文档库 最新最全的文档下载
当前位置:文档库 › 元二次方程求根公式

元二次方程求根公式

元二次方程求根公式
元二次方程求根公式

、一周知识概述

1、元二次方程的求根公式

将一元二次方程ax2+ bx + c=O(a工0)进行配方,当b2—4ac>0时的根

该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法.

说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+ bx + c=0(a工0);

(2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的;

(3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先

将其化为一般形式.

2、元二次方程的根的判别式

(1)当b2—4ac> 0时,方程有两个不相等的实数根3d

(2)当b2—4ac=0时,方程有两个相等的实数根

(3)当b2—4acv 0时,方程没有实数根.

二、重难点知识

1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破

这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。

(1) “开平方法”一般解形如“碱工"『?曲事0) ”类型的题目如果用

“公式法”就显得多余的了。

⑵“因式分解法”是一种常用的方法,一般是首先考虑的方法。

(3)“配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。如方程tFs ;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,贝曲程化为(一肝?開叫就易解,若一次项系数中有偶因数,一般也应考虑运用。

(4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方程有实根,就一定可以用求根公式求出根,但因为要代入-占± (沪一牝匚

扃(只-也0)求值,所以对某些特殊方程,解法又显得复杂了。

2、在运用b2—4ac的符号判断方程的根的情况时,应注意以下三点:

(1)b2—4ac是一元二次方程的判别式,即只有确认方程为一元二次

方程时,才能确定a、b、c,求出b2—4ac;

(2)在运用上述结论时,必须先将方程化为一般形式,以便确认

a、b、c;

(3)根的判别式是指b —4ac,而不是J? -4a.

三、典型例题讲解例1、解下列方程:

⑵円2=2血;

分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算, 解:(1)因为a=1,c=10

所以"竺込斗Z 所以耳=2书+忑,吃=-T/3

⑵原方程可化为2-2血

因为a=1,b = J忑,c=2

⑶原方程可化为?-2忑卞-1 = 0

因为a=1, b 三C二—1 所以》2_也址=〔_2血)2_4乂1乂〔_1)= 口所

以"迈I更所以瑜=血+羽J工2 =迈-羽

总结:

(1)用求根公式法解一元二次方程首先将方程化为一般形式;如果二次项系数为负数,通常将其化为正数;如果方程的系数含有分母,通常先将其化为整数,求出的根要化为最简形式;

(2)用求根公式法解方程按步骤进行.

例2、用适当方法解下列方程:

尹+严2

- 2 屈-1 = 0

宀2(1 +眉2 + 2柘=0 (4r + lXA:-l)=t3;t-1X^-1}

分析:

要合理地选用适当的方法解一元二次方程,就必须熟悉各种方法的优缺点,处理好特殊方法和一般方法的关系。就直接开平方法、配方法、公式法、因式分解法这四种方法而言,配方法、公式法是一般方法,而开平方法、因式分解法是特殊方法。

⑴ 公式法是最一般的方法,只要明确了二次项系数、一次项系数和常数项,若方程有实根,就一定可以用求根公式求出根,但因为要代入一元

—卜土J占* —

二次方程的求根公式云求值,所以对某些方程,解法又显得复杂了。如①,可以直接开平方,就能马上得出解;若此时还用求根公式就显得繁琐了。

⑵ 配方法是一种非常重要的方法,在解一元二次方程时,一般不使用, 但并不是一定不用,若能合理地使用,也能起到简便的作用。若方程中的

一次项系数有因数是偶数,则可使用,计算量也不大。如②,因为224比较

大,分解时较繁,此题中一次项系数是-2。可以利用用配方法来解,经过配方之后得到右+ l“24 + ln(x-iy "廿,显得很简单。

⑶ 直接开平方法一般解符合宀心0)型的方程,如第①小题。

⑷因式分解法是一种常用的方法,它的特点是解法简单,故它是解题中首先考虑的方法,若一元二次方程的一般式的左边不能分解为整数系数因式或系数较大难以分解时,应考虑变换方法。

丄(工+另彳=2

解:①2

两边开平方,得兀+8垃所以兀产T 心:

*-2x=224

配方,得^"-27 + 1 = 22^+1

冥空=-14

配方,得(mwr

所以疋]= JF + r庆勺=r占-后

因为三二-2 c = -

所以八4如=(-2 尸-4XC-1JX5 =4 + 20=24

2 + 2# 1 土屈

工——所以—2沾一5

14 低1-7^

工1二- 工空=—'—

所以5 5

疋+2(1 +近天+ 2^=0

配方:+2(1 + 逅工+(1 + 7^『=-2馅+(147^尸

所以誥1 = 1-再艾迁-3-

整理,得生二0

⑦(4x+lXx-l)=C3x-W-l) 移项,提公因式,得(「叽牧+1)-念-1)]

= 0

小结:

以上各题请同学们用其他方法做一做,再比较各种方法的优缺点,体

会如何选用合适的方法,下面给出常规思考方法,仅作参考。

例3、已知关于x的方程ax2—3x +1=0有实根,求a的取值范围.

X ―—解:当a=0时,原方程有实根为孑

8

Q

(-駅仪>0即口 € —时, 4 原方程有两个实根.

ax 2

— 3x + 1=0为一元一次方程和一元二次方程时讨论, 即分当a=0与az0两种情况.

例4、已知一元二次方程X 2

— 4X + k=0有两个不相等的实数根. (1)求k 的取值范围;

⑵ 如果k 是符合条件的最大整数,且一元二次方程

X 2 — 4x + k=0与 X 2

+ mx —1=0有一个相同的根,求此时 m 的值.

