文档库 最新最全的文档下载
当前位置:文档库 › 2010线性代数串讲

2010线性代数串讲

2010线性代数串讲
2010线性代数串讲

第一章行列式

主要知识点

一、行列式的定义和性质

1.余子式和代数余子式的定义

2.行列式按一行或一列展开的公式

1)

2)

3.行列式的性质

1)2)用数k乘行列式的某一行(列)所得新行列式=原行列式的k倍. 推论3)互换行列式的任意两行(列)所得新行列式等于原行列式的相反数. 推论4)如果行列式中两行(列)对应元素成比例,则行列式值为0. 5)行列式可以按任一行(列)拆开. 6)行列式的某一行(列)的k倍加到另一行(列)上,所得新行列式与原行列式的值相等.

二、行列式的计算

1.二阶行列式和三角形行列式的计算.

2.对一般数字行列式,利用行列式的性质将其降阶以化成二阶行列式或三角形(或对角形)行列式的计算.

3.对行列式中有一行或一列中只有一个或两个非零元的情况,用这一行或一列展开.

4.行列式中各行元素之和为一个常数的类型.

5.范德蒙行列式的计算公式

真题解析

例1 行列式第二行第一列元素的代数余子式A21()

A.-2

B.-1

C.1

D.2 答案 B

测试点余子式和代数余子式的概念

解析,

例2 设某3阶行列式的第二行元素分别为-1,2,3对应的余子式分别为-3,-2,1则此行列式的值为. 测试点行列式按行(列)展开的定理

例3 已知行列式的第一列的元素为1,4,-3,2,第二列元素的余子式为2,3,4,x问

x= . 测试点行列式的任意一行(列)与另一行(列)元素的代数余子式的乘积之和为零. 解因为第二列元素的余子式为2,3,4,x,故第二列元素的代数余子式为

-2,3,-4,x 因第一列的元素为1,4,-3,2,故1×(-2)+4×3+(-3)×(-4)+2x=0 所以x=-11

例4 设多项式则f(x)的常数项为【】

A.4

B.1

C.-1

D. -4 答案 A

测试点行列式按一行展开的定理解行列式按第一行展开得

f(x)=(-1)A12+xA13

故其常数项为

例5 已知,那么()

A.-24

B.-12

C.-6

D.12 答案 B

测试点行列式的性质

解析

例6 设行列式=1,=2,则=()

A.-3

B.-1

C.1

D.3 故应选 D

测试点行列式的性质

例7 已知3阶行列式则. 答案:36d.

测试点行列式的性质

例8 若a i b i≠0,i=1,2,3,则行列式=_____________.

测试点行列式的性质

例9 设A为3阶方阵,且已知则()A.-1 B. C. D.1 答案 B

测试点方阵行列式的性质

解所以.

例10 计算行列式D=的值.

测试点行列式的计算

解 D=

例14 计算行列式:

测试点各行元素之和为常数的行列式的计算技巧.

例15 计算行列式

测试点行列式中有一行只有两个元素不为零的行列式的计算和三角形行列式的计算

例16 计算行列式

『正确答案』

扩展

例17 设

问(1)D(x)中,x3项的系数=?

(2)方程D(x)=0有几个根?试写出所有的根。

测试点 1.范德蒙行列式的判别和计算公式; 2.行列式按行(列)展开的定理.

解(1)x3项的系数

(2)因为

所以方程D(x)=0有三个根: x1=2, x2=3,x3=4 第一章的重点是行列式的性质和计算。第二章矩阵

主要知识点

一、矩阵的概念

1.要分清矩阵与行列式的区别

2.几种特殊矩阵(0矩阵,单位阵,三角阵,对角阵,数量阵)

二、矩阵的运算

1.矩阵A , B的加、减、乘有意义的充分必要条件

2.矩阵运算的性质

比较矩阵运算(包括加、减、数乘、乘法等)的性质与数的运算性质的相同点和不同点(加法、乘法的交换律和结合律;乘法关于加法的分配律)

重点是矩阵乘法没有交换律(由此产生了矩阵运算公式与数的运算的公式的不同点).

3.转置对称阵和反对称阵

1)转置的性质

2)若A T=A (A T= - A),则称A为对称(反对称)阵

4.逆矩阵

1)方阵A可逆(也称非异,非奇异,满秩)的充分必要条件是.当A可逆时,

.

2)方阵A的伴随阵的定义。重要公式

;与A -1的关系(当方阵A可逆时,)3)重要结论:若n阶方阵A,B满足AB=E,则A,B都可逆,且A-1=B ,B-1=A.

4)逆矩阵的性质:

; ; .

5)消去律:设方阵A可逆,且AB=AC(BA=CA),则必有B=C。(若不知A可逆,

仅知A≠0结论不一定成立。)

5.方阵的行列式

6.分快矩阵矩阵运算时分快的原则;分快矩阵的运算规则;分快矩阵的转置

三、矩阵的初等变换和初等矩阵

1.初等变换的定义和性质

方阵经初等变换后的行列式是否变化?(分别就三种初等变换说明行列式变化的情况)初等变换不改变方阵的可逆性;初等变换不改变矩阵的秩;行初等变换必能将矩阵化为

行最简形,初等变换必能将矩阵A 化为标准形,其中r为矩阵A的秩.

