可穿戴电子设备呈现出巨大的市场前景。传感器作为核心部件之一,将影响可穿戴设备的功能设计与未来发展。柔性可穿戴电子传感器具有轻薄便携、电学性能优异和集成度高等特点,使其成为最受关注的电学传感器之一。经过分析近年来柔性传感器的研究、设计和制造现状后,综述了柔性可穿戴电子传感器的常用材料,最后并提出了柔性可穿戴电子传感器面临的挑战与未来的发展方向。 关键词可穿戴电子;柔性传感器 The Common Materials of Flexible Wearable Electronic Sensors Abstract With the development of intelligent terminals, wearable electronic devices show a great market prospect. As one core component of the wearable electronic device, the sensor will exert a significant influence on the design and function of the wearable electronic device in the future. Compared with the traditional electrical sensors, flexible wearable sensors have the advantages of being light, thin, portable, highly integrated and electrically excellent. It has become one of the most popu-lar electronic sensors. This review focused on recent research advances of flexible wearable sensors, including signal trans-duction mechanisms, general materials, manufacture processes and recent applications. Piezoresistivity, capacitance and pie-zoelectricity are three traditional signal transduction mechanism. For accessing the dynamic pressure in real time and devel-oping stretchable energy harvesting devices, sensors based on the mechanoluminescent mechanism and triboelectric mecha-nism are promising. Common materials used in flexible wearable electronic sensors, such as flexible substrates, metals, inor-ganic semiconductors, organics and carbons, are also introduced. In addition to the continuously mapping function, wearable sensors also have the practical and potential applications, which focused on the temperature and pulse detection, the facial expression recognition and the motion monitoring. Finally, the challenges and future development of flexible wearable sen-sors are presented. Keywords wearable electronics; flexible sensor; printing manufacture; body monitoring 目录 1 引言 (4)

SI4-G柔性压力传感器

?已通过ROHS 认证 笔尖柔性压力传感器 SI4-G SI4-G 柔性压力传感器是苏州能斯达电子科技有限公司融合了纳米敏感材料和先进印刷制程,采用自主独立知识产权最新开发并可以满足客户需求的标准型压力传感器。 标识 尺寸(mm) 长度16敏感区外径5敏感区内径 3.4Pin 脚距离 1.0 尺寸表 尺寸图 产品特性

SI4-G 柔性压力传感器由机械性能优异的超薄膜、优异导电材料和纳米压力敏感层组成。当传感器感知到外界压力时,传感器电导率发生变化,外界压力越大传感器电导率就越高。即传感器零负载时为高阻值显示,当传感器感知外界压力后,阻值会相应变化,力度越大阻值越小。采用简单的电路即可将这种电导率的变化转化为与外界压力相匹配的输出电信号。 力敏特性 注意: 图表中曲线是由在实验室条件下测得的数据绘制而成,曲线关系仅供参考,实际数据请根据具体应用情况安装后测试。 性能参数量程0-500g 厚度<0.25mm 外观尺寸见尺寸表响应点<30g 重复性<±7.7%(50%负载) 一致性±10%耐久性>100万次初始电阻>10M Ω(无负载) 响应时间<1ms 恢复时间<15ms 测试电压典型值DC 3.3V 工作温度-20°C -60°C 电磁干扰EMI 不产生静电释放EDS 不敏感 参数表 产品特性

参考电路 参考电路一: 采用分压方式测量。将压力变化在 传感器上产生的电阻值的变化,转 换为电压的变化,Vout为输出电 压,可接到后端电路。 ●根据实际情况选择R1,通常 可取47kΩ~1MΩ; ●无压力时,传感器阻值在 10MΩ以上,等效于断路。 参考电路二: 在分压测量的基础上,增加运算放 大器电路,可提高电压测量分辨 率;增大驱动电流。 ●根据实际情况选择电路参数; ●无压力时,传感器阻值在 10MΩ以上,近似断路。 注意事项 传感器使用时尽量使所受负载均匀,避免尖锐物体直接接触传感器; 超量程使用会降低传感器性能甚至破坏传感器; 力敏特性曲线仅供参考; 传感器端子为铜镀锡材质,可根据需求自行焊接引线。需注意,焊接温度不宜太高,建议不超过300℃,接触时间不超过1秒,以免高温使薄膜衬底融化变形。

