文档库 最新最全的文档下载
当前位置:文档库 › 神经网络控制修订稿

神经网络控制修订稿

神经网络控制修订稿
神经网络控制修订稿

神经网络控制

公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

人工神经网络控制

摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。

关键词: 神经网络控制;控制系统;人工神经网络

人工神经网络的发展过程

神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。

在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。如神经预测控制、神经逆系统控制等。

生物神经元模型

神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与 102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量

的神经元与外部感受器之间的多种多样的连接方式也蕴含了变化莫测的反应方式。

图1

生物神经元传递信息的过程为多输入、单输出,神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近,当神经元细胞体通过轴突传到突触前膜的脉冲幅度达到一定强度,即超过其阈值电位后,突触前膜将向突触间隙释放神经传递的化学物质,突触有两种类型,兴奋性突触和抑制性突触。前者产生正突触后电位,后者产生负突触后电位。

人工神经网络的定义

人工神经网络(ARTIFICIAL NEURAL NETWORK,简称ANN)是目前国际上一门发展迅速的前沿交叉学科。为了模拟大脑的基本特性,在现代神经科学研究的基础上,人们提出来人工神经网络的模型。人工神经网络是在对人脑组织结构和运行机智的认识理解基础之上模拟其结构和智能行为的一种工程系统。

人工神经网络的定义不是统一的,对人工神经网络的定义:“人工神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。”

人工神经网络的基本原理

人工神经网络(articles neural network,ANN)结构和工作机理基本上以人脑的组织结构(大脑神经元网络)和活动规律为背景的,它反映了人脑的某些基本特征,但并不是要对人脑部分的真实再现,可以说它是某种抽象、简化或模仿。神经网络在2个方面与人脑相似:

(1) 人工神经网络获取的知识是从外界环境中学习得来的。

(2) 互连神经元的连接强度,即突触权值,用于存储获取的信息。他既是高度非线性动力学系统,又是自适应组织系统,可用来描述认知、决策及控制的智能行为。神经网络理论是巨量信息并行处理和大规模并行计算的基础。

人工神经网络的基本特征

1、并行分布处理:人工神经网络具有高度的并行结构和并行处理能力。这特别适于实时控制和动态控制。各组成部分同时参与运算,单个神经元的运算速度不高,但总体的处理速度极快。

2、非线性映射:人工神经网络具有固有的非线性特性,这源于其近似任意非线性映射(变换)能力。只有当神经元对所有输入信号的综合处理结果超过某一门限值后才输出一个信号。因此人工神经网络是一种具有高度非线性的超大规模连续时间动力学系统。

3、信息处理和信息存储合的集成:在神经网络中,知识与信息都等势分布贮存于网络内的各神经元,他分散地表示和存储于整个网络内的各神经元及其连线上,表现为神经元之间分布式的物理联系。作为神经元间连接键的突触,既是信号转换站,又是信息存储器。每个神经元及其连线只表示一部分信息,而不是一个完整具体概念。信息处理的结果反映在突触连接强度的变化上,神经网络只要求部分条件,甚至有节点断裂也不影响信息的完整性,具有鲁棒性和容错性。

4、具有联想存储功能:人的大脑是具有联想功能的。比如有人和你提起内蒙古,你就会联想起蓝天、白云和大草原。用人工神经网络的反馈网络就可以实现这种联想。神经网络能接受和处理模拟的、混沌的、模糊的和随机的信息。

在处理自然语言理解、图像模式识别、景物理解、不完整信息的处理、智能机器人控制等方面具有优势。

5、具有自组织自学习能力:人工神经网络可以根据外界环境输入信息,改变突触连接强度,重新安排神经元的相互关系,从而达到自适应于环境变化的目的。

6、软件硬件的实现:人工神经网络不仅能够通过软件而且可借助软件实现并行处理。近年来,一些超大规模集成电路的硬件实现已经问世,而且可从市场上购到,这使得神经网络具有快速和大规模处理能力的实现网络。许多软件都有提供了人工神经网络的工具箱(或软件包)如Matlab、Scilab、R、SAS等。

人工神经网络的基本数学模型

神经元是神经网络操作的基本信息处理单位(图2)。神经元模型的三要素为:(1) 突触或联接,一般用w ij,表尔神经元和神经元之间的联接强度,常称之为权值。

(2) 反映生物神经元时空整合功能的输入信号累加器。

图2 一个人工神经元(感知器)和一个生物神经元示意图

(3) 一个激活函数用于限制神经元输出(图3),可以是阶梯函数、线性或者是指数形式的函数(Sigmoid函数)等。

图3 激活函数:(a)阀值单元 (b)线性单元 (c)(d)非线性单元:Sigmoid 函数

图3是神经元的基本模型,图5是多层人工神经网络模型的示意图,其中

12,,

,n x x x 为输入信号,对应于生物神经元的树突输入,其他神经元的轴突输

出;i u 为神经元的内部状态;i θ为阀值;ij w 为神经元i 和神经元j 的连接权值,其正负分别表示兴奋和抑制;()f ?为激活函数,也称变换函数或传递函数;i y 为输出。这个模型可以描述为:

1

1

()()

n i ij j i

j i i i i s w x u g s y f u θ-==-==∑

图4 神经元的基本模型

图5 多层人工神经网络示意图

常见神经元响应函数

(4)非线性单元:Sigmoid 函数

(a )s

e s -+=11

)(σ (b )

)tanh()(s s βσ=

神经网络基本学习算法

有教师学习(监督学习)

无教师学习(无监督学习)

强化学习(再励学习)

神经网络 (学习系

误差分析

误差信号

e t

期望输出

P 输入

a

期望输出

神经网络 (学习系

P 输入

a

期望输出 神经网络

(学习系

外部环境

评价信息 P 输入

a

期望输出

人工神经网络应用

人工神经网络经过多年的发展,应用研究也取得了突破性进展,范围正在不断扩大,其应用领域几乎包括各个方面。半个世纪以来,这门学科的理论和技术基础已达到了一定规模,就应用的技术领域而言有计算机视觉,语言的识别、理解与合成,优化计算,智能控制及复杂系统分析,模式识别,神经计算机研制,知识推理专家系统与人工智能。涉及的学科有神经生理学、认识科学、数理科学、心理学、信息科学、计算机科学、微电子学、光学、动力学、生物电子学等。美国、日本等国在神经网络计算机软硬件实现的开发方面也取得了显着的成绩,并逐步形成产品。

