文档库 最新最全的文档下载
当前位置:文档库 › 8页可打印热学习题

8页可打印热学习题

8页可打印热学习题
8页可打印热学习题

热学部分大作业

选题:

1.如图,一定量的理想气体,由平衡状态A变到平

衡状态B (p A= p B),则无论经过的是什么过程,

系统必然

(A) 对外作正功.(B) 内能增加.

(C) 从外界吸热.(D) 向外界放热.

2.设有以下一些过程:

(1) 两种不同气体在等温下互相混合.

(2) 理想气体在定体下降温.

(3) 液体在等温下汽化.

(4) 理想气体在等温下压缩.

(5) 理想气体绝热自由膨胀.

在这些过程中,使系统的熵增加的过程是:

(A) (1)、(2)、(3). (B) (2)、(3)、(4).

(C) (3)、(4)、(5). (D) (1)、(3)、(5).

3.一容器贮有某种理想气体,其分子平均自由程为0,若气体的热力学温度降到原

来的一半,但体积不变,分子作用球半径不变,则此时平均自由程为

(A) 0

2λ.(B)

λ.

(C)

2

/

λ.(D)

λ/ 2.

4.如图所示,一绝热密闭的容器,用隔板分成相等的两部

分,左边盛有一定量的理想气体,压强为p0,右边为真

空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,

气体的压强是

(A) p0.(B) p0 / 2.

(C)2γp0.

(D) p0 / 2γ.

(=

γC

p

/C V)

5.一绝热容器,用质量可忽略的绝热板分成体积相等的两部分.两

边分别装入质量相等、温度相同的H2气和O2气.开始时绝热

板P固定.然后释放之,板P将发生移动(绝热板与容器壁之间

不漏气且摩擦可以忽略不计),在达到新的平衡位置后,若比较

两边温度的高低,则结果是:

(A) H2气比O2气温度高.

(B) O2气比H2气温度高.

(C)两边温度相等且等于原来的温度.

(D) 两边温度相等但比原来的温度降低了.

6.人设计一台卡诺热机(可逆的).每循环一次可从400 K的高温热源吸热1800 J,向

300 K的低温热源放热800 J.同时对外作功1000 J,这样的设计是

(A) 可以的,符合热力学第一定律.

(B) 可以的,符合热力学第二定律.

(C) 不行的,卡诺循环所作的功不能大于向低温热源放出的热量.

(D) 不行的,这个热机的效率超过理论值.

7. 1 mol刚性双原子分子理想气体,当温度为T时,其内能为

(A)

RT

2

3

.(B)

kT

2

3

(C)RT 25. (D)kT 25.

(式中R 为普适气体常量,k 为玻尔兹曼常量)

8. 理想气体经历如图所示的abc 平衡过程,则该系统对外作功W ,从外界吸收的热量Q 和内能的增量E ?的正负情况如下: (A)ΔE >0,Q >0,W <0.

(B)ΔE >0,Q >0,W >0. (C)ΔE >0,Q <0,W <0. (D) ΔE <0,Q<0,W <0.

9. 某理想气体状态变化时,内能随体积的变化关系如图中AB 直线所示.A →B 表示的过程是 (A) 等压过程. (B) 等体过程.

(C) 等温过程. (D) 绝热过程.

10. 一定量理想气体经历的循环过程用V -T 曲线表示如图.在此循环过程中,气体从外界吸热的过程是 (A) A →B . (B) B →C .

(D) B →C 和B →C .

T ,气体分子的质量为m .根据理想气x 方向的分量平方的平均值

(A) m kT x 32=v . (B) m kT x 3312=v .

(C) m kT x /32

=v . (D) m kT x /2=v .

12. 玻尔兹曼分布律表明:在某一温度的平衡态,

(1) 分布在某一区间(坐标区间和速度区间)的分子数,与该区间粒子的能量成正比.

(2) 在同样大小的各区间(坐标区间和速度区间)中,能量较大的分子数较少;能量较小

的分子数较多.

(3) 在大小相等的各区间(坐标区间和速度区间)中比较,分子总是处于低能态的概率大

些.

(4) 分布在某一坐标区间内、具有各种速度的分子总数只与坐标区间的间隔成正比,与

粒子能量无关.

以上四种说法中,

(A) 只有(1)、(2)是正确的.

(B) 只有(2)、(3)是正确的.

(C) 只有(1)、(2)、(3)是正确的.

(D) 全部是正确的.

13. 两个完全相同的气缸内盛有同种气体,设其初始状态相同,今使它们分别作绝热

压缩至相同的体积,其中气缸1内的压缩过程是非准静态过程,而气缸2内的压

缩过程则是准静态过程.比较这两种情况的温度变化:

(A) 气缸1和2内气体的温度变化相同.

(B) 气缸1内的气体较气缸2内的气体的温度变化大.

(C) 气缸1内的气体较气缸2内的气体的温度变化小.

(D) 气缸1和2内的气体的温度无变化.

14. 根据热力学第二定律判断下列哪种说法是正确的.

(A) 热量能从高温物体传到低温物体,但不能从低温物体传到高温物体.

(B) 功可以全部变为热,但热不能全部变为功.

(C) 气体能够自由膨胀,但不能自动收缩.

(D) 有规则运动的能量能够变为无规则运动的能量,但无规则 p

O V a b c p O V

b 1 2 a

c

运动的能量不能变为有规则运动的能量.

15. 如图,bca 为理想气体绝热过程,b 1a 和b 2a 是任意过程,则上述两过程中气体作

功与吸收热量的情况是:

(A) b 1a 过程放热,作负功;b 2a 过程放热,作负功.

(B) b 1a 过程吸热,作负功;b 2a 过程放热,作负功.

(C) b 1a 过程吸热,作正功;b 2a 过程吸热,作负功.

(D) b 1a 过程放热,作正功;b 2a 过程吸热,作正功.

16. 热力学第二定律表明:

(A) 不可能从单一热源吸收热量使之全部变为有用的功.

(B) 在一个可逆过程中,工作物质净吸热等于对外作的功.

(C) 摩擦生热的过程是不可逆的.

(D) 热量不可能从温度低的物体传到温度高的物体.

17. 设有下列过程:

(1) 用活塞缓慢地压缩绝热容器中的理想气体.(设活塞与器壁无摩擦)

(2) 用缓慢地旋转的叶片使绝热容器中的水温上升.

(3) 一滴墨水在水杯中缓慢弥散开.

(4) 一个不受空气阻力及其它摩擦力作用的单摆的摆动.

其中是可逆过程的为

(A) (1)、(2)、(4).

(B) (1)、(2)、(3).

(C) (1)、(3)、(4).

(D) (1)、(4).

18. 某理想气体分别进行了如图所示的两个卡诺循环:Ⅰ(abcda )和Ⅱ(a'b'c'd'a'),且两个循环曲线所围面积相等.设循环I的效率为η,每次循环在高温热源处吸的热量为Q ,循环Ⅱ的效率为η′,每次循环在高温热源处吸的热量为Q ′,

(A) η < η′, Q < Q ′. (B) η < η′, Q > Q ′.

(C) η > η′, Q < Q ′. (D) η > η′, Q > Q ′.

19. 一物质系统从外界吸收一定的热量,则

(A) 系统的内能一定增加.

(B) 系统的内能一定减少.