有丙烯酸酯的聚二甲基硅氧烷基涂层溶液的制备与表征

有丙烯酸酯的聚二甲基硅氧烷基涂层溶液的制备与表征 摘要:α,ω-羟丙基合成聚二甲基硅氧烷具有在它和六亚甲基的环(HDI)制备PDMS改性氨基甲酸酯(PSU)具有异氰酸酯基团在末端与由反应产生HDI三聚体反应,和分别。与具有氨基甲酸酯丙烯酸酯具有的异氰酸酯活性PDMS2-羟乙基甲基丙烯酸酯的电源改性聚氨酯基树脂制备(PSUA),该红外光谱,分析通过NMR,以确定结构。它可以通过碱基进行制备是否丙烯酸固化剂,光引发剂,它是通过混合溶剂用于涂布液,并将其施加到PET膜从紫外未来照射,得到具有高硬度的柔软性薄膜包衣。所得涂布膜为89.7%的透光率,铅笔硬度为3H,地面触觉是880。 简介 最近的挥发性有机化合物(挥发性有机化合物,VOC)的国内环保法规以及被强化的全球 热固性体系的固化是根据溢出应用于现有在多种场所使用UV固化系统的研究UV固化系统和0.1比热固化方法下在固化温度和缩短固化时间可以产生更快的速度阿尔戈,具有环保的优点相比,热固化系统.2,3质硬而具有这些优势的UV固化系统通过将涂膜发生在便携式电子设备的表面上它可以从划痕被防止。便携式电子设备的保护和德的涂膜硬度,在所需的高导磁率和柔韧性硬涂层液.4,5常用的组合物,是一个弧形的Rilgye树脂,7稀释剂,溶剂,光引发剂,第8,和各种性质随着中给予各种添加剂,这些都是9-11配置。硬涂层丙烯酸类树脂可以使用通常是一个极好的耐磨损性,刚性,光但是,这样的特性,硬质丙烯酸涂料13,14 aekeu该膜具有灵活性来处理该涂膜由于质量差扭曲如果你有一个破碎的缺点,克服15,16硬度是涂布液上大量的研究,与灵活性,同时保持这使0.17 改性聚二甲基硅氧烷具有温度低的玻璃化转变氨基甲酸酯/丙烯酸酯具有优良的耐磨损性,刚性,光学特性质量,并具有机械性能,如耐候性。如果有机硅化合物相比CC键旋转义乌Si-O键非常低你得有能量和灵活性的自由旋转在很宽的温度范围内,高透明的可见光和紫外光有许多研究,性具有作用于液体的硬涂层有诱惑。康芝例子是6端子丙烯酸酯UV固化的聚二甲基聚二甲基硅氧烷由斯洛柯环它报道了固化膜的性能,根据该酸和酒吧的含量比张和Choi 7按照12 PU /丙烯酸酯组合物看到涂膜表面性能的固化属性,并通过棒涂敷溶液的。然而,从这些研究中,以提高灵活性作为涂布液的硬度引入过量的聚二甲基硅氧烷或下牛以便在聚二甲基硅氧烷,以提高其硬度当介绍到的灵活性的量不好,结果呈的。在该实验中,具有高硬度和柔韧性的同时硬涂层为了产生液体其他α的分子量,ω- 氢封端的通过使在聚二甲基硅氧烷氨基甲酸酯丙烯酸酯的灵活性如果你有优秀的Si-O链,并同时与氨酯键含的上行改性聚二甲基硅氧烷丙烯酸酯合成聚氨酯/丙烯酸酯,丙烯酸它们固化剂,光引发剂,溶剂,和涂层,同时改变各种添加剂的量溶液。当用UV光在生产涂布液的照射的固化速度和固化时间,测定在完全固化时,将该涂布液涂覆到薄膜表面上,然后用UV光固化通过辐射Sikineunde测量固化速度和时间。此外,基中所包含的纱线的聚二甲基硅氧烷链长树脂,共混组合物使用铅笔硬度试验机hayeoseo用于硬涂层薄膜按比例测定了硬度,刮涂膜用热处理过的钢条硬度通过测量划痕深度相比较。 实验 材料。的α,ω-氢封端的聚二甲基硅氧烷是一个Gelest的试剂,六亚甲基二(HDI)是一个纯正的试剂,DBTL(二丁基二月桂酸锡)为Aldrich公司只需购买药物,它无需进一步纯化2-羟乙酯(2-HEMA)购买了纯正的试剂抑制剂然后使用除去。使用MIRAMER作为硬化剂

产品成分

上市产品介绍: 颜莹东芳品牌下凝萃焕颜系列第一批11款产品 凝萃焕颜深层净化洁面乳 Revitalizing facial cleanse 蕴含丰富的维生素和肌肤所需的矿物质。清洁能力强,能清除多余油脂、污垢、肌肤倍感清爽舒适、细腻、紧致。由内而外的增强了皮肤的透气性,能在皮肤表面形成一层保护膜(不紧绷),减轻皮肤的压力,平衡了肌肤的PH值。让肌肤徜徉在清新舒爽的愉悦感受中。 〖成份说明〗去离子水、白油、棕榈酸异丙酯、硬脂酸、吐温-80、乙氧基十二烷基硫酸钠、棕榈油、α-硫辛酸、双咪唑烷基脲、绿茶提取物、氯化钠、甘油、丁二醇、三乙醇胺、香精。 凝萃焕颜保湿滋养洁面乳 Nutritive Cleanse 温和去除脸部杂质、污垢及化妆品残余。本品含有棕榈油、二甲基 MEA和α-硫辛酸,不仅可以延缓皮肤老化,还能使肌肤光滑、靓丽,焕发光彩。 〖成份说明〗去离子水、丙二醇、甘油、十六醇、棕榈油、二甲基 MEA、α-硫辛酸、椰油酰胺丙基甜菜碱、辛酸/葵酸三酸甘油酯、EDTA-2钠、绿茶提取物、肉豆蔻酸异丙酯、棕榈酸异丙酯、霍霍巴油、双咪唑烷基脲、香精。 凝萃焕颜美白滋养水 Whitening Toner 滋润干燥肌肤,同时紧致局部的油腻肌肤,抑制出油,从而将各种肤质调整至理想的水油平衡状态。防止色素沉积,激发弹性纤维的生成。收缩肌肤,让肌肤变得紧致有弹性,维护疲倦肌肤,改善灰黄,暗哑肤色,让肌肤恢复活力,净白剔透。 〖成份说明〗去离子水、甘油、EDTA-2钠、三乙醇胺、α-熊果苷、烟酰胺、苯基十一烯酰基丙氨酸、柠檬提取物、尿囊素、视黄醇棕榈酸酯、维生素B6、羟苯甲酯、香精。

