文档库 最新最全的文档下载
当前位置:文档库 › 一元二次方程整数根训练

一元二次方程整数根训练

一元二次方程整数根训练
一元二次方程整数根训练

一元二次方程整数根问题

1.当m 为何正整数时,方程x 2+m=m 2+x-18有正整数解?

2.求方程2x 2-2xy+y 2+x-2y=0的正整数根。

3. .求方程6xy+4x-9y-7=0的整数根。

4.若关于x 的方程rx 2-(2r+7)x+r+7=0的根是正整数,求整数r 的值。

5.求方程2x 2-xy-3x+y+2006=0的正整数解。

6.若a 为整数,使得关于的方程ax 2-(a+5)x+a+7=0至少有一个有理根,试求方程所有的有理根。

7.已知p,q 都是质数,且使得关于x 的一元二次方程x 2-(8p-10q)x+5pq=0至少有一个正整数根,求所有的质数对(p,q).

8.满足192+m 2=182+n 2的整数对(m,n)共有多少个?

9.x,y 是正整数,且满足100

111=-y x ,求y 的最大值 10.求方程x 2-6xy+13y 2=100的正整数解。

11. .求方程4

31112=-+xy y x 的整数解. 12.已知方程ax 2-(a-3)x+a-2=0中的a 取整数,方程的解至少有一个整数根,求a 的值。

13.已知正整数a.b.c 满足a 2+b 2+c 2+43≤ab+9b+8c ,求a.b.c 的值。

14.a.b 都是正整数,关于x 的方程x 2-abx+2

1(a+b)=0的根均为整数,求它的整数根。

15.已知a 是方程x 2+x-41=0的根,求234531a a a a a --+-的值。 16.若x 1.x 2是方程x 2+x-5=0的两根,求x 13-x 23= .x 13-6x 22= .

17.若m,n 是方程x 2-2x-2=0的两根,且m>n ,求232n m

+的值。 18.设方程4x 2-2x-3=0的两根是m,n ,求4m 2+2n 的值。

19.实数a.b 满足a 2=-1-5a,5b=-1-b 2,求b

a a a

b b +的值。 20.已知实数a>0,b>0,且a+a =2010,b 2+b=2010,求a+b 的值。

21.若关于x 的方程x 2+a|x|+a 2-3=0,有唯一实数解,求实数a 值。

22.设整数a.b.c ,对一切实数x ,方程(x-a)(x-8)+1=(x-b)(x-c)恒成立,求a+b+c 的值。

23.若x y ≠0,且|x|+y=3,|x|y+x 3=0,求x+y 的值。

24.已知关于x 的方程(a 2-1)(1-x x )2-(2a+7) 1

-x x +1=0有实数根。(1)求a 的取值

范围。(2)若原方程的两个实数根为m,n ,且

11

311=-+-n n m m ,求a 的值。 25.如果方程x 4+6x 3+9x 2-3px 2-9px+2p 2=0,有且只有一个实数根,(等根只算一个)求p 的值。

26.已知关于x 的方程x 2+2(m+1)x+(3m 2+4mn+4n 2+2)=0有实数根,求3m 2+2n 3的值。

27.已知a,b 为整数,且a>b ,方程3x 2+3(a+b)x+4ab=0两根m.n 满足m(m+1)+n(n+1)=(m+1)(n+1),试求所有的整数对(a,b ) 28.当m 是什么整数时,关于x 的一元二次方程2440m x x -+=与

2244450x mx m m -+--=的根都是整数。

29.已知方程210x mx m +-+= 有两个不相等的正整数根,求m 的值。

30.设关于x 的二次方程2222(68)(264)4k k x k k x k -++--+=的两根都是整数,求满足条件的所有实数k 的值。

31.b 为何值时,方程 220x bx --=和22(1)0x x b b ---=有相同的整数根?并且求出它们的整数根?

32.已知关于x 的方程2(1)210a x x a -+--=的根都是整数,那么符合条件的整数a 有_________个.

33.当m 是什么整数时,关于x 的方程2(1)10x m x m --++=的两根都是整数?

34.求所有正实数a,使得方程240x ax a -+=仅有整数根.

35.方程()(8)10x a x ---=有两个整数根,求a 的值.

36.求所有的

正整数a,b,c,使得关于x 的方程222320,320,320

x a x b x b x c x c x a -+=-+=-+=的所有的根都是正整数.

37. n 为正整数,方程21)60x x --=有一个整数根,则n=__________.

38.求出所有正整数a,使方程22(21)4(3)0ax a x a +-+-=至少有一个整数根.

39.已知方程22(1)2(51)240a x a x --++= 有两个不等的负整数根,则整数a 的值是__________.

40.已知方程219990x x a -+=有两个质数根,则常数a=___________.

41.设正整数m,n 满足698+=+mn n m ,则m 的最大值为 .

42. 若x,y 是实数,则19993322+--+-y x y xy x 的最小值是 .