解:(1)因为方程x 2

— 4x + k=0有两个不相等的实数根,

2 所以 b — 4ac=16— 4k>0,得 k<4.

⑵ 满足kv4的最大整数,即k=3.

此时方程为x 2

— 4x + 3=0,解得x i =1, X 2=3. ①当相同的根为x=1时,则1+ m — 1=0,得m=0 故,综上所述

a 的取值范围是Y 冷

小结:

若az 0时,当

此题要分方程

一元二次方程的知识点梳理

一、知识结构: 一元二次方程?? ???*?韦达定理根的判别解与解法 二、考点精析 考点一、概念 (1)定义:①只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③整式方程.... 就是一元二次方程。 (2)一般表达式:)0(02≠=++a c bx ⑶难点:如何理解 “未知数的最高次数是2”: ①该项系数不为“0”; ②未知数指数为“2”; ③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。 典型例题: 例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132+=+x x B 02112=-+x x C 02=++c bx ax D 1222+=+x x x 变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。 例2、方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值为 。 针对练习: 1、方程782=x 的一次项系数是 ,常数项是 。 2、若方程()021=--m x m 是关于x 的一元一次方程, ⑴求m 的值;⑵写出关于x 的一元一次方程。 3、若方程()112=?+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。 4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( ) =n=2 =2,n=1 =2,m=1 =n=1 考点二、方程的解

⑴概念:使方程两边相等的未知数的值,就是方程的解。 ⑵应用:利用根的概念求代数式的值; 典型例题: 例1、已知322-+y y 的值为2,则1242++y y 的值为 。 例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。 例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程 必有一根为 。 例4、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两个根, 则m 的值为 。 针对练习: 1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。 2、已知关于x 的方程022=-+kx x 的一个解与方程 31 1=-+x x 的解相同。 ⑴求k 的值; ⑵方程的另一个解。 3、已知m 是方程012=--x x 的一个根,则代数式=-m m 2 。 4、已知a 是0132=+-x x 的根,则=-a a 622 。 5、方程()()02=-+-+-a c x c b x b a 的一个根为( ) A 1- B 1 C c b - D a - 6、若=?=-+y x 则y x 324,0352 。 考点三、解法 ⑴方法:①直接开方法;②因式分解法;③配方法;④公式法 ⑵关键点:降次 类型一、直接开方法:()m x m m x ±=?≥=,02

解一元二次方程(公式法)

应用拓展 某数学兴趣小组对关于x 的方程(m+1)22m x ++(m-2)x-1=0提出了下列问题. (1)若使方程为一元二次方程,m 是否存在?若存在,求出m 并解此方程. (2)若使方程为一元二次方程m 是否存在?若存在,请求出. 你能解决这个问题吗? 分析:能.(1)要使它为一元二次方程,必须满足m 2+1=2,同时还要满足(m+1)≠0. (2)要使它为一元一次方程,必须满足: ①211(1)(2)0m m m ?+=?++-≠?或②21020m m ?+=?-≠?或③1020 m m +=??-≠? 解:(1)存在.根据题意,得:m 2+1=2 m 2=1 m=±1 当m=1时,m+1=1+1=2≠0 当m=-1时,m+1=-1+1=0(不合题意,舍去) ∴当m=1时,方程为2x 2-1-x=0 a=2,b=-1,c=-1 b 2-4ac=(-1)2-4×2×(-1)=1+8=9 134 ±= x 1=,x 2=-12 因此,该方程是一元二次方程时,m=1,两根x 1=1,x 2=- 12. (2)存在.根据题意,得:①m 2+1=1,m 2=0,m=0 因为当m=0时,(m+1)+(m-2)=2m-1=-1≠0 所以m=0满足题意. ②当m 2+1=0,m 不存在. ③当m+1=0,即m=-1时,m-2=-3≠0 所以m=-1也满足题意. 当m=0时,一元一次方程是x-2x-1=0, 解得:x=-1 当m=-1时,一元一次方程是-3x-1=0 解得x=-13 因此,当m=0或-1时,该方程是一元一次方程,并且当m=0时,其根为x=-1;当m=-?1时,其一元一次方程的根为x=- 13. 布置作业 1.教材P 45 复习巩固4. 2.选用作业设计:

(完整版)一元二次方程归纳总结

一元二次方程归纳总结 1、一元二次方程的一般式:2 0 (0)ax bx c a ++=≠,a 为二次项系数,b 为一次项系数,c 为常数项。 2、一元二次方程的解法 (1)直接开平方法 (也可以使用因式分解法) ①2 (0)x a a =≥ 解为:x = ②2 ()(0)x a b b +=≥ 解为:x a += ③2 ()(0)ax b c c +=≥ 解为:ax b += ④2 2() ()()ax b cx d a c +=+≠ 解为:()ax b cx d +=±+ (2)因式分解法:提公因式分,平方公式,平方差,十字相乘法 (3)公式法:一元二次方程2 0 (0)ax bx c a ++=≠,用配方法将其变形为:222 4()24b b ac x a a -+= ①当2 40b ac ?=-> 时,右端是正数.因此,方程有两个不相等的实根:1,22b x a -=② 当2 40b ac ?=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a =- ③ 当2 40b ac ?=-<时,右端是负数.因此,方程没有实根。 注意:虽然所有的一元二次都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用。 备注:公式法解方程的步骤: ①把方程化成一般形式:一元二次方程的一般式:2 0 (0)ax bx c a ++=≠,并确定出a 、b 、c ②求出2 4b ac ?=-,并判断方程解的情况。 ③代公式:1,2x = 3、一元二次方程的根与系数的关系 法1:一元二次方程2 0 (0)ax bx c a ++=≠的两个根为: 1222b b x x a a -+-== 所以:12b x x a += +=-, 221222()422(2)4b b b ac c x x a a a a a -+----?=?===