凝萃焕颜爽肤滋养水 Moisture toner 平衡肌肤水分、营养及Ph值,使用后可使用肌肤洁净、美丽、健康。独特的棕榈油抗氧化成份,能去除多余角质,加快细胞更新,改善肌肤色泽,提高肤质和肌肤透明度,从而使肌肤呈现清闲亮丽的感觉。 〖成份说明〗去离子水、芦荟萃取液、黄原胶、绿茶萃取液、甘油、EDTA-2钠、透明质酸钠、棕榈酰五肽-4、烟酰胺、棕榈油、视黄醇棕榈酸酯、丁二醇、羟苯甲酯、柠檬酸、香精。 凝萃焕颜亮白精华液 Revitalizing Whitening Serum 精华成份优质纯净,无刺激较温和,且精华分子细腻,可完全被肌肤吸收 ,不会引起脂肪粒。具有超强渗透力、增强肌肤细胞抗衰老能力,改善肤质肤色、令肌肤更加紧致柔滑,白皙动人。 〖成份说明〗去离子水、甘油、棕榈油、维生素E醋酸酯、α-熊果苷、苯基十一烯酰基丙氨酸、汉生胶、视黄醇棕榈酸酯、抗坏血酸磷酸酯镁、丙二醇、黄原胶、香橼果提取物、维生素E、环五聚二甲基硅氧烷、甘油硬脂酸酯、EDTA-4钠、PEG-100硬脂酸酯、甘油硬脂酸酯、聚丙烯酰胺、硬脂酸、聚二甲基硅氧烷、透明质酸钠、羟苯甲酯、羟苯丙酯、向日葵油、香精。 凝萃焕颜紧致精华液 Firming Facial Serum 显著修复面部细纹,紧致肌肤,改善肌肤老化状态,减轻舒缓受损肌肤,提高肌肤的自我修复能力,其中的α-硫辛酸和棕榈油能保湿皮肤,令面容变得饱满、有光泽。 〖成份说明〗去离子水、甘油、辛甘醇、丁二醇、α-硫辛酸、棕榈油、羟乙基纤维素、卡波姆、EDTA-2钠、二甲基 MEA、棕榈酰寡肽、聚二甲基硅氧烷交联聚合物、四胜肽棕榈酸酯、苯甲酸甲脂、尿囊素、透明质酸、咪唑啉基尿素、聚季铵盐-51、三乙醇胺、鲸蜡醇、氯化钾、氯化钠、1,2-戊二醇、聚乙二醇-8、PCA钠、辛基/癸基葡糖苷、氯苯甘醚、二甲基甲氧基苯并二氢吡喃醇、羟苯甲酯、羟苯丙酯、香精。

石墨烯柔性压力传感器

石墨烯柔性压力传感器 传感技术被认为是21世纪科学技术发展的重要组成部分,传感技术、计算机技术和通信技术被称为现代信息产业的三大支柱,广泛应用于电子、航天航空、国防、科研等领域。 石墨烯因其优异的电学和力学性能成为科研的热点,近年来由于石墨烯在柔性基底材料和导电材料方面的进展和突破,使石墨烯柔性压力传感器拥有更多更优异的性能,如传感器质量更轻、使用更方便、灵敏度更高、稳定性更好等。 一、石墨烯柔性压力传感器原理 石墨烯柔性压力传感器是用石墨烯作为柔性基底材料。基底材料对于传感器而言是作为支架而存在的,同时因石墨烯优异的物理特性、晶格结构,使石墨烯基底材料具有高电子迁移率和很好的拉伸性。 石墨烯薄膜是柔性传感器的核心,生长参数的设置会影响石墨烯的质量以及层数,所以必须严格的控制石墨烯的生长参数。相较于单层的石墨烯而言,少层石墨烯的稳定更好,能够提高传感器的检测范围。因此制备少层石墨烯薄膜作为柔性传感器的敏感层。

石墨烯复合材料的压力传感器 二、柔性压力传感器的分类 柔性压力传感器一般是用柔性基底材料和敏感材料制备,敏感材料作为柔性压力传感器的核心部分,必须具有很好的导电性、柔性以及机械强度。随着材料科学和力学研究的进步,传感器的敏感材料从最初的硅到现在以碳纳米管、石墨烯、氧化石墨烯为主的纳米材料,因纳米材料具备很好的柔性、很高的的机械强度、良好的导电性等特性成为最炙手可热的柔性传感器敏感材料,因此石墨烯成为21世纪研究最广泛的纳米材料。 1、电阻式柔性压力传感器 电阻式柔性压力传感器是将感知的压力值大小转化为电阻值或者电压值输出的器件。按照电阻式压力传感器的工作机理可以分为两类:应变式和压阻式。应变式压力传感器受力产生形变,引起电阻值发生变化。 压阻式压力传感器的工作机理:传感器受到压力后敏感元件发生形变导致传感器的电阻也发生改变,再通