(C) 系统的内能一定保持不变.

(D) 系统的内能可能增加,也可能减少或保持不变.

20. 一定量的理想气体,从p -V 图上初态a 经历(1)或(2)过

程到达末态b ,已知a 、b 两态处于同一条绝热线上(图中虚线是绝热线),则气体在

(A) (1)过程中吸热,(2) 过程中放热. (B) (1)过程中放热,(2) 过程中吸热. (C) 两种过程中都吸热.

(D) 两种过程中都放热.

21. 气缸中有一定量的氮气(视为刚性分子理想气体),经过绝热压缩,使其压强变为原

来的2倍,问气体分子的平均速率变为原来的几倍?

(A) 22/5. (B) 22/7. (C) 21/5. (D) 21/7.

填空题

1. 已知f (v )为麦克斯韦速率分布函数,N 为总分子数,则

(1) 速率v > 100 m ·s -1的分子数占总分子数的百分比的表达式为_________;

(2) 速率v > 100 m ·s -1的分子数的表达式为__________________. V p O a b c d

a' b' c' d'

V

2. 当理想气体处于平衡态时,若气体分子速率分布函数为f (v ),则分子速率处于最概然速

率v p 至∞范围内的概率△N / N =________________.

3. 如图,温度为T 0,2 T 0,3 T 0三条等温线与两条绝热线围成三

个卡诺循环:(1) abcda ,(2) dcefd ,(3) abefa ,其效率分别为 η1____________,η2____________,η 3 ____________.

4. 1 mol 的单原子分子理想气体,在1 atm 的恒定压强下,从0℃加热到100℃,则气体的内能改变了_______________J .(普适气体常量R =8.31 J ·mol -1·K -1 )

5. 如图所示,一定量的理想气体经历a →b →c 过程,在此

过程中气体从外界吸收热量Q ,系统内能变化?E ,请在以下空格内填上>0或<0或= 0:

Q _____________,?E ___________. 6. 一定量理想气体,从同一状态开始使其体积由V 1膨胀到2V 1,分别经历以下三种过程:(1) 等压过程;(2) 等温过程;(3)绝热过程.其中:__________过程气体对外

作功最多;____________过程气体内能增加最多;__________过程气体吸收的热量最多.

7. 一热机从温度为 727℃的高温热源吸热,向温度为 527℃的低温热源放热.若热机在最

大效率下工作,且每一循环吸热2000 J ,则此热机每一循环作功_________________ J .

8. 在推导理想气体压强公式中,体现统计意义的两条假设是

(1) ______________________________________________________;

(2) ______________________________________________________.

9. 有一卡诺热机,用290 g 空气为工作物质,工作在27℃的高温热源与 -73℃的低温热源

之间,此热机的效率η=______________.若在等温膨胀的过程中气缸体积增大到2.718

倍,则此热机每一循环所作的功为_________________.(空气的摩尔质量为29×10-3

kg/mol ,普适气体常量R =8.31 11K mol J --??)

10. 从分子动理论导出的压强公式来看, 气体作用在器壁上的压强, 决定于

______________________和_______________________.

11. 已知一定量的理想气体经历p -T 图上所示的循环过程,图中各过程的吸热、放热情况为:

(1) 过程1-2中,气体__________.

(2) 过程2-3中,气体__________.

(3) 过程3-1中,气体__________. 计算题 1. 容器内有11 kg 二氧化碳和2 kg 氢气(两种气体均视为刚性分子的理

想气体),已知混合气体的内能是8.1×106 J .求:

(1) 混合气体的温度; (2) 两种气体分子的平均动能.

(二氧化碳的M mol =44×10-3 kg ·mol -1 ,玻尔兹曼常量k =1.38×10-23 J ·K -1摩尔气体

常量R =8.31 J ·mol -1·K -1 )

[ T =300 K ;

kT 252=ε=1.04×10-20 J ]

2. 一定量的刚性双原子分子理想气体,开始时处于压强为 p 0 = 1.0×105 Pa ,体积为V 0 =4

×10-3 m 3,温度为T 0 = 300 K 的初态,后经等压膨胀过程温度上升到T 1 = 450 K ,再经

绝热过程温度降回到T 2 = 300 K ,求气体在整个过程中对外作的功.

[ W =700 J . ]

3. 温度为25℃、压强为1 atm 的1 mol 刚性双原子分子理想气体,经等温过程体积膨胀至

原来的3倍. (普适气体常量R =8.31 1--??K mol J 1,ln 3=1.0986) p O 3T 02T 0T 0f a d b c e p V p T O 1 2 3

(1) 计算这个过程中气体对外所作的功.

(2) 假若气体经绝热过程体积膨胀为原来的3倍,那么气体对外作的功又是多少?

[W= 2.72×103 J ; W =2.20×103 J ]

4. 容器内有M = 2.66 kg 氧气,已知其气体分子的平动动能总和是E K =4.14×105 J ,求:

(1) 气体分子的平均平动动能; (2) 气体温度.

(阿伏伽德罗常量N A =6.02×1023 /mol ,玻尔兹曼常量k =1.38×10-23 J ·K -1 )

[ 211027.8-?=w J ;

k w T 32== 400 K ]

5. 一定量的某种理想气体,开始时处于压强、体积、温度分别为p 0=1.2×106 Pa ,V 0=8.31×10

-3m 3,T 0 =300 K 的初态,后经过一等体过程,温度升高到T 1 =450 K ,再经过一等温过

程,压强降到p = p 0的末态.已知该理想气体的等压摩尔热容与等体摩尔热容之比C p /

C V =5/3.求:(1) 该理想气体的等压摩尔热容C p 和等体摩尔热容C V .

(2) 气体从始态变到末态的全过程中从外界吸收的热量.

(普适气体常量R = 8.31 J·mol -1·K -1) [

R C p 25= 和 R C V 23= ; Q = △E +W =1.35×104 J .]

6. 理想气体作卡诺循环,高温热源的热力学温度是低温热源的热力学温度的n 倍,求气体

在一个循环中将由高温热源所得热量的多大部分交给了低温热源. [ n Q Q 11

2= ] 7. 一超声波源发射超声波的功率为10 W .假设它工作10 s ,并且全部波动能量都被1 mol

氧气吸收而用于增加其内能,则氧气的温度升高了多少?

(氧气分子视为刚性分子,普适气体常量R =8.31 J ·mol -1·K -1 )

[ ?T =4.81 K . ]

8. 1 kg 某种理想气体,分子平动动能总和是1.86×106 J ,已知每个分子的质量是3.34×

10-27 kg ,试求气体的温度.

(玻尔兹曼常量 k =1.38×10-23 J ·K -1)

[

k w T 32== 300 K ] 9. 有ν 摩尔的刚性双原子分子理想气体,原来处在平衡态,当它从外界吸收热量Q 并对外

作功A 后,又达到一新的平衡态.试求分子的平均平动动能增加了多少.(用ν、Q 、A

和阿伏伽德罗常数N A 表示)

[

23=?w k ?T =3(Q -A ) / (5ν N A ) 式中N A 为阿伏伽德罗常数. ]

10. 容积V =1 m 3的容器内混有N 1=1.0×1025个氢气分子和N 2=4.0×1025个氧气分子,混

合气体的温度为 400 K ,求:

(1) 气体分子的平动动能总和.

