文档库 最新最全的文档下载
当前位置:文档库 › 高考数学专题解析:求轨迹方程的方法

高考数学专题解析:求轨迹方程的方法

高考数学专题解析:求轨迹方程的方法
高考数学专题解析:求轨迹方程的方法

求轨迹方程的常用方法

一、求轨迹方程的一般方法:

1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭

圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件, 待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。

2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以 判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的 几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得 到轨迹方程。

3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动 的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。

4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的, 而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知 曲线方程,即可得到动点P 的轨迹方程。

5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线 的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。

6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这 类问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得 所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到 轨迹方程),该法经常与参数法并用。 二、求轨迹方程的注意事项:

1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律, 即P 点满足的等量关系,因此要学会动中求静,变中求不变。 )()

()

(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ??

?===

来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通

方程。

3. 求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解,(即以 该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解。(即轨迹上 的某些点未能用所求的方程表示),出现增解则要舍去,出现丢解,则需补 充。检验方法:研究运动中的特殊情形或极端情形。 4.求轨迹方程还有整体法等其他方法。在此不一一缀述。 三、典例分析

1.用定义法求曲线轨迹

求曲线轨迹方程是解析几何的两个基本问题之一,求符合某种条件的动点轨迹方程,其实质就是利用题设中的几何条件,通过坐标互化将其转化为寻求变量之间的关系,在求与圆锥曲线有关的轨迹问题时,要特别注意圆锥曲线的定义在求轨迹中的作用,只要动点满足已知曲线定义时,通过待定系数法就可以直接得出方程。

例1:已知ABC ?的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足

,sin 4

5

sin sin C A B =

+求点C 的轨迹。 【解析】由,sin 45sin sin C A B =+可知1045

==+c a b ,即10||||=+BC AC ,满足椭

圆的定义。令椭圆方程为

12

'

22

'

2=+

b y a x ,则34,5'''=?==b

c a ,

则轨迹方程为19

2522=+y x ()5±≠x ,图形为椭圆(不含左,右顶点)。 【点评】熟悉一些基本曲线的定义是用定义法求曲线方程的关键。

(1) 圆:到定点的距离等于定长

(2) 椭圆:到两定点的距离之和为常数(大于两定点的距离) (3) 双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离) (4) 到定点与定直线距离相等。

【变式1】: 1:已知圆的圆心为M 1,圆的圆心为M 2,

一动圆与这两个圆外切,求动圆圆心P 的轨迹方程。 解:设动圆的半径为R ,由两圆外切的条件可得:,

∴动圆圆心P 的轨迹是以M 1、M 2为焦点的双曲线的右支,c=4,a=2,b 2=12。

故所求轨迹方程为

2:一动圆与圆O :122=+y x 外切,而与圆C :08622=+-+x y x 内切,那么动圆的圆

心M 的轨迹是:

A :抛物线

B :圆

C :椭圆

D :双曲线一支

【解答】令动圆半径为R ,则有??

?-=+=1

||1

||R MC R MO ,则|MO|-|MC|=2,满足双曲线定义。故选D 。

2.用直译法求曲线轨迹方程 此类问题重在寻找数量关系。

例2: 一条线段AB 的长等于2a ,两个端点A 和B 分别在x 轴和y 轴上滑动,求AB 中点P 的轨迹方程?

解 设M 点的坐标为),(y x 由平几的中线定理:在直角三角形AOB 中,OM=

,22

1

21a a AB =?= 22222,a y x a y x =+=+∴

M 点的轨迹是以O 为圆心,a 为半径的圆周.

【点评】此题中找到了OM=

AB 2

1

这一等量关系是此题成功的关键所在。一般直译法有下列几种情况:

1)代入题设中的已知等量关系:若动点的规律由题设中的已知等量关系明显给出,则采用直接将数量关系代数化的方法求其轨迹。

2)列出符合题设条件的等式:有时题中无坐标系,需选定适当位置的坐标系,再根据题设条件列出等式,得出其轨迹方程。

3)运用有关公式:有时要运用符合题设的有关公式,使其公式中含有动点坐标,并作相应的恒等变换即得其轨迹方程。

4)借助平几中的有关定理和性质:有时动点规律的数量关系不明显,这时可借助平面几何中的有关定理、性质、勾股定理、垂径定理、中线定理、连心线的性质等等,从而分析出其数量的关系,这种借助几何定理的方法是求动点轨迹的重要方法.

【变式2】: 动点P (x,y )到两定点A (-3,0)和B (3,0)的距离的比等于2(即2|

||

|=PB PA ),求动点P 的轨迹方程?

【解答】∵|P A |=222

2)3(||,)3(y x PB y x +-=++

代入2|||

|=PB PA 得

22222

2224)3(4)3(2)3()3(y x y x y x y x +-=++?=+-++ 化简得(x -5)2+y 2=16,轨迹是以(5,0)为圆心,4为半径的圆.

3.用参数法求曲线轨迹方程

此类方法主要在于设置合适的参数,求出参数方程,最后消参,化为普通方程。注意参

数的取值范围。

例3.过点P (2,4)作两条互相垂直的直线l 1,l 2,若l 1交x 轴于A 点,l 2交y 轴于B 点,求线段AB 的中点M 的轨迹方程。

【解析】

分析1:从运动的角度观察发现,点M 的运动是由直线l 1引发的,可设出l 1的斜率k 作为参数,建立动点M 坐标(x ,y )满足的参数方程。

解法1:设M (x ,y ),设直线l 1的方程为y -4=k (x -2),(k ≠0) )2(1

4221--

=-⊥x k

y l ,l l 的方程为则直线由 ,,A x l )0k 42(1-∴的坐标为轴交点与 ,k

,B y l )240(2+的坐标为轴交点与 ∵M 为AB 的中点,

)(1222421242为参数k k k y k k x ????

?????