食品安全国家标准食品添加剂聚二甲基硅氧烷乳液编制说明

《食品安全国家标准食品添加剂聚二甲基硅氧烷及其乳液》(征求 意见稿)编制说明 一、工作简况,包括任务来源与项目编号、标准主要起草单位、协作单位、主要起草人、简要起草过程 (一)任务来源与项目编号、主要起草单位、协作单位及主要起草人。 食品添加剂聚二甲基硅氧烷及其乳液(原“乳化硅油”)是原卫生部2012年食品安全国家标准制定项目计划之一,根据原卫生部《关于印发2012年食品安全国家标准项目计划的通知》(卫办监督函〔2012〕512号),《食品安全国家标准食品添加剂聚二甲基硅氧烷及其乳液》制定项目于2012年6月获得原卫生部批准立项。四川省疾病预防控制中心、上海市食品生产监督所是该项目承担单位,受原卫生部的委托(委托协议书项目编号spaq-2012-31),负责组织该标准的制定工作。 本标准主要起草单位有:四川省疾病预防控制中心,上海市食品生产监督所。 本标准主要起草人有:许毅,林黎,巢强国、钟全斌、胡和朝、兰真、赵年华、裘建荣、赵宇峰、张晓、徐先顺、李晓辉等。 (二)简要起草过程。 1)接到本任务后,四川疾病预防控制中心和上海市食品生产监督所高度重视,迅速成立了以本单位食品安全专家牵头,以国内外相关检测部门、生产企业等的技术人员为主要技术力量的标准起草工作组,积极征求全国各地的省级质量监督机构、疾病预防控制中心、相关检测单位、生产企业等的意见,组织国内外相关生产、销售企业进行技术研讨,并对相关企业的生产现场、相关实验室的检测情况进行了实地考察,以获得科学、可靠的数据支撑。 2)本标准的起草工作组经过认真研究、讨论,从技术角度认定“乳化硅油”虽然在行业内和市场上较为通用,但从国家标准的严肃性和食品添加剂产品的科学性来看,“乳化硅油”仅为商品通俗用名,不够科学严谨,不能反映产品的真实属性,起草小组认为采用其化学名称“聚二甲基硅氧烷及其乳液”更为妥帖。故将本标准名称定为:“食品添加剂聚二甲基硅氧烷及其乳液”。同时,标准起草工作组根据调研结果和本产品的特征,对检测指标的增减、修订,展开了充分的技术探讨。经行业相关专家和企业代表的多次认真、科学的讨论,形成此报批稿。 3)由于本标准是在原GB 1906-80 《乳化硅油》及原卫生部2011年第19号公告中指定标准《乳化硅油》的基础上重新制定,与原卫生部公告的合理有效衔接是本标准工作的一个重要环节,为了准确把握公告制定标准的技术细节,在广泛收集国内外法规资料的基础上,确认了产品所含主要原料以及辅料的范围、各项技术要求、检测方法等。

柔性薄膜压力传感器规格书ZNX-01

苏州能斯达电子科技有限公司 ?已通过ROHS 认证 柔性薄膜压力传感器 ZNX-01 超薄柔软,厚度小于0.45mm 便于集成 响应速度快、分辨率高 寿命长,耐弯折,通过100万次以上按压测试 检测电路简单 防水、防潮、透气 不同尺寸外形传感器可定制 ZNX-01柔性薄膜压力传感器是苏州能斯达电子自主知识产权研发,采用印刷技术在柔韧轻薄衬底材料上印刷压力敏感纳米功能材料,实现足底压力的分布式检测。 ZNX-01是基于电阻式传感器,输出电阻随着施加于传感器表面压力的增大而减小,通过特定的压力-电阻关系,可以测量出压力大小。将ZNX-01传感器置于鞋底,能够检测出人体站立和行走时的足底压力,检测数据可用于足底压力分析。 尺寸规格 单位:mm 产品特点 产品描述

接口定义 性能指标 项目参数 型号ZNX-01 量程10kg 厚度小于0.45mm 外观尺寸41码(其他尺寸大小可以定制) 响应点400g 耐久性>100万次 初始电阻>10MΩ(无负载) 响应时间<1ms 恢复时间<15ms 测试电压典型值DC3.3V 工作温度-20℃-60℃ 电磁干扰EMI不产生 静电释放ESD不敏感 力敏特性 以下为柔性薄膜压力传感器ZNX-01中一个点的压力-电阻值变化曲线图。图表显示了全部电阻范围内的压力-电阻值关系。 注意: 图表中曲线是在特定的条件下测得的数据绘制而成,曲线关系仅供参考,实际数据请根据具体应用情况安装后测试。