一元二次方程求根公式

一元二次方程求解 一、一周知识概述 1、一元二次方程的求根公式 将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为 . 该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法. 说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0); (2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的; (3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式. 2、一元二次方程的根的判别式 (1)当b2-4ac>0时,方程有两个不相等的实数根; (2)当b2-4ac=0时,方程有两个相等的实数根; (3)当b2-4ac<0时,方程没有实数根. 二、重难点知识 1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。 (1) “开平方法”一般解形如“”类型的题目,如果用“公式

法”就显得多余的了。 (2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。 (3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑运用。 (4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方 程有实根,就一定可以用求根公式求出根,但因为要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了。 2、在运用b2-4ac的符号判断方程的根的情况时,应注意以下三点: (1)b2-4ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b2-4ac; (2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c; (3)根的判别式是指b2-4ac,而不是 三、典型例题讲解 例1、解下列方程: (1); (2); (3). 分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算,

解二元一次方程“十字交叉法”

解二元一次方程:“十字交叉法” 十字相乘就是把二次项拆成两个数的积 常数项拆成两个数的积 拆成的那些数经过十字相乘后再相加正好等于一次项 看一下这个简单的例子m2+4m-12 m -2 ╳ M 6 把二次项拆成m与m的积(看左边,注意竖着写) -12拆成-2与6的积(也是竖着写) 经过十字相乘(也就是6m与-2m的和正好是4m) 所以十字相乘成功了 m2+4m-12=(m-2)(m+6) 重点:只要把2次项和常数项拆开来(拆成乘积的形式),可以检验是否拆的对,只要相加等于1次项就成了,十字相乘法实际就是分解因式。 解释说明:

十字相乘法虽然比较难学,但是一旦学会了它,用它来解题,会给我们带来很多方便,以下是我对十字相乘法提出的一些个人见解。 1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。 2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。 3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。 4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。2、十字相乘法只适用于二次三项式类型的题目。3、十字相乘法比较难学。 十字相乘法解题实例 常规题例1:把m2+4m-12分解因式 分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题解:因为 1 -2 ╳ 1 6 所以m2+4m-12=(m-2)(m+6)

例2:把5x2+6x-8分解因式 分析:本题中的5可分为1×5,-8可分为-1×8,-2×4, -4×2,-8×1。当二次项系数分为1×5,常数项分为-4×2时,才符合本题 解:因为 1 2 ╳ 5 -4 所以5x2+6x-8=(x+2)(5x-4) 例3:解方程x2-8x+15=0 分析:把x2-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。 解:因为 1 -3 ╳ 1 -5 所以原方程可变形(x-3)(x-5)=0 所以x1=3 x2=5 例4:解方程6x2-5x-25=0 分析:把6x2-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。解:因为 2 -5 ╳ 3 5

一元二次方程解法讲义

龙文教育学科教师辅导讲义 课 题 一元二次方程的解法 教学目标 1. 理解一元二次方程及其有关概念 2. 会解一元二次方程,并能熟练运用四种方法去解 重点、难点 1. 一元二次方程的判定,求根公式 2. 一元二次方程的解法与应用 考点及考试要求 1. 一元二次方程的定义,一般形式,配方式 2. 熟练一元二次方程的解法能灵活运用:直接开平法,配方法.,因式分解,公式法去 3. 一元二次方程在实际问题中的综合应用 教学内容 考点一、概念 (1)定义:①只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③ 整式方程.... 就是一元二次方程。 (2)一般表达式:)0(02≠=++a c bx ax 注:当b=0时可化为02=+c ax 这是一元二次方程的配方式 (3)四个特点:(1)只含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为)0(02≠=++a c bx ax 的形式,则这个方程就为一元二次方程. (4)将方程化为一般形式: 2 =++c bx ax 时,应满足(a≠0) (4)难点:如何理解 “未知数的最高次数是2”: ①该项系数不为“0”; ②未知数指数为“2”; ③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。 典型例题: 例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132 +=+x x B 02112 =-+ x x C 0 2 =++c bx ax D 1222+=+x x x 变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。 例2、方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值为 。