(2) 混合气体的压强. (普适气体常量R =8.31 J ·mol -1·K -1 )

【 51014.4?=K E J ; p = n kT =2.76×105 Pa 】 11. 以氢(视为刚性分子的理想气体)为工作物质进行卡诺循环,如果在绝热膨胀时末态的压

强p 2是初态压强p 1的一半,求循环的效率.

[

%18112=-

=T T η ]

12. 将1 kg 氦气和M kg 氢气混合,平衡后混合气体的内能是2.45×106 J ,氦分子平均动能

是 6×10-21 J ,求氢气质量M .

[ 51.02H =M kg ]

热学部分习题解答

一、选择题:

1. B

2. D

3. B

4. B

5. B

6. D

7. C

8. B

9. A 10. A 11. D 12. B 13. B

14. C 15. B 16. C 17. D 18. B 19. D 20. B 21. D

二、填空题:

1. [ (1) ?∞

100d )(v v f (2) ?∞

100d )(v v Nf ]

2. [?∞p f v v v d )(]

3. [33.3% ; 50% ;66.7% ]

4. [1.25×103J]

5. [>0; >0]

6. [等压;等压;等压]

7. [400J ]

8. [(1) 沿空间各方向运动的分子数目相等; (2) 222

z y x v v v ==]

9. [ 33.3% ; 8.31×103 J ]

10. [单位体积内的分子数n ; 分子的平均平动动能 ]

11. [ 吸热 ; 放热 ; 放热 ]

三、计算题:

1. 解:(1) RT

M M i RT M M i E 2mol 2

21mol 1122+=

R

M M i M M i E/T ??

?? ??+

=2mol 221mol 1122=300 K

(2) kT 261=ε=1.24×10-20 J

kT 252=ε=1.04×10-20 J

2. 解:等压过程末态的体积 1

00

1T T V V =

等压过程气体对外作功

)

1(

)(01

000101-=-=T T V p V V p W =200 J

根据热力学第一定律,绝热过程气体对外作的功为

W 2 =-△E =-νC V (T 2-T 1)

这里 00

0RT V p =ν,R

C V 25

=,

则 500

)(251200

02==--=T T T V p W J

气体在整个过程中对外作的功为 W = W 1+W 2 =700 J .

3. 解:(1) 等温过程气体对外作功为

??===

000333ln d d V V V V RT V V RT V p W

2分 =8.31×298×1.0986 J = 2.72×103 J 2分

(2) 绝热过程气体对外作功为

V V V p V p W V V V V d d 0

0003003??-==

γγ

RT V p 1311131001--=--=--γγγ

γ 2分

=2.20×103 J 2分

4. 解:(1) M / M mol =N / N A

∴ N =MN A / M mol

21

A mol 1027.8-?===MN E M N E w K k J

3分 (2) k w T 32== 400 K

2分 5. 解:(1) 由 35

=V p C C 和 R C C V p =-

可解得 R C p 25

= 和 R C V 23= 2分

(2) 该理想气体的摩尔数 =

=00

0RT V p ν 4 mol

在全过程中气体内能的改变量为 △E =ν C V (T 1-T 2)=7.48×103 J

2分 全过程中气体对外作的功为 01

1ln

p p RT W ν= 式中 p 1 ∕p 0=T 1 ∕T 0

则 3

01

11006.6ln ?==T T RT W ν J .

2分 全过程中气体从外界吸的热量为 Q = △E +W =1.35×104 J . 2分

6. 解:理想气体卡诺循环的效率 12

1T T T -=η

1分 ∵ 21nT T = n 11-=η

1分 又据 n Q Q 1

1112

-=-=η

1分 得 n Q Q 1

12=

2分 7. 解: A = Pt = T iR v ?21

2分 ∴ ?T = 2Pt /(v iR )=4.81 K . 3分

8. 解: N = M / m =0.30×1027 个

1分 ==N E w K / 6.2×10-21 J

1分 k w T 32== 300 K

3分

9. 解:设两个平衡态的温度差为?T ,则

Q -A =?E =25νR ?T =25

ν N A k ?T 3分

23=?w k ?T =3(Q -A ) / (5ν N A ) 2分 式中N A 为阿伏伽德罗常数.

10. 解:(1) 21

1028.823-?==kT w J

()5

211014.423?=+==kT N N w N E K J

(2) p = n kT =2.76×105

Pa

11. 解:根据卡诺循环的效率 12

1T T -=η 1分 由绝热方程: 212111T p T p --=γγ

1分 得 γγ11212)(-=p p T T

氢为双原子分子, 40.1=γ, 由211

2=p p 1分 得 82

.012=T T 1分

%18112=-

=T T η 1分

12. 解:

kT w 23= 29032==k w T K

5

m o l He He 1004.923?==RT M M E J

2分

而 6H e H 1055.12?=-=E E E J

又 RT M M E mol H 252

= ∴ 51.02H =M kg 3分

高中物理《热学》3.5典型例题分析

§3.5 典型例题分析 例1、绷紧的肥皂薄膜有两个平行的边界,线AB 将薄膜分隔成两部分(如图3-5-1)。为了演示液体的表面张力现象,刺破左边的膜,线AB 受到表面张力作 用被拉紧,试求此时线的张力。两平行边之间的距离为d ,线AB 的长度为l (l >πd/2),肥皂液的表面张力系数为σ。 解:刺破左边的膜以后,线会在右边膜的作用下形状相应发生变化(两侧都有膜时,线的形状不确定),不难推测,在l >πd/2的情况下,线会形成长度为 ) 2/(21 d l x π-=的两条直线段和半径为d/2的半圆, 如图3-5-2所示。线在C 、D 两处的拉力及各处都垂直于该弧线的表面张力的共同作用下处于平衡状态,显然 ∑=i f T 2 式中为在弧线上任取一小段所受的表面张力,∑i f 指各小段所受表面张力的合力,如图3-5-2所示,在弧线上取对称的两小段,长度均为r △θ,与x 轴的夹角均为方θ,显然 θσ??==r f f 221 而这两个力的合力必定沿x 轴方向,(他们垂直x 轴方向分力的合力为零),这样 θθσ??==cos 221r f f x x 所以 图3-5-1 图3-5-2

∑∑==?=d r r f i σσθθσ24cos 2 因此d T σ= 说明对本题要注意薄膜有上下两层表面层,都会受到表面张力的作用。 例2、在水平放置的平玻璃板上倒一些水银,由于重力和表面张力的影响,水银近似呈圆饼形状(侧面向外凸出),过圆盘轴线的竖直截面如图3-5-3所示。为了计算方便,水银和玻璃的接触角可按180o计算,已知水银密度 33106.13m kg ?=ρ,水银的表面张力系数m N a 49.0=。当圆饼的半径很大时,试估算厚度h 的数值大约是多少(取一位有效数字)? 分析:取圆饼侧面处宽度为△x ,高为h 的面元△S ,图3-5-3所示。由于重力而产生的水银对△S 侧压力F ,由F 作用使圆饼外凸。但是在水银与空气接触的表面层中,由于表面张力的作用使水银表面有收缩到尽可能小的趋势。上下两层表面张力的合力的水平分量必与F 反向,且大小相等。△S 两侧表面张力43,f f 可认为等值反向的。 解: x gh S p F ?= ??=2121 ρ F f f =+21cos θ x gh x a ?= +?221 )cos 1(ρθ g a h ρθ)cos 1(2+= 由于0<θ<90o,有 m h m 3 3104103--?<