一元二次方程公共根

一元二次方程公共根问题 若已知若干个一元二次方程有公共根,求方程系数的问题,叫一元二次方程的公共根问题, 两个一元二次方程只有一个公共根的解题步骤: 1.设公共根为α,则α同时满足这两个一元二次方程; 2.用加减法消去α2的项,求出公共根或公共根的有关表达式; 3.把共公根代入原方程中的任何一个方程,就可以求出字母系数的值或字母系数之间的关系式. 一、公共根问题 二次方程的公共根问题的一般解法:设公共根,代入原方程(两个或以上),然后通过恒等变形求出参数的值和公共根. 二、整数根问题 对于一元二次方程20ax bx c ++=(0)a ≠的实根情况,可以用判别式24b ac ?=-来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质. 方程有整数根的条件: 如果一元二次方程20ax bx c ++=(0)a ≠有整数根,那么必然同时满足以下条件: ⑴ 2?= ⑵ 2b ak -=或2b ak --,其中k 为整数. 以上两个条件必须同时满足,缺一不可. 另外,如果只满足判别式为完全平方数,则只能保证方程有有理根(其中a 、b 、c 均为有理数) 三、方程根的取值范围问题 先使用因式分解法或求根公式法求出两根,然后根据题中根的取值范围来确定参数的范围 1 已知一元二次方程x 2-4x +k =0有两个不相等的实数根, (1)求k 的取值范围. (2)如果k 是符合条件的最大整数,且一元二次方程x 2-4x +k =0与x 2+mx -1=0有一个相同的根,求此时m 的值. 2 若两个关于x 的方程x 2+x +a =0与x 2+ax +1=0只有一个公共的实数根,求a 的值 3 已知a >2,b >2,试判断关于x 的方程x 2-(a +b )x +ab =0与x 2-abx +(a +b )=0有没有公共根,请说明理由. 4求k 的值,使得一元二次方程210x kx +-=,2(2)0x x k ++-=有相同的根,并求两个方程的根. 5二次项系数不相等的两个二次方程222(1)(2)(2)0a x a x a a --+++=和 222(1)(2)(2)0b x b x b b --+++=(其中a ,b 为正整数)有一个公共根,求a b b a b a a a --++的值

一元二次方程及根的定义

一元二次方程及根的定 义 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

一元二次方程及根的定义 1.已知关于的方程的一个根为2,求另一个根及 的值. 思路点拨:从一元二次方程的解的概念入手,将根代入原方程解的值,再代回原方程,解方程求出另一个根即可. 解:将代入原方程,得 即 解方程,得 当时,原方程都可化为 解方程,得. 所以方程的另一个根为4,或-1. 总结升华:以方程的根为载点.综合考查解方程的问题是一个常考问题,解这类问题关键是要抓住“根”的概念,并以此为突破口. 举一反三: 【变式1】已知一元二次方程的一个根是,求代数式 的值. 思路点拨:抓住为方程的一个根这一关键,运用根的概念解题. 解:因为是方程的一个根, 所以, 故, , 所以.

. 总结升华:“方程”即是一个“等式”,在“等式”中,根据题目的需要,合理地变形,是一种对代数运算综合要求较高的能力,在这一方面注意丰富自己的经验. 类型二、一元二次方程的解法 2.用直接开平方法解下列方程: (1)3-27x2=0; (2)4(1-x)2-9=0. 解:(1)27x2=3 . (2)4(1-x)2=9 3.用配方法解下列方程: (1);(2). 解:(1)由, 得, ,

, 所以, 故. (2)由, 得, , , 所以 故 4.用公式法解下列方程: (1);(2);(3). 解:(1)这里 并且 所以, 所以,. (2)将原方程变形为, 则 , 所以,

所以. (3)将原方程展开并整理得, 这里, 并且, 所以. 所以. 总结升华:公式法解一元二次方程是解一元二次方程的一个重点,要求熟练掌握,它对我们的运算能力有较高要求,也是提高我们运算能力训练的好素材. 5.用因式分解法解下列方程: (1);(2); (3). 解:(1)将原方程变形为, 提取公因式,得, 因为,所以 所以或, 故 (2)直接提取公因式,得 所以或,(即 故. (3)直接用平方差公式因式分解得

二次函数与一元二次方程同步练习题(含答案)

二次函数与一元二次方程同步练习题(含 答案) 北师大版九年级数学下册课时同步练习-2.8二次函数与一元二次方程(1)附答案 1.求下列二次函数的图象与x轴的交点坐标,并作草图验证. (1)y= x2+x+1; (2)y=4x2-8x+4; (3)y=-3x2-6x-3; (4)y=-3x2-x+4 2.一元二次方程x2+7x+ 9=1的根与二次函数y=x2+7x+9的图象有什么关系? 试把方程的根在图象上表示出. 3.利用二次函数的图象求下列一元二次方程的根. (1)4x2-8x+1=0; (2)x2-2x-5=0; (3)2x2-6x+3=0; (3)x 2-x-1=0. 4.已知二次函数 y=-x2+4x-3,其图象与y轴交于点B ,与x轴交于A, 两点. 求△AB的周长和面积. 5..在体育测试时,初三的一名高个子男生推铅球,已知铅球所经过的路线是某二次函数图象的一部分(如图),若这个男生出手处A点的坐标为(0,2), 铅球路线的最高处B点的坐标为 B(6,5). (1)求这个二次函数的表达式; (2)该男生把铅球推出去多远?(精确到0.01米).