参考电路 图示电路中ZNX-01是以前文接口定义中的左脚传感器图示为例,本图中传感器座1#~10#引脚对应A~J。输出信号Vout 的标号1~10对应接口定义图中的1~10个检测点。 图中电路是用电阻分压原理测量传感器电阻值,根据测量到的Vout 电压值和分压电阻值计算传感器敏感点受力后的电阻值。再根据压力-电阻曲线可计算出压力值。 特别的,如果将Vout 接到MCU 的ADC 端口,通过标定算法,可将采集到的AD 值和压力值对应起来,从而无需计算中间过程量(电压值、电阻值)。 如果对信号的输出阻抗有特殊要求,可在Vout 后端增加运放电路。

聚二甲基硅氧烷消泡剂

天津科技大学本科生 毕业设计(论文)外文资料翻译 学院:材料科学与化学工程学院 专业:化学工程与工艺 姓名:丁信珍 学号:10033225 指导教师(签名): 2014年3月01日

聚二甲基硅氧烷消泡剂 摘要:使用最为广泛的众多消泡剂都是以聚二甲硅氧烷油为基础的,但这些产品的基本信息几乎没有。在多数配方中,疏水强化的粒子分散在油中以增强消泡率,但这种方法涉及到的主要作用机理一直未被确定。为了解决这些问题,我们对聚二甲基硅氧烷消泡剂进行了系统的研究。通过测量其表面界面、接触角、油的扩张速率、粒径分布以及个别膜的稳定特性,并同步测量泡沫的稳定性,我们可以定量的测定聚二甲基硅氧烷消泡剂反应的重要因素。我们发现消泡剂性能的损失(泡沫寿命以60s为标准)与消泡剂粒径大小(<6μm)的降低相一致。更重要的是我们有直接证据表明,位于油水相界面的疏水强化的粒子,可以穿过作为消泡剂粒子的通道的有机相水相界面,从而提高油的进入速率以及消泡剂的效率。关键词:工业消泡剂,聚二甲基硅氧烷油 1 引言 泡沫问题出现在各种工业生产中,例如:精馏、过滤以及发酵。而且不必要的泡沫会引起产品缺陷,例如在油漆、印刷、模塑以及粘合方面的应用。因此在广泛的工业问题和应用行业,抑泡剂和消泡剂显得十分重要,且在不同的状态和不同工作条件下有着各不相同的消泡和抑泡要求。为了满足上述各种要求,我们需要知晓消泡剂的基本工作原理。只有这样,我们才能设计出新的产品以及优化现行的产品。当前,很多消泡剂都是按照配方用PDMS配制出来的,因此我们研究消泡剂的方向是聚合油。 最近Garrett[1]提出了杰出且全面的一般消泡理论,在这个领域所有的重要作品以及发展过程都可以在论文中找到。然而,也正如Garrett在文中指出的那样,我们缺乏对PDMS实际应用的系统的研究。没有这些研究,我们不能充分的评估出相关的工业系统。因此我们的主要目的是总结聚二甲基硅氧烷消泡剂的作用机理,同时为这些机理提供必要的实验数据。特别是我们应解决聚二甲基硅氧烷消泡剂的作用机理,总结反映消泡率的一般属性特征,以及弄清楚加到油中的固体疏水粒子所起的作用;最后我们再研究消泡剂随着时间的推移效率降低的原因。 2 作用机理 尽管在某些情况下,聚二甲基硅氧烷油和疏水粒子在单独情况下仍然是效率很好的消泡剂,但二者的组合明显的表现出了最好的整体消泡效率。因此在很多的商业消泡剂和抑泡剂中,是聚二甲基硅氧烷油和疏水二氧化硅微粒子(0.1μm -10 μm)的混合。如图1所示,这种混合形成了固态油疏水球状颗粒,并处于消泡剂的反应中心。当加入到表面活性剂溶液中时,这些颗粒便分散成乳化液。随后攻击单个的液体薄膜,进而破坏掉泡沫。