热学(李椿+章立源+钱尚武)习题解答_第1章温度

第一章温度 1-1在什么温度下,下列一对温标给出相同的读数:(1)华氏温标和摄氏温标;(2)华氏温标和热力学温标;(3)摄氏温标和热力学温标? 解:(1) 当时,即可由,解得 故在时 (2)又 当时则即 解得: 故在时, (3) 若则有 显而易见此方程无解,因此不存在的情况。 1-2 定容气体温度计的测温泡浸在水的三相点槽时,其中气体的压强为50mmHg。 (1)用温度计测量300K的温度时,气体的压强是多少? (2)当气体的压强为68mmHg时,待测温度是多少? 解:对于定容气体温度计可知: (1) (2) 1-3 用定容气体温度计测得冰点的理想气体温度为273.15K,试求温度计的气体在冰点时的压强与水的三相点时压强之比的极限值。 解:根据 已知冰点 。

1-4用定容气体温度计测量某种物质的沸点。原来测温泡在水的三相点时,其中气体的压强;当测温泡浸入待测物质中时,测得的压强值为,当从测温泡中抽出一些气体,使减为200mmHg时,重新测得,当再抽出一些气体使减为100mmHg时,测得.试确定待测沸点的理想气体温度. 解:根据 从理想气体温标的定义:依以上两次所测数据,作T-P图看趋势得出时,T约为400.5K亦即沸点为400.5K. 题1-4图 1-5铂电阻温度计的测量泡浸在水的三相点槽时,铂电阻的阻值为90.35欧姆。当温度计的测温泡与待测物体接触时,铂电阻的阻值为90.28欧姆。试求待测物体的温度,假设温度与铂电阻的阻值成正比,并规定水的三相点为273.16K。 解:依题给条件可得 则 故 1-6在历史上,对摄氏温标是这样规定的:假设测温属性X随温度t做线性变化,即,并规定冰点为,汽化点为。 设和分别表示在冰点和汽化点时X的值,试求上式中的常数a和b。 解: 由题给条件可知 由(2)-(1)得 将(3)代入(1)式得

大学物理_热学试题

大学物理热学试卷 一、选择题: 1、三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而方均根速率之比为 ()()() 2 /122 /122 /12::C B A v v v =1∶2∶4,则其压强之比A p ∶B p ∶ C p 为: (A) 1∶2∶4. (B) 1∶4∶8. (C) 1∶4∶16. (D) 4∶2∶1. [ ] 2、温度为T 时,在方均根速率s /m 50) (2 12±v 的速率区间内,氢、氨两种气体分子数占总分 子数的百分率相比较:则有(附:麦克斯韦速率分布定律: v v v ?????? ? ? ?-?? ? ??π=?22 2 /32exp 24kT m kT m N N , 符号exp(a ),即e a .) (A) ()()22N H //N N N N ?>? (B) ()()22N H //N N N N ?=? (C) ()()22N H //N N N N ??温度较高时()()22N H //N N N N ?

热学第二章 习题答案

第二章 气体分子运动论的基本概念 2-1 目前可获得的极限真空度为10-13mmHg 的数量级,问在此真空度下每立方厘 米内有多少空气分子,设空气的温度为27℃。 解: 由P=n K T 可知 n =P/KT=)27327(1038.11033.1101023 213+?????-- =3.21×109(m –3 ) 注:1mmHg=1.33×102N/m 2 2-2 钠黄光的波长为5893埃,即5.893×10-7m ,设想一立方体长5.893×10-7m , 试问在标准状态下,其中有多少个空气分子。 解:∵P=nKT ∴PV=NKT 其中T=273K P=1.013×105N/m 2 ∴N=6 23375105.5273 1038.1)10893.5(10013.1?=?????=--KT PV 个 2-3 一容积为11.2L 的真空系统已被抽到1.0×10-5mmHg 的真空。为了提高 其真空度,将它放在300℃的烘箱内烘烤,使器壁释放出吸附的气体。若烘烤后压强增为1.0×10-2mmHg ,问器壁原来吸附了多少个气体分子。 解:设烘烤前容器内分子数为N 。,烘烤后的分子数为N 。根据上题导出的公式PV = NKT 则有: )(0 110011101T P T P K V KT V P KT V P N N N -=-= -=? 因为P 0与P 1相比差103 数量,而烘烤前后温度差与压强差相比可以忽略,因此 00T P 与 1 1T P 相比可以忽略 1823 2 23111088.1) 300273(1038.11033.1100.1102.11??+???????=?=?---T P K N N 个

2019中考物理经典易错题100例-热学部分

2019中考物理经典易错题100例-热学部分 一、物理概念(物理量):比热(C)、热量(Q)、燃烧值(q)、内能、温度(t)。 二、实验仪器:温度计、体温计。 三、物理规律:光在均匀介质中沿直线传播的规律,光的反射定律,平面镜成像规律,光的折射规律,凸透镜成像规律,物态变化规律,内能改变的方法,热量计算公式: Q=cmDt及燃烧值计算Q=qm,分子运动论。 第一类:相关物理量的习题: 例1:把一杯酒精倒掉一半,则剩下的酒精() A. 比热不变,燃烧值变为原来的一半 B.比热和燃烧值均不变 C. 比热变为原来的一半,燃烧值不变 D.比热和燃烧值均变为原来的一半 [解析]:比热是物质的一种特性。它与该种物体的质量大小无关;与该种物体的温度高低无关;与该种物体吸热还是放热也无关。这种物质一旦确定,它的比热就被确定。酒精的比热是2.4×103焦/(千克?℃),一瓶酒精是如此,一桶酒精也是如此。0℃的酒精和20℃的酒精的比热也相同。燃烧值是燃料的一种性质。它是指单位质量的某种燃烧完全燃烧所放出的热量。酒精的燃烧值是3.0×107焦/千克,它并不以酒精的质量多少而改变。质量多的酒精完全燃烧放出的热量多,但酒精的燃烧值并没有改变。所以本题的准确答案应是B。 例2:甲、乙两个冰块的质量相同,温度均为0℃。甲冰块位于地面静止,乙冰块停止在10米高处,这两个冰块()。 A. 机械能一样大 B.乙的机械能大 C.内能一样大 D. 乙的内能大 [解析]:机械能包括动能、势能,两个冰块的质量相同,能够通过它们的速度大小、位置高度,判断它们的动能和势能的大小,判断物体内能大小的依据是温度和状态。根据题意,两个冰块均处于静止状态,它们的动能都是零,两冰块质量相同,乙冰块比甲冰块的位置高,乙冰块的重力势能大。结论是乙冰块的机械能大。两个冰块均为0℃,质量相同,物态相同,温度相同,所以从它们的内能也相同。选项B、C准确。 第二类:相关温度计的习题: 例1:两支内径粗细不同下端玻璃泡内水银量相等的合格温度计同时插入同一杯热水中,水银柱上升的高度和温度示数分别是() A. 上升高度一样,示数相等。 B. 内径细的升得高,它的示数变大。