6.如图,已知抛物线y=-x2+bx+与x轴的两个交点分别为A(x1,0),B(x2,0) , 且x1+x2=4, .(1)求抛物线的代数表达式 ; (2) 设抛物线与y轴交于点,求直线B的表达式; (3)求△ AB的面积. 7.试用图象法判断方程x2+2x=- 的根的个数. 答案: 1.(1)没有交点;(2)有一个交点(1,0); (3)有一个交点(-1,0);(4)有两个交点( 1,0),( ,0), 草图略. 2.该方程的根是该函数的图象与直线y=1的交点的横坐标. 3.(1)x1≈1.9,x2≈0.1;(2)x1≈3.4,x2≈-1.4;(3)x1≈2.7,x2≈0.6;(4)x1≈1.6,x2≈-0 .6 4.令x=0,得y=-3,故B点坐标为(0, -3). 解方程-x2+4x-3=0,得x1=1 ,x2=3. 故A、两点的坐标为(1,0),(3,0) . 所以A=3-1=2,AB= ,B= , B=│-3│=3. △AB=AB+ B+A= . S△AB= A•B= ×2×3=3. 5.(1)设y=a(x-6)2+5,则由A(0,2),得2=a(0-6)2+5,得a= . 故y= (x-6)2+5

《一元二次方程解法》练习题(基础)

九年级数学上册《一元二次方程解法》练习题 一、填空题 1.一元二次方程的一般形式是____ ______.其解为1x =__________,2x =____________. 2.将方程x x 2)1(2=+化成一般形式为___ _______.其二次项是__________, 一次项是__________,常数项是__________. 3.方程)0(02≠=+a c ax 的解的情况是:当0>ac 时_________;当0=ac 时___________;当0

中考试题一元二次方程的整数根

学科:数学 专题:一元二次方程整数根 主讲教师:黄炜 北京四中数学教师 重难点易错点辨析 在解决整数根问题时,还是不要忽略了对二次项系数的讨论。 题一 题面:关于x 的方程()21210a x x a -+--=的根都是整数,求符合条件的a 的整数值. 金题精讲 题一 题面:已知关于x 的一元二次方程x 2+2x +2k -4=0有两个不相等的实数根. (1)求k 的取值范围; (2)若k 为正整数,且该方程的根都是整数,求k 的值. 判别式,考虑参数范围 满分冲刺 题一 题面:已知,关于x 的一元二次方程222(23)41480x m x m m --+-+= ⑴若0m >,求证:方程有两个不相等的实数根; ⑵若1240m <<的整数,且方程有两个整数根,求m 的值. 判别式,整数根

题二 题面:已知关于x 的一元二次方程x 2+(m +3)x +m +1=0. (1)求证:无论m 取何值,原方程总有两个不相等的实数根; (2)当m 为何整数时,原方程的根也是整数. 判别式,整数根 讲义参考答案 重难点易错点辨析 题一 答案:当1a =时,1x =; 当1a ≠时,122111 x x a ==-- -,(分离常数), a ∵为整数 1023a =-∴,,, 综上,a 的整数值为10123-,,,,. 金题精讲 题一 答案:(1)52 k <;(2)k =2. 满分冲刺 题一 答案:⑴证明:[]2 2=2(23)4(4148)84m m m m ?----+=+ ∵0m >, ∴840m +>. ∴方程有两个不相等的实数根. ⑵(23)x m - 且m 为整数. 又∵1240m <<, ∴252181.m <+< ∴5. 21m +∵为奇数, 7= ∴24m =.

一元二次方程根的分布情况归纳总结

一元二次方程02 =++c bx ax 根的分布情况 设方程()2 00ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=, 方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况) 分 布情况 两个负根即两根都小于0 ()120,0x x << 两个正根即两根都大于0 ()120,0x x >> 一正根一负根即一个根小于0,一个大于0()120x x << 大致图象( >a ) 得出的结论 ()00200b a f ?>??? -?? ()0 0200 b a f ?>??? ->??>?? ()00??? -??? ->??f 综 合结论(不讨论 a ) ()00200b a a f ?>???-?? ()0 0200 b a a f ?>???->???>?? ()00