2.初等矩阵的定义和性质

1)初等矩阵的定义2)初等变换和矩阵乘法之间的关系3)对任意m×n阶矩阵A,总存在一系列m 阶初等阵和一系列n 阶初等阵

使得

四、矩阵的k阶子式和矩阵秩的概念,求矩阵秩的方法

五、矩阵方程的标准形及解的公式

真题解析

例1设矩阵A=(1,2),,

,则下列矩阵运算中有意义

的是() A.ACB B.ABC C.BAC D.CAB

『正确答案』B

测试点: 矩阵相乘有意义的充分必要条件

例2若,则下列矩阵运算的结果为3×2矩阵的是() A.ABC B.AC T B T C.CBA D.C T B T A T

例3设A为任意n阶矩阵,下列矩阵中为反对称矩阵的是()

A.A+A T

B.A-A T

C.AA T

D.A T A

『正确答案』B

测试点 1.对称阵和反对称阵的定义A T=A(A T=-A),则称A为对称阵(反对称阵)

2.转置的性质:

例4设A为n 阶方阵,为实数,则=()

『正确答案』C

测试点矩阵数乘的定义和行列式的性质

例5设A为n阶方阵,令方阵B=A+A T,则必有()

A.B T=B

B.B=2A

C.B T=-B

D.B=0

『正确答案』A

例6设矩阵A,B,C为同阶方阵,则(ABC)T=()

A.A T B T C T

B.C T B T A T

C.C T A T B T

D.A T C T B T

『正确答案』B

测试点:转置的反序性

例7设矩阵,,则A+2B =_____________.『正确答案』

测试点: 矩阵运算的定义

.

例8设矩阵,,则A T B=____________.

『正确答案』

测试点: 矩阵运算的定义

例9设3阶矩阵A 的行列式,则【】

A.4

B.1

C.-1

D.-4

『正确答案』D

测试点矩阵的数乘的定义和行列式的性质

例10设A,B为任意n阶矩阵,E为单位矩阵,O为n阶零矩阵,则下列各式中正确的是【】

A.(A+B)(A-B)=A 2-B2

B.(AB)2=A2B2

C.(A+E)(A-E)=A 2-E

D.由AB=O必可推出A=O或B=O

『正确答案』C

测试点矩阵乘法的性质,特别是没有交换律.

例11设2阶矩阵,则=()

『正确答案』A

测试点伴随矩阵的定义,二阶方阵的伴随阵

例12设3阶矩阵,则= _____________.『正确答案』

测试点重要公式.

13.设,则____________.

『正确答案』

测试点伴随矩阵的概念;若A是n阶方阵,则.

例14矩阵的逆矩阵是()

『正确答案』C

测试点 1.二阶可逆阵的逆矩阵的公式;

2.验证B是A的逆矩阵的方法.

例15设A为2阶可逆矩阵,且已知=,则A =()

『正确答案』D

测试点逆矩阵的性质

解由=,所以故

例17设A是3阶方阵,且则()

A.-2

B.

C. D. 2

『正确答案』A

测试点方阵行列式的性质. 例18已知A2-2A-8E=O则(A+E)-1_____________。

『正确答案』

测试点关于逆矩阵的重要推论

若A,B都是n阶矩阵,且满足AB=E n则A,B都可逆,且A-1=B,B-1=A

解由A2-2A-8E=O得A2+A-3A-3E-5E=0,即(A+E)(A-3E)=5E,

即,故

例19设n阶方阵A满足A m =O,其中m为正整数,证明E-A可逆,且

『正确答案』

例20下列矩阵中,是初等矩阵的为()

『正确答案』C

例22设矩阵则必有()

A.P1P2A=B

B.P2P1A=B

C.AP1P2=B

D.AP2P1=B

答案 A

测试点矩阵的初等变换和矩阵乘法之间的关系;初等方阵以及初等方阵的功能。

解方阵是由经过两次初等行变换得到的,

(1)第一行的一倍加到第二行上,相应的初等方阵是;

(2)第一行和第二行两行互换,相应的初等方阵是

根据初等方阵的功能:用初等方阵左(右)乘矩阵A就等于对矩阵A做相应的初等行(列)变换.

故B=P 1P2A,所以

验算:

例23设矩阵,则A中()

A.所有2阶子式都不为零

B.所有2阶子式都为零

C.所有3阶子式都不为零

D.存在一个3阶子式不为零

『正确答案』D

测试点矩阵的k阶子式的概念.

例24设矩阵,则行列式___________.

『正确答案』

测试点方阵行列式的性质

例25设矩阵,矩阵,则矩阵B 的秩=______________.