+=+

=-=-=∴

消去k ,得x +2y -5=0。

另外,当k =0时,AB 中点为M (1,2),满足上述轨迹方程; 当k 不存在时,AB 中点为M (1,2),也满足上述轨迹方程。 综上所述,M 的轨迹方程为x +2y -5=0。

分析2:解法1中在利用k 1k 2=-1时,需注意k 1、k 2是否存在,故而分情形讨论,能否避开讨论呢?只需利用△PAB 为直角三角形的几何特性: ||2

1

||AB MP =

解法2:设M (x ,y ),连结MP ,则A (2x ,0),B (0,2y ), ∵l 1⊥l 2,∴△PAB 为直角三角形 ||2

1

||AB MP ,=由直角三角形的性质 222

2

)2()2(·2

1

)4()2(y x y x +=

-+-∴ 化简,得x +2y -5=0,此即M 的轨迹方程。 分析3::设M (x ,y ),由已知l 1⊥l 2,联想到两直线垂直的充要条件:k 1k 2=-1,即可列出轨迹方程,关键是如何用M 点坐标表示A 、B 两点坐标。事实上,由M 为AB 的中点,易找出它们的坐标之间的联系。

解法3:设M (x ,y ),∵M 为AB 中点,∴A (2x ,0),B (0,2y )。 又l 1,l 2过点P (2,4),且l 1⊥l 2 ∴PA ⊥PB ,从而k PA ·k PB =-1,

02242204--=--=

y

,k x k PB PA 而 05212

24·224=-+-=--∴

y x y

x ,化简,得 注意到l 1⊥x 轴时,l 2⊥y 轴,此时A (2,0),B (0,4) 中点M (1,2),经检验,它也满足方程x +2y -5=0 综上可知,点M 的轨迹方程为x +2y -5=0。

【点评】解法1用了参数法,消参时应注意取值范围。解法2,3为直译法,运 用了k PA ·k PB =-1,||2

1

||AB MP =

这些等量关系。用参数法求解时,一 般参数可选用具有某种物理或几何意义的量,如时间,速度,距离,角度, 有向线段的数量,直线的斜率,点的横,纵坐标等。也可以没有具体的意 义,选定参变量还要特别注意它的取值范围对动点坐标取值范围的影响

【变式3】过圆O :x 2 +y 2= 4 外一点A (4,0),作圆的割线,求割线被圆截得的弦BC 的 中点M 的轨迹。 解法一:“几何法”

设点M 的坐标为(x,y ),因为点M 是弦BC 的中点,所以OM ⊥BC,

所以|OM | 2+|MA|2 =|OA| 2

, 即(x 2 +y 2)+(x -4)2 +y 2 =16 化简得:(x -2)2+ y 2 =4................................①

由方程 ① 与方程x 2 +y 2= 4得两圆的交点的横坐标为1,所以点M 的轨迹方程为 (x -2)2+ y 2 =4 (0≤x <1)。所以M 的轨迹是以(2,0)为圆心, 2为半径的圆在圆O 内的部分。

解法二:“参数法”

设点M 的坐标为(x,y ),B (x 1,y 1),C (x 2,y 2)直线AB 的方程为y=k(x -4), 由直线与圆的方程得(1+k 2)x 2 -8k 2x +16k 2-4=0...........(*),

由点M 为BC 的中点,所以x=2

2

21142k k x x +=+...............(1) ,

又OM ⊥BC ,所以k=

x

y

.................(2)由方程(1)(2) 消去k 得(x -2)2+ y 2 =4,又由方程(*)的△≥0得k 2 ≤3

1

,所以x <1.

所以点M 的轨迹方程为(x -2)2+ y 2 =4 (0≤x <1)

所以M 的轨迹是以(2,0)为圆心,2为半径的圆在圆O 内的部分。

4.用代入法等其它方法求轨迹方程

例4. 的的中点求线段为定点上的动点是椭圆点M AB ,a ,

,A b

y a x B )02(122

22=+ 轨迹方程。

分析:题中涉及了三个点A 、B 、M ,其中A 为定点,而B 、M 为动点,且点B 的运动是有规律的,显然M 的运动是由B 的运动而引发的,可见M 、B 为相关点,故采用相关点法求动点M 的轨迹方程。

【解析】设动点M 的坐标为(x ,y ),而设B 点坐标为(x 0,y 0) 则由M 为线段AB 中点,可得

???=-=???????

?=+=+y y a x x y y x a

x 2222

02

2000

0 即点B 坐标可表为(2x -2a ,2y )

上在椭圆点又1)(22

2200=+b

y a x ,y x B

,b

y a a x b

y

a x 1)2()22(1

22

2

222

0220=+-=+∴从而有 14)(422

22=+-b

y a a x M ,的轨迹方程为

得动点整理 【点评】代入法的关键在于找到动点和其相关点坐标间的等量关系

【变式4】如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满

足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程 【解析】: 设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,

|AR |=|PR | 又因为R 是弦AB 的中点,依垂径定理 在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2

)

又|AR |=|PR |=2

2)4(y x +-

所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0

因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动

设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以

x 1=

2

,241+=

+y y x , 代入方程x 2+y 2-4x -10=0,得

2

4

4)2()24(

22+?

-++x y x -10=0 整理得 x 2+y 2=56,这就是所求的轨迹方程

四、常见错误:

【例题5】ABC ?中,B ,C 坐标分别为(-3,0),(3,0),且三角形周长为16,求点A 的

轨迹方程。

【常见错误】由题意可知,|AB|+|AC|=10,满足椭圆的定义。令椭圆方程为122

22=+b y a x ,

则由定义可知3,5==c a ,则4=b ,得轨迹方程为

116

252

2=+y x 【错因剖析】ABC 为三角形,故A ,B ,C 不能三点共线。

【正确解答】ABC 为三角形,故A ,B ,C 不能三点共线。轨迹方程里应除去点)0,5).(0,5(-,

即轨迹方程为

)5(116

252

2±≠=+x y x 提示:1:在求轨迹方程中易出错的是对轨迹纯粹性及完备性的忽略,因此, 在求出曲线方程的方程之后,应仔细检查有无“不法分子”掺杂其 中,将其剔除;另一方面,又要注意有无“漏网之鱼”仍逍遥法外, 要将其“捉拿归案”。

2:求轨迹时方法选择尤为重要,首先应注意定义法,几何法,直接法等方 法的选择。

3:求出轨迹后,一般画出所求轨迹,这样更易于检查是否有不合题意的部 分或漏掉的部分。

针对性练习:

1:已知两点)4

5,4(),45,1(--N M 给出下列曲线方程:①0124=-+y x ;②32

2=+y x ;

③122

2=+y x ;④12

22=-y x ,在曲线上存在点P 满足||||NP MP =的所有曲线方程是( )

A ①③

B ②④

C ①②③

D ②③④

【答案】:D

【解答】: 要使得曲线上存在点P 满足||||NP MP =,即要使得曲线与MN 的中垂线

32--=x y 有交点.把直线方程分别与四个曲线方程联立求解,只有①无解,则选D

2.两条直线01=--my x 与01=-+y mx 的交点的轨迹方程是 . 【解答】:直接消去参数m 即得(交轨法):022=--+y x y x

3:已知圆的方程为(x-1)2+y 2=1,过原点O 作圆的弦0A ,则弦的中点M 的轨迹方程是 .

【解答】:令M 点的坐标为(),y x ,则A 的坐标为(2)2,y x ,代入圆的方程里面得:)0(4

1

)2

1(2

2≠=

+-x y x 4:当参数m 随意变化时,则抛物线()y x m x m =+++-2

2

211的顶点的轨迹方程为___________。

【分析】:把所求轨迹上的动点坐标x ,y 分别用已有的参数m 来表示,然后消去参数m ,便可得到动点的轨迹方程。

【解答】:抛物线方程可化为x m y m ++?? ???=++??