分 布情况 两根都小于k 即 k x k x <<21, 两根都大于k 即 k x k x >>21, 一个根小于k ,一个大于k 即 21x k x << 大致图象( >a ) 得出的结论 ()020b k a f k ?>??? -?? ()0 20 b k a f k ?>??? ->??>?? ()0??? -??? ->??k f 综 合结论(不讨论 a ) ()020b k a a f k ?>??? - ?? ()0 20 b k a a f k ?>??? - >???>?? ()0

用因式分解求解一元二次方程同步训练题(含答案)

用因式分解法求解一元二次方程 一、填空题 1、如果两个因式的积是零,那么这两个因式至少有__________等于零;反之,如果两个因式中有__________等于零,那么它们之积是__________. 2、方程x 2-16=0,可将方程左边因式分解得方程__________,则有两个一元一次方程___________或___________,分别解得:x 1=_________,x 2=_________. 3、填写解方程3x(x+5)=5(x+5)的过程 解:3x(x+5)_______=0 → (x+5)(_________)=0 → x+5=________或________=0 ∴x 1=__________,x 2=__________ 4、用因式分解法解一元二次方程的关键是 (1)通过移项,将方程右边化为零 (2)将方程左边分解成两个__________次因式之积 (3)分别令每个因式等于零,得到两个一元一次方程 (4)分别解这两个__________,求得方程的解 5、x 2-(p+q)x≠qp=0因式分解为____________. 6、用因式分解法解方程9=x 2-2x+1 (1)移项得__________; (2)方程左边化为两个平方差,右边为零得__________; (3)将方程左边分解成两个一次因式之积得__________; (4)分别解这两个一次方程得x 1=__________,x 2=__________. 7、分解因式:2x 2 +5x -3 = ; 8、用因式分解法解方程x 2 -5x = 6 , 得方程的根为 ; 9、方程2(x +3)2 -5(x +3) = 0的解为 ,最简便的解法是 . 10、 因式分解: ①= ②= ③= ④ = ⑤= 11、一个两位数等于它个位数的平方,且个位数比十位数大3,则这个两位数是_________。 12、某药品经两次降价,从原来每箱60元降为每箱48.6元,平均每次降价率为_________。 13、有两个数不等,和17,积比小点数的平方大30,用方程求这两数,设_________,根据题意,列方程得_________。 14、 一矩形面积132cm 2,周长46cm ,则矩形长是_________,宽是_________。 15、连续两个正奇数的平方和等于202,这两个奇数中较小的是_________。 3222m mn n +-4452a a --x xy y 22223--x xy y x y 2222--+-m n n 22222-+-

(完整版)一元二次方程解法及其经典练习题

一元二次方程解法及其经典练习题 方法一:直接开平方法(依据平方根的定义) 平方根的定义:如果一个数 的平方等于a ( ),那么这个数 叫做a 的平方根 即:如果 a x =2 那么 a x ±= 注意;x 可以是多项式 一、 用直接开平方法解下列一元二次方程。 1.0142=-x 2、2)3(2=-x 3、()162812=-x 4..25)1(412=+x 5.(2x +1)2=(x -1)2. 6.(5-2x )2=9(x +3)2. 7..063)4(22 =--x 方法二:配方法解一元二次方程 1. 定义:把一个一元二次方程的左边配成一个 ,右边为一个 ,然后利用开平方数求解,这种解一元二次方程的方法叫做配方法。 2. 配方法解一元二次方程的步骤:(1) (2) (3) 4) (5) 二、用配方法解下列一元二次方程。 1、.0662=--y y 2、x x 4232=- 39642=-x x 、 4、0542=--x x 5、01322=-+x x 6、07232=-+x x

方法三:公式法 1.定义:利用求根公式解一元二次方程的方法叫做公式法 2.公式的推导:用配方法解方程ax 2+bx +c = 0(a ≠0) 解:二次项系数化为1,得 , 移项 ,得 , 配方, 得 , 方程左边写成平方式 , ∵a ≠0,∴4a 2 0,有以下三种情况: (1)当b 2-4ac>0时,=1x , =2x (2)当b 2-4ac=0时,==21x x 。 (3)b 2-4ac<0时,方程根的情况为 。 3.由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因 (1)式子ac b 42-叫做方程ax 2+bx +c = 0(a ≠0)根的 ,通常用字母 “△” 表示。当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根; 当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根; 当△ 0时, 方程ax 2+bx+c=0(a ≠0) 实数根。 (2)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c = 0,当ac b 42-≥0时,?将a 、b 、c 代入式子=x 就得到方程的根.这个式子叫做一元二次方程的求根公式,利用求根公式解一元二次方程的方法叫公式法. 4.公式法解一元二次方程的步骤:(1) (2) (3) (4) (5) 二、用公式解法解下列方程。 1、0822=--x x 2、22 314y y -= 3、y y 32132=+