『正确答案』

测试点矩阵秩的概念

例26设A是4×5矩阵,,则()

A. A中的4阶子式都不为0

B. A中存在不为0的4阶子式

C. A中的3阶子式都不为0

D. A中存在不为0的3阶子式

『正确答案』D

测试点矩阵秩的概念

使得

例27设三阶矩阵,若存在初等矩阵P,

则 P=【】

『正确答案』B

测试点矩阵的初等变换和用初等矩阵乘的关系

例28已知矩阵,E为2阶单位矩阵,令求B

『正确答案』

测试点方阵多项式的概念;

例29设求

测试点求逆矩阵的方法

所以

注意一定要验算

例30设矩阵,,求矩阵方程XA=B的解X.

『正确答案』

测试点解矩阵方程的方法

验算!

例31设A,B均为3阶矩阵,E为3阶单位矩阵,且满足:.若已知

求矩阵B.

测试点解矩阵方程的方法

解因为,故

从而,又

显然A-E可逆,应用消去律得

.

验算

所以确有

例32 已知矩阵满足方程

矩阵X满足方程AX+BX=D-C,求X。

测试点求矩阵方程的解

解由AX+BX=D-C得(A+B)X=D-C

验算

例33设矩阵,问a为何值时,

(1)秩(A)=1;(2)秩(A)=2.

『正确答案』

测试点求矩阵秩的方法

所以当a=9时,秩(A)=1;当a≠9时,秩(A)=2

例35设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,则矩阵B=AC的秩为_______ ___.

『正确答案』r

37.设3阶方阵A的秩为2,则与A等价的矩阵为()

『正确答案』B

测试点矩阵等价的概念;等价矩阵有相等的秩;反之同形的两个矩阵只要其秩相等,必等价.

解因为A,C,D的矩阵的秩都为1,B的矩阵的秩等于2.故答案应为B.

例38设A是n 阶方阵,且,证明A可逆

『正确答案』

测试点若AB=E则A,B 都可逆,且

证因为,即

,所以

故A 可逆,且.

第二章的内容较多,涉及到的概念,公式也多,考题比较细。但都很基本,所以只要全面复习,就一定能从容应对。

第三章向量空间

主要知识点

一、n维向量线性运算的定义和性质;

设是一组n

维向量构成的向量组。如果存在一组不全为零的数

使得则称向量组线性相关。否则,称向量组线性无关。

二、n维向量组的线性相关性

1.向量组的线性相关性的定义和关于线性相关的几个定理;

(1)m个n 维向量线性相关的充分必要条件是至少存在某个是

其余向量的线性组合.

线性无关的充分必要条件是其中任意一个向量都不能表示为其余向量的线性组合.

(2)如果向量组线性无关,而线性相关,则β可由

线性表示,且表示法唯一.

(3)线性相关的向量组再增加向量所得的新向量组必线性相关.(部分相关,则整体相关;或整体无关,则部分无关)

(4)若向量组线性无关,则接长向量组

必线性无关.

2.判断向量组的线性相关性的方法

(1)一个向量α线性相关;

(2)含有零向量的向量组必线性相关;

(3)向量个数=向量维数时,n维向量组线性相关

(4)向量个数 >向量维数时, 向量组必线性相关;

(5)若向量组的一个部分组线性相关,则向量组必线性相关;

(6)若向量组线性无关,则其接长向量组必线性无关;

(7)向量组线性无关向量组的秩=所含向量的个数,

向量组线性相关向量组的秩<所含向量的个数;

(8)向量组线性相关(无关)的充分必要条件是齐次方程组

有(没有)非零解.

三、向量组的极大无关组及秩

1.极大无关组的定义

2.向量组的秩求向量组的秩和极大无关组,并将其余向量由该极大无关组线性表示的的方法

四、子空间的定义,,基、维数、向量在一组基下的坐标

真题解析

例1.已知其中,

则____________.

答案

.

测试点 n维向量线性运算的定义和性质解因为,所以

(请验算)

例2.若向量组线性相关,则实数

()

A.0

B.1

C.2

D.3

『正确答案』B

测试点 n个n维向量线性相关相应的行列式=0;

例3.若向量组线性无关,则a的取值应满足 .

『正确答案』a≠0且a≠2.

测试点 n个n维向量线性无关相应的行列式≠0;

所以a≠0且a≠2.

例4.设向量则β由

线性表出的表示式为_____________.

答案

测试点向量由向量组线性表示;组合系数的求法

解考虑

该线性方程组的增广矩阵

所以

例5.矩阵的行向量组的秩=____________.

『正确答案』2

测试点矩阵的秩;向量组的秩之间的关系;

例6.设向量组线性相关,则必可推出()

A. 中至少有一个向量为零向量

B. 中至少有两个向量成比例

C. 中至少有一个向量可以表示为其余向量的线性组合

D. 中每一个向量都可以表示为其余向量的线性组合

『正确答案』C

测试点向量组线性相关的概念

例7.向量组线性无关的充分条件是

A. 都不是零向量

B. 中任意两个向量都不成比例

C. 中任意一个向量都不能表为其余向量的线性组合

D.