公式法解一元二次方程教案

公式法解一元二次方程 一、教学目标 (1)知识目标 1.理解求根公式的推导过程和判别公式; 2.使学生能熟练地运用公式法求解一元二次方程. (2)能力目标 1.通过由配方法推导求根公式,培养学生推理能力和由特殊到一般的数学思 想. 2.结合的使用求根公式解一元二次方程的练习,培养学生运用公式解决问题的能力,全面培养学生解方程的能力,使学生解方程的能力得到切实的提高。 (3)德育目标 让学生体验到所有一元二次方程都能运用公式法去解,形成全面解决问题的积极情感,感受公式的对称美、简洁美,产生热爱数学的情感. 二、教学的重、难点及教学设计 (1)教学的重点 1.掌握公式法解一元二次方程的一般步骤. 2.熟练地用求根公式解一元二次方程。 (2)教学的难点: 理解求根公式的推导过程及判别公式的应用。 (3)教学设计要点 1.情境设计 上课开始,通过提问让学生回忆一元二次方程的概念及配方法解一元二次方程的一般步骤。利用昨天所学“配方法”解一元二次方程,达到“温故而知新”的目的和总结配方法的一般步骤,为下一步解一般形式的一元二次方程做准备。 然后让学生思考对于一般形式的一元二次方程ax2+bx+c=0(a≠0) 能否用配方法求出它的解?引出本节课的内容。 2.教学内容的处理 (1)回顾配方法的解题步骤,用配方法来解一般形式的一元二次方程ax2+bx+c=0(a≠0)。 (2)总结用公式法解一元二次方程的解题步骤,并补充理解判别公式的分类与应用。 (3)在小黑板上补充课后思考题:李强和萧晨刚学了用公式法解一元二次方程,看到一个关于x 的一元二次方程x2+(2m-1)x+(m-1)=0, 李强说:“此方程有两个不相等的实数根”,而萧晨反驳说:“不一定,根的情况跟m的值有关”.那你们认为呢?并说明理由. 3.教学方法 在教学中由特殊的解法(配方法)引导探究一般形式一元二次方程的解的形

二元一次方程解法大全

二元一次方程解法大全 1、直接开平方法: 直接开平方法就是用直接开平方求解二元一次方程的方法。用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±根号下n+m. 例1.解方程(1)(3x+1)2=7(2)9x2-24x+16=11 分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。 (1)解:(3x+1)2=7× ∴(3x+1)2=5 ∴3x+1=±(注意不要丢解) ∴x= ∴原方程的解为x1=,x2= (2)解:9x2-24x+16=11 ∴(3x-4)2=11 ∴3x-4=± ∴x= ∴原方程的解为x1=,x2= 2.配方法:用配方法解方程ax2+bx+c=0(a≠0) 先将常数c移到方程右边:ax2+bx=-c 将二次项系数化为1:x2+x=- 方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2 方程左边成为一个完全平方式:(x+)2=

当b^2-4ac≥0时,x+=± ∴x=(这就是求根公式) 例2.用配方法解方程3x^2-4x-2=0(注:X^2是X的平方) 解:将常数项移到方程右边3x^2-4x=2 将二次项系数化为1:x2-x= 方程两边都加上一次项系数一半的平方:x2-x+()2=+()2 配方:(x-)2= 直接开平方得:x-=± ∴x= ∴原方程的解为x1=,x2=. 3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac ≥0时,把各项系数a,b,c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a),(b^2-4ac≥0)就可得到方程的根。 例3.用公式法解方程2x2-8x=-5 解:将方程化为一般形式:2x2-8x+5=0 ∴a=2,b=-8,c=5 b^2-4ac=(-8)2-4×2×5=64-40=24>0 ∴x=[(-b±(b^2-4ac)^(1/2)]/(2a) ∴原方程的解为x1=,x2=. 4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。 例4.用因式分解法解下列方程:

用求根公式法解一元二次方程教学设计说明

“用求根公式法解一元二次方程”教学设计 一、使用教材 新人教版义务教育课程标准实验教科书《数学》九年级上册 二、素质教育目标 (一)知识教学点 1、一元二次方程求根公式的推导 2、利用公式法解一元二次方程 (二)能力训练点 通过配方法解一元二次方程的过程,进一步加强推理技能训练,同时发展学生的逻辑思维能力。 (三)德育渗透点 向学生渗透由特殊到一般的唯物辩证法思想。 三、教学重点、难点、关键点 1、教学重点:一元二次方程的求根公式的推导过程 2、教学难点:灵活地运用公式法解一元二次方程 3、教学关键点: (1)掌握配方法的基本步骤 (2)确定求根公式中a 、b 、c 的值 四、学法引导 1、教学方法:指导探究发现法 2、学生学法:质疑探究发现法 五、教法设计 质疑—猜想—类比—探索—归纳—应用 六、教学流程 (一)创设情境,导入新课:

前面我们己学习了用配方法解一元二次方程,想不想再探索一种 比配方法更简单,更直接的方法? 大家一定想,那么这节课我们一同来 研究。 < 设计意图 > 数学是一种逻辑性较强的科目,并且有时计算量较 大,如果能简化计算,那是我们所期望的,逐步激发学生的学习欲望。 教师;下面我们先用配方法解下列一元二次方程 学生;(每组一题,每组派一名同学板演) 1.2x 2-4x-1=0 2. x 2+1.5=-3x 3.02 1 22=+-x x 4. 4x 2-3x+2=0 完成后小组进行交流,并进行反馈矫正。 学生:总结用配方法解一元二次方程的步骤 教师板书:(1)移项; (2)化二次项系数为1; (3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为(x+m )2=n 的形式; (5)如果右边是非负数,就可以直接开平方求出方程 的解,如果右边是负数,则一元二次方程无解. 教师:通过以上四个方程的求解,你能试着猜想一下上述问题的求 解的一般规律吗? 学生:独立思考 < 设计意图 > 规律的探索与猜想不仅要体现数学知识的应用,而且 要注重在观察实践中抽象出规律。 (二)新知探索

一元二次方程的解法(公式法)