柔性阵列式压力传感器的发展现状简介

航天器环境工程第26卷增刊112 SPACECRAFT ENVIRONMENT ENGINEERING 2009年12月柔性阵列式压力传感器的发展现状简介 杨 敏,陈 洪,李明海 (中国工程物理研究院总体工程研究所,绵阳 621900) 摘要:文章在介绍柔性阵列式压力传感器工作原理的基础上,概述了其国内外发展现状。着重介绍了美国Tekscan公司开发的基于矩阵的传感器技术和应用实例,以及中科院合肥智能机械研究所有关柔性传感器的研究现状、产品的性能指标等。文章的工作旨在为层合结构预紧接触压力/间隙测量选择有效、可行的测量系统。 关键词:压力传感器;柔性阵列;接触压力测量 中图分类号:V416.2 文献标识码:A 1 引言 物体间接触应力的测量与分析在许多行业的研究和发展中起着极其重要的作用,接触应力的理论与试验研究也一直是工程和力学的热门课题[1]。由于接触应力的理论分析很难准确,定量地应用于实际问题也有难度, 因而研制设计一种能直接测定接触界面力学参数的装置,实时地测量2个物体在接触面上的压力和应力的分布信息具有重要的意义。 柔性阵列式压力传感器,可用于任意2个柔性或柔/刚接触面表面作用力的分布检测,一般为平面结构。它不仅具有普通阵列式传感器的优点,还具有良好的柔韧性,可以自由弯曲甚至折叠,能够方便地对复杂表面形状的零件进行检测,广泛应用于接触式测量、无损检测、机器人、生物力学等领域[2]。 2 柔性阵列式压力传感器工作原理 柔性阵列式压力传感器属于电阻式传感器,其工作原理与普通电阻式传感器基本相同。即接触力作用在力敏电阻元件上,力敏电阻元件将物理量转化为电阻变化,通过变换电路又转换为电压变化从而得到相关的力信息[3]。现以美国Tekscan公司所研制的柔性阵列式压力传感器为例,对其工作原理进行简单介绍。标准的Tekscan压力传感器由2片很薄的聚酯薄膜组成,一片薄膜的内表面铺设若干行的带状导体,另一片内表面铺设若干列的带状导体;导体本身的宽度以及行间距可以根据不同的测量需要而设计;导体外表有特殊的压敏半导体材料涂层。当2片薄膜合为一体时,大量的横向导体和纵向导体的交叉点就形成了压力感应点阵列。当外力作用到这些感应点上时,半导体的阻值会随外力的变化而成比例变化,由此来反映感应点的压力值。当压力为0时,阻值最大;压力越大,阻值越小,从而可以反映出两接触面间的压力分布情况。通过扫描和测量每一个施力单元的电阻变化,确定表面力的幅值和时间特征,使用Tekscan的配套分析软件,得到实时二维或三维图像。传感器结构见图1,测量电路见图2[4]。 图1 Tekscan传感器结构 图2 测量电路简图

柔性薄膜压力传感器规格书-DF9-16

苏州能斯达电子科技有限公司 柔性薄膜压力传感器DF9-16系列 超薄,厚度小于0.3mm 响应速度快 寿命长,通过100万次以上按压测试 检测电路简单,易于集成应用 可定制传感器外形 可定制传感器量程参数 DF9-16系列柔性薄膜压力传感器是苏州能斯达电子拥有自主知识产权的柔性压力传感技术在柔韧轻薄材料上印刷附着力强、耐弯折、灵敏度高的柔性纳米功能材料,使其实现对压力的高灵敏度检测。 薄膜压力传感器是一种电阻式传感器,输出电阻随着施加在传感器表面压力的增大而减小,通过特定的压力-电阻关系,可以测量出压力大小。适用于柔性面的压力测量场景,可广泛应用于智能家居、消费电子、汽车电子、医疗设备、工业控制、智能机器人等领域。 DF9-16系列目前有500g、2kg、5kg、10kg、20kg 等不同量程型号产品。 尺寸规格 标识尺寸(mm) 长度16.0敏感区外径10.0敏感区内径7.5 Pin 脚距离 2.54公差 0.2 ?已通过ROHS 认证 产品特点 产品描述 尺寸表 尺寸图

性能指标 型号DF9-16@500g DF9-16@2kg DF9-16@5kg DF9-16@10kg DF9-16@20kg 量程500g2kg5kg10kg20kg 厚度<0.3mm 外观尺寸见尺寸表 响应点20g20g150g150g200g 重复性<±9.7%(60%负载) 一致性±10%(同一型号批次) 迟滞+10%(RF+-RF-)/RF+ 耐久性>100万次 初始电阻>10MΩ(无负载) 响应时间<1ms 恢复时间<15ms 测试电压典型值DC3.3V 工作温度-20℃-60℃ 电磁干扰EMI不产生 静电释放ESD不敏感 力敏特性 以下为DF9-16系列各型号柔性薄膜压力传感器的压力-电阻值曲线图。左侧图表显示了全部电阻范围内的压力-电阻值关系;右侧图表为左侧图标的局部细节展示,显示了电阻值在30kΩ以下的压力-电阻关系。 注意: 图表中曲线是在特定条件下测得的数据绘制而成,曲线关系仅供参考,实际数据请根据具体应用情况安装后测试。 DF9-16@500g DF9-16@2kg