人教版九年级上册一元二次方程同步训练

一元二次方程 【学习目标】 1.理解一元二次方程及其有关概念; 2.掌握一元二次方程的一般形式,正确认识二次项系数,一次项系数及常数项; 3.了解根的意义. 【前置学习】 一、基础回顾: 1.多项式1232--x x 是 次 项式,其中最高次项是 ,二次项系数为 ,一次项系数为 ,常数项为 . 2. 叫方程,我们学过的方程类型有 . 3.解下列方程或方程组:①1)1(2-=+x x ②?? ?=+=-4 2y x y x ③211=-x 二、问题引领: 方程0422=+x-x 是以往学过的吗?通过本节课的学习你将认识这种新的方程. 三、自主学习(自主探究): 请你认真阅读课本引言及32-P 内容,边学边思考下列问题: 1.方程①②③有什么共同特点? 2.一元二次方程的定义:等号两边都是 ,只含有 个未知数(一元),并且未知数的最高次数是 (二次)的方程,叫做一元二次方程. 3.一元二次方程的一般形式:一般地,任何一个关于x 的一元二次方程,经过整理,都能化成如下形式: (a ≠0),这种形式叫做一元二次方程的一般形式.其中 是二次项, 是二次项系数, 是一次项, 是一次项系数, 是常数项. 4.下面哪些数是方程0652=++x x 的根? -4,-3,-2,-1,0,1,2,3,4. 5.一元二次方程的解也叫做一元二次方程的 ,即:使一元二次方程等号左右两边相等的 的值. 四、疑难摘要: 【学习探究】 一、合作交流,解决困惑: 1.小组交流:(在小组内说说通过自主学习,你学会了什么?你的疑难与困惑是什么?请同伴帮你解决.) 2.班级展示与教师点拨: 【点拨】

一元二次方程基础练习题

一元二次方程练习题 一、选择题 1.在下列方程中,一元二次方程的个数是(). ①3x2+7=0 ②ax2+bx+c=0 ③(x-2)(x+5)=x2-1 ④3x2-5 x =0 A.1个 B.2个 C.3个 D.4个 2.方程2x2=3(x-6)化为一般形式后二次项系数、?一次项系数和常数项分别为(). A.2,3,-6 B.2,-3,18 C.2,-3,6 D.2,3,6 3.px2-3x+p2-q=0是关于x的一元二次方程,则(). A.p=1 B.p>0 C.p≠0 D.p为任意实数 二、填空题 1.方程3x2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________. 2.一元二次方程的一般形式是__________. 3.关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是________. 三、综合题 1.a满足什么条件时,关于x的方程a(x2+x)x-(x+1)是一元二次方程? 2.关于x的方程(2m2+m)x m+1+3x=6可能是一元二次方程吗?为什么? 3,判断下列方程是否为一元二次方程? (1)3x+2=5y-3 (2) x2=4 (3) 3x2-5 x =0 (4) x2-4=(x+2) 2(5) ax2+bx+c=0 4,方程(2a—4)x2—2bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下

此方程为一元一次方程? 5,下面哪些数是方程2x2+10x+12=0的根? -4,-3,-2,-1,0,1,2,3,4. 6,.若x=1是关于x的一元二次方程a x2+bx+c=0(a≠0)的一个根,求代数式2007(a+b+c)的值。 7,.你能用以前所学的知识求出下列方程的根吗? (1)x2-64=0 (2)3x2-6=0 (3)x2-3x=0 8,关于x的一元二次方程(a-1) x2+x+a 2-1=0的一个根为0,则求a的值 一、选择题 1.方程x(x-1)=2的两根为(). A.x1=0,x2=1 B.x1=0,x2=-1 C.x1=1,x2=2 D.x1=-1,x2=2 2.方程ax(x-b)+(b-x)=0的根是(). A.x1=b,x2=a B.x1=b,x2=1 a C.x1=a,x2= 1 a D.x1=a2,x2=b2 3.已知x=-1是方程ax2+bx+c=0的根(b≠0)(). A.1 B.-1 C.0 D.2 二、填空题 1.如果x2-81=0,那么x2-81=0的两个根分别是x1=________,x2=__________. 2.已知方程5x2+mx-6=0的一个根是x=3,则m的值为________. 3.方程(x+1)2x(x+1)=0,那么方程的根x1=______;x2=________.