人工神经网络在数据挖掘中主要应用于数据的分类和预测,在分类方法中,与传统的统计方法相比,神经网络具有很强的学习能力,极大地提高了分类的精度和预测的准测度。人工神经网络与支持向量机、遗传算法、随机森林等其他先进算法的结合,产生更为精确地算法,在R的galgo包(主要应用于生物信息学)中已经体现出来。

神经网络应用于系统辨识与控制的优点:无须数学建模,只需在线或离线学习训练,同时适用于线性和非线性系统,具有很强的适应性和鲁棒性,容易和其他控制方式结合。

1数字识别

每一网格的

明暗度经光

电器件转换

成电信号

神经网络

(NN)的输入

与网格阵列

一一对应

输出电平高

低的组合对

应要识别的

数字

用数字样本

和标准输出

对NN进行

训练

2系统辨识

3专家控制

人工神经网络发展方向

1、人工神经网络模型的研究

利用神经生理与认知科学研究人类思维以及智能机理和利用神经基础理论的研究成果,用数理方法探索功能更加完善、性能更加优越的神经网络模型,

深入研究网络算法和性能。如:稳定性、收敛性、容错性、鲁棒性等;开发新的网络数理理论,如:神经网络动力学、非线性神经场等。

2、人工神经计算和进化计算

要把基于链接主义的神经网络理论、基于符号主义的人工智能专家系统理论和基于进化论的人工生命这3大研究领域,自发而有机的结合起来。建立神经计算和进化计算的数学理论基础。“并行分布处理(PDP)”具有自学习、自适应和自组织的特点,这是一种提高计算性能的有效途径,是神经网络迫切需要增强的主要功能,必须加以重视,同时,还应寻找其他有效方法,建立具有计算复杂性、网络容错性和坚韧性的计算理论。进一步研究调节多层感知器的算法,使建立的模型和学习算法成为适应性神经网络的有力工具,构建多层感知器与自组织特征图级联想的复合网络,是增强网络解决实际问题能力的一个有效途径,重视链接的可编程性和通用性问题的研究,从而促进智能科学的发展。

3、神经网络计算机的实现

神经网络结构和神经元芯片的作用将不断扩大。神经网络结构的研究是神经网络的实现以及成功地实现应用的前提,又是优越的物理前提,他体现了算法和结构的统一是硬件和软件的混合体,未来的研究主要是针对信息处理功能体,将系统、结构、电路、器件和材料等方面的知识有机地结合起来,建构有关的新概念和新技术,在硬件实现上,研究材料的结构和组织,使他具有自然地进行信息处理的能力。

关于自己对人工神经网络的认知

(1)人工神经网络的发展很大程度依靠算法的改进和计算硬件速度的发展;概率神经网络、模糊神经网络及与其他新技术的结合是很重要的发展方向。(2)人工神经网络虽然已得到广泛的应用,但认为各种识别工作都可以利用神经网络来实现的观点是不成熟的。

(3)神经网络搭建的成功与否,很大程度取决于隐层单元个数的选择,而目前仍然没有该选择的理论依据;另外,输入层、输出层的确立往往依不同的设

计人员而有不同的选择方式,因此,针对一个问题而建立的不同神经网络可能有多种,从而使得网络的识别能力存在差异。

(4)网络的训练和仿真对训练样本和测试样本有很大的依赖性。如果两种样本的数量、类别不完备,网络的训练将存在缺陷,甚至达不到设计目的。因此,使用神经网络技术,前提是有良好的数据样本基础。

总之,人工神经网络特有的非线性适应性的信息处理能力,克服了传统人工智能方法对于直觉信息处理方面的缺陷(如模式、语音识别、非结构化信息等),使之在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。人工神经网络正向模拟人类认知的道路上更加深入发展,与模糊系统、遗传算法、进化机制等结合,形成计算智能,成为人工智能的一个重要方向,将在实际应用中得到发展。人工神经网络与其它现代计算方法相结合,是推动人工智能和信息处理技术不断发展的一个重要动力。

人工神经网络控制 摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。 关键词: 神经网络控制;控制系统;人工神经网络 人工神经网络的发展过程 神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。 在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。如神经预测控制、神经逆系统控制等。 生物神经元模型 神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量的神经元与外部感受器之间的多种多样的连接方式也蕴含了变化莫测的反应方式。 图1 生物神经元传递信息的过程为多输入、单输出,神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近,当神经元细胞体通过轴突传到突触前膜的脉冲幅度达到一定强度,即超过其阈值电位后,突触前膜将向突触间隙释放神经传递的化学物质,突触有两

神经网络在PLC控制系统中的应用 2010-11-11 18:30:00 来源:中国自动化网浏览:47 网友评论条点击查看 摘要:神经网络具有自学习、自调整、自适应能力。本文介绍了由PLC控制实现的神经网络PID自适应控制器。实验表明,该技术对于提高控制精度是行之有效的。具有在调速系统中推广应用的价值。 关键词:PLC;PID控制器;神经网络;直流调速系统 一、引言 虽然目前的交、直流传动系统都有较成熟的控制方案,采用线性PI或PID 调节器可以取得基本满意的控制效果。但是,常参数的PID调节器只对线形系统有效,它们的控制性能因为系统的非线性而降低。在电力传动系统中,虽可以建立电机模型,但是电机本身和负载的一些参数(如交流电机的转子电阻、拖动负载的转动惯量)是无法确定的、时变的。电气设备的机械饱和特性,开关的失控时间、控制延时都是不能精确建模的非线性因素。然而将模糊与神经网络技术引入电力传动系统设计智能控制器却可以很好地克服电力传动对象变参数、非线性等问题,大大提高系统的鲁棒性。引入模糊与神经网络技术的主要优点是不需要过程的复杂模型,而且适应性强,容易实现。 本文是将PID控制规律融进神经网络[3]之中,实现神经网络与PID控制规律的本质结合,共同完成PID自适应调节,并用PLC实现神经网络PID自适应控制,确保电力传动系统的控制精度和可靠性。 二、PID自适应控制器 常规PID控制算法为: (1) 用求和代替积分,微分用有限差分代替,即上式为: (2) 式中T为采样周期,KP是比例系数,KI=KP/TI是积分比例系数,KD=KPTD是微分比例系数。 根据上式,组成由两层线性神经网络构造的控制器,如图1所示。它是由比例、积分、微分三个单元组成的一种动态前向网络,各层神经元个数、连接方式、连接权值是按PID 控制规律的基本原则和已有的经验确定,能够保证系统的稳定和快速收敛。