压力传感器研究现状及发展趋势

压力传感器研究现状及发展趋势 传感器技术是现代测量和自动化系统的重要技术之一,从宇宙开发到海底探秘,从生产的过程控制到现代文明生活,几乎每一项技术都离不开传感器,因此,许多国家对传感器技术的发展十分重视,如日本把传感器技术列为六大核心技术(计算机、通信、激光、半导体、超导体和传感器) 之一。在各类传感器中压力传感器具有体积小、重量轻、灵敏度高、稳定可靠、成本低、便于集成化的优点,可广泛用于压力、高度、加速度、液体的流量、流速、液位、压强的测量与控制。除此以外,还广泛应用于水利、地质、气象、化工、医疗卫生等方面。由于该技术是平面工艺与立体加工相结合,又便于集成化,所以可用来制成血压计、风速计、水速计、压力表、电子称以及自动报警装置等。压力传感器已成为各类传感器中技术最成熟、性能最稳定、性价比最高的一类传感器。因此对于从事现代测量与自动控制专业的技术人员必须了解和熟识国内外压力传感器的研究现状和发展趋势。 1 压力传感器的发展历程 现代压力传感器以半导体传感器的发明为标志,而半导体传感器的发展可以分为四个阶段[1 ] : (1) 发明阶段(1945 - 1960 年) :这个阶段主要是以1947 年双极性晶体 管的发明为标志。此后,半导体材料的这一特性得到较广泛应用。史密斯(C.S. Smith) 与1945 发现了硅与锗的压阻效应[2 ] ,即当有外力作用于半导体材料时,其电阻将明显发生变化。依据此原理制成的压力传感器是把应变电阻片粘在金属薄膜上,即将力信号转化为电信号进行测量。此阶段最小尺寸大约为1cm。 (2) 技术发展阶段(1960 - 1970 年) :随着硅扩散技术的发展,技术人员在硅的(001) 或(110) 晶面选择合适的晶向直接把应变电阻扩散在晶面上,然后在背面加工成凹形,形成较薄的硅弹性膜片,称为硅杯[3 ] 。这种形式的硅杯传感器具有体积小、重量轻、灵敏度高、稳定性好、成本低、便于集成化的优点,实现了金属- 硅共晶体,为商业化发展提供了可能。 (3) 商业化集成加工阶段(1970 - 1980 年) :在硅杯扩散理论的基础上应用了硅的各向异性的腐蚀技术,扩散硅传感器其加工工艺以硅的各项异性腐蚀技术为主,发展成为可以自动控制硅膜厚度的硅各向异性加工技术[4 ] ,主要有V 形槽法、浓硼自动中止法、阳极氧化法自动中止法和微机控制自动中止法。由于可以在多个表面同时进行腐蚀,数千个硅压力膜可以同时生产,实现了集成化的工厂加工模式,成本进一步降低。

浅谈柔性可穿戴传感器

浅谈柔性可穿戴传感器 随着人们进一步深入信息时代,5G通讯、大数据、云计算、万物互联的物联网、工业4.0等许多高新技术、新概念纷纷被提出。随着信息时代的应用需求越来越高,随之而来的是对于各种信息的广泛需求,这就对被测量信息的围、精度和稳定情况等各性能参数的期望值和理想化要求逐步提高。针对特殊环境与特殊信号下气体、压力、湿度的测量需求,普通传感器已经远远不能满足需求。新材料、新工艺和开发新型传感器与其它学科的交叉整合的传感器层出不穷。随着柔性基质材料的发展,具有透明、柔韧、延展、可自由弯曲甚至折叠、便于携带、可穿戴等特点的柔性传感器由于在医疗保健、健身运动、安全生产等领域的巨大潜力受到越来越大的关注。 可穿戴技术的新领域近年来发展迅速,已成为消费电子市场的重要竞争者。目前,全球可穿戴市场价值约300亿美元,估计到2023年和2026年分别增长100亿美元和150亿美元。大多数可用的可穿戴产品采用智能手表如Apple Watch和健身带的形式。可以为消费者提供有关活动、身体动作和一些消费者使用生命体征的信息。尽管取得了这些成功,但可穿戴设备在实际临床应用中的使用受到限制,主要是由于它们的准确性,有效性和可靠性有限。此外,现有设备的体积刚性和不灵活性质限制了使用的舒适性和持续时间。此外,传感器和数据处理以及分析硬件的高功耗限制了长期可操作性,并迫使开发人员牺牲精度以延长电池寿命。其他重要的限制包括用于传感器放置的有限位置,运动伪像以及处理/解释大量生成的数据。 一、柔性可穿戴传感器的材料 传统的传感器多是在刚性不可弯曲的衬底上制成的,其中具有硅衬底的传感器是最常见的传感器。尽管这些传感器具有广泛的应用领域,但有一些难以避免缺点,如刚度、不敏感、不可弯折等。而柔性可穿戴传感器则需要采用一些可弯折的柔性材料,得益于新材料、新工艺的发展,诸如可弯折的石墨烯、导电纱线或纤维纺织、有机高分子聚合物被纷纷采用。 传感器的材料取决于传感器的应用,可用性,制造总成本等因素。有机电子材料是材料方面的一个主要部门,已经大量被用于制造柔性可穿戴设备设备。用于柔性可穿戴设备的有机器件具有灵活性、体积可变、良好的稳定性、生物适应性良好等优点。这些类型的传感器已用于制造薄膜晶体管,离子泵,聚合物电极等。有机和大面积电子设备(OLAE)是使用功能性油墨开发以薄层印刷的电子器件的方法。用于这些操作的基材是主要的PET和PEN,因为它们与其它有机聚合物相比具有透明性和较低的成本。OLAE流程目前用于开发可穿戴的健康和医疗设备。PDMS、PEN、PI,P(VDF-TrFE),Parylene和Polypyrrole 的使用已经普遍用于开发柔性传感器针对不同的应用。传感器的电极部分也采用新型的导电材料,如碳基纳米材料和金属纳米颗粒。碳基纳米材料包括石墨烯,碳纳米管(CNTs)碳纤维等。在金属纳米粒子中银、金和镍是柔性可穿戴传感器中最常用的一些金属纳米材料。聚二甲基硅氧烷(PDMS),聚对苯二甲酸乙二醇酯(PET),聚萘二甲酸乙二醇酯(PEN),聚酰亚胺(PI)是通常用于开发柔性传感器的一些绝缘基板。这些聚合物材料的差异在于它们的氏模量,折射率等。有一些导电聚合物如聚(3,4-亚乙二氧基噻吩)、聚苯乙烯磺酸盐(PEDOT:PSS)、聚乙炔、聚苯胺与绝缘聚合物相比,由于其较低的带隙而导电。这些聚合物主要用于开发太阳能电池、电池。在碳纳米管CNT中,使用单壁碳纳米管(SWCNT)和多壁碳纳米管(MWCNT)在不同的传感器件也得到部分应用。制造柔性传感器的工艺有很多,其中光刻,丝网印刷,喷墨印刷,激光切割是一些常见的方法。根据柔性传感器的的尺寸来确定制造传感器原型的工艺。 二、感测指标类型