?

??12542

它的顶点坐标为x

m y m =--=--1

254

, 消去参数m 得:y x =-34

故所求动点的轨迹方程为4430x y --=。

5:点M 到点F (4,0)的距离比它到直线x +=50的距离小1,则点M 的轨迹方程为

____________。

【分析】:点M 到点F (4,0)的距离比它到直线x +=50的距离小1,意味着点M 到点F (4,0)的距离与它到直线x +=40的距离相等。由抛物线标准方程可写出点M 的轨迹方程。

【解答】:依题意,点M 到点F (4,0)的距离与它到直线x =-4

的距离相等。则点M 的轨迹是以F (4,0)为焦点、x =-4为准线的抛物线。故所求轨迹方程为y x 2

1

6=。 6:求与两定点()()

O O A 1

030,、,距离的比为1:2的点的轨迹方程为_________

【分析】:设动点为P ,由题意PO PA

=

1

2

,则依照点P 在运动中所遵循的条件,可列出等量关系式。

【解答】:设()

P x

y ,是所求轨迹上一点,依题意得PO PA

=

1

2

由两点间距离公式得:

()x y x y 22

22312

+-+=

化简得:x y x 22

230++-=

7抛物线x y 42=的通径(过焦点且垂直于对称轴的弦)与抛物线交于A 、B 两点,动点C 在抛物线上,求△ABC 重心P 的轨迹方程。

【分析】:抛物线x y 42=的焦点为()01,F 。设△ABC 重心P 的坐标为()x y ,,点C 的坐标为()x y 11

,。其中11≠x 【解答】:因点()

P x

y ,是重心,则由分点坐标公式得:3

3211y

y x x =+=, 即y y x x 32311=-=,

由点()

C x y 11,在抛物线x y 42=上,得:12

14x y =

将y y x x 32311=-=,代入并化简,得:??

?

??-=32342

x y ()1≠x 8.已知双曲线中心在原点且一个焦点为F (,0),直线y=x -1与其相交于M 、N 两点,

MN 中点的横坐标为

,求此双曲线方程。

【解答】:设双曲线方程为122

22=-b

y a x 。将y=x -1代入方程整理得

由韦达定理得322,22

222122221-=-=+-=+b

a a x x

b a a x x 。又有,联立方程组,

解得5,222==b a 。

∴此双曲线的方程为。

9.已知动点P 到定点F (1,0)和直线x=3的距离之和等于4,求点P 的轨迹方程。

【解答】:设点P 的坐标为(x ,y ),则由题意可得。

(1)当x ≤3时,方程变为1)1(,43)1(2

222+=+-=-++-x y x x y x ,化简得

)30(42≤≤=x x y 。

(2)当x>3时,方程变为x y x x y x -=+-=-++-7)1(,43)1(2

222,化简得

故所求的点P 的轨迹方程是或

10.过原点作直线l 和抛物线642+-=x x y 交于A 、B 两点,求线段AB 的中点M 的轨迹方程。

【解答】:由题意分析知直线l 的斜率一定存在,设直线l 的方程y=kx 。把它代

入抛物线方程,得。因为直线和抛物线相交,所以△>0,解得),624()624,(+∞+-?---∞∈x 。 设A (

),B (

),M (x ,y ),由韦达定理得

由消去k 得。

,所以),6()6,(+∞?--∞∈x 。

∴点M 的轨迹方程为),6()6,(,422+∞?--∞∈-=x x x y 。

高考数学难点突破_难点21__直线方程及其应用

难点21直线方程及其应用 直线是最简单的几何图形,是解析几何最基础的部分,本章的基本概念;基本公式;直线方程 的各种形式以及两直线平行、垂直、重合的判定都是解析几何重要的基础内容 ?应达到熟练掌握、灵 活运用的程度,线性规划是直线方程一个方面的应用,属教材新增内容,高考中单纯的直线方程问 题不难,但 将直线方程与其他知识综合的问题是学生比较棘手的 ?难点磁场 (★★★★★)已知 |a|v 1,|b|v 1,|c|v 1,求证:abc+2 >a+b+c. ?案例探究 [例1]某校一年级为配合素质教育,利用一间教室作为学生绘画成果展览室,为节约经费, 他们利用课桌作为展台,将装画的镜框放置桌上,斜靠展出,已知镜框对桌面的倾斜角为 a (90°W av 180° )镜框中,画的上、下边缘与镜框下边缘分别相距 a m, b m,(a > b).问学生距离镜框下缘多远 看画的效果最佳? 命题意图:本题是一个非常实际的数学问题,它不仅考查了直线的有关概念以及对三角知识的 综合运用,而且更重要的是考查了把实际问题转化为数学问题的能力,属★★★★★级题目 知识依托:三角函 数的定义,两点连线的斜率公式,不等式法求最值 错解分析:解决本题有几处至关重要,一是建立恰当的坐标系,使问题转化成解析几何问题求 解;二是把问题进一步转化成求 tanACB 的最大值.如果坐标系选择不当, 或选择求sinACB 的最大值. 都将使问题变得复杂起来. 技巧与方法:欲使看画的效果最佳,应使/ ACB 取最大值,欲求角的最值,又需求角的一个三 角函数值. 解:建立如图所示的直角坐标系, AO 为镜框边,AB 为画的宽度, 下边缘上的一点,在 x 轴的正半轴上找一点 C(x,0)(x >0),欲使看画的 最佳,应使/ ACB 取得最大值. 由三角函数的定义知: A 、B 两点坐标分别为(acos a ,asin a 卜 (bcos a ,bsin a ),于是直线 AC 、BC 的斜率分别为: asina k AC =ta nxCA= , acosa -x (a —b) xsina _ (a —b) sina a b-(a b)x cos : x 2 辿 x-(a b) cos : x 由于/ ACB 为锐角,且x > 0,则tanACB w —(已一小驯〉,当且仅当 辿=x ,即x= ? ab 时, 2 Jab —(a + b)co 弊 x 等号成立,此时/ ACB 取最大值,对应的点为 C(、ab ,0),因此,学生距离镜框下缘 .ab cm 处时, 视角最大,即看画效果最佳 . [例2]预算用2000元购买单件为50元的桌子和20元的椅子,希望使桌椅的总数尽可能的多, 但椅子不少于桌子数,且不多于桌子数的 1.5倍,问桌、椅各买多少才行? 命题意图:利用线性规划的思想方法解决某些实际问题属于直线方程的一个应用,本题主要考 查找出约束条件与目标函数、准确地描画可行域,再利用图形直观求得满足题设的最优解,属★★ ★★★级题目. 知识依托:约束条件,目标函数,可行域,最优解 k BC =ta nxCB = bsin -■ bcos.- —x 于是 tanACB = k BC - k AC 1 ' k BC k AC O 为 效果