第一章习题解答

第一章热力学第一定律 思考题答案 一、是非题 1.√ 2.× 3.× 4.× 5.× 6.× 7.√ 8.√ 9.× 10.× 11.× 12.×13.× 14.× 15.√ 二、选择题 1.D 2.D 3.D 4.C 5.D 6.B 7.B 8.C 9.D 10.D 11.B 12.D 13.A 14.D 15.C 16.D 习题解答 1. 请指出下列公式的适用条件: (1) △H=Q p;(2) △U=Q V;(3)W=-nRlnV2/V1 解:(1)封闭系统,恒压不做其他功。 (2)封闭系统,恒容不做其他功。 (3)封闭系统,理想气体恒温可逆过程。 2. 用热力学概念判断下列各过程中功、热、热力学能和焓的变化值: (1)理想气体自由膨胀; (2)van der Waals气体等温自由膨胀; (3)Zn(s)+2HCl(l)===ZnCl2(l)+H2(g)进行非绝热等压反应; (4)H2(g)+C12(g)===2HCl(g)在绝热钢瓶中进行; (5)常温、常压下水结成冰(273.15K,101.325kPa)。 解:(1)W=0,Q=0,△U=0,△H=0 (2)W=0,Q>0,△U>0,△H不能确定。 (3)W<0,Q<0,△U<0,△H<0 (4) W=0,Q=0,△U=0,△H>0 (5) W>0,Q<0,△U<0,△H<0 3. 在相同的温度和压力下,一定量氢气和氧气从4种不同的途径生成相同终态的水; (1)氢气在氧气中燃烧;(2)爆鸣;(3)氢氧热爆炸;(4)氢氧燃料电池。请问这4种变化途径的热力学能和焓的变化值是否相同? 解:相同。 4. 一定量的水,从海洋蒸发变为云,云在高山上变为雨、雪,并凝结成冰。冰、雪融化变成水流入江河,最后流入大海。整个循环,水的热力学能和焓的变化是多少? 解:零。 5. 10mol理想气体,始态压力为1000kPa,温度为300K。在等温下:分别计算下述途径所做的功。

大学物理力学试题

一、选择题:(每题3分) 1、某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作 (A) 匀加速直线运动,加速度沿x 轴正方向. (B) 匀加速直线运动,加速度沿x 轴负方向. (C) 变加速直线运动,加速度沿x 轴正方向. (D) 变加速直线运动,加速度沿x 轴负方向. [ ] 2、一质点沿x 轴作直线运动,其v -t 曲 线如图所示,如t =0时,质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为 (A) 5m . (B) 2m . (C) 0. (D) -2 m . (E) -5 m. [ ] 3、图中p 是一圆的竖直直径pc 的上端点,一质点从p 开始分 别沿不同的弦无摩擦下滑时,到达各弦的下端所用的时间相比 较是 (A) 到a 用的时间最短. (B) 到b 用的时间最短. (C) 到c 用的时间最短. (D) 所用时间都一样. [ ] 4、 一质点作直线运动,某时刻的瞬时速度=v 2 m/s ,瞬时加速度2/2s m a -=, 则一秒钟后质点的速度 (A) 等于零. (B) 等于-2 m/s . (C) 等于2 m/s . (D) 不能确定. [ ] 5、 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中 a 、 b 为常量), 则该质点作 (A) 匀速直线运动. (B) 变速直线运动. (C) 抛物线运动. (D)一般曲线运动. [ ] 6、一运动质点在某瞬时位于矢径()y x r , 的端点处, 其速度大小为 (A) t r d d (B) t r d d (C) t r d d (D) 22d d d d ?? ? ??+??? ??t y t x [ ] 7、 质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中, 其平均速度大小与平均速率大小分别为 -12 O a p

人教版初中物理经典易错题--热学部分

初三物理《热学》易错题分析 一:常规易错题 1:把一杯酒精倒掉一半,则剩下的酒精() A. 比热不变,燃烧值变为原来的一半 B.比热和燃烧值均不变 C. 比热变为原来的一半,燃烧值不变 D.比热和燃烧值均变为原来的一半 2:甲、乙两个冰块的质量相同,温度均为0℃。甲冰块位于地面静止,乙冰块停止在10米高处,这两个冰块()。 A. 机械能一样大 B.乙的机械能大 C.内能一样大 D. 乙的内能大 3:两支内径粗细不同下端玻璃泡内水银量相等的合格温度计同时插入同一杯热水中,水银柱上升的高度和温度示数分别是() A. 上升高度一样,示数相等。 B. 内径细的升得高,它的示数变大。 C. 内径粗的升得低,但两支温度计的示数相同。 D. 内径粗的升得高,示数也大。 4下列说法中正确的是() A. 某一物体温度降低的多,放出热量就多。 B.温度高的物体比温度低的物体含有热量多。 C. 温度总是从物体热的部分传递至冷的部分。 D.深秋秧苗过夜要灌满水,是因为水的温度高。 5:一个带盖的水箱里盛有一些0℃的冰和水,把它搬到大气压为1标准大气压0℃的教室里,经过一段时间后,水箱里()。 A. 都变成冰了,连水气也没有 B.都变成水了,同时也有水气 C. 只有冰和水,不会有水气 D.冰、水和水气都存在 6:下列现象中,不可能发生的是() A. 水的沸点低于或高于100℃ B. 湿衣服放在温度低的地方比放在温度高的地方干得快 C. -5℃的冰块放在0℃的水中会溶化 D. 物体吸收热量温度保持不变 7:质量和初温相同的两个物体() A吸收相同热量后,比热大的物体温度较高B.放出相同的热量后比热小的物体温度较低 C. 吸收相同的热量后,比热较小的物体可以传热给比热较大的物体 D. 放出相同的热量后,比热较大的物体可以向比热较小的物体传播 8:指明下列事物中内能改变的方法:⑴一盆热水放在室内,一会儿就凉了________;⑵高温高压的气体,迅速膨胀,对外做功,温度降低________;⑶铁块在火炉中加热,一会热得发红________;⑷电烙铁通电后,温度升高________;⑸用打气筒给车胎打气,过一会儿筒壁变热。⑹两手互相摩擦取暖________。 9:甲、乙两金属球,质量相等,初温相同,先将甲球投入冷水中,待热平衡后水温升高t℃,取出甲球(设热量与水均无损失),再迅速把乙球投入水中,这杯水热平衡后水温又升高t℃,设甲、乙两球的比热分别为C甲和C乙,则有() A. C甲=C乙 B.C甲>C乙 C.C甲

大学物理题库-热力学

热力学选择题 1、在气缸中装有一定质量的理想气体,下面说法正确的是:( ) (A ) 传给它热量,其内能一定改变。 (B ) 对它做功,其内能一定改变。 (C ) 它与外界交换热量又交换功,其内能一定改变。 (D ) 以上说法都不对。 (3分) 答案:D 2、理想气体在下述过程中吸收热量的是( ) (A )等容降压过程 (B )等压压缩过程 (C )绝热膨胀过程 (D )等温膨胀过程 (3分) 答案:D 3、理想气体卡诺循环过程的两条绝热线下的面积大小分别为1S 和2S ,二者的关系是( ) (A )21S S > (B )21S S < (C )S 1 =S 2 (D )不能确定 (3分) 答案:C 4、有两个可逆的卡诺循环,ABCDA 和11111A B C D A ,二者循环线包围的面积相等,如图所示。设循环ABCDA 的热效率为η,每次循环从高温热源吸收热量Q ,循环11111A B C D A 的热效率为 η,每次循环从高温热源吸收热量1Q ,则( ) (A )11,Q Q <<ηη (B )11,Q Q ><ηη (C )11,Q Q <>ηη (D )11,Q Q >>ηη (3分) 答案:B 5、一定量的理想气体,分别经历如图所示的abc 过程(图中虚线ac 为等温线)和 def 过程(图中虚线 df 为绝热线)。试判断这两种过程是吸热还是放热( ) (A )abc 过程吸热,def 过程放热。(C )abc 过程和 def 过程都吸热。 P P V