一元二次方程的解法(公式法)教案 ——小店一中潘卫生 教学内容 1.一元二次方程求根公式的推导过程; 2.公式法的概念; 3.利用公式法解一元二次方程. 教学目标 理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程. 复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)?的求根公式的推导公式,并应用公式法解一元二次方程. 重难点关键 1.重点:求根公式的推导和公式法的应用. 2.难点与关键:一元二次方程求根公式法的推导. 教学过程 一、复习引入 (学生活动)用配方法解下列方程 (1)6x2-7x+1=0 (2)4x2-3x=52 (老师点评)(1)移项,得:6x2-7x=-1 二次项系数化为1,得:x2-7 6 x=- 1 6 配方,得:x2-7 6 x+( 7 12 )2=- 1 6 +( 7 12 )2 (x- 7 12 )2= 25 144 x- 7 12 =± 5 12 x1= 5 12 + 7 12 = 75 12 + =1 x2=- 5 12 + 7 12 = 75 12 - = 1 6 (2)略 总结用配方法解一元二次方程的步骤(学生总结,老师点评). (1)移项; (2)化二次项系数为1; (3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为(x+m)2=n的形式; (5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.

二、探索新知 如果这个一元二次方程是一般形式a x 2+bx+c=0(a ≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题. 问题:已知ax 2+bx+c=0(a ≠0)且b 2-4ac ≥0,试推导它的两个根 x 1=2b a -+x 2=2b a -- 分析:因为前面具体数字已做得很多,我们现在不妨把a 、b 、c?也当成一个具体数字,根据上面的解题步骤就可以一直推下去. 解:移项,得:a x 2+bx=-c 二次项系数化为1,得x 2+ b a x=- c a 配方,得:x 2+b a x+(2b a )2=-c a +(2b a )2 即(x+2b a )2=2244b ac a - ∵b 2-4ac ≥0且4a 2>0 ∴2244b ac a -≥0 直接开平方,得:x+2b a = 即x=2b a -± ∴x 1=2b a -,x 2=2b a - 由上可知,一元二次方程a x 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因此: (1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b-4ac ≥0时, ?将a 、b 、c 代入式子x=2b a -就得到方程的根. (2)这个式子叫做一元二次方程的求根公式. (3)利用求根公式解一元二次方程的方法叫公式法. (4)由求根公式可知,一元二次方程最多有两个实数根. 例1.用公式法解下列方程.

复系数一元二次方程求根公式教学浅议

复系数一元二次方程求根公式教学浅议 文/哈瀛东 在初中《代数》课本中,运用配方法推导了实系数一元二次方程ax2+bx+c=0在Δ=b2-4ac≥0时的求根公式 在高中《代数》下册“复数”一章中,运用配方法推导出实系数一元二次方程ax2+bx+c=0在Δ=b2-4ac<0时的求根公式 之后,结束了中学数学对一元二次方程求根公式的研究.由于中学数学未研究复系数一元二次方程的求根公式,学生在复数集中解一元二次方程方面未形成完整的知识框架;在解与复系数一元二次方程的根有关的问题时,往往用复数相等的定义解复系数一元二次方程,运算繁冗.教学中,学生也常常提出“实系数一元二次方程求根公式能否向复系数一元二次方程推广”,“是否存在复系数一元二次方程求根公式”等疑问.在多年的教学实践中,笔者认识到,在结束实系数一元二次方程求根公式的研究后,趁热打铁,安排一二个课时,以练习课的形式,引导学生推导复系数一元二次方程求根公式,明确实系数与复系数这两类一元二次方程求根公式的内在联系,在复数运算的复习中,使学生形成完整的认知结构,加深实数集扩展到复数集的合理性的理解,提高对实数集与复数集之间的辩证关系的认识.既有利于中学数学教学,又有利于学生智力的发展和创新能力的培养. 在具体教学时,笔者是这样安排的. 一、创设情境,激发求知欲 笔者对复数运算法则及实系数一元二次方程求根公式进行简单复习之后,让学生做练习: 1.求证:任一复数z的平方根都可表示成±u(u∈C)的形式. 解:设z=r(cosθ+isinθ),其平方根为 (其中n=0,1), 即 或 =- 命题成立. 2.解方程:x2+(2-i)x+1-i=0. 解:设x=a+bi(a,b∈R),代入方程并整理,得 a2-b2+2a+b+1+(2ab-a+2b-1)i=0. 由复数相等的定义,得 面对此二元二次方程组,学生束手无策,欲进无路,欲退不愿,企盼教师指点迷津. 二、适时点拨,引导学生探求新公式

一元二次方程的解法—公式法

课题:1.2一元二次方程的解法 (4) 班级 姓名 【学习目标】 1、会用公式法解一元二次方程. 2、用配方法推导一元二次方程的求根公式,明确运用公式求根的前提条件是b 2 -4ac ≥0. 【重点难点】 重点:掌握一元二次方程的求根公式,并应用它熟练地解一元二次方程。 难点:掌握一元二次方程的求根公式及代入时的符号问题. 【新知导学】 读一读:阅读课本P 14-P 16 想一想: 1. 用配方法解一元二次方程的一般步骤是什么? 2. 用配方法解一元二次方程20(0)ax bx c a ++=≠ 因为0a ≠,方程两边都除以a ,得 把常数项移到方程右边,得 配方,得 即2224()24b b ac x a a -+= 当 0≥时 ,2422b b ac x a a -+=± 即42b b ac x a -±-= 。 3.在上述配方过程中,若240b ac -≥< 0时,方程有实数根吗? 练一练: 1.方程4-x 2=3x 中a= ,b= ,c= , b 2-4ac= 2. 用公式法解方程0232 =+-x x 【新知归纳】 一般的,对于一元二次方程)0(02≠=++a c bx ax