求轨迹方程的几种常用方法

求轨迹方程的几种常用方法 求轨迹的方程,是学习解析几何的基础,求轨迹的方程常用的方法主要有: 1直接法: 若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标为( x, y )后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有x,y 的关系式。从而得到轨迹方程,这种求轨迹方程的方法称作直接法。 例1 :在直角△ ABC中,斜边是定长2a (a 0),求直角顶点C的轨迹方程。 解:由于未给定坐标系,为此,首先建立直角坐标系,取AB所在的直线为X轴,AB的中点0为坐 标原点,过0与AB垂直的直线为y轴(如图).则有A ( a,0), B (a,0)。 设动点C为(x, y), ??? | AC |2 |BC |2 |AB|2, a)2y2]2h(x a)2y2]24a2, 即x2 由于C点到达A、B位置时直角三角形ABC不存在,轨迹中应除去A、B两点, 故所求方程为x2y2a2( x a )。 2?代入法(或利用相关点法): 即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解,就得到原动点的轨迹。 例2 :已知一条长为6的线段两端点A、B分别在x、y轴上滑动,点M在线段AB上,且AM : MB 1:2,求动点M的轨迹方程。 解:设 A (a,0) , B (0, b), M (x, y), 一方面,. 另一方面, 36 , M分AB的比为 1 , 2

评注:本例中,由于 M 点的坐标随着 A 、B 的变化而变化,因而动点 M 的坐标(x, y)可以用A 、B 点 的坐标来表示,而点 M 又满足已知条件,从而得到 M 的轨迹方程。此外,与上例一样,求曲线的方程时, 要充分注意化简过程是否完全同解变形,还要考虑曲线上的一些特殊点。 3.几何法: 求动点轨迹问题时,动点的几何特征与平面几何中的定理及有关平面几何知识有着直接或间接的联 系,且利用平面几何的知识得到包含已知量和动点坐标的等式,化简后就可以得到动点的轨迹方程,这种 求轨迹方程的方法称作几何法。 求动点P 的轨迹方程。 解:设P (x, y),由题 APO BPO ,由三角形角平分线定理有 L P A | ^A 0-1 |PB| |BO| ..(x 6)2 y 2 3 3 , (x 2)2 y 2 整理得x 2 y 2 6x 0,当x 0时,y 0, P 和O 重合,无 意义,??? x 0, 又易知P 落在x 轴上时,除线段AB 以外的任何点均有 APO BPO 00 , ? y 0 ( x 6或x 2)也满足要求。 综上,轨迹方程为 x 2 y 2 6x 0 ( x 0)或y 0 (x 6或x 2 )。 评注:本例利用平面几何的知识(三角形的角平分线定理进行解题) ,方便了求轨迹的方程。 4.参数法: 有时很难直接找出动点的横、纵坐标之间关系。如果借助中间量(参数) 联系,然后再从所求式子中消去参数,这便可得动点的轨迹方程。 0 -b _2_ 1 - -b 3 a x 2 b 3y ②代入①得: 3 2 2 (評(3y) 2 36,即一 16 例3 :如图,已知两定点 A ( 6,0 ), B ( 2,0 ), O 为原点,动点 P 与线段AO 、BO 所张的角相等, ,使(x, y)之间的关系建立起

(完整版)轨迹方程的五种求法例题

动点轨迹方程的求法 一、直接法 按求动点轨迹方程的一般步骤求,其过程是建系设点,列出几何等式,坐标代换,化简整理,主要用于动点具有的几何条件比较明显时. 例1已知直角坐标平面上点Q (2,0)和圆C :,动点M 到圆C 的切线长与的比等于常数(如图),求动点M 的轨迹方程,说明它表示什么曲线. 【解析】:设M (x ,y ),直线MN 切圆C 于N ,则有 ,即 , .整理得,这就是动点 M 的轨迹方程.若,方程化为,它表示过点和x 轴垂直的一条直线;若λ≠1,方程化为,它表示以为圆心,为半径的圆. 二、代入法 若动点M (x ,y )依赖已知曲线上的动点N 而运动,则可将转化后的动点N 的坐标入已知曲线的方程或满足的几何条件,从而求得动点M 的轨迹方程,此法称为代入法,一般用于两个或两个以上动点的情况. 例2 已知抛物线,定点A (3,1),B 为抛物线上任意一点,点P 在线段AB 上,且有BP :PA =1:2,当点B 在抛物线上变动时,求点P 的轨迹方程,并指出这个轨迹为哪种曲线. 【解析】:设,由题设,P 分线段AB 的比,∴ 解得.又点B 在抛物线上,其坐标适合抛物线方程,∴ 整理得点P 的轨迹方程为其轨迹为抛物线. 三、定义法 若动点运动的规律满足某种曲线的定义,则可根据曲线的定义直接写出动点的轨迹方程.此法一般用于求圆锥曲线的方程,在高考中常填空、选择题的形式出现. 例3 若动圆与圆外切且与直线x =2相切,则动圆圆心的轨迹方程是 12 2 =+y x MQ ()0>λλλ=MQ MN λ=-MQ ON MO 2 2λ=+--+2 222)2(1y x y x 0)41(4)1()1(222222=++--+-λλλλx y x 1=λ45= x )0,4 5 (2 222 222)1(3112-+=+-λλλλy x )-()0,12(2 2-λλ1 3122-+λλ12 +=x y ),(),,(11y x B y x P 2== PB AP λ.2121,212311++=++= y y x x 2 1 23,232311-=-=y y x x 12+=x y .1)2 3 23()2123( 2+-=-x y ),3 1 (32)31(2-=-x y 4)2(2 2 =++y x

高考数学必背知识点:直线方程

高考数学必背知识点:直线方程数学是学习其他学科的基础。小编准备了高考数学必背知识点,希望你喜欢。 一、直线方程. 1. 直线的倾斜角:一条直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是. 注:①当或时,直线垂直于轴,它的斜率不存在. ②每一条直线都存在惟一的倾斜角,除与轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定. 2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式. 特别地,当直线经过两点,即直线在轴,轴上的截距分别为时,直线方程是:. 注:若是一直线的方程,则这条直线的方程是,但若则不是这条线. 附:直线系:对于直线的斜截式方程,当均为确定的数值时,它表示一条确定的直线,如果变化时,对应的直线也会变化.①当为定植,变化时,它们表示过定点(0,)的直线束.②当为定值,变化时,它们表示一组平行直线. 3. ⑴两条直线平行: ∥两条直线平行的条件是:①和是两条不重合的直线.?②在