中任意

个向量都线性无关

答案 C

测试点 向量组线性相关的概念; 充分条件;必要条件;充分必要条件.

解 对于选项A :

都不是零向量,但线性相关.

对于选项B 、D :

中任意两个向量都不成比例,且其中任

意3-1=2个向量都线性无关,但线性相关.

故A,B,D 都不正确. 例8.设向量

,下

列命题中正确的是( ) A.若线性相关,则必有线性相关 B.若线性无关,则必有线性无关 C.若线性相关,则必有线性无关 D.若

线性无关,则必有

线性相关

例9设

是一个4维向量组,若已知

可以表为

的线性组合,且

表示法惟一,则向量组

的秩为( )

A.1

B.2

C.3

D.4 答案 C

测试点 (1)向量组的秩的概念;(2)向量由向量组线性表示的概念 (3)向量组线性相关和线性无关的概念 解 因为可以表为

的线性组合,且表示法惟一,必有

线性无关,

因为

『正确答案』B

线性代数知识点总结

线性代数知识点总结 第一章 行列式 (一)要点 1、二阶、三阶行列式 2、全排列和逆序数,奇偶排列(可以不介绍对换及有关定理),n 阶行列式的定义 3、行列式的性质 4、n 阶行列式ij a D =,元素ij a 的余子式和代数余子式,行列式按行(列)展开定理 5、克莱姆法则 (二)基本要求 1、理解n 阶行列式的定义 2、掌握n 阶行列式的性质 3、会用定义判定行列式中项的符号 4、理解和掌握行列式按行(列)展开的计算方法,即 5、会用行列式的性质简化行列式的计算,并掌握几个基本方法: 归化为上三角或下三角行列式, 各行(列)元素之和等于同一个常数的行列式, 利用展开式计算 6、掌握应用克莱姆法则的条件及结论 会用克莱姆法则解低阶的线性方程组 7、了解n 个方程n 个未知量的齐次线性方程组有非零解的充要条件 第二章 矩阵 (一)要点 1、矩阵的概念 n m ?矩阵n m ij a A ?=)(是一个矩阵表。当n m =时,称A 为n 阶矩阵,此时由A 的元素按原来排列的形式构成的n 阶行列式,称为矩阵A 的行列式,记为A . 注:矩阵和行列式是两个完全不同的两个概念。 2、几种特殊的矩阵:对角阵;数量阵;单位阵;三角形矩阵;对称矩阵 3、矩阵的运算;矩阵的加减法;数与矩阵的乘法;矩阵的转置;矩阵的乘法 (1)矩阵的乘法不满足交换律和消去律,两个非零矩阵相乘可能是零矩阵。 如果两矩阵A 与B 相乘,有BA AB =,则称矩阵A 与B 可换。 注:矩阵乘积不一定符合交换 (2)方阵的幂:对于n 阶矩阵A 及自然数k , 规定I A =0 ,其中I 为单位阵 .

(3) 设多项式函数k k k k a a a a ++++=--λλλλ?1110)( ,A 为方阵,矩阵A 的 多项式I a A a A a A a A k k k k ++++=--1110)( ?,其中I 为单位阵。 (4)n 阶矩阵A 和B ,则B A AB =. (5)n 阶矩阵A ,则A A n λλ= 4、分块矩阵及其运算 5、逆矩阵:可逆矩阵(若矩阵A 可逆,则其逆矩阵是唯一的);矩阵A 的伴随矩阵记为*A , 矩阵可逆的充要条件;逆矩阵的性质。 6、矩阵的初等变换:初等变换与初等矩阵;初等变换和初等矩阵的关系;矩阵在等价意义下的标准形;矩阵A 可逆的又一充分必要条件:A 可以表示成一些初等矩阵的乘积;用初等变换求逆矩阵。 7、矩阵的秩:矩阵的k 阶子式;矩阵秩的概念;用初等变换求矩阵的秩 8、矩阵的等价 (二)要求 1、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等 2、了解几种特殊的矩阵及其性质 3、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质 4、理解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当A 可逆时,会用伴随矩阵求逆矩阵 5、了解分块矩阵及其运算的方法 (1)在对矩阵的分法符合分块矩阵运算规则的条件下,其分块矩阵的运算在形式上与不分块矩阵的运算是一致的。 (2)特殊分法的分块矩阵的乘法,例如n m A ?,l n B ?,将矩阵B 分块为 ) (21l b b b B =,其中j b (l j 2, ,1=)是矩阵B 的第j 列, 则 又如将n 阶矩阵P 分块为) (21n p p p P =,其中j p (n j 2, ,1=)是矩阵P 的第j 列. (3)设对角分块矩阵