聚硅氧烷&聚二甲基硅氧烷

聚硅氧烷相关资讯 聚二甲基硅氧烷 Dimethylsilicone fluid [63148-62-9] 二甲基硅油, 分子主链由硅氧原子组成,与硅相连的侧基为甲基,无色透明,无毒无嗅的油状物。具有优异的电绝缘性能和耐热性,闪点高,凝固点低,可在-50~200℃温度范围内长期使用。黏温系数小,压缩率大,表面张力小,憎水防潮性好,比热容和导热系数小。实际上不溶于水。 聚二甲基硅氧烷 聚二甲基硅氧烷- 用途 1、电器电子工业:电子插接件等。 2、纤维、皮革:憎水剂、柔软剂、手感改进剂、染色工业的消泡剂、缝制线的润滑。 3、医药、食品:酿造、发酵时间的消泡。 4、橡胶、塑胶、胶模、抛光。 5、化妆品添加剂、憎水、耐候性涂料。 -------------------------------------------------- 聚二甲基硅氧烷微流控芯片的紫外光照射表面处理研究 孟斐陈恒武方群朱海霖方肇伦 作者单位:浙江大学化学系,微分析系统研究所,杭州,310028 高等学校化学学报 =========================================================================== ========== 聚硅氧烷 聚硅氧烷结构式 聚有机硅氧烷(简称聚硅氧烷),是一类以重复的Si-O键为主链,硅原子上直接连接有机基团的聚合物,其通式为

,其中,R代表有机基团,如甲基,苯基等;n为硅原子上连接的有机基团数目(1~3 之间);m为聚合度(m不小于2)。 其商品化的产品包括:硅油、有机硅环体、硅橡胶、硅树脂等。隔热效果很好,在航空领域中有很重要的地位。 聚硅氧烷在历史上曾被称为“硅酮”(Silicone),目前硅酮也会出现在某些场合,如商品目录中。在中国,习惯将硅烷单体和聚硅氧烷统称为有机硅化合物,并称聚硅氧烷液体为硅油,聚硅氧烷橡胶为硅橡胶,聚硅氧烷树脂为硅树脂。 聚硅氧烷主链结构为Si-O-Si结构,本质上与石英一样,区别在于其侧基上连接有机基团。 聚硅氧烷的作用 新型化妆品配方中不含硅氧烷化合物的寥寥无几,而硅氧烷化合物在个人护理产品中的应用已经取得了显著的增长。此外,即使是拥有最先进技术的配方师,仍然不可避免地要使用硅氧烷。 硅氧烷聚合物由不同种类的化合物组成,包括传统的硅油、水溶性聚合物、油溶性聚合物、氟溶性聚合物以及具有多种溶解度的聚合物。它们以各种不同的形式存在,从低粘性流体到具有弹性的弹性体以及合成树脂。的确难以作出选择。但是,如果没有一个有助于为特定的应用选择配方师友好的硅氧烷的目标,就可能会有太多的选择。 然而,了解硅氧烷技术以及其中的构效关系并不比用以生产表面活性剂(润湿剂)的技术基础更复杂,但完全同样重要并具有灵活性。 硅氧烷技术 硅氧烷化合物早在19世纪60年代就为人们所了解,但直到20世纪40年代Eugene RoChow博士进行了开创性的工作,这类重要的化合物才获得商业应用。硅氧烷的化学性质使聚合物化学家能够利用理想的纳米技术构建出准确的分子结构。硅氧烷聚合物源自二氧化硅(Si02),这种天然矿物质占地壳总量的25%。有碳源存在时,二氧化硅在高温下会转化成硅氧烷。然后将所生成的金属粉碎并注入流化床反应器,得到含氯化合物氯硅烷。 将氯硅烷置于水中,有盐酸(HCl)释出,经过蒸馏和多步净化,产生一系列硅氧烷结构单元。其中最重要的是:六甲基二硅氧烷(MM)、环甲基硅氧烷(D4)和Silanic hydrogen (Si-H)化合物。这些原料可采用多种方式进行化合,制成重要的硅氧烷聚合物。 硅氧烷的化学结构 构建硅氧烷化学结构的步骤是确定聚合物链长度、分支以及有机基团插入位置的过程。从其化学结构来看,用字母M(单官能团)、D(双官能团)、T(三官能团)和Q(四官能团)来表示进入分子中的结构基团。M官能团是链终止,因为它们是单官能团;D

相关文档