和的斜率都存在的前提下得到的.?因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误. (一般的结论是:对于两条直线,它们在轴上的纵截距是,则∥,且或的斜率均不存在,即是平行的必要不充分条件,且) 推论:如果两条直线的倾斜角为则∥. ⑵两条直线垂直: 两条直线垂直的条件:①设两条直线和的斜率分别为和,则有这里的前提是的斜率都存在.?②,且的斜率不存在或,且的斜率不存在.?(即是垂直的充要条件) 4. 直线的交角: ⑴直线到的角(方向角);直线到的角,是指直线绕交点依逆时针方向旋转到与重合时所转动的角,它的范围是,当时. ⑵两条相交直线与的夹角:两条相交直线与的夹角,是指由与相交所成的四个角中最小的正角,又称为和所成的角,它的取值范围是,当,则有. 5. 过两直线的交点的直线系方程为参数,不包括在内) 6. 点到直线的距离: ⑴点到直线的距离公式:设点,直线到的距离为,则有. 注: 1.?两点P1(x1,y1)、P2(x2,y2)的距离公式:. 特例:点P(x,y)到原点O的距离: 其实,任何一门学科都离不开死记硬背,关键是记忆有技

求轨迹方程的常用方法(例题及变式)

求轨迹方程的常用方法: 题型一 直接法 此法是求轨迹方程最基本的方法,根据所满足的几何条件,将几何条件)}(|{M P M 直接翻译成y x ,的形式0),(=y x f ,然后进行等价变换,化简0),(=y x f ,要注意轨迹方程的纯粹性和完备性,即曲线上没有坐标不满足方程的点,也就是说曲线上所有的点适合这个条件而毫无例外(纯粹性);反之,适合条件的所有点都在曲线上而毫无遗漏(完备性)。 例1 过点)3,2(A 任作互相垂直的两直线AM 和AN ,分别交y x ,轴于点N M ,,求线段MN 中点P 的轨迹方程。 解:设P 点坐标为),(y x P ,由中点坐标公式及N M ,在轴上得)2,0(y M ,)0,2(x N ),(R y x ∈ ∴12 0322230-=--?--y x )1(≠x ,化简得01364=-+y x )1(≠x 当1=x 时,)3,0(M ,)0,2(N ,此时MN 的中点)2 3,1(P 它也满足方程01364=-+y x ,所以中点P 的轨迹方程为01364=-+y x 。 变式1 已知动点(,)M x y 到直线:4l x =的距离是它到点(1,0)N 的距离的2倍。 (1) 求动点M 的轨迹C 的方程; (2) 过点(0,3)P 的直线m 与轨迹C 交于,A B 两点。若A 是PB 的中点,求直线m 的斜 率。 题型二 定义法 圆锥曲线定义所包含的几何意义十分重要,应特别重视利用圆锥曲线的定义解题,包括用定义法求轨迹方程。 例2 动圆M 过定点)0,4(-P ,且与圆08:2 2=-+x y x C 相切,求动圆圆心M 的轨迹方程。 解:根据题意4||||||=-MP MC ,说明点M 到定点P C 、的距离之差的绝对值为定值,故点M 的轨迹是双曲线。 ∴2=a ,4=c 故动圆圆心M 的轨迹方程为112 42 2=-y x 变式2 在ABC △中,24BC AC AB =,,上的两条中线长度之和为39, 求ABC △的重心的轨迹方程.

最新高考数学解题技巧-极坐标与参数方程

2018高考数学解题技巧 解答题模板3:极坐标与参数方程 1、 题型与考点(1){极坐标与普通方程的互相转化 极坐标与直角坐标的互相转化 (2) {参数方程与普通方程互化参数方程与直角坐标方程互化 (3) {利用参数方程求值域参数方程的几何意义 2、【知识汇编】 参数方程:直线参数方程:00cos ()sin x x t t y y t θθ=+??=+?为参数 00(,)x y 为直线上的定点, t 为直线上任一点(,)x y 到定 点00(,)x y 的数量; 圆锥曲线参数方程:圆的参数方程:cos ()sin x a r y b r θθθ=+?? =+?为参数(a,b)为圆心,r 为半径; 椭圆22221x y a b +=的参数方程是cos ()sin x a y b θθθ=??=? 为参数; 双曲线2222-1x y a b =的参数方程是sec ()tan x a y b φθφ=??=? 为参数; 抛物线22y px =的参数方程是2 2()2x pt t y pt ?=?=?为参数 极坐标与直角坐标互化公式: 若以直角坐标系的原点为极点,x 轴正半轴为极轴建立坐标系,点P 的极坐标为(,)ρθ,直角坐标为(,)x y , 则cos x ρθ=, sin y ρθ=, 222x y ρ=+, tan y x θ=。 解题方法及步骤 (1)、参数方程与普通方程的互化 化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法;化普通方程为参数方程的基本思路是引入参数,即选定合适的参数t ,先确定一个关系()x f t =(或()y g t =,再代入普通方程(),0F x y =,求得另一关系()y g t =(或()x f t =).一般地,常选择的参数有角、有向线段的数量、斜率,某一点的横坐标(或纵坐标) 例1、方程?????+=-=--t t t t y x 2 222(t 为参数)表示的曲线是( ) A. 双曲线 B.双曲线的上支 C.双曲线的下支 D.圆 解析:注意到2t t 与2t -互为倒数,故将参数方程的两个等式两边分别平方,再相减,即可消去含t 的项,4)22()22(2222-=+--=---t t t t y x ,即有422=+y x ,又注意到 02>t ,222222=?≥+--t t t t ,即

艺术生高考数学专题讲义:考点37 直线及其方程

考点三十七 直线及其方程 知识梳理 1.直线的倾斜角 (1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,把x 轴(正方向)按逆时针方向绕着交点旋转到和直线l 重合所成的角,叫作直线l 的倾斜角.当直线l 和x 轴平行或重合时,规定它的倾斜角为0°. (2)倾斜角的范围为[0°,180°). 2.直线的斜率 (1)定义:当直线l 的倾斜角α≠π 2时,其倾斜角α的正切值tan α叫做这条直线的斜率,斜率 通常用小写字母k 表示,即k =tan α. (2)过两点的直线的斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2) (x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1 . (3) 直线的倾斜角α和斜率k 之间的对应关系 每条直线都有倾斜角,但不是每条直线都有斜率,倾斜角是90°的直线斜率不存在.它们之间的关系如下: 3.直线方程的五种形式 4.过P 1(11222(1)若x 1=x 2,且y 1≠y 2时,直线垂直于x 轴,方程为x =x 1; (2)若x 1≠x 2,且y 1=y 2时,直线垂直于y 轴,方程为y =y 1; (3)若x 1=x 2=0,且y 1≠y 2时,直线即为y 轴,方程为x =0; (4)若x 1≠x 2,且y 1=y 2=0时,直线即为x 轴,方程为y =0.