10月自考线性代数经管类试卷及答案

10月自考线性代数经管类试卷及答案

10月高等教育自学考试全国统一命题考试 线性代数(经管类) 试卷 (课程代码04184) 说明:在本卷中。A T表示矩阵A的转置矩阵。A* 表示矩阵A的伴随矩阵,E是单位矩阵, ︱A ︱表示方阵A的行列式,r(A)表示矩 阵A的秩。 第一部分选择题 一、单项选择题(本大题共5小题,每小题2分, 共10分) 在每小题列出的四个备选项中只有一个是符 合题目要求的,请将其选出并将“答题卡” 的相应代码涂黑。未涂、错涂或多涂均无分。 1.已知2阶行列式 A.-2 B.-l C.1 D.2 3.设向量组可由向量组线性 表出,则下列结论中 正确的是

A.若s≤t,则必线性相关 B.若s≤t,则必线性相关 C.若线性无关,则s≤t D.若线性无关,则s≤t 4.设有非齐次线性方程组Ax=b,其中A为m×n 矩阵,且r(A)=r 1,r(A,b)=r 2 ,则 下列结论中正确的是 A.若r 1 =m,则Ax=O有非零解 B.若r 1 =n,则Ax=0仅有零解 C.若r 2 =m,则Ax=b有无穷多解 D.若r 2 =n,则Ax=b有惟一解 5. 设n阶矩阵A满足︱2E-3A︱=0,则A必有一个特征值= 第二部分非选择题 二、填空题 (本大题共l0小题。每小题2分,共20分) 请在答题卡上作答。 6.设行列式中元素a ij 的代数余子式为 A ij (i,j=1,2),则a 11 A 21 +a 12 +A 22 =__________. 7.已知矩阵,则A2+2A+E=___________.

8.设矩阵,若矩阵A满足AP=B,则A=________. 9.设向量,,则由向量组线性表出的表示式为=____________. 10.设向量组a 1=(1,2,1)T,a 2 =(-1,1,0)T, a 3 =(0,2,k)T线性无关,则数k的取值应 满足__________. 11.设3元非齐次线性方程组Ax=b的增广矩阵(A,b)经初等行变换可化为 若该方程组无解,则数k=_________.12.设=-2是n阶矩阵A的一个特征值,则矩阵A—3E必有一个特征值是________. 13.设2阶矩阵A与B相似,其中,则数a=___________. 14.设向量a 1=(1,-l,0)T,a 2 =(4,0,1)T,则 =__________. 15.二次型f(x 1,x 2 )=-2x 1 2+x 2 2+4x 1 x 2 的规范形为

自学考试线性代数经管类资料重点考点

线性代数(经管类)考点逐个击破 第一章 行列式 (一)行列式的定义 行列式是指一个由若干个数排列成同样的行数与列数后所得到的一个式子,它实质上表示把这些数按一定的规则进行运算,其结果为一个确定的数. 1.二阶行列式 由4个数)2,1,(=j i a ij 得到下列式子: 11122122 a a a a 称为一个二阶行列式,其运算规则为 2112221122 211211a a a a a a a a -= 2.三阶行列式 由9个数)3,2,1,(=j i a ij 得到下列式子:33 323123222113 1211a a a a a a a a a 称为一个三阶行列式,它如何进行运算呢?教材上有类似于二阶行列式的所谓对角线法,我们采用递归法,为此先要定义行列式中元素的余子式及代数余子式的概念. 3.余子式及代数余子式 设有三阶行列式 33 323123222113 12113a a a a a a a a a D = 对任何一个元素ij a ,我们划去它所在的第i 行及第j 列,剩下的元素按原先次序组成一个二阶行列式,称它为元素ij a 的余子式,记成ij M 例如 33 32232211a a a a M = ,33 32131221a a a a M = ,23 22131231a a a a M = 再记 ij j i ij M A +-=)1( ,称ij A 为元素ij a 的代数余子式. 例如 1111M A =,2121M A -=,3131M A = 那么 ,三阶行列式3D 定义为 我们把它称为3D 按第一列的展开式,经常 31 312121111133 323123222113 12113A a A a A a a a a a a a a a a D ++==

(完整版)自考本科线性代数(经管类)知识汇总

自考高数线性代数笔记 第一章行列式 1.1行列式的定义 (一)一阶、二阶、三阶行列式的定义 (1)定义:符号叫一阶行列式,它是一个数,其大小规定为:。 注意:在线性代数中,符号不是绝对值。 例如,且; (2)定义:符号叫二阶行列式,它也是一个数,其大小规定为: 所以二阶行列式的值等于两个对角线上的数的积之差。(主对角线减 次对角线的乘积) 例如 (3)符号叫三阶行列式,它也是一个数,其大小规定为 例如=0 三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆

方法是:在已给行列式右边添加已给行列式的第一列、第二列。我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。 例如: (1) =1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9=0 (2) (3) (2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如

例1a为何值时, [答疑编号10010101:针对该题提问] 解因为 所以8-3a=0,时 例2当x取何值时, [答疑编号10010102:针对该题提问] 解:. 解得0

线性代数(经管类)-阶段测评1,2,3,4

线性代数(经管类)-阶段测评1 1.单选题 1.1 5.0 设矩阵 $A=((a_11,a_12),(a_21,a_22)),B=((a_21+a_11,a_22+a_12),(a_11 ,a_12)),P_1=((0,1),(1,0)),P_2=((1,0),(1,1))$,则必有() 您答对了a a $P_1P_2A=B$ b $P_2P_1A=B$ c $AP_1P_2=B$ d $AP_2P_1=B$ 考点:矩阵的行列变换,左乘行变,右乘列变。 1.2 5.0 设$A$为四阶矩阵,且$|A|=-3$,则$|A^(**)|$=() 您答对了 c ? a $-3$ ?