(1) 当_____________时,它的实数根是_________________.这个公式叫一元二次方程的求根 公式,利用这个公式解一元二次方程的方法叫公式法。 (2) 当_____________时,方程没有实数根。 【例题教学】 例1.用公式法解方程: (1)22330 x x -+= (2)x x 2322=- (3)a a a =-+)2)(2(51 (4)23(1)y y += 例2.已知y 1=2x 2+7x -1,y 2=6x +2,当x 取何值时y 1=y 2? 【当堂训练】 1.用公式法解方程3x 2+4=12x ,下列代入公式正确的是( ) A.x=21214412-± B. x=2 1214412-±- C. x= 21214412+± D. x=64814412-± 2.用公式法解下列方程: (1)2220x x +-=; (2)2 30x x -=

各类方程解法

各类方程解法一一元一次方程 1 一般形式 ax+b=0 (a≠0) 2 求根公式 x=? b 二二元一次方程 1 一般形式 ax+by=m cx+dy=n 2 求根公式 x=b ? d ÷ a ? m y=a m ? c n ÷ a b ? m n

1 一般形式 ax2+bx+c=0 (a≠0) 2 判别式 △=b2?4ac △>0,方程有两个不等实数根 x=?b±b2?4ac 2a △=0,方程有两个相等实数根 x1=x2=? b △<0,方程无实数根。

1 一般形式 ax 3+bx 2+cx +d =0 (a ≠0) 2 求根公式 x 1= ?27a 2d ?9abc +2b 327a 3+ 27a 2d ?9abc +2b 327a 3 + 3ac ?b 23a 2 3+ ?27a 2d ?9abc +2b 327a 32+ 27a 2d ?9abc +2b 327a 32 2+ 3ac ?b 23a 23 33?b 3a x 2=(?1+ 3i )? ?27a 2d ?9abc +2b 327a 3+ 27a 2d ?9abc +2b 327a 3 + 3ac ?b 23a 2 3+(?1+ 3i )2? ?27a 2d ?9abc +2b 327a 32+ 27a 2d ?9abc +2b 327a 32 2+ 3ac ?b 23a 23 33?b 3a x 3=(?1+ 3i 2)2? ?27a 2d ?9abc +2b 327a 32+ 27a 2d ?9abc +2b 327a 32 2+ 3ac ?b 23a 23 33+(?1+ 3i 2)? ?27a 2d ?9abc +2b 327a 3+ 27a 2d ?9abc +2b 327a 3 + 3ac ?b 23a 2 3?b

一元二次方程的概念及解法

一元二次方程的概念及解法

一、 考点突破 1. 理解一元二次方程的定义、解,食+版& = 0 (在0), a 、b 、c 均为常数,尤其。不为零要切记。 2. 熟练掌握一元二次方程的几种解法,如因 式分解法、公式法等,弄清化一元二次方程为一 元一次方程的转化思想。 二、 重难点提示 熟练掌握一元二次方程的几种解法。 一、知识结构 厂一元一次方程O 壬二元一次方程组 整式方程一 A 去分母 二、解题策略与方法 解一元二次方程的基本策略是:降次。降次 的主要方法是因式分解法和开平方法。 1. 一元二次方程的概念 只含有一个未知数,且未知数的最高次数是 2的整式方程叫做一元二次方程. 一般形式: 杯+Zxr + c = O 是常数,且 "0). 2. 一元二次方程的解法 (1)直接开平方法 降次 「解法 —元二次方程- _______ L 根的判别式 W 方程一 分式方程

形如(mx + n)2= /? (r > 0) 的方程,两边开平方,即可转化为两个一元一次方程来解,这种方法叫做直接开平方法. (2)配方法 把一元二次方程通过配方化成如+ 〃)2=,(房0)的形式,再用直接开平方法解,这种方法叫做配方法. 用配方法解一元二次方程次& + ”0 (^0)的一般步骤是:① 化二次项系数为1,即方程两边同除以二次项系数〃;②移项,也就是使方程的左边为二次项和一次项,右边为常数项;③ 配方,即方程两边都加上一次项系数一半的平方;④ 化原方程为(》+〃?)、〃的形式;⑤ 如果,20就可通过两边开平方来求出方程的解;如果〃V0,则原方程无解. (3)公式法 通过配方法可求得二元二次方程ax2 + bx + c = 0(。n 0)的求根公式:x=-b土尸,用求根公式解一元二次方程的方法叫做本'式法. 兀—次方程ar2 + + c = 0 ( a,b,c是常数,且心0)的根的判别式是屏-4必.利用根的判别式可以判定方程实根的个数;利用根的判别式也可以建立等式、不等式,求方程中的参数的值或取值范围; 通过根的判别式可证明与方程有关的代数问题,也可运用一元二次方程必定有解的代数模型,解几何存在性问题、最值问题等。