5.线段的中点坐标公式 若点P 1、P 2的坐标分别为(x 1,y 1)、(x 2,y 2),且线段P 1P 2的中点M 的坐标为(x ,y ),则??? x =x 1+x 2 2y =y 1 +y 2 2 ,此公式为线段P 1P 2的中点坐标公式. 典例剖析 题型一 直线的倾斜角和斜率 例1 已知两点A (-3,3),B (3,-1),则直线AB 的倾斜角等于__________. 答案 56π 解析 斜率k = -1-33-(-3) =-3 3, 又∵θ∈[0,π), ∴θ=5 6 π. 变式训练 经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π 4,则y =__________. 答案 -3 解析 由2y +1-(-3)4-2=2y +4 2=y +2, 得y +2=tan 3π 4=-1.∴y =-3. 解题要点 求斜率的常见方法: 1.若已知倾斜角α或α的某种三角函数值,一般根据k =tan α求斜率. 2.若已知直线上两点A (x 1,y 1),B (x 2,y 2),一般根据斜率公式k =y 2-y 1 x 2-x 1(x 1≠x 2)求斜率. 3.若已知直线的一般式方程ax +by +c =0,一般根据公式k =-a b 求斜率. 题型二 直线方程的求解 例2 已知△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3),求: (1)BC 边所在直线的方程; (2)BC 边上中线AD 所在直线的方程; (3)BC 边的垂直平分线DE 的方程. 解析 (1)因为直线BC 经过B (2,1)和C (-2,3)两点,由两点式得BC 的方程为y -13-1=x -2 -2-2, 即x +2y -4=0.

高中数学全参数方程知识点大全

高考复习之参数方程 一、考纲要求 1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程. 2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数 方程或极坐标方程求两条曲线的交点. 二、知识结构 1.直线的参数方程 (1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是 ? ? ?+=+=a t y y a t x x sin cos 00 (t 为参数) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α= a b 的直线的参数方程是 ?? ?+=+=bt y y at x x 00(t 不参数) ② 在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2 +b 2 =1,②即为标准式,此 时, | t |表示直线上动点P 到定点P 0的距离;若a 2+b 2 ≠1,则动点P 到定点P 0的距离是 22b a +|t |. 直线参数方程的应用 设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是 ? ??+=+=a t y y a t x x sin cos 00 (t 为参数) 若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则 (1)P 1、P 2两点的坐标分别是 (x 0+t 1cos α,y 0+t 1sin α) (x 0+t 2cos α,y 0+t 2sin α); (2)|P 1P 2|=|t 1-t 2|; (3)线段P 1P 2的中点P 所对应的参数为t ,则 t= 2 2 1t t + 中点P 到定点P 0的距离|PP 0|=|t |=|2 2 1t t +| (4)若P 0为线段P 1P 2的中点,则 t 1+t 2=0.

高考动点轨迹方程的常用求法(含练习题及答案)

轨迹方程的经典求法 一、定义法:运用有关曲线的定义求轨迹方程. 例2:在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程. 解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M 为重心,则有 2 39263 BM CM +=?=. M ∴点的轨迹是以B C ,为焦点的椭圆, 其中1213c a ==, .5b =∴. ∴所求ABC △的重心的轨迹方程为 22 1(0)16925 x y y +=≠. 二、直接法:直接根据等量关系式建立方程. 例1:已知点(20)(30)A B -,,,,动点()P x y ,满足2PA PB x = ·,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线 解析:由题知(2)PA x y =--- ,,(3)PB x y =-- ,,由2P AP B x = ·,得22(2)(3)x x y x ---+=,即26y x =+, P ∴点轨迹为抛物线.故选D . 三、代入法:此方法适用于动点随已知曲线上点的变化而变化的轨迹问题. 例3:已知△ABC 的顶点(30)(10)B C -,,,,顶点A 在抛物线2y x =上运动,求ABC △的重心G 的轨迹方程. 解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++? =????=?? ,,00323x x y y =+??=?, ①∴. ② 又00()A x y ,∵在抛物线2y x =上,2 00y x =∴. ③ 将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是24 34(0)3 y x x y =++≠. 四、待定系数法:当曲线的形状已知时,一般可用待定系数法解决. 例5:已知A ,B ,D 三点不在一条直线上,且(20)A -, ,(20)B ,,2AD = ,1()2 AE AB AD =+ . (1)求E 点轨迹方程; (2)过A 作直线交以A B ,为焦点的椭圆于M N ,两点,线段MN 的中点到y 轴的距离为4 5 ,且直线MN 与E 点的轨迹相切,求椭圆方程. 解:(1)设()E x y ,,由1()2 AE AB AD =+ 知E 为BD 中点,易知(222)D x y -, . 又2AD = ,则22(222)(2)4x y -++=. 即E 点轨迹方程为221(0)x y y +=≠; (2)设1122()()M x y N x y ,,,,中点00()x y ,. 由题意设椭圆方程为22 2214 x y a a +=-,直线MN 方程为(2)y k x =+.

高中数学直线方程公式

直线方程公式 1.斜率公式 ①若直线的倾斜角为α(00≤α<1800), 则k=tan α (α2 π≠) ②若直线过点111(,)P x y 和222(,)P x y 两点. 则21 21 y y k x x -= - 解题时,要从斜率存在与不存在两个方面分类讨论。点P 1(x 1,y 1),P 2(x 2,y 2)的中点P 0(x 0,y 0),则x 0=(x 1+ x 2)/2,y 0=(y 1+ y 2)/2。 2.方向向量坐标 : ()()k y y x x x x p p x x ,1,11 1 2 1 2 1 22 1 1 2=---= - 3.两条直线的平行和垂直 【1】两直线平行的判断 (1)若111:l y k x b =+,222:l y k x b =+,则l 1∥l 2充要条件是k 1=k 2,且b 1≠b 2。 (2)若l 1:x=x 1, l 2:x=x 2,则l 1∥l 2充要条件是x 1≠x 2。 (3)不重合的两条直线l 1、l 2倾斜角分别为α1、α2,则l 1∥l 2充要条件是α1=α2。 (4)l 1:A 1x+B 1y+C 1=0, l 2:A 2x+B 2y+C 2=0,且A 1、A 2、B 1、B 2都不为零,则l 1∥l 2 充要条件是A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0(或A 1C 2-A 2C 1≠0)。11112222 ||A B C l l A B C ? =≠。 【2】两直线垂直的判断 (1)若111:l y k x b =+,222:l y k x b =+,则l 1⊥l 2充要条件是k 1·k 2=-1。 (2)若l 1的斜率不存在,则l 1⊥l 2充要条件是l 2的斜率为零。 (3)两条直线l 1、l 2倾斜角分别为α1、α2,则l 1⊥l 2充要条件是21a -a =900。 (4)l 1:A 1x+B 1y+C 1=0, l 2:A 2x+B 2y+C 2=0,且A 1、A 2、B 1、B 2都不为零,则l 1⊥l 2 充要条件是A 1A 2+B 1B 2=0。 【3】两直线相交的判断 (1)两直线方程组成的方程组有唯一解是两直线相交的充要条件。 (2)两直线斜率存在时,斜率不等是两直线相交的充要条件。 (3)两直线倾斜角不相等是两直线相交的充要条件。 (4)直线l 1:A 1x+B 1y+C 1=0, l 2:A 2x+B 2y+C 2=0,则A 1B 2-A 2B 1≠0是两直线相交的充要条件。