?b $9$ ? ?c $-27$ ? ?d $81$ ? $|A^(**)|=|A|^(n-1)=-3^3=-27$. 1.3 5.0 设$A,B$为$n$阶方阵,满足$A^2=B^2$,则必有() 您答对了 d ?a $A=B$ ? ?b $A=-B$ ? ?c $|A|=|B|$ ? ?d $|A|^2=|B|^2$ ? 方阵行列式的性质,特别是$|AB|=|A||B|$ 解1:因为$A^2=B^2$,故$|A^2|=|B^2|$,而因为$|AB|=|A||B|$,故$|A^2|=|A|^2,|B^2|=|B|^2$,所以$|A|^2=|B|^2$ 解2:取

$A=((1,0,0),(0,-1,0),(0,0,-1)),B=((1,0,0),(0,-1,0),(0,0,1))$,显然$A^2=B^2=E$,但选项A,B,C都不对,应用排除法知正确答案为D。 1.4 5.0 设3阶矩阵$A$的行列式$|A|=(1)/(3)$,则$|-3A^T|=$() 您答对了 d ?a 9 ? ?b 1 ? ?c -1 ? ?d -9 ? $|-3A^T|=(-3)^3|A^T|=-27|A|=-9$. 1.5 5.0 设矩阵$A=[[a,b],[c,d]]$,且已知$|A|=-1$,则$A^-1$=() 您答对了 b ?a $[[d,-b],[-c,a]]$ ? ?b $[[-d,b],[c,-a]]$ ? ?c $[[d,-c],[-b,a]]$

线性代数(经管类)串讲 试卷式

《线性代数》(经管类) 第四部分 考点串讲 (按标准试卷题序串讲) 一、单项选择题: 1、行列式的计算 本题型为历年必考题型,其有两种形式一种直接解答,考查其运算能力,其次是考查如何利用性质求行列式解,应掌握这两种方法: 1)利用传统的计算方法直接计算; 2)利用性质巧计算,主要性质有: ①行列式和它的转置行列式相等; ②行列式可以按行列提出公因数; ③互换行列式中的任意两行(列),行列式的值改变符号; ④如果行列式中某两行(列)的对应元素成比例,则此行列式的值等于零 ⑤行列式或以按行(列)拆开 ⑥把行列式的某一行(列)的所有元素都乘以同一个数后加到另一行(列)的对应元素上去,所得行列式值不变。 2、字母型行列式计算 本题型主要考查考生利用矩阵行列式公式能力,主要涉及公式有: 1)|KA|=K n |A| 2)||||||B A AB

3)||||A A T = 45)1 |||*|-=n A A 3、考查方阵的性质及公式,主要是会灵活运用公式,主要有以下公式: 1)A A =--1 1)( 23)1 11)( ---=A B AB 4)T T A A )()( 11 --= 5)k k A A )()( 11 --= 4、考查伴随矩阵的求法 1)求件随机矩阵先求出各元素的代数佘子式,再把每行对应的代数佘子代换成对应的例。 25、求方阵的逆距阵: 求方阵的逆矩阵也有两种方法,根据实际情况选定: 1A* 2)利用初等行变换求逆矩阵

6、向量组线性相关与线性无关的考查 这种题型有两种考法 1)利用线性相关这一已知条件可实数: 如若向量组)1,0,0()0,2,1()0,1,1(2 3 21+==+=t a a t a 线性相关,则实数t 为多少? 解:因为已知向量组线性相关所以有 1=∴t 2)根据线性相关与线性无关性质关断某些推断的正确与否 如:已知量组4324321,,,,,,:α αααααα中A 线性相关,那么 4321,,,:ααααA 线性无关,B 、4321,,,αααα线性相关 C 、4 321,,αααα可由线性表示 D 、43αα,线性无关 根据线性相关组的扩充向量组必为相关组,所以造B 7)考查A 与B 相似性质: 设立A 和B 是两个n 阶方阵,如果存在某个n 阶可逆矩阵P 使得 AP P B 1-=则称A 和B 是相似的,记为B A ~ A 与B 相似有:① trA=trB ②|A|=|B|

线性代数(经管类)考试试卷及答案(一)