用公式法解一元二次方程教案精编版

优质课比赛教案 第23章 23.2 用公式法解一元二次方程 整体设计 教学分析 求根公式是直接运用配方法推导出来的,从数字系数的一元二次方程到字母系数的方程,体现了从特殊到一般的思路。用公式法解一元二次方程是比较通用的方法,它体现了一元二次方程根与系数最直接的关系,一元二次方程的根是由系数a,b,c决定的,只要将其代入求根公式就可求解,在应用公式时应首先将方程化成一般形式。 教学目标 知识与技能: 1、理解一元二次方程求根公式的推导过程 2、会用求根公式解简单系数的一元二次方程 过程与方法: 经历探索求根公式的过程,发展学生的合情推理能力,提高学生的运算能力并养成良好的运算习惯 情感、态度与价值观 通过运用公式法解一元二次方程的训练,提高学生的运算能力,并让学生在学习中获得成功的体验,建立学好数学的自信心。 重点: 掌握一元二次方程的求根公式,并能用它熟练地解一元二次方程 难点: 一元二次方程求根公式的推导过程 教学过程: 一、复习引入: 1、用配方法解下列方程: (1)4x2-12x-1=0;(2)3x2+2x-3=0 2、用配方法解一元二次方程的步骤是什么? 说明:教师引导学生回忆配方法解一元二次方程的基本思路及基本步骤,为本节课的学习做好铺垫。 3、你能用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0)吗? 二、问题探究: 问题1:你能用一般方法把一般形式的一元二次方程ax2+bx+c=0(a≠0)转化为(x+m)2=n 的形式吗?

说明:教师引导学生回顾用配方法解数字系数的一元二次方程的过程,让学生分组讨论 交流,达成共识,最后化成(x+a b 2)2=2244a a c b - ∵a ≠0,方程两边都除以a,得x 2+ 0=+a c x a b 移项,得x 2+ a c x a b -= 配方,得x 2+ 22)2(-)2(a b a c a b x a b +=+ 即(x+=2)2a b 2244a ac b - 问题2:当b 2_ 4ac ≥0,且a ≠0时,2244a ac b -大于等于零吗? 教师让学生思考,分析,发表意见,得出结论:当b 2-4ac ≥0时,因为a ≠0,说以4a 2 >0,从而得出04422≥-a ac b 问题3:在问题2的条件下,直接开平方你得到什么结论? 让学生讨论可得x+a ac b a b 2422-±= 说明:若有必要可让学生讨论22224444a ac b a ac b -±=-±为什么成立 问题4:由问题1,问题2,问题3,你能得出什么结论? 让学生讨论,交流,从中得出结论,当b 2-4ac ≥0时,一般形式的一元二次方程 ax 2 +bx+c=0(a ≠0)的根为x+a ac b a b 2422-±=,即x=a ac b b 242-±- 由以上研究结果得到了一元二次方程ax 2+bx+c=0(a ≠0)的求根公式:x=04(2422≥--±-ac b a ac b b ),这个公式就称为“求根公式”。利用它解一元二次方程叫做公式法。 说明和建议: (1)求根公式a 2ac 4-b b -x 2±=(b 2-4ac ≥0)是专指一元二次方程的求根公式,b 2-4ac ≥0是一元二次方程ax 2+bx+c=0(a ≠0)求根公式的重要条件。

九年级化学必背公式定理

二元一次方程的定义 把两个含有不同未知数的一次方程联合在一起,那么这两个方程就组成了一个二元一次方程组。 有几个方程组成的一组方程叫做方程组。如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。 二元一次方程定义:一个方程含有两个未知数,并且未知数的指数都是1的整式方程,叫二元一次方程。 二元一次方程组定义:两个结合在一起的,且共含有两个未知数的一次方程,叫二元一次方程组。 二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。 二元一次方程组的解:一般的,二元一次方程组的两个二元一次方程的公共解,叫做二元一次方程组的解。 一般解法,代入消元法:将方程组中的未知数个数由多化少,逐一解决。解法 消元的方法有两种

代入消元法 用代入消元法的一般步骤是: 【1】选一个系数比较简单的方程进行变形,变成 y = ax +b 或 x = ay + b的形式; 【2】将y = ax + b 或 x = ay + b代入另一个方程,消去一个未知数,从而将另一个方程变成一元一次方程; 【3】解这个一元一次方程,求出 x 或 y 值; 【4】将已求出的 x 或 y 值代入方程组中的任意一个方程(y = ax +b 或 x = ay + b),求出另一个未知数; 【5】把求得的两个未知数的值用大括号联立起来,这就是二元一次方程的解。[1] 例:解方程组: x+y=5① 6x+13y=89② 解:由①得 x=5-y③ 把③代入②,得 6(5-y)+13y=89 即 y=59/7 把y=59/7代入③,得 x=5-59/7 即 x=-24/7 ∴ x=-24/7 y=59/7 为方程组的解 我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法(elimination by substitution),简称代入法。 加减消元法 用加减法消元的一般步骤为: ①在二元一次方程组中,若有同一个未知数的系数相同(或互为相反数),则可直接相减(或相加),消去一个未知数; ②在二元一次方程组中,若不存在①中的情况,可选择一个适当的数去乘方程的两边,使其中一个未知数的系数相同(或互为相反数),再把方程两边分别相减(或相加),消去一个未知数,得到一元一次方程; ③解这个一元一次方程; ④将求出的一元一次方程的解代入原方程组系数比较简单的方程,求另一个未知数的值; ⑤把求得的两个未知数的值用大括号联立起来,这就是二元一次方程组的解。