(B )abc 过程放热 def 过程吸热 (D )abc 过程和 def 过程都放热。 V V (3分) 答案:A 6、对于理想气体系统来说,在下列过程中,哪个过程系统所吸收的热量、内能的增量和对外做得功三者均为负值?( ) (A )等容降压过程。 (B) 等温膨胀过程。 (C) 绝热膨胀过程。 (D) 等压压缩过程。 (3分) 答案:D 7、关于可逆过程,下列说法正确的是( ) (A ) 可逆过程就是可以反向进行的过程。 (B ) 凡是可以反向进行的过程均为可逆过程。 (C ) 可逆过程一定是准静态过程。 (D ) 准静态过程一定是可逆过程。 (3分) 答案:C 8、下面正确的表述是( ) (A) 功可以全部转化为热,但热不能全部转化为功。 (B )热量能从高温物体传到低温物体,但不能从低温物体传到高温物体。 (C )开尔文表述指出热功转换的可逆性。 (D )克劳修斯表述指出了热传导的不可逆性。 (3分) 答案:D 9、一台工作于温度分别为327 ℃和27 ℃的高温热源与低温源之间的卡诺热机,每经历一个循环吸热2 000 J ,则对外作功( ) (A) 2 000J (B) 1 000J (C) 4 000J (D) 500J (3分) 答案:B 10、“理想气体和单一热源接触作等温臌胀时,吸收的热量全部用来对外作功。”对此说法,有如下几种评论,哪种是正确的( ) (A )不违反热力学第一定律,但违反热力学第二定律 (B )不违反热力学第二定律,但违反热力学第一定律 (C )不违反热力学第一定律,也不违反热力学第二定律 (D )违反热力学第二定律,也违反热力学第二定律 (3分)

热学习题解答第一章导论

普通物理学教程《热学》(秦允豪编) 习题解答 第一章 导论 1.3.1 设一定容气体温度计是按摄氏温标刻度的,它在下的冰点及下水的沸点时的压强分别为和,试问(1)当气体的压强为时的待测温度是多少(2)当温度计在沸腾的硫中时( 下的硫的沸点为),气体的压强是多少 解: (1)C t i ?=0,MPa P i 0405.0=; C t s ?=100,MPa P s 0553.0= C =γ,()P p t ∝,i s i s P P t t tg k --= =α bP a t += ()()C P P P P P P Pi P t t t P P k t t i s i i s i s i i i v ??---?--+ =-+=100摄氏C C C ?-=??-=??--=4.20510048.104.31000405.00553.00405.00101.0 (2)由 ()i s i v P P C P P t -?? -=100 ()C t P P P P v i s i ?? -+=100C C ?? ?+?=1005.4441048.11005.444 ()254.1006.1106286.10-?=?=m N Pa Pa 1.3.2 有一支液体温度计,在下,把它放在冰水混合物中的示数t0=-0.3℃;在沸腾的水中的示数t0= 101.4℃。试问放在真实温度为66.9℃的沸腾的甲醇中的示数是多少若用这支温度计测得乙醚沸点时的示数是为34.7℃,则乙醚沸点的真实温度是多少在多大一个测量范围内,这支温度计的读数可认为是准确的(估读到0.1℃) 分析:此题为温度计的校正问题。依题意:大气压为为标准大气压。冰点C t i ?=0,汽点 C t s ?=100,题设温度计为未经校证的温度计,C t i ?-=3.0',C t s ?=4.101',题设的温度 计在(1)标准温度为C t P ?=9.66,求示数温度?'=P t (2)当示数为C t P ?=7.34,求标准温度?=P t 解:x 为测温物质的测温属性量 设''i s t t -是等分的,故()x x t ∝(是线性的),()x x t ∝' 对标准温度计i s i i s i p x x x x t t t t --= --……(1) 非标准温度计i s i i s i p x x x x t t t t --= --' '' ' (2)

(完整版)热学经典题目归纳附答案

热学经典题目归纳 一、解答题 1.(2019·山东高三开学考试)如图所示,内高H=1.5、内壁光滑的导热气缸固定在水 平面上,横截面积S=0.01m2、质量可忽略的活塞封闭了一定质量的理想气体。外界温度为300K时,缸内气体压强p1=1.0×105Pa,气柱长L0=0.6m。大气压强恒为p0=1.0×105Pa。现用力缓慢向上拉动活塞。 (1)当F=500N时,气柱的长度。 (2)保持拉力F=500N不变,当外界温度为多少时,可以恰好把活塞拉出? 【答案】(1)1.2m;(2)375K 【解析】 【详解】 (1)对活塞进行受力分析 P1S+F=P0S. 其中P1为F=500N时气缸内气体压强 P1=0.5×104Pa. 由题意可知,气体的状态参量为 初态:P0=1.0×105Pa,V a=LS,T0=300K; 末态:P1=0.5×105Pa,V a=L1S,T0=300K; 由玻意耳定律得 P1V1=P0V0 即 P1L1S=P0L0S 代入数据解得 L1=1.2m<1.5m 其柱长1.2m

(2)汽缸中气体温度升高时活塞将向外移动,气体作等压变化 由盖吕萨克定律得 10V T =2 2 V T 其中V 2=HS . 解得: T 2=375K. 2.(2019·重庆市涪陵实验中学校高三月考)底面积S =40 cm 2、高l 0=15 cm 的圆柱形汽缸开口向上放置在水平地面上,开口处两侧有挡板,如图所示.缸内有一可自由移动的质量为2 kg 的活塞封闭了一定质量的理想气体,不可伸长的细线一端系在活塞上,另一端跨过两个定滑轮提着质量为10 kg 的物体A .开始时,气体温度t 1=7℃,活塞到缸底的距离l 1=10 cm ,物体A 的底部离地h 1=4 cm ,对汽缸内的气体缓慢加热使活塞缓慢上升.已知大气压p 0=1.0×105 Pa ,试求: (1)物体A 刚触地时,气体的温度; (2)活塞恰好到达汽缸顶部时,气体的温度. 【答案】(1)119℃ (2)278.25℃ 【解析】 【详解】 (1)初始活塞受力平衡: p 0S +mg =p 1S +T ,T =m A g 被封闭气体压强 p 1()A 0m m g p S -=+ =0.8×105 Pa 初状态, V 1=l 1S ,T 1=(273+7) K =280 K A 触地时 p 1=p 2, V 2=(l 1+h 1)S 气体做等压变化,