基于BP神经网络的PID控制器的研究与 实现 课程名称:人工神经网络

目录 前言 (3) 一、BP神经网络 (4) 二、模拟PID控制系统 (5) 三、基于BP神经网络的PID控制器 (6) 四、仿真程序 (10) 五、运行结果 (17) 六、总结 (18) 参考文献 (19)

前言 人工神经网络是以一种简单神经元为节点,采用某种网络拓扑结构构成的活性网络,可以用来描述几乎任意的非线性系统。不仅如此,人工神经网络还具有学习能力、记忆能力、计算能力以及各种智能处理能力,在不同程度和层次上模仿人脑神经系统的信息处理、存储和检索的功能。不同领域的科学家,对人工神经网络有着不同的理解、不同的研究内容,并且采用不同的研究方法。对于控制领域的研究工作者来说,人工神经网络的魅力在于:①能够充分逼近任意复杂的非线性关系,从而形成非线性动力学系统,以表示某种被控对象的模型或控制器模型;②能够学习和适应不确定性系统的动态特性;③所有定量或定性的信息都分布储存于网络内的各神经单元,从而具有很强的容错性和鲁棒性;④采用信息的分布式并行处理,可以进行快速大量运算。对于长期困扰控制界的非线性系统和不确定性系统来说,人工神经网络无疑是一种解决问题的有效途径。正因为如此,把人工神经网络引入传统的PID 控制,将这两者结合,则可以在一定程度上解决传统PID 调节器不易在线实时整定参数、难于对一些复杂过程和参数慢时变系统进行有效控制的不足。

一、BP神经网络 BP神经网络是一种有隐含层的多层前馈网络,其结构如图1-1所示。如果把具有M个输入节点和L个输出节点的BP神经网络看成是从M维欧氏空间到L维欧氏空间的非线性映射,则对于具有一定非线性因数的工业过程被控对象,采用BP网络来描述,不失为一种好的选择。在BP神经网络中的神经元多采用S型函数作为活化函数,利用其连续可导性,便于引入最小二乘学习算法,即在网络学习过程中,使网络的输出与期望输出的误差边向后传播边修正加权系数,以期使误差均方值最小。BP神经网络的学习过程可分为前向网络计算和反向误差传播——连接加权系数修正两个部分,这两个部分是相继连续反复进行的,直至误差满足要求。不论学习过程是否已经结束,只要在网络的输入节点加入输入信号,则这些信号将一层一层向前传播;通过每一层时要根据当时的连接加权系数和节点的活化函数与阈值进行相应计算,所得的输出再继续向下一层传输。这个前向网络计算过程,既是网络学习过程的一部分,也是将来网络的工作模式。在学习过程结束之前,如果前向网络计算的输出和期望输出之间存在误差,则转入反向传播,将误差沿着原来的连接通路回送,作为修改加权系数的依据,目标是使误差减小。

第三章 PID 神经网络结构及控制器的设计 在控制系统中,PID 控制是历史最悠久,生命力最强的控制方式,具有直观、实现简单和鲁棒性能好等一系列优点。但近年来随着计算机的广泛应用,智能控制被越来越广泛的应用到各种控制系统中。智能控制方法以神经元网络为代表,由于神经网络可实现以任意精度逼近任意函数,并具有自学习功能,因此适用于时变、非线性等特性未知的对象,容易弥补常规PID 控制的不足。将常规PID 控制同神经网络相结合是现代控制理论的一个发展趋势。 3.1 常规PID 控制算法和理论基础 3.1.1 模拟PID 控制系统 PID(Proportional 、Integral and Differential)控制是最早发展起来的控制策略之一,它以算法简单、鲁捧性好、可靠性高等优点而梭广泛应用于工业过程控制中。 PID 控制系统结构如图3.1所示: 图3.1 模拟PID 控制系统结构图 它主要由PID 控制器和被控对象所组成。而PID 控制器则由比例、积分、微分三个环节组成。它的数学描述为: 1() ()[()()]t p D i de t u t K e t e d T T dt ττ=+ +? (3.1) 式中,p K 为比例系数; i K 为积分时间常数: d K 为微分时间常数。 简单说来,PID 控制器各校正环节的主要控制作用如下: 1.比例环节即时成比例地反映控制系统的偏差信号()e t ,偏差一旦产生,控制器立即产生控制作用,以减少偏差。

2.积分环节主要用于消除静差,提高系统的无差度。积分作用的强弱取决于积分时间常数i T ,i T 越大,积分作用越弱,反之则越强。 3.微分环节能反映偏差信号的变化趋势(变化速率),并能在偏差信号值变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减少调节时间。 具体说来,PID 控制器有如下特点: (1)原理简单,实现方便,是一种能够满足大多数实际需要的基本控制器; (2)控制器能适用于多种截然不同的对象,算法在结构上具有较强的鲁棒性,在很多情况下,其控制品质对被控对象的结构和参数摄动不敏感。 3.1.2 数字PID 控制算法 在计算机控制系统中,使用的是数字PID 控制器,数字PID 控制算法通常又分为位置式PID 控制算法和增量式PID 控制算法。 1.位置式PID 控制算法 由于计算机控制是一种采样控制,它只能根据采样时刻的偏差值计算控制量,故对式(3.1)中的积分和微分项不能直接使用,需要进行离散化处理。按模拟PID 控制算法的算式(3.1),现以一系列的采样时刻点kT 代表连续时间t ,以和式代替积分,以增量代替微分,则可以作如下的近似变换: t kT = (0,1,2,3...)k = ()()()k k t j j e t dt T e jT T e j ==≈=∑∑? ()()[(1)]()(1) de t e kT e k T e k e k dt T T ----≈= (3.2) 式中,T 表示采样周期。 显然,上述离散化过程中,采样周期T 必须足够短,才能保证有足够的精度。为了书写方便,将()e kT 简化表示()e k 成等,即省去T 。将式(3.2)代入到(3.1)中可以得到离散的PID 表达式为: 0(){()()[()(1)]}k D p j I T T u k K e k e j e k e k T T ==+ + --∑ (3.3) 或 0 ()()()[()(1)]}k p I D j u k K e k K e j K e k e k ==++--∑ (3.4) 式中,k ——采样序号,0,1,2...k =; ()u k ——第k 次采样时刻的计算机输出值;