解析几何求轨迹方程的常用方法

解析几何求轨迹方程的常用方法 求轨迹方程的一般方法: 1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。 2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 一:用定义法求轨迹方程 例1:已知ABC ?的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 4 5 sin sin C A B =+求点C 的轨迹。

例2: 已知ABC ?中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,若b c a ,,依次构成等差数列,且b c a >>, 2=AB ,求顶点C 的轨迹方程. 【变式】:已知圆 的圆心为M 1,圆 的圆心为M 2,一动圆与这两个圆外切,求动 圆圆心P 的轨迹方程。 【变式】:⊙C :22(3)16x y ++=内部一点(3,0)A 与圆周上动点Q 连线AQ 的中垂线交CQ 于P ,求点P 的轨迹方程. 二:用直译法求轨迹方程 例3:一条线段两个端点A 和B 分别在x 轴和y 轴上滑动,且BM=a ,AM=b ,求AB 中点M 的轨迹方程?

高考数学参数方程所有经典类型

高考数学参数方程所有经典类型(必刷题) 1.极坐标系与直角坐标系xoy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为 极轴.已知直线l 的参数方程为1222 x t y ?=+????=??(t 为参数),曲线C 的极坐标方程为 2sin 8cos ρθθ=. (Ⅰ)求C 的直角坐标方程; (Ⅱ)设直线l 与曲线C 交于,A B 两点,求弦长||AB . 2.已知直线l 经过点1 (,1)2P ,倾斜角α=6 π,圆C 的极坐标方程为)4πρθ=-. (1)写出直线l 的参数方程,并把圆C 的方程化为直角坐标方程; (2)设l 与圆C 相交于两点A 、B ,求点P 到A 、B 两点的距离之积. 3.在平面直角坐标系xOy 中,已知曲线1C :cos sin θθ=??=? x y (θ为参数),将1C 上的所有 和2倍后得到曲线2C .以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l :sin )4ρθθ+=. (1)试写出曲线1C 的极坐标方程与曲线2C 的参数方程; (2)在曲线2C 上求一点P ,使点P 到直线l 的距离最小,并求此最小值. 4.在直角坐标系xoy 中,直线l 的方程为40x y -+=,曲线C 的参数方程为

x 3cos y sin ααα ?=??=??(为参数). (1)已知在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为(4,)2π ,判断点P 与直线l 的位置关系; (2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值. 5.在平面直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐V 标方程为πcos =13ρθ? ?- ??? ,M ,N 分别为曲线C 与x 轴、y 轴的交点. (1)写出曲线C 的直角坐标方程,并求M ,N 的极坐标; (2)求直线OM 的极坐标方程. 6.(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线 (为参数),(为参数). (1)化 的方程为普通方程; (2)若上的点P 对应的参数为为上的动点,求中点到直线 (为参数)距离的最小值.

最新高考数学直线和圆的方程专题复习(专题训练)

专题六、解析几何(一) 直线和圆 1.直线方程:0=+++=c by ax t kx y 或 2.点关于特殊直线的对称点坐标: (1)点),(00y x A 关于直线方程x y =的对称点),(n m A '坐标为:0y m =,0x n =; (2) 点),(00y x A 关于直线方程b x y +=的对称点),(n m A '坐标为:b y m -=0,b x n +=0; (3)点),(00y x A 关于直线方程x y -=的对称点),(n m A '坐标为:0y m -=,0x n -=; (4)点),(00y x A 关于直线方程b x y +-=的对称点),(n m A '坐标为:b y m +-=0,b x n +-=0; 3.圆的方程:()()2 2 2 x a y b r -+-=或() 2 2 2 2 040x y Dx Ey F D E F ++++=+->, 无xy 。

4.直线与圆相交: (1)利用垂径定理和勾股定理求弦长: 弦长公式:222d r l -=(d 为圆心到直线的距离),该公式只适合于圆的弦长。 若直线方程和圆的方程联立后,化简为:02 =++c bx ax ,其判别式为?,则 弦长公式(万能公式):12l x =-= a k a c a k ? +=--+=2 2214b 1)( 注意:不需要单独把直线和圆的两个交点的坐标求出来来求弦长,只要设出它们的坐标即可, 再利用直线方程和圆的联立方程求解就可达到目标。这是一种“设而不求”的技巧,它可以简化运算,降低思考难度,在解析几何中具有十分广泛的应用。 5.圆的切线方程: (1)点在圆外: 如定点()00,P x y ,圆:()()2 2 2 x a y b r -+-=,[()()2 2 2 00x a y b r -+->] 第一步:设切线l 方程()00y y k x x -=-;第二步:通过d r =,求出k ,从而得到切线方程,这里的切线方程的有两条。特别注意:当k 不存在时,要单独讨论。 (2)点在圆上: 若点P ()00x y ,在圆()()2 2 2 x a y b r -+-=上,利用点法向量式方程求法,则切线方程为: ?=--+--0)(()((0000b y y y a x x x ))()()()()200x a x a y b y b r --+--=。 点在圆上时,过点的切线方程的只有一条。 由(1)(2)分析可知:过一定点求某圆的切线方程,要先判断点与圆的位置关系。 (3)若点P ()00x y ,在圆()()222x a y b r -+-=外,即()()22 200x a y b r -+->, 过点P ()00x y ,的两条切线与圆相交于A 、B 两点,则AB 两点的直线方程为: 200))(())((r b y b y a x a x =--+--。 6.两圆公共弦所在直线方程: 圆1C :2 2 1110x y D x E y F ++++=,圆2C :2 2 2220x y D x E y F ++++=, 则()()()1212120D D x E E y F F -+-+-=为两相交圆公共弦方程。 7.圆的对称问题: (1)圆自身关于直线对称:圆心在这条直线上。 (2)圆C 1关于直线对称的圆C 2:两圆圆心关于直线对称,且半径相等。 (3)圆自身关于点P 对称:点P 就是圆心。

解析几何求轨迹方程的常用方法讲解

解析几何求轨迹方程的常用方法 求轨迹方程的一般方法: 1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。 2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 一:用定义法求轨迹方程 例1:已知ABC ?的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 4 5 sin sin C A B =+求点C 的轨迹。

例2: 已知ABC ?中,A ∠、B ∠、 C ∠的对边分别为a 、b 、c ,若b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程. 【变式】:已知圆的圆心为M 1,圆 的圆心为M 2,一动圆与这两个圆外切,求动圆 圆心P 的轨迹方程。 【变式】:⊙C :22(3)16x y ++=内部一点(3,0)A 与圆周上动点Q 连线AQ 的中垂线交CQ 于P ,求点P 的轨迹方程. 二:用直译法求轨迹方程 例3:一条线段两个端点A 和B 分别在x 轴和y 轴上滑动,且BM=a ,AM=b ,求AB 中点M 的轨迹方程?