二元一次方程公式法

育英学校九年级自学能力测试题 21.2.2公式法 一、读懂文本,捕捉重要的知识信息,为记住知识和应用知识奠定基础。(30分)。 读懂材料第 页: 1.知识点1: 一般地,式子ac b 42-叫做方程02=++c bx ax (0≠a ) .通常用希腊字母?表示它,即 2.知识点2: 当△≥0时,方程0c b a 2=++x x (a ≠0)的实数根可写为 的形式,这个式子叫作一元二次方程的求根公式。 3.知识点3: [方法归纳] 用公法解下列一元二次方程的步骤: (1)把方程化为一般形式,确定a,b,c,的值。 (2)求出b 2-4ac 的值。 (3)若b 2-4ac ≥0,则将a,b,c,的值代入求根公式求出方程的根。 4.读完文本后,你有哪些疑惑? 5.本文和以前学过的知识有什么联系? 二、加强记忆,巩固知识,解决问题,提升能力。(60分) 1.方程0132=+-x x 的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .只有一个实数根 解下列一元二次方程 (1)x 2-3x-1=0 (2) x 2+x-6=0 (3)3x 2-6x-2=0 (4)4x 2-6x=0

(5)x2+4x+8=4x+11 (6)x(2 x-4)=5 -8x 三、选做题(20分) 1.用公式法解方程4x2-12x=3,得到(). A.x= 36 2 -± B.x= 36 2 ± C.x= 323 2 -± D.x= 323 2 ± 2.代数式x2-8x+12的值是-4,求x的值 四、思想提升(学用结合,让本文与学习者自身的学习、记忆、巩固、再现和应用紧密挂钩,站在学的角度思考文本对于自己有什么用处,达到培养学习者学科思想的目的。)(10分) 1、本节知识的重点内容是什么?学习这些知识后有什么用处?(5分) 2、学习本节内容你有什么好的方法,写下来与大家分享。(5分)

一元二次方程题型分类的总结

一元二次方程题型分类总结 知识梳理 一元二次方程?? ???*?韦达定理根的判别解与解法 考点类型一 概念 只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③整式方程.... 就是一元二次方程。 )0(02≠=++a c bx “未知数的最高次数是2”: ①该项系数不为“ 0”; ②未知数指数为“2”; ③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨 论。 例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132+=+x x B 02112=-+x x C 02=++c bx ax D 1222+=+x x x 变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。 例2、方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值 为 。 ★1、方程782=x 的一次项系数是 ,常数项是 。 ★2、若方程()021=--m x m 是关于x 的一元一次方程, ⑴求m 的值;⑵写出关于x 的一元一次方程。 ★★3、若方程()112=?+-x m x m 是关于x 的一元二次方程,则m 的取值范围

是 。 ★★★4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( ) A.m=n=2 B.m=3,n=1 C.n=2,m=1 D.m=n=1 考点类型二 方程的解 例1、已知322-+y y 的值为2,则1242++y y 的值为 。 例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值 为 。 例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则 此方程 必有一根为 。 例4、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两 个根, 则m 的值为 。 ★1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。 ★2、已知关于x 的方程022=-+kx x 的一个解与方程 31 1=-+x x 的解相同。 ⑴求k 的值; ⑵方程的另一个解。 ★3、已知m 是方程012=--x x 的一个根,则代数式=-m m 2 。 ★★4、已知a 是0132=+-x x 的根,则=-a a 622 。 ★★5、方程()()02=-+-+-a c x c b x b a 的一个根为( ) A 1- B 1 C c b - D a - ★★★6、若=?=-+y x 则y x 324,0352 。

一元二次方程的解法公式法-教案

解:移项得:3832=+x x 化系数为1得:13 8 2=+x x 配方得: 2 2 2 2413438?? ? ??+=??? ??++x 2 23534?? ? ??=??? ??+x 开平方得 35 34±=+x 所以 3 1 1=x 32-=x §2.3 解一元二次方程(公式法) 一、 教学目标 1. 知识与能力 理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程. 2. 能力训练要求 1.通过公式推导,加强推理技能训练,进一步发展逻辑思维能力. 2.会用公式法解简单的数字系数的一元二次方程. 3. 情感感与态度 体会从一般到特殊的思维方式,养成严谨、认真的科学态度和学风 二 、教学重点与难点 1.重点:求根公式的推导和公式法的应用. 2.难点与关键:一元二次方程求根公式法的推导. 三、教学过程 1、复习引入。 用配方法解下列方程 (1) 03832=-+x x (2)2742 -=-x x 解:化系数为1得: 2 1472-=- x x 配方得: 2 2 2 87218747??? ??+-=?? ? ??+-x x 6417872 =?? ? ?? -x 开平方得 8 1787±=- x 所以8 17 71+= x 81772-=x

总结用配方法解一元二次方程的步骤(学生总结,老师点评). (1)移项; (2)化二次项系数为1; (3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为()n m x =+2 的形式; (5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一 元二次方程无解. 从以上解题过程中,我们发现:利用配方法解一元二次方程的基本步骤是相同的.因此,如果能用配方法解一般的一元二次方程02=++c bx ax ()0≠a ,得到根的一般表达式,那么再解一元二次方程时,就会方便简捷得多 这节课我们就来探讨一元二次方程的求根公式 2、探索新知 问题:刚才我们已经利用配方法求解了一个一元二次方程,那你能否利用配方法的基 本步骤解方程02=++c bx ax ()0≠a 呢? 解: 二次项系数化为1得:;02=++a c x a b x 移项,得: ;2a c x a b x -=+ 配方得: 222)2()2(a b a c a b x a b x +-=++ 2 22 442a ac b a b x -=?? ? ?? + 能直接开平方吗?当b 2-4ac ≥0时 ∵b 2-4ac ≥0且4a 2>0 ∴2 2 44b ac a -≥0 直接开平方,得:x+2b a =±242b ac a - 即a ac b b x 242-±-= ∴x 1=242b b ac a -+-,x 2=242b b ac a ---

相关文档
相关文档 最新文档