实验八:基于神经网络的优化计算实验 一、实验目的 掌握连续Hopfield神经网络的结构和运行机制,理解连续Hopfield神经网络用于优化计算的基本原理,掌握连续Hopfield神经网络用于优化计算的一般步骤。 二、实验原理 连续Hopfield神经网络的能量函数的极小化过程表示了该神经网络从初始状态到稳定状态的一个演化过程。如果将约束优化问题的目标函数与连续Hopfield神经网络的能量函数对应起来,并把约束优化问题的解映射到连续Hopfield神经网络的一个稳定状态,那么当连续Hopfield神经网络的能量函数经演化达到最小值时,此时的连续Hopfield神经网络的稳定状态就对应于约束优化问题的最优解。 三、实验条件 VC++6.0。 四、实验内容

1、参考求解TSP问题的连续Hopfield神经网络源代码,给出15个城市和20个城市的求解结果(包括最短路径和最佳路线),分析连续Hopfield神经网络求解不同规模TSP问题的算法性能。 2、对于同一个TSP问题(例如15个城市的TSP问题),设置不同的网络参数,分析不同参数对算法结果的影响。 3、上交源代码。 五、实验报告 1、画出连续Hopfield神经网络求解TSP问题的流程图。

2、根据实验内容,给出相应结果及分析。 (1)15个城市(测试文件TSP15.TXT)

tsp15.txt 最短路程 371 最佳路线 1914861351534712210111 →→→→→→→→→→→→→→→ (2)20个城市(测试文件TSP20.TXT) tsp20.txt 最短路程349 最佳路线 →→→→→→→→→→→→→→→→→→→→→141618971315111735124289191610201 3、总结连续Hopfield神经网络和遗传算法用于TSP问题求解时的优缺点。

神经网络架构搜索 架构搜索根据一个已有的效果比较好的神经网络结构,找到更好的结构,例如将其中的某一层进行替换,增添一层或者减少一层,改变网络的拓扑结构。为什么要基于已有的网络?因为在已有的神经网络上更改拓扑结构可以利用已经训练好的权重,在巨人的肩膀上进步,为了更快的得到更好的结果。什么是Path-Level?链式结构如上图,我们称之为Layer-LevelPath-Level如下图:Layer-Level的架构搜索给定一个层的候选集(例如:卷积层3*3,卷积层1*1,池化层,identity),从候选集中选择一个层进行替换。identity指的是x->x,什么都不做。如何选择?1. 暴力搜索:遍历每一种可能的选择通过训练后测试结果反馈来选择结果最好的网络结构。2. 随机搜索:随机选择一种层通过训练后测试结果反馈来选择结果最好的网络结构。3. 强化学习:在暴力搜索和随机搜索的过程中,我们可能会发现当前层选择卷积层3*3,无论网络后面怎样选择,效果都比选择卷积层1*1和池化层效果好,那么我们此时就可以把这一层固定下来只使用卷积层3*3,但如果我们一直这么贪心选择的话,可能会错过一些即使当前不选择卷积层3*3也可能结果很好的机会,所以我们对此做一个折中,我们以x的概率选择随机搜索,以1-x 的概率选择贪心搜索,这样我们搜索的效率就比暴力搜索和

随机搜索好了很多。4. 强化学习+ RNN:在前面三种搜索策略中,我们都是只考虑了当前的状态,那我们可以试图结合前几层或后几层一起对当前层做出决策,我们使用双向RNN来解决这个问题,每一个节点的输入是前一层的输出和前一层的激活函数返回值,输出是当前层应该选择哪一层,但利用双向RNN解决架构搜索问题的过程中,我们发现没有label用来训练RNN,所以强化学习其实起到的是一个采样的作用,采样之后,RNN根据采样的每一层的选择和最后的结果一起来决定每一层选择不同选择的概率。Path-Level 的架构搜索为什么要做Path-Level的架构搜索?因为已经有一些Multi-Brach Neural Networks取得了很好效果,我们需要提供一种方法可以改变旧网络的拓扑结构,使得我们有机会生成表征能力更强的类似Inception models, ResNets这样优秀的网络或更好的网络。定义如何拓宽网络Net2WiderNet 我们定义两种操作,Replication-Add和Split-Concat:1. Replication-Add是指将x复制成2份,分别操作后把结果除以2再相加,保证输入和输出和之前的维度相同。2. Split-Concat是指将x按照维度切成两份,分别操作后再把结果相接,保证输入和输出和之前的维度相同。定义如何加深网络Net2DeeperNet利用Net2DeeperNet在当前层后面加一个identity层(实现细节可以看论文中的相关链接Net2Net)定义Path-Level的架构搜索的数据结构如图,a过程是

人工智能实验报告 实验六基于神经网络的优化计算实验 一、实验目的: 掌握连续Hopfield神经网络的结构和运行机制,理解连续Hopfield神经网络用于优化计算的基本原理,掌握连续Hopfield神经网络用于优化计算的一般步骤。 二、实验原理 连续Hopfield神经网络的能量函数的极小化过程表示了该神经网络从初始状态到稳定状态的一个演化过程。如果将约束优化问题的目标函数与连续Hopfield神经网络的能量函数对应起来,并把约束优化问题的解映射到连续Hopfield神经网络的一个稳定状态,那么当连续Hopfield神经网络的能量函数经演化达到最小值时,此时的连续Hopfield神经网络的稳定状态就对应于约束优化问题的最优解。 三、实验条件: VC++6.0。 四、实验内容: 1、参考求解TSP问题的连续Hopfield神经网络源代码,给出15个城市和20个城市的求解结果(包括最短路径和最佳路线),分析连续Hopfield神经网络求解不同规模TSP问题的算法性能。 2、对于同一个TSP问题(例如15个城市的TSP问题),设置不同的网络参数,分析不同参数对算法结果的影响。 3、上交源代码。

五、实验报告要求: 1、画出连续Hopfield神经网络求解TSP问题的流程图。 2、根据实验内容,给出相应结果及分析。 (1)15个城市(测试文件TSP15.TXT)

tsp15.txt 最短路程 371 最佳路线 →→→→→→→→→→→→→→→1914861351534712210111 (2)20个城市(测试文件TSP20.TXT) tsp20.txt 最短路程349 最佳路线 →→→→→→→→→→→→→→→→→→→→→141618971315111735124289191610201 3、总结连续Hopfield神经网络和遗传算法用于TSP问题求解时的优缺点。 遗传算法易出现早熟收敛和收敛性差的缺点。 Hopfield算法对高速计算特别有效,但网络不稳定。 用Hopfield解TSP问题效果并不理想。相对前面的遗传算法解TSP 性能有相当大差距。