初三数学培优之一元二次方程的整数根

初三数学培优之一元二次方程的整数根 阅读与思考 解一元二次方程问题时,我们不但需熟练地解方程,准确判断根的个数、符号特征、存在范围,而且要能深入地探讨根的其他性质,这便是大量出现于各级数学竞赛中的一元二次方程的整数根问题。这类问题因涵盖了整数的性质、一元二次方程的相关理论,融合了丰富的数学思想方法而备受命题者的青睐.. 解整系数(即系数为整数)一元二次方程的整数根问题的基本方法有: 1.直接求解 若根可用有理式表示,则求出根,结合整除性求解. 2.利用判别式 在二次方程有根的前提下,通过判别式确定字母或根的范围,运用枚举讨论、不等分析求解 3.运用根与系数的关系 由根与系数的关系得到待定字母表示的两根和、积式,从中消去待定字母,再通过因式分解和整数性质求解. 4.巧选主元 若运用相关方法直接求解困难,可选取字母为主元,结合整除知识求解. 例题与求解 【例1】 已知关于x 的方程032)1280()8)(4(2 =+----x k x k k 的解都是整数,求整数k 的值. (绍兴市竞赛试题) 解题思路:用因式分解法可得到根的表达式,因方程类型未指明,故须按一次方程、二次方程两种情形讨论,这样确定k 的值才能全面而准确. 【例2】 q p ,为质数且是方程0132 =+-m x x 的根,那么 q p p q +的值是( ) A .22121 B .22123 C .22125 D .22 127 (黄冈市竞赛试题) 解题思路:设法求出q p ,的值,由题设条件自然想到根与系数的关系

【例3】 关于y x ,的方程2922 2=++y xy x 的整数解),(y x 的组数为( ) A .2组 B .3组 C .4组 D .无穷多组 解题思路:把2922 2 =++y xy x 看作关于x 的二次方程,由x 为整数得出关于x 的二次方程的根的判别式是完全平方数,从而确定y 的取值范围,进而求出x 的值. 【例4】 试确定一切有理数r ,使得关于x 的方程01)2(2 =-+++r x r rx 有根且只有整数根. (全国初中数学联赛试题) 解题思路:因方程的类型未确定,故应分类讨论. 当0≠r 时,由根与系数的关系得到关于r 的两个不等式,消去r ,先求出两个整数根. 【例5】 试求出这样的四位数,它的前两位数字与后两位数字分别组成的两位数之和的平方,恰好等于这个四位数. (全国初中数学联赛试题) 解题思路:设前后两个两位数分别为y x ,,99,10≤≥y x ,则y x y x +=+100)(2 ,即 0)()50(222=-+-+y y x y x ,于是将问题转化为求一元二次方程有理根、整数根的问题. 【例6】 试求出所有这样的正整数解a ,使得二次方程0)3(4)12(22 =-+-+a x a ax 至少有一个整数根. (“祖冲之杯”竞赛试题) 解题思路:本题有两种解法. 由于a 的次数较低,可考虑“反客为主”,以a 为元,以x 为已知数整理成一个关于a 的一元一次方程来解答;或考虑因方程根为整数,故其判别式为平方式.

一元二次方程求根公式

一元二次方程求解 一、一周知识概述 1、一元二次方程的求根公式 将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为 . 该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法. 说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0); (2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的; (3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式. 2、一元二次方程的根的判别式 (1)当b2-4ac>0时,方程有两个不相等的实数根; (2)当b2-4ac=0时,方程有两个相等的实数根; (3)当b2-4ac<0时,方程没有实数根. 二、重难点知识 1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。 (1) “开平方法”一般解形如“”类型的题目,如果用“公式

法”就显得多余的了。 (2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。 (3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑运用。 (4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方 程有实根,就一定可以用求根公式求出根,但因为要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了。 2、在运用b2-4ac的符号判断方程的根的情况时,应注意以下三点: (1)b2-4ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b2-4ac; (2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c; (3)根的判别式是指b2-4ac,而不是 三、典型例题讲解 例1、解下列方程: (1); (2); (3). 分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算,

人教版九年级数学上册 一元二次方程同步练习题含答案【精华版】

人教版九年级数学上册第21章《一元二次方程》同步练习1 带答案 ◆随堂检测 1、判断下列方程,是一元二次方程的有____________. (1)32250x x -+=; (2)21x =; (3)221352245 x x x x --=-+; (4)2 2(1)3(1)x x +=+;(5)2221x x x -=+;(6)20ax bx c ++=. (提示:判断一个方程是不是一元二次方程,首先要对其整理成一般形式,然后根据定义判断.) 2、下列方程中不含一次项的是( ) A .x x 2532=- B .2916x x = C .0)7(=-x x D .0)5)(5(=-+x x 3、方程23(1)5(2)x x -=+的二次项系数___________;一次项系数__________;常数项_________. 4、1、下列各数是方程21(2)23 x +=解的是( ) A 、6 B 、2 C 、4 D 、0 5、根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式. (1)4个完全相同的正方形的面积之和是25,求正方形的边长x . (2)一个矩形的长比宽多2,面积是100,求矩形的长x . (3)一个直角三角形的斜边长为10,两条直角边相差2,求较长的直角边长x . ◆典例分析 已知关于x 的方程22 (1)(1)0m x m x m --++=. (1)x 为何值时,此方程是一元一次方程? (2)x 为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项。 分析:本题是含有字母系数的方程问题.根据一元一次方程和一元二次方程的定义,分别进行讨论求解. 解:(1)由题意得,21010m m ?-=?+≠? 时,即1m =时, 方程22 (1)(1)0m x m x m --++=是一元一次方程210x -+=. (2)由题意得,2(1)0m -≠时,即1m ≠±时,方程22(1)(1)0m x m x m --++=是一元二次方程.此方程的二次项系数是2 1m -、一次项系数是(1)m -+、常数项是m . ◆课下作业