大学物理力学题库及答案

一、选择题:(每题3分) 1、某质点作直线运动的运动学方程为 x = 3t-5t 3 + 6 (SI),则该质点作 2、一质点沿x 轴作直线运动,其v t 曲 线如图所示,如t=0时,质点位于坐标原点, 则t=4.5 s 时,质点在x 轴上的位置为 (A) 5m . (B) 2m . (C) 0. (D) 2 m . (E) 5 m. [ b ] pc 的上端点,一质点从p 开始分 到达各弦的下端所用的时间相比 6、一运动质点在某瞬时位于矢径 r x, y 的端点处,其速度大小为 7、 质点沿半径为R 的圆周作匀速率运动,每 T 秒转一圈.在2T 时间间隔中, 其平均速度大小与平均速率大小分别为 (A) 2 R/T , 2 R/T . (B) 0,2 R/T (C) 0,0. (D) 2 R/T , 0. [ b ] 8 以下五种运动形式中,a 保持不变的运动是 4、 一质点作直线运动,某时刻的瞬时速度 v 2 m/s ,瞬时加速度a 2m/s , 则一秒钟后质点的速度 (B)等于 2 m/s . (D)不能确定. [ d ] (A)等于零. (C)等于 2 m/s . 5 、 一质点在平面上运动, 已知质点位置矢量的表示式为 r at i bt 2j (其中 a 、 b 为常量),则该质点作 (A)匀速直线运动. (B)变速直线运动. (C)抛物线运动. (D) 一般曲线运 动. [ b ] [d ] (A) 匀加速直线运动,加速度沿 x 轴正方向. (B) 匀加速直线运动,加速度沿 x 轴负方向. (C) 变加速直线运动,加速度沿 x 轴正方向. (D) 变加速直线运动,加速度沿 x 轴负方向. 3、图中p 是一圆的竖直直径 别沿不同的弦无摩擦下滑时, 较是 (A) 到a 用的时间最短. (B) 到b 用的时间最短. (C) 到c 用的时间最短. (D) 所用时间都一样. (A) d r dt (C) d r dt (B) (D) d r dt dx 2 .dt 2 d y dt [d ] a

热力学第一定律习题及答案

热力学第一定律习题 一、单选题 1) 如图,在绝热盛水容器中,浸入电阻丝,通电一段时间,通电后水及电阻丝的温度均略有升高,今以电阻丝为体系有:( ) A. W =0,Q <0,?U <0 B. W <0,Q <0,?U >0 C. W <0,Q <0,?U >0 D. W <0,Q =0,?U >0 ?2) 如图,用隔板将刚性绝热壁容器分成两半,两边充入压力不等的空气(视为理想气体),已知p右> p左,将隔板抽去后: ( ) A. Q=0, W =0, ?U =0 B. Q=0, W <0, ?U >0 C. Q >0, W <0, ?U >0 D. ?U =0, Q=W??0 ?3)对于理想气体,下列关系中哪个是不正确的:( ) A. (?U/?T)V=0 B. (?U/?V)T=0 C. (?H/?p)T=0 D. (?U/?p)T=0 ?4)凡是在孤立孤体系中进行的变化,其?U 和?H 的值一定是:( ) A. ?U >0, ?H >0 B. ?U =0, ?H=0 C. ?U <0, ?H <0 D. ?U =0,?H 大于、小于或等于零不能确定。 ?5)在实际气体的节流膨胀过程中,哪一组描述是正确的: ( ) A. Q >0, ?H=0, ?p < 0 B. Q=0, ?H <0, ?p >0 C. Q=0, ?H =0, ?p <0 D. Q <0, ?H =0, ?p <0 ?6)如图,叙述不正确的是:( ) A.曲线上任一点均表示对应浓度时积分溶解热大小 B.?H1表示无限稀释积分溶解热 C.?H2表示两浓度n1和n2之间的积分稀释热 D.曲线上任一点的斜率均表示对应浓度时HCl的微分溶解热 ?7)?H=Q p此式适用于哪一个过程: ( ) A.理想气体从101325Pa反抗恒定的10132.5Pa膨胀到10132.5sPa B.在0℃、101325Pa下,冰融化成水 C.电解CuSO4的水溶液 D.气体从(298K,101325Pa)可逆变化到(373K,10132.5Pa ) ?8) 一定量的理想气体,从同一初态分别经历等温可逆膨胀、绝热可逆膨胀到具有相同压力的终态,终态体积分别为V1、V2。( ) A. V1 < V2 B. V1 = V2 C. V1 > V2 D. 无法确定 ?9) 某化学反应在恒压、绝热和只作体积功的条件下进行,体系温度由T1升高到T2,则此过程的焓变?H:( ) A.小于零 B.大于零 C.等于零 D.不能确定 ?10) 对于独立粒子体系,d U=?n i d? i+?? i d n i,式中的第一项物理意义是: ( ) A. 热 B. 功 C. 能级变化 D. 无确定意义 ?11) 下述说法中哪一个正确:( ) A.热是体系中微观粒子平均平动能的量度 B.温度是体系所储存能量的量度 C.温度是体系中微观粒子平均能量的量度 D.温度是体系中微观粒子平均平动能的量度 ?12) 下图为某气体的p-V图。图中A→B为恒温可逆变化,A→C为绝热可逆变化,A→D 为多方不可逆变化。B, C, D态的体积相等。问下述个关系中哪一个错误?( ) A. T B > T C B. T C > T D C. T B > T D D. T D > T C ?13) 理想气体在恒定外压p?下从10dm3膨胀到16dm3, 同时吸热126J。计算此气体的??U。( ) A. -284J B. 842J C. -482J D. 482J ?14) 在体系温度恒定的变化过程中,体系与环境之间:( ) A.一定产生热交换 B.一定不产生热交换 C.不一定产生热交换 D. 温度恒定与热交换无关

高中热学经典题集

热学试题集 一、选择题(在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确) 1.下列说法正确的是[] A.温度是物体内能大小的标志B.布朗运动反映分子无规则的运动 C.分子间距离减小时,分子势能一定增大D.分子势能最小时,分子间引力与斥力大小相等 2.关于分子势能,下列说法正确的是[] A.分子间表现为引力时,分子间距离越小,分子势能越大 B.分子间表现为斥力时,分子间距离越小,分子势能越大 C.物体在热胀冷缩时,分子势能发生变化 D.物体在做自由落体运动时,分子势能越来越小 3.关于分子力,下列说法中正确的是[] A.碎玻璃不能拼合在一起,说明分子间斥力起作用 B.将两块铅压紧以后能连成一块,说明分子间存在引力 C.水和酒精混合后的体积小于原来体积之和,说明分子间存在的引力 D.固体很难拉伸,也很难被压缩,说明分子间既有引力又有斥力 4.下面关于分子间的相互作用力的说法正确的是[] A.分子间的相互作用力是由组成分子的原子内部的带电粒子间的相互作用而引起的 B.分子间的相互作用力是引力还是斥力跟分子间的距离有关,当分子间距离较大时分子间就只有相互吸引的作用,当分子间距离较小时就只有相互推斥的作用 C.分子间的引力和斥力总是同时存在的 D.温度越高,分子间的相互作用力就越大 5.用r表示两个分子间的距离,Ep表示两个分子间的相互作用势能.当r=r0时两分子间的斥力等于引力.设两分子距离很远时Ep=0 [] A.当r>r0时,Ep随r的增大而增加B.当r<r0时,Ep随r的减小而增加 C.当r>r0时,Ep不随r而变D.当r=r0时,Ep=0 6.一定质量的理想气体,温度从0℃升高到t℃时,压强变化如图2-1所示,在这一过程中气体体积变化情况是[] 图2-1 A.不变B.增大C.减小D.无法确定 7.将一定质量的理想气体压缩,一次是等温压缩,一次是等压压缩,一次是绝热压缩,那么[] A.绝热压缩,气体的内能增加B.等压压缩,气体的内能增加 C.绝热压缩和等温压缩,气体内能均不变D.三个过程气体内能均有变化 8.如图2-2所示,0.5mol理想气体,从状态A变化到状态B,则气体在状态B时的温度为[] 图2-2