高考数学参数方程大题

高考数学参数方程大题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高三最后一题 1、以平面直角坐标系的原点为极点,x 轴正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,设点A 的极坐标为)6 ,2(π ,直线l 过点A 且与极轴成角 为 3π,圆C 的极坐标方程为)4 cos(2πθρ-=. (1)写出直线l 参数方程,并把圆C 的方程化为直角坐标方程; (2)设直线l 与曲线圆C 交于B 、C 两点,求AC AB .的值. 【答案】(1)直线l C 的直角坐标方程为02222=--+y x y x ;(2 2、已知曲线C 的参数方程为31x y α α ?=+??=+??(α为参数),以直角坐标系原点 为极点,x 轴正半轴为极轴建立极坐标系. (1)求曲线C 的极坐标方程,并说明其表示什么轨迹. (2)若直线的极坐标方程为1 sin cos θθρ -= ,求直线被曲线C 截得的弦长. 【答案】(1)6cos 2sin ρθθ=+(2 3、在直角坐标系xOy 中,直线l 的参数方程为t t y t x (22522 5??? ??? ?+=+ -=为参数),若以 O 点为极点,x 轴正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为 θρcos 4=。 (1)求曲线C 的直角坐标方程及直线l 的普通方程; (2)将曲线C 上各点的横坐标缩短为原来的 2 1 ,再将所得曲线向左平移1个单位,得到曲线1C ,求曲线1C 上的点到直线l 的距离的最小值 【答案】(1)() 422 2 =+-y x ,052=+-y x (2 )

求动点的轨迹方程(方法例题习题答案)

求动点的轨迹方程(例题,习题与答案) 在中学数学教学和高考数学考试中,求动点轨迹的方程和曲线的方程是一个难点和重点内容(求轨迹方程和求曲线方程的区别主要在于:求轨迹方程时,题目中没有直接告知轨迹的形状类型;而求曲线的方程时,题目中明确告知动点轨迹的形状类型)。求动点轨迹方程的常用方法有:直接法、定义法、相关点法、参数法与 交轨法等;求曲线的方程常用“待定系数法” 求动点轨迹的常用方法 动点P的轨迹方程是指点P的坐标(X, y)满足的关系式。 1.直接法 (1)依题意,列出动点满足的几何等量关系; (2)将几何等量关系转化为点的坐标满足的代数方程。 例题已知直角坐标平面上点Q(2,0)和圆C: x2+y2=1,动点M到圆C的切线长等与MQ 求动点M的轨迹方程,说明它表示什么曲线. 解:设动点M(x,y),直线MN切圆C于NO 2 2 依题意:MQ=IMN ,即MQl = MN 而MNl=Mo — NO ,所以 2 2 MQ =IMO -1 2 2 2 2 (x-2) +y =X +y -1 化简得:X= 5。动点M的轨迹是一条直线。 2.定义法 分析图形的几何性质得出动点所满足的几何条件,由动点满足的几何条件可以判断出动点的轨迹满足圆(或椭圆、双曲线、抛物线)的定义。依题意求出曲线的相关参数,进一步写出轨迹方程。 例题:动圆M过定点P (- 4,0 ),且与圆C:X2+y2—8χ = 0相切,求动圆圆心M的轨迹方程。解:设M(x,y),动圆M的半径为r。若圆M与圆C相外切,则有∣ MC I =r + 4

若圆M与圆C相内切,则有∣ MC ∣ =r-4 而∣ MP ∣ =r,所以 ∣ MCl - ∣ MP ∣ =± 4 动点M到两定点P(-4,0),C(4,0)的距离差的绝对值为4,所以动点M的轨迹为双曲线。其中a=2, C=4。 动点的轨迹方程为: 2 2 4 12 3. 相关点法 若动点P(X,y)随已知曲线上的点Q(χ0,y0)的变动而变动,且χ0、y0可用x、y表示,则将Q点坐标表达式代入已知曲线方程,即得点 P的轨迹方程。这种方法称为相关点法。例题:已知线段AB的端点B 的坐标是(4,3),端点A 在圆C :(x 1)2y^4 上运动,求线段AB 的 中点M的轨迹方程。 解:设M(x,y), A(X A V B),依题意有: 4 X A 3 y A X= , y= 2 2 则:X A=2X-4, y A =2y-3,因为点A(X A V B)在圆C: (x 1)2y^4 上,所以(2X-4)2 (2y -3)2=4

考点40 直线方程——2021年高考数学专题复习真题练习

考点40 直线方程 【题组一 斜率与倾斜角】 1的倾斜角为 。 10y -+= 2.直线与直线的夹角为______________. 1:210l x y -+=2:210l x y ++= 3.已知直线过点且与以,为端点的线段有公共点,则直线倾斜角的取值范l (1,0)P (2,1)A (4,3)B -AB l 围为_______. 【题组二 直线方程】 1.过点(1,2),且在两坐标轴上的截距相等的直线有( ) A .1条 B .2条 C .3条 D .4条 2.“直线在坐标轴上截距相等”是“”的( ) :21l y kx k =+-1k =-A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【题组三 直线的位置关系】 1.设a ∈R ,则“a =3”是“直线ax +2y +3a =0和直线3x +(a ﹣1)y =a ﹣7平行”的( ) A .充分而不必要条件 B .必要而不充分条件

C .充分必要条件 D .既不充分也不必要条件 2.已知m 为实数,直线,,若,则实数m 的值( ) 1:10l mx y +-=()23220l m x my -+-=: 12l l //A .2 B .1 C .1或2 D .0或 13 3.已知直线,直线,且∥,若均为正数,则的最小:3210p x y -+=:(1)0q ax b y +-=p q ,a b 23a b +值是( ) A . B . C .8 D .24 25383 4.是“直线与直线相互垂直”的( ). 14 a =(1)310a x ay +++=(1)(1)30a x a y -++-=A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 【题组四 距离问题】 1.直线与直线之间的距离是______. 110l x y -+=:250l x y -+=: 2.点是曲线上任意一点,则点到直线的最小距离是( ) P 22ln 0x y --=P 4410x y ++= A B C D . ln 2)-ln 2)+1ln 2)2+1(1ln 2)2 +

相关文档
相关文档 最新文档