实验六基于神经网络的优化计算实验 一、实验目的 掌握连续Hopfield神经网络的结构和运行机制,理解连续Hopfield神经网络用于优化计算的基本原理,掌握连续Hopfield神经网络用于优化计算的一般步骤。 二、实验原理 连续Hopfield神经网络的能量函数的极小化过程表示了该神经网络从初始状态到稳定状态的一个演化过程。如果将约束优化问题的目标函数与连续Hopfield神经网络的能量函数对应起来,并把约束优化问题的解映射到连续Hopfield神经网络的一个稳定状态,那么当连续Hopfield神经网络的能量函数经演化达到最小值时,此时的连续Hopfield神经网络的稳定状态就对应于约束优化问题的最优解。 实验报告 1、画出连续Hopfield神经网络求解TSP问题的流程图。

2、根据实验内容,给出相应结果及分析。 (1)、参考求解TSP问题的连续Hopfield神经网络源代码(设置参数A=15,B=15,D=0.015, u0=0.02,h=0.5,r= cityNumber*10),给出15个城市和20个城市的求解结果(包括最短路径和最佳路线),分析连续Hopfield神经网络求解不同规模TSP问题的算法性能。 1)int main(int argc,char *argv[]):修改路径计算的代码 2)最后要求输出:

TSP4 (2)、对于同一个TSP问题(例如15个城市的TSP问题),设置不同的网络参数(A=50,B=50,D=0.01,C=50,u0=0.02, h=0.5,r=cityNumber*100; A=0.5, B=0.5, D=0.5, C=0.2,u0=0.02,h=0.5,r=cityNumber*100; A=500,B=500,D=500,C=200,u0=0.02,h=0.5, r=cityNumber*100; A=5, B=5, D=0.01, C=5,u0=0.02,h=0.5, r=cityNumber*100),分析不同参数对算法结果的影响。 1)int main(int argc,char *argv[]):增加全局约束的参数C,网络动态方程也需增加全局约束项。 2)bool is_a_road():在是否是一条可行路径中,需要增加满足全局约束的判断 3)最后要求输出: 情况一 情况二

神经网络控制 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

人工神经网络控制 摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。 关键词: 神经网络控制;控制系统;人工神经网络 人工神经网络的发展过程 神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。 在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。如神经预测控制、神经逆系统控制等。 生物神经元模型 神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与 102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量的神经元与外部感受器之间的多种多样的连接方式也蕴含了变化莫测的反应方式。 图1 生物神经元传递信息的过程为多输入、单输出,神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近,当神经元细胞体通过轴突传到突触前膜的脉

5.4 神经网络的基本原理 ()网络是1986年由和为首的科学家小组提 出,是一种按误差逆传播算法训练的多层前馈网 络,是目前应用最广泛的神经网络模型之一。网 络能学习和存贮大量的输入-输出模式映射关 系,而无需事前揭示描述这种映射关系的数学方 程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。神经网络模型拓扑结构包括输入层()、隐层( )和输出层( )(如图5.2所示)。 5.4.1 神经元 图5.3给出了第j个基本神经元(节点),它只模仿了生物神经元所具有的三个最基本也是最重要的功能:加权、求和与转移。其中x1、x2……分别代表来自神经元1、2…i…n的输入;1、2……则分别表示神经元1、2…i…n与第j个神经元的连接强度,即权值;为阈值;f(·)为传递函数;为第j个神经元的输出。 第j个神经元的净输入值为: (5.12)

其中: 若视,,即令及包括及,则 于是节点j的净输入可表示为: (5.13)净输入通过传递函数()f (·)后,便得到第j个神经元的输出: (5.14)式中f(·)是单调上升函数,而且必须是有界函数,因为细胞传递的信号不可能无限增加,必有一最大值。 5.4.2 网络 算法由数据流的前向计算(正向传播)和误差信号的反向传播两个过程构成。正向传播时,传播方向为输入层→隐层→输出层,每层神经元的

状态只影响下一层神经元。若在输出层得不到期望的输出,则转向误差信号的反向传播流程。通过这两个过程的交替进行,在权向量空间执行误差函数梯度下降策略,动态迭代搜索一组权向量,使网络误差函数达到最小值,从而完成信息提取和记忆过程。 5.4.2.1 正向传播 设网络的输入层有n个节点,隐层有q个节点,输出层有m个节点,输入层与隐层之间的权值为,隐层与输出层之间的权值为,如图5.4所示。隐层的传递函数为f1(·),输出层的传递函数为f2(·),则隐层节点的输出为(将阈值写入求和项中): 1,2,…… q (5.15)输出层节点的输出为: 1,2,…… m (5.16)至此网络就完成了n维空间向量对m维空间的近似映射。

神经网络学习之 BP神经网络 https://www.wendangku.net/doc/e318112974.html,/u013007900/article/details/50118945

目录 第一章概述 第二章BP算法的基本思想 第三章BP网络特性分析 3.1 BP网络的拓扑结构 (4) 3.2 BP网络的传递函数 (5) 3.3 BP网络的学习算法 (6) 第四章BP网络的训练分解 4.1前向传输(Feed-Forward前向反馈) (8) 4.2逆向反馈(Backpropagation) (9) 4.3 训练终止条件 (10) 第五章BP网络运行的具体流程 (10) 5.1网络结构 (10) 5.2变量定义 (10) 5.3误差函数: (11) 第六章 BP网络的设计 (14) 6.1 网络的层数 (14) 6.2 隐层神经元的个数 (14) 6.3 初始权值的选取 (15) 6.4 学习速率 (15) BP网络的局限性 (15) BP网络的改进 (15)