高等教育自学考试全国统一命题考试 线性代数(经管类)优化试卷(一) 说明:在本卷中,A T表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E是单位矩阵,|A|表示方阵A的行列式. 一、单项选择题(本大题共10小题。每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内.错选、多选或未选均无分. 1.设A为3阶方阵,且|A|=2,则| 2A-l | ( ) A.-4 B.-1 C.1 D.4 2.设矩阵A=(1,2),B=,C=,下列矩阵运算中有意义的是( ) A.ACB B.ABC C.BAC D.CBA 3.设A为任意n阶矩阵,下列矩阵中为反对称矩阵的是( ) A.A+A T B.A - A T C.A A T D.A T A 4.设2阶矩阵A= ,则A*= ( ) 5.矩阵的逆矩阵是()

6.设矩阵A=,则A中( ) A.所有2阶子式都不为零 B.所有2阶子式都为零 C.所有3阶子式都不为零 D.存在一个3阶子式不为零 7.设A为m×n矩阵,齐次线性方程组Ax=0有非零解的充分必要条件是( ) A.A的列向量组线性相关 B.A的列向量组线性无关 C.A的行向量组线性相关 D.A的行向量组线性无关 8.设3元非齐次线性方程组Ax=b的两个解为,且系数矩阵A的秩r(A)=2,则对于任意常数k,k1,k2,方程组的通解可表为( ) 9.矩阵的非零特征值为( ) A.4 B.3 C.2 D.l

10.4元二次型的秩为( ) A.4 B.3 C.2 D.l 二、填空题(本大题共10小题.每小题2分.共20分) 请在每小题的空格中填上正确答案.错填、不填均无分. 11.若i=1,2,3,则行列式=_________________。 12.设矩阵A= ,则行列式|A T A|=_______________。 13.若齐次线性方程组有非零解,则其系数行列式的值为__________________。 14.设矩阵A= ,矩阵B=A – E,则矩阵B的秩r(B)=______________。 15.向量空间的维数为_______________。 16.设向量,则向量的内积=_______________。 17.设A是4×3矩阵,若齐次线性方程组Ax=0只有零解,则矩阵A的秩r(A)=____________。 18.已知某个3元非齐次线性方程组Ax=b 的增广矩阵经初等行变换化为: ,若方程组无解,则a的取值为___________。19.设3元实二次型f ( x1 , x2 , x3 ) 的秩为3,正惯性指数为2,则此二次型的规范形式_____________。 20.设矩阵A= 为正定矩阵,则a的取值范围是_______________。三、计算题(本大题共6小题,每小题9分.共54分)

线性代数知识点归纳

线性代数复习要点 第一部分 行列式 1. 排列的逆序数 2. 行列式按行(列)展开法则 3. 行列式的性质及行列式的计算 1.行列式的计算: ① (定义法)1212121112121222() 1212()n n n n n j j j n j j nj j j j n n nn a a a a a a D a a a a a a τ= = -∑ L L L L L M M M L 1 ②(降阶法)行列式按行(列)展开定理: 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零. ③ (化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积. ④ 若A B 与都是方阵(不必同阶),则 ==()mn A O A A O A B O B O B B O A A A B B O B O *==* *=-1 ⑤ 关 于 副 对角线: (1)2 1121 21 1211 1 () n n n n n n n n n n n a O a a a a a a a O a O ---* ==-K N N 1

⑥ 范德蒙德行列式:()1 22 22 12111112 n i j n j i n n n n n x x x x x x x x x x x ≤<≤---=-∏L L L M M M L 111 ⑦ a b -型公式:1 [(1)]()n a b b b b a b b a n b a b b b a b b b b a -=+--L L L M M M O M L ⑧ (升阶法)在原行列式中增加一行一列,保持原行列式不变的方法. ⑨ (递推公式法) 对n 阶行列式n D 找出n D 与1n D -或1n D -,2n D -之间的一种关系——称为递推公式,其中 n D ,1n D -,2n D -等结构相同,再由递推公式求出n D 的方法称为递推公式法. (拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和, 使问题简化以例计算. ⑩ (数学归纳法) 2. 对于n 阶行列式A ,恒有:1 (1)n n k n k k k E A S λλ λ-=-=+-∑,其中k S 为k 阶主子式; 3. 证明 0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值. 4. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 第二部分 矩阵 1.矩阵的运算性质 2.矩阵求逆