一元二次方程根的差别式

典型例题一 例 求证:如果关于x 的方程922+=+m x x 没有实数根,那么,关于y 的方程0522=+-+m my y 一定有两个不相等的实数根. 分析:由已知,可根据一元二次方程的根的判别式证之. 证明 设方程922+=+m x x 即0922=--+m x x 的根的判别式为1?,方程 0522=+-+m my y 的根的判别式为2?,则 . 36)4( 208)25(4. 440)9(42222221-+=-+=--=?+=++=?m m m m m m m ∵方程922+=+m x x 无实数根, 01+∴m ,即036)4(2>-+m . 故方程0522=+-+m my y 有两个不相等的实数根. 说明:上述证明中,判定02>?用到了01

分析:运用根的判别式判定根的情况时,要首先把方程变形为一元二次方程的一般形式,然后从求出的判别式的值来判定根的判别式的符号,尤其是当方程系数中含有字母时,一般利用配方法将“?”化成完全平方式或完全平方式加上(或减去)一个常数,再根据完全平方式的非负性判断“?”的符号,从而判定方程的根的情况,有时还需要对字母进行讨论.这是不解方程判别根的情况的关键. 解:(1)),1(4,2,1-=-==k c k b a )1(414)2(422-??--=-=?∴k k ac b )2(4)44(416 16422 2≥-=+-=+-=k k k k k ∴方程有两个实数根. (2)0≠a , ∴方程02=+bx ax 是一元二次方程,此方程是缺少常数项的不完全的一元二次方程,将常数项,将常数项看作零. ∴2204b a b =?-=?. ∴不论b 取任何实数,2b 均为非负数, 02≥=?b 恒成立. ∴方程有两个实数根. (3)0≠a , ∴方程02=+c ax 是缺少一次项的不完全的一元二次方程,它的一次项系数0=b . ac a 40402-=?-=?, ∴需要讨论a 、c 的符号,才能确定?的符号. 当0=c 时,0=?,方程有两个相等的实数根; 当a 、c 异号时,0>?,方程有两个不相等的实数根; 当a 、c 同号时,0

人教版九年级上册第二十一章一元二次方程 21.2 解一元二次方程 同步练习(含答案)

解一元二次方程同步练习 一.选择题(共12小题) 1.一元二次方程2(x-2)2+7(x-2)+6=0的解为() A.x1=-1,x2=1B.x1=4,x2=3.5 C.x1=0,x2=0.5D.无实数解 2.将方程x2+8x+9=0配方后,原方程可变形为() A.(x+4)2=7B.(x+4)2=25 C.(x+4)2=-9D.(x+8)2=7 3.若关于x的一元二次方程x2-2x+m=0有两个不相等的实数根,则m的值可能是()A.3B.2C.1D.0 4.已知矩形的长和宽是方程x2-7x+8=0的两个实数根,则矩形的对角线的长为() A .6B.7C.D. 5.已知等腰△ABC的底边长为3,两腰长恰好是关于x的一元二次方程0.5kx2-(k+3)x+6=0的两根,则△ABC的周长为() A.6.5B.7C.6.5或7D.8 6.等腰三角形三边长分别为a、b、4,且a、b是关于x的一元二次方程x2-12x+k+2=0的两根,则k的值为() A.30B.34或30C.36或30D.34 7.关于x的一元二次方程x2+(a2-3a)x+a=0的两个实数根互为倒数,则a的值为()A.-3B.0C.1D.-3 或0 8.定义运算:a*b=2ab,若a、b是方程x2+x-m=0(m>0)的两个根,则(a+1)*b+2a的

值为() A.m B.2-2m C.2m-2D.-2m-2 9.若整数a既使得关于x的分式方程有非负数解,又使得关于x的方程x2-x+a+6=0无解,则符合条件的所有a的个数为() A.1B.2C.3D.4 10.已知m,n(m≠n)满足方程x2-5x-1=0,则m2-mn+5n=() A.-23B.27C.-25D.25 11.若整数a使得关于x的一元二次方程(a+2)x2+2ax+a-1=0有实数根,且关于x的不等式组有解且最多有6个整数解,则符合条件的整数a的个数为()A.3B.4C.5D.6 12.设关于x的一元二次方程ax2+bx+c=0的两根为x1,x2,记S1=x1+2011x2,S2=x12+2011x22,…,Sn=x1n+2011x2n,则aS2012+bS2011+cS2010的值为() A.0B.2010C.2011D.2012 二.填空题(共5小题) 13.方程(x-1)(x+2)=0的解是. 14.已知(x2+y2+1)(x2+y2+3)=8.则x2+y2的值为 15.已知a、b是方程x2+2x-5=0的两个实数根,则a2+ab+2a的值为. 16.若关于x的方程x2-4|x|+3-m=0有4个不相等的实数根,则m的取值范围是. 17.若x1,x2是方程x2-2mx+m2-m-1=0的两个根,且x1+x2=1-x1x2,则m的值为.