第一章概述 神经网络是1986年由Rumelhart和McCelland为首的科研小组提出,参见他们发表在Nature 上的论文Learning representations by back-propagating errors。 BP神经网络是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。 第二章 BP算法的基本思想 多层感知器在如何获取隐层的权值的问题上遇到了瓶颈。既然我们无法直接得到隐层的权值,能否先通过输出层得到输出结果和期望输出的误差来间接调整隐层的权值呢?BP算法就是采用这样的思想设计出来的算法,它的基本思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成。 ?正向传播时,输入样本从输入层传入,经各隐层逐层处理后,传向输出层。若输出层的实际输出与期望的输出(教师信号)不符,则转入误差的反向传播阶段。 ?反向传播时,将输出以某种形式通过隐层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差信号,此误差信号即作为修正各单元权值的依据。 这两个过程的具体流程会在后文介绍。 BP算法的信号流向图如下图所示

第一章前言 1.1 课题的意义: 本毕业设计旨在学习并比较各种自适应控制算法,掌握matlab语言,利用simulink对自适应控制系统模型进行仿真分析。 自适应控制是人们要求越来越高的控制性能和针对被控系统的高度复杂化,高度不确定性的情况下产生的,是人工智能渗入到应用科技领域的必然结果。并在常规控制理论的基础上得到进一步的发展和提高。进入21世纪以来,智能控制技术和远程监测技术继续飞速发展,逐渐被应用到电力、交通和物流等领域。从卫星智能控制,到智能家居机器人;从公共场所的无线报警系统,到家用煤气、自来水等数据的采集。可以说,智能控制技术和远程监测技术己经渗透到了人们日常生活之中,节约了大量的人力和物力,给人们的日常生活带来了极大的便利。目前,自适应控制的研究以认知科学、心理学、社会学、系统学、语言学和哲学为基础,有效的把数字技术、远程通信、计算机网络、数据库、计算机图形学、语音与听觉、机器人学、过程控制等技术有机的结合,提供了解决复杂问题的有效手段。 自适应控制是在人们在追求高控制性能、高度复杂化和高度不确定性的被控系统情况下产生的,是人工智能渗入到应用科技领域的必然结果,并在常规控制理论的基础上得到进一步的发展和提高。主要研究对象从单输入、单输出的常系数线性系统,发展为多输入、多输出的复杂控制系统。自适应控制理论的产生为解决复杂系统控制问题开辟了新的途径,成为当下控制领域的研究和发展热点。 1.2 国内外研究概况及发展趋势: 1943年,心理学家W·Mcculloch和数理逻辑学家W·Pitts在分析、总结神经元基本特性的基础上首先提出神经元的数学模型。此模型沿用至今,并且直接影响着这一领域研究的进展。因而,他们两人可称为人工神经网络研究的先驱。1945年冯·诺依曼领导的设计小组试制成功存储程序式电子计算机,标志着电子计算机时代的开始。1948年,他在研究工作中比较了人脑结构与存储程序式计算机的根本区别,提出了以简单神经元构成的再生自动机网络结构。但是,由于指令存储式计算机技术的发展非常迅速,迫使他放弃了神经网络研究的新途径,继续投身于指令存储式计算机技术的研究,并在此领域作出了巨大贡献。虽然,冯·诺依曼的名字是与普通计算机

x=0:0.01:3 y=3*sin(x)+0.1*rand(1,length(x)) 针对前述函数, 建立一个单输入单输出的3层BP网络, 并撰写报告, 激励函数等可自行选择: 要求: 神经网络输出与函数输出的误差应小于某小值; 由于所给函数x取值范围是[0 3],而题目要求输入输出样本集x 取值范围应该覆盖0度到360度。因此x在[3 2*pi]内, 应观察已训练好的神经网络是否满足目标函数, 以此检验训练完的网络。 建立网络与参数设置 一、先分析几个常见的激励函数 (1)logsig对数S型(sigmoid)传递函数, 它能够将神经元的输入范围是(-∞, +∞)映射到(0,1)的区间上, 它是可微函数, 其表示式为: y=1/1+e-x。 (2)tansig双曲正切S型(sigmoid)传递函数, 它能够将神经元的输入范围(-∞, +∞)映射到(-1,+1)的区间上, 它是可微函数。 对logsig传递函数而言, 输出范围是(0,1), 对tansig传递函数而言, 输出范围是(-1,1)。如果是purelin型神经元, 则整个网络的输出能够是任意值。 对三层BP网络而言, 如果最后一层是sigmoid型神经元, 那么整个网络的输出就限制在一个较小的范围内。我们选择purelin函数作为输出层神经元的激励函数, tansig函数作为隐层神经元的激励函数。

二、学习算法 BP算法的主要缺点是: 收敛速度慢, 局部极值、难以确定隐层结点个数。改进主要有两种途径: 一种是采用启发式学习算法, 另一种是采用更有效的优化算法。 启发式算法主要体现在函数梯度上, 包括有动量的梯度下降法、自适应lc的梯度下降法、有动量和自适应lc的梯度下降法和能复位的BP训练法。 基于数值优化的训练方法有三种: 共轭梯度法、高斯牛顿法和Levevberg-Marquardt法。 由于trainlm具有收敛快,误差小的优点, 且本实验中数据量不算大, 故我们这里采trainlm学习算法。,误差小的优点, 且本实验中数据量不算大, 故我们这里用trainlm学习算法。各个算法特点见表1 表1

BP神经网络及深度学习研究 摘要:人工神经网络是一门交叉性学科,已广泛于医学、生物学、生理学、哲学、信息学、计算机科学、认知学等多学科交叉技术领域,并取得了重要成果。BP(Back Propagation)神经网络是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。本文将主要介绍神经网络结构,重点研究BP神经网络原理、BP神经网络算法分析及改进和深度学习的研究。 关键词:BP神经网络、算法分析、应用 1引言 人工神经网络(Artificial Neural Network,即ANN ),作为对人脑最简单的一种抽象和模拟,是人们模仿人的大脑神经系统信息处理功能的一个智能化系统,是20世纪80 年代以来人工智能领域兴起的研究热点。人工神经网络以数学和物理方法以及信息处理的角度对人脑神经网络进行抽象,并建立某种简化模型,旨在模仿人脑结构及其功能的信息处理系统。 人工神经网络最有吸引力的特点就是它的学习能力。因此从20世纪40年代人工神经网络萌芽开始,历经两个高潮期及一个反思期至1991年后进入再认识与应用研究期,涌现出无数的相关研究理论及成果,包括理论研究及应用研究。最富有成果的研究工作是多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。因为其应用价值,该研究呈愈演愈烈的趋势,学者们在多领域中应用[1]人工神经网络模型对问题进行研究优化解决。 人工神经网络是由多个神经元连接构成,因此欲建立人工神经网络模型必先建立人工神经元模型,再根据神经元的连接方式及控制方式不同建立不同类型的人工神经网络模型。现在分别介绍人工神经元模型及人工神经网络模型。 1.1人工神经元模型 仿生学在科技发展中起着重要作用,人工神经元模型的建立来源于生物神经元结构的仿生模拟,用来模拟人工神经网络[2]。人们提出的神经元模型有很多,其中最早提出并且影响较大的是1943年心理学家McCulloch和数学家W.Pitts在分析总结神经元基本特性的基础上首先提出的MP模型。该模型经过不断改进后,形成现在广泛应用的BP神经元模型。人工神经元模型是由人量处理单元厂泛互连而成的网络,是人脑的抽象、简化、模拟,反映人脑的基本特性。一般来说,作为人工神经元模型应具备三个要素: (1)具有一组突触或连接,常用 w表示神经元i和神经元j之间的连接强度。 ij (2)具有反映生物神经元时空整合功能的输入信号累加器 。