第一章--化学热力学基础-习题解答

第一章 化学热力学基础 1-1 气体体积功的计算式dV P W e ?-=中,为什么要用环境的压力e P ?在什么情 况下可用体系的压力体P ? 答: 在体系发生定压变化过程时,气体体积功的计算式dV P W e ?-=中, 可用体系的压力体P 代替e P 。 1-2 298K 时,5mol 的理想气体,在(1)定温可逆膨胀为原体积的 2 倍; ( 2 ) 定压下加热到373K ;(3)定容下加热到373K 。已知 C v,m = 28.28J·mol -1·K -1。 计算三过程的Q 、W 、△U 、△H 和△S 。 解 (1) △U = △H = 0 kJ V V nRT W Q 587.82ln 298314.85ln 1 2=??==-= 11 282.282ln 314.85ln -?=?==?K J V V nR S (2) kJ nC Q H m P P 72.13)298373(,=-==? kJ nC U m V 61.10)298373(,=-=? W = △U – Q P =- 3.12 kJ 112,07.41298 373ln )314.828.28(5ln -?=+?==?K J T T nC S m P (3) kJ nC Q U m V V 61.10)298373(,=-==? kJ nC H m P 72.13)298373(,=-=? W = 0 112,74.31298 373ln 28.285ln -?=?==?K J T T nC S m V 1-3容器内有理想气体,n=2mol , P=10P θ,T=300K 。求(1) 在空气中膨胀了1dm 3, 做功多少? (2) 膨胀到容器内压力为 lP θ,做了多少功?(3)膨胀时外压总比气体的压力小 dP , 问容器内气体压力降到 lP θ时,气体做多少功? W f dl p A dl p dV δ=-?=-??=-?外外外

热力学习题及答案

9 选择题(共21 分,每题 3 分) 1、理想气体从p-V图上初态a分别经历如图所示的(1) 或(2) 过程到达末态b.已 知TaQ2>0; (B) Q 2>Q1>0; (C) Q 20. 2、图(a),(b),(c) 各表示连接在一起的两个循环过程, 其中(c) 图是两个半径相等的圆构成的两个循环过程, 图(a) 和(b) 则为半径不相等的两个圆. 那么: [ C ] (A) 图(a) 总净功为负,图(b) 总净功为正,图(c) 总净功为零; (B) 图(a) 总净功为负,图(b) 总净功为负,图(c) 总净功为正; (C) 图(a) 总净功为负,图(b) 总净功为负,图(c) 总净功为零; (D) 图(a) 总净功为正,图(b) 总净功为正,图(c) 总净功为负. abcda 增大为ab'c'da, 那 么循环abcda 4、一定量的理想气体分别由图中初态a 经①过程ab和由初态a' 经②过程初 3、如果卡诺热机的循环曲线所包围的面积从图 中的与ab'c'da 所做的净功和热机效率变化情 况是(A) 净功增大, 效率提高; [ D ] (B) 净功增大, 效率降低; (C) 净功和效率都不变; (D) 净功增大, 效率不变.

态a' cb 到达相同的终态b, 如图所示, 则两个过程中气体从外界吸收的热量Q1,Q2的关系为[ B ] (A) Q 1<0,Q1>Q2 ; (B) Q 1>0, Q 1>Q2 ; (C) Q 1<0,Q10, Q 1

大学物理电磁学题库及答案

一、选择题:(每题3分) 1、均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 (A) 2 r 2B . (B) r 2B . (C) 0. (D) 无法确定的量. [ B ] 2、在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B 的夹角为 ,则通过半球面S 的磁通量(取弯面向外为正)为 (A) r 2B . (B) 2 r 2B . (C) - r 2B sin . (D) - r 2B cos . [ D ] 3、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 (A) 0.90. (B) 1.00. (C) 1.11. (D) 1.22. [ C ] 4、如图所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度 (A) 方向垂直环形分路所在平面且指向纸内. (B) 方向垂直环形分路所在平面且指向纸外. (C) 方向在环形分路所在平面,且指向b . (D) 方向在环形分路所在平面内,且指向a . (E) 为零. [ E ] 5、通有电流I 的无限长直导线有如图三种形状, 则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O . (C) B Q > B O > B P . (D) B O > B Q > B P . [ D ] 6、边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方 形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为 (A) 01 B ,02 B . (B) 01 B ,l I B 0222 . (C) l I B 0122 ,02 B . a

1热学习题解答

第1章 温度习题答案 一、 选择题 1. D 2. B 二、填空题 1. Pa 31008.9? K 4.90 C 0 8.182- 三、计算题 1. 解:漏掉的氢气的质量 kg T V p T V p R M m m m 32.0)(2 2 211121=-=-=? 第2章 气体分子动理论答案 一、选择题 1. B 解:两种气体开始时p 、V 、T 均相同,所以摩尔数也相同。 现在等容加热 V C M Q μ=△T ,R C R C V V 2 5 ,232H He == 由题意 μM Q =He R 23?△T = 6 J 所以 R M Q 252 H ?=μ△T =(J)1063 535H =?=e Q 。 2. C 解:由 ,)(,)(,He 222O 1112R M T V p R M T V p R M T pV ?=?==μ μ μ ,,2121T T p p ==又 所以, 2 1)( )21He O 2 ==V V M M μ μ ( 根据内能公式,2 RT i M E ?=μ得二者内能之比为65352121=?=E E 3. B 解:一个分子的平均平动动能为,2 3 kT w = 容器中气体分子的平均平动动能总和为

321041052 3232323-????===?= =pV RT M kT N M w N W A μμ =3(J)。 4. C 解:由R pVC E RT M pV T C M E V V = = = 得 ,μ μ , 可见只有当V 不变时,E ~ p 才成正比。 5. D 解:因为)(d v f N N =d v ,所以)(21212 v f N mv v v ???d ?=21221v v mv v d N 表示在1v ~2v 速率间隔内的分子平动动能之和。 6. D 解:由,2,212 2 v n d z n d ππλ== 体积不变时n 不变,而v ∝T , 所以, 当T 增大时,λ不变而z 增大。 二、填空题 1. 27.8×10-3 kg ?mol -1 解:由RT M pV μ = 可得摩尔质量为 5 23mol 10013.1100.130031.8103.11??????====--p RT pV MRT M ρμ )m ol (kg 108.271 3 --??= 2. 1.28×10-7K 。 [1eV = 1.6×1019 -J ,摩尔气体常数R = 8.31 (J·mol 1 -·K 1 -)] 解:由V C M E μ = ?△T 和R C V 2 3 = 得

相关文档
相关文档 最新文档