一元二次方程练习题23718

一元二次方程练习题 一、填空 1.一元二次方程12)3)(31(2 +=-+x x x 化为一般形式为: ,二次项系数为: ,一次项系数为: ,常数项为: 。 2.关于x 的方程023)1()1(2 =++++-m x m x m ,当m 时为一元一次方程;当m 时为一元二次方程。 3.已知直角三角形三边长为连续整数,则它的三边长是 。 4. ++x x 32 +=x ( 2);-2x x (2=+ 2 )。 5.直角三角形的两直角边是3︰4,而斜边的长是15㎝,那么这个三角形的面积是 。 6.若方程02 =++q px x 的两个根是2-和3,则q p ,的值分别为 。 7.若代数式5242--x x 与122 +x 的值互为相反数,则x 的值是 。 8.方程492=x 与a x =2 3的解相同,则a = 。 9.当t 时,关于x 的方程032 =+-t x x 可用公式法求解。 10.若实数b a ,满足022=-+b ab a ,则b a = 。 11.若8)2)((=+++ b a b a ,则b a += 。 12.已知1322++x x 的值是10,则代数式1642++x x 的值是 。 二、选择 1.下列方程中,无论取何值,总是关于x 的一元二次方程的是( ) (A )02=++c bx ax (B )x x ax -=+2 21 (C )0)1()1(2 22=--+x a x a (D )0312=-+=a x x 2.若12+x 与12-x 互为倒数,则实数x 为( ) (A )±2 1 (B )±1 (C )±2 2 (D )±2 3.若m 是关于x 的一元二次方程02=++m nx x 的根,且m ≠0,则n m +的值为( ) (A )1- (B )1 (C )21- (D )2 1 4.关于x 的一元二次方程02=++m nx x 的两根中只有一个等于0,则下列条件正确的 是( )

一元二次方程根与系数的关系各种类型题及训练

一元二次方程根与系数的关系应用例析及训练 一、根据判别式,讨论一元二次方程的根。 例1:已知关于的方程(1)有两个不相等的实数根,且关于的方程(2)没有实数根,问取什么整数时,方程(1)有整数解? 分析:在同时满足方程(1),(2)条件的的取值范围中筛选符合条件的的整数值。 解:∵方程(1)有两个不相等的实数根, ∴ 解得; ∵方程(2)没有实数根, ∴ 解得; 于是,同时满足方程(1),(2)条件的的取值范围是 其中,的整数值有或 当时,方程(1)为,无整数根; 当时,方程(1)为,有整数根。 解得: 所以,使方程(1)有整数根的的整数值是。 总结:熟悉一元二次方程实数根存在条件是解答此题的基础,正确确定的取值范围,并依靠熟练的解不等式的基本技能和一定的逻辑推理,从而筛选出 ,这也正是解答本题的基本技巧。 二、判别一元二次方程两根的符号。 例1:不解方程,判别方程两根的符号。

分析:对于来说,往往二次项系数,一次项系数,常数项皆为已知,可据此求出根的判别式△,但△只能用于判定根的存在与否,若 判定根的正负,则需要确定或的正负情况。因此解答此题的关键是:既要求出判别式的值,又要确定或的正负情况。 解:∵,∴△=—4×2×(—7)=65>0 ∴方程有两个不相等的实数根。 设方程的两个根为, ∵<0 ∴原方程有两个异号的实数根。 总结:判别根的符号,需要把“根的判别式”和“根与系数的关系”结合起来进行确定,另外由于本题中<0,所以可判定方程的根为一正一负;倘若>0,仍需考虑的正负,方可判别方程是两个正根还是两个负根。 三、已知一元二次方程的一个根,求出另一个根以及字母系数的值。 例2:已知方程的一个根为2,求另一个根及的值。 分析:此题通常有两种解法:一是根据方程根的定义,把代入原方程,先求出的值,再通过解方程办法求出另一个根;二是利用一元二次方程的根与系数的关系求出另一个根及的值。 解法一:把代入原方程,得: 即 解得 当时,原方程均可化为: ,

一元二次方程根的分布情况归纳(完整版)

二次方程根的分布与二次函数在闭区间上的最值归纳 1、一元二次方程02 =++c bx ax 根的分布情况 设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=, 方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况) a

根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧 12,x m x n <>,(图形分别如下)需满足的条件是 (1)0a >时,()()00f m f n ???>?? 对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况: 若()0f m =或()0f n =,则此时()()0f m f n

相关文档
相关文档 最新文档