智能控制与应用实验报告神经网络控制器设计

一、实验内容 考虑一个单连杆机器人控制系统,其可以描述为: Mq + 0.5mgl sin(q) = r y = q 其中M = 0.5kgm2为杆的转动惯量,“7 = 1kg为杆的质量,/ = \m为杆长, g=9.8/n/52, g为杆的角位置,刁为杆的角速度,刁为杆的角加速度,丁为系统的控制输入。具体要求: 1、设计神经网络控制器,对期望角度进行跟踪。 2、分析神经网络层数和神经元个数对控制性能的影响。 3、分析系统在神经网络控制和PID控制作用下的抗干扰能力(加噪声干扰、加参数不确定)、抗非线性能力(加死区和饱和特性)、抗时滞的能力(对时滞大小加以改变)。 4、为系统设计神经网络PID控制器(选作)。 二、对象模型建立 根据公式(1),令状态量得到系统状态方程为: r 一0?5 水〃?g/*sin(xj Af 山此建立单连杆机器人的模型如图1所示。 x2

图1单连杆机器人模型 三、系统结构搭建及神经网络训练 1 ?系统PID结构如图2所示: 图2系统PID结构图 PID参数设置为Kp二16, Ki二10, Kd二8得到响应曲线如图3所示:q 0.5 A mgl

1.4 0.4 ? 0.2 ; ? Q } r r r 「 「 r r r r 0123456789 10 t/s 图3 PID 控制响应曲线 采样PID 控制器的输入和输出进行神经网络训练 p 二[al' ;a2, ]; t 二b ,; net=newff ([-1 1;T 1;T 1], [3 8 16 8 1], {' tansig" ' tansig 5 1 tansig , logsig , ' pure 1 in 1}); 产生的神经网络控制器如图4所示: 图3神经网络工具箱 训练过程如图4所示: 1.2 Custom Neural Network

神经网络自适应控制的原理 自适应控制是一种特殊的反馈控制,它不是一般的系统状态反馈或输出反馈,即使对于现行定常的控制对象,自适应控制亦是非线性时变反馈控制系统。这种系统中的过程状态可划分为两种类型,一类状态变化速度快,另一类状态变化速度慢。慢变化状态可视为参数,这里包含了两个时间尺度概念:适用于常规 反馈控制的快时间尺度以及适用于更新调节参数的慢时间尺度,这意味着自适应 控制系统存在某种类型的闭环系统性能反馈。原理图如下: 图2-7自适应控制机构框图 人工神经网络(简称ANN)是也简称为神经网络(NNS )或称作连接模型,是对人脑或自然神经网络若干基本特性的抽象和模拟。人工神经网络以对大脑的 生理研究成果为基础的,其目的在于模拟大脑的某些机理与机制,实现某个方面 的功能。人工神经网络下的定义就是:“人工神经网络是由人工建立的以有向图为拓扑结构的动态系统,它通过对连续或断续的输入作状态相应而进行信息处理。”这一定义是恰当的。 人工神经网络的研究,可以追溯到1957年Rosenblatt提出的感知器模型。目前在神经网络研究方法上已形流派,最富有成果的研究工作包括:多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。它虽然反映了人脑功能的基本特征,但远不是自然神经网络的逼真描写,而只是它的某种简化抽象和模拟。神经网络的研究可以分为理论研究和应用研究两大方面。理论研究可分为以下两类: (1)利用神经生理与认知科学研究人类思维以及智能机理。 (2)利用神经基础理论的研究成果,用数理方法探索功能更加完善、性能更加优越的神经

网络模型,深入研究网络算法和性能,女口:稳定性、收敛性、容错性、 鲁棒性等;开发新的网络数理理论。 应用研究可分为以下两类: (1) 神经网络的软件模拟和硬件实现的研究。 (2) 神经网络在各个领域中应用的研究。 神经网络具有以下?特点: (1) 能够充分逼近任何复杂的非线性关系; (2) 全部定性或定量的信息都均匀分布存在于网络内的各神经元,因此有很强 的容错性和鲁棒性; (3) 使用并行分布处理的方式,让大量运算成可以快速完成; 神经网络自适应的一般结构 神经网络自适应控制有两种基本结构形式,一种是神网络模型参考自适应 控制 (NNMRAC ),—种是神经网络自校正控制(NNSTC )。神经网络模型参考自 适应控制又分为直接型与间接型。结构如图(2 -8 )所示。构造一个参考模型使 其输出为期望输出,控制的目的是使y 跟踪。 (a )直接型 (b)间接型 图2-8神经网络模型参考自适应控制结构 y

第一章 神经网络计算 §1-1神经元模型 一、概述 神经网络的特点 1. 定义:用于模拟人脑神经元活动过程,包括对信息的加工、处理、存贮和搜索过程。 2. 特点 (1) 信息分布式存贮 (2) 信息的并行处理与推理 (3) 信息的自组织、自学习 二、神经元的模型特征 神经元——多输入单输出的信息处理单元 膜电位——细胞内部和外部具有不同的电位,当外部电位为零时,内部电位称为膜电位。 ωi >0 —— 兴奋性神经元的突触 ωi <0 —— 抑制性 ωi =0 —— 第i 个输入信号对该神经元不起任何作用 神经元具有以下特征: 1. 时空整合功能: (1) 空间总和: 定量描述为:整个神经元的膜电位(状态变化)与输入信号与其权重的线性组合: 1 n i i i x ω=∑ 是线性相关的 (2) 时间总和:不同时刻的输入信息对神经元的影响会重叠,加起来,同时起作 用。 (3) 时空整合: 根据空间和时间总和,神经元对不同时刻和不同部位的输入进 行处理,该过程称之为时空整合作用。 定量描述为:设第i 个输入信号t 时间后对膜电位的影响为ωi (t ′(t)),则在t 时刻,神经元膜电位的变化与下式有关: 1 ()()n t i i i t t x t dt ω-∞ =-∑? ’’’ (1—1)

式中 ()i x t ’——第i 个输入在时间t ′时的输入信号 2 阈值特性 神经元的输入输出之间为非线性,如图1—2所示: 图1—2 阈值特性 即: _0y u y u θθ ?? >==?∞时,无论输入信号多强大,也不会有输出信号。 4. 突触结合的可塑性:即权重ωi 是实时变化的。 二、 神经模型

BP神经网络的学习 王贵腾 摘要:人工神经网络是近年来的热点研究领域,是人类智能研究的重要组成部分。BP神经网络作为目前应用较多的一种神经网络结构,具有良好的逼近性能,且结构简单,性能优良。但仍存在收敛速度慢,易陷入局部极小值的问题,通过附加动量项法、自适应学习率法、数据归一化法、遗传算法等,可大幅度改善其性能,可广泛应用于多输入多输出的非线性系统。 关键词:BP神经网络;BP算法;动量项;自适应学习率;归一化;遗传算法 1.绪论 1.1人工神经网络概述 人工神经网络(Artificial Neural Network),简称神经网络(NN),是由大量处理单元(神经元)组成的非线性大规模自适应系统。它具有自组织,自适应和自学习能力,以及具有非线性、非局域性,非定常性和非凸性等特点。它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理,记忆信息的方式设计一种新的机器使之具有人脑那样的信息处理能力。 神经网络作为计算智能与控制的重要分支,在控制领域具有如下优点: 1)能逼近任意L2范数上的非线性函数; 2)信息分布式存储与处理,鲁棒性和容错性强; 3)便于处理多输入多输出问题; 4)具有实现高速并行计算的潜力;

5)具有学习能力,对环境变化具有自适应性,对模型依赖性不强,主要用于解决非线性系统的控制问题。 同时,神经网络控制在多种控制结构中得到应用,如PID控制、模型参考自适应控制、前馈反馈控制、内模控制、逆系统控制、预测控制等。 目前神经网络的研究主要集中在三个方面:理论研究、实现技术研究、应用研究。 1.2 BP神经网络概述 BP神经网络是1986年由Rumelhart和McClelland一同提出的一种多层前馈神经网络。该网络采用BP算法——一种误差反向传播(Back Propagation)算法,其方法是依据负梯度下降方向迭代调整网络的权值和阀值以实现训练误差目标函数的最小化。 由于BP神经网络在实际应用中存在着收敛速度慢、网络结构难以确定、容易陷入局部极小值、泛化能力不强的缺陷,近年来,许多学者为满足实际应用中需要提出了许多改进方法,在网络自身性能的改善方面做了大量而有实际意义的工作,并且在BP神经网络的理论方面的研究和实际问题上应用也取得了丰硕的成果。对BP神经网络的理论研究,概括起来大致分为三个方面:改进激励函数,权值选取优化和网络拓扑结构。 1.3本文研究内容 本文从神经网络出发,研究其中应用最为广泛的BP神经网络模型,分析其缺点和不足,提出改进措施,并探讨其应用。具体研究内

神经网络的智能控制系统 摘要:介绍了神经网络的基本概念,论述了人工神经网络的产生与发展,以及人工神经网络在控制系统中的应用现状,分析了人工神经网络的特点和监视控制系统的原理,并阐述了几种基于神经网络的控制系统, 最后展望了基于神经网络控制的发展方向。 关键词:人工神经网络;控制系统;监视控制系统;智能控制; 1引言 基于神经网络的控制(NCC).神经网络控制是一门崭新的智能信息处理学科,研究非程序的、适应性的、大脑风格的信息处理的本质和能力。它的发展对人工智能、计算机科学、信息科学、非线性科学、认识科学、自动控制、微电子、模式识别、脑神经科学等产生了重要影响。 人工神经网络是一门发展十分迅速的交叉学科,它是由大量处理单元组成的非线性大规模自适应动力系统,具有学习能力、记忆能力、计算能力以及智能处理能力,并在不同程度和层次上模仿人脑神经系统的信息处理、存储及检索功能。同时,人工神经网络具有非线性、非局域性、非定常性、非凸性等特点,因此在智能控制、模式识别、计算机视觉、自适应滤波和信号处理、非线性优化、自动目标识别、连续语音识别、声纳信号的处理、知识处理、智能传感技术与机器人、生物医学工程等方面都有了长足的发展。 神经网络控制是一种基本上不依赖于模型的控制方法,它适合于具有不确定性或高度非线性的控制对象,并具有较强的自适应和自学习功能,因此是智能控制的一个重要分支领域。人工神经网络利用物理器件来模拟生物神经网络的某些结构和功能,具有并行和分布式的信息处理网络结构,该结构一般由几个神经元组成,每一个神经元有一个单一的输出,但可通过连接的很多其它神经元,获得有多个连接通道的输入,每个连接通道对应一个连接权系数。 2人工神经网络的产生与发展 早在1943年,美国神经生物学家W.S.McCul-loch就与数学家W.Pitts合作,采用数理模型的方法研究脑细胞的动作和结构,以及生物神经元的一些基本生理特征,提出第一个神经计算模型,即神经元的阈值元件模型(MP模型),并指出:即使是最简单的神经网络,从原则上讲也可以进行任意算术或逻辑函数的计算。1949年,D.O.Hebb提出了改变神经元连接强度的Hebb规则,其正确性30年后才得到证实,至今仍在各种神经网络模型中起着重要的作用。 1957年F.Rosenblatt提出并设计制作了著名的感知器(Perceptron),从而掀起第一次研究神经网络的热潮。1960年B.Windrow和M.E.Hoff提出自适应线性单元(Adaline)网络,这与当时占主导地位的以顺序离散符号推理为基本特征的AI途径完全不同,因而引起人们的兴趣,同时也引起符号主义与连接主义的争论。1969年M.Minsky和S.Papert编写了影响很大的《Perceptron》一书。

相关文档
相关文档 最新文档