线性代数知识点总结

线性代数知识点总结 第一章行列式 (一)要点 1、 二阶、三阶行列式 2、 全排列和逆序数,奇偶排列(可以不介绍对换及有关定理) ,n 阶行列式的定义 3、 行列式的性质 4、 n 阶行列式 ^a i j ,元素a j 的余子式和代数余子式,行列式按行(列)展开定理 5、 克莱姆法则 (二)基本要求 1 、理解n 阶行列式的定义 2、掌握n 阶行列式的性质 3 、会用定义判定行列式中项的符号 4、理解和掌握行列式按行(列)展开的计算方法,即 a 1i A Ij ' a 2i A 2 j ' a ni A nj ^ 5、会用行列式的性质简化行列式的计算,并掌握几个基本方法: 归化为上三角或下三角行列式, 各行(列)元素之和等于同一个常数的行列式, 利用展开式计算 6、 掌握应用克莱姆法则的条件及结论 会用克莱姆法则解低阶的线性方程组 7、 了解n 个方程n 个未知量的齐次线性方程组有非零解的充要条件 第二章矩阵 (一)要点 1、 矩阵的概念 m n 矩阵A =(a j )mn 是一个矩阵表。当 m =n 时,称A 为n 阶矩阵,此时由 A 的 元素按原来排列的形式构成的 n 阶行列式,称为矩阵 A 的行列式,记为 A . 注:矩阵和行列式是两个完全不同的两个概念。 2、 几种特殊的矩阵:对角阵;数量阵;单位阵;三角形矩阵;对称矩阵 a i 1A j 1 ■ a i2A j 2 ? a in A jn = 〔 D '

3、矩阵的运算;矩阵的加减法;数与矩阵的乘法;矩阵的转置;矩阵的乘法 (1矩阵的乘法不满足交换律和消去律,两个非零矩阵相乘可能是零矩阵。如果两矩阵A与B相乘,有AB = BA ,则称矩阵A与B可换。注:矩阵乘积不一定符合交换 (2)方阵的幕:对于n阶矩阵A及自然数k, A k=A A A , 1 k个 规定A° = I ,其中I为单位阵. (3) 设多项式函数(J^a^ k?a1?k^l Z-心律??a k,A为方阵,矩阵A的 多项式(A) = a0A k?a1A k' …-?-a k jA ■ a k I ,其中I 为单位阵。 (4)n阶矩阵A和B ,贝U AB=IAB . (5)n 阶矩阵A ,则∣∕Λ =λn A 4、分块矩阵及其运算 5、逆矩阵:可逆矩阵(若矩阵A可逆,则其逆矩阵是唯一的);矩阵A的伴随矩阵记 * 为A , AA* = A*A = AE 矩阵可逆的充要条件;逆矩阵的性质。 6、矩阵的初等变换:初等变换与初等矩阵;初等变换和初等矩阵的关系;矩阵在等价 意义下的标准形;矩阵A可逆的又一充分必要条件:A可以表示成一些初等矩阵的乘积; 用初等变换求逆矩阵。 7、矩阵的秩:矩阵的k阶子式;矩阵秩的概念;用初等变换求矩阵的秩 8、矩阵的等价 (二)要求 1、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等 2、了解几种特殊的矩阵及其性质 3、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质 4、理解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当A 可逆时,会用伴随矩阵求逆矩阵 5、了解分块矩阵及其运算的方法 (1)在对矩阵的分法符合分块矩阵运算规则的条件下,其分块矩阵的运算在形式上与不分块矩阵的运算是一致的。 (2)特殊分法的分块矩阵的乘法,例如A m n, B nl,将矩

(精选)线性代数-考研笔记

第一章行列式 性质1 行列式与它的转置行列式相等。 性质2互换行列式的两行(列),行列式变号。 推论如果行列式的两行(列)完全相同,则此行列式等于零。 性质3行列式的某一行(列)中所以的元素都乘以同一个数,等于用数乘以此行列式。第行(或者列)乘以,记作(或)。 推论行列式的某一行(列)的所有元素的公因子可以提到行列式记号的外面。第行(或者列)提出公因子,记作(或)。 性质4行列式中如果两行(列)元素成比例,此行列式等于零。 性质5若行列式的某一列(行)的元素都是两数之和,例如第列的元素都是两数之和,则等于下列两个行列式之和: = 性质 6 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。 定义在阶行列式,把元所在的第行和第列划去后,留下来的阶行列式叫做元的余子式,记作;记,叫做元的代数余子式。 引理一个阶行列式,如果其中第行所有元素除元外都为零,那么这行列式等于与它的代数余子式的乘积,即 定理3 (行列式按行按列展开法则) 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和,即 或 推论行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零。 范德蒙德行列式 克拉默法则

如果线性方程组①的系数行列式不等于零,即 , 那么,方程组①有唯一解其中是把系数行列式矩阵中第列的元素 用方程组右端的常数项代替后所得到的阶行列式,即 定理4 如果非齐次线性方程组的系数行列式,则非齐次线性方程组一定有解,且解是唯一的。 定理如果非齐次线性方程组无解或有两个不同的解,则它的系数行列式必为零。 定理5 如果齐次线性方程组的系数行列式 定理如果,则它的系数行列式必为零 第二章矩阵级其运算 定义1 由个数排成的行列的数表,称为行列矩阵; 以数为元的矩阵可简记作或矩阵也记作。 行数和列数都等于的矩阵称为阶矩阵或阶方阵。阶矩阵也记作。 特殊定义: 两个矩阵的行数相等,列数也相等时,就称它们是同型矩阵同型矩阵和的每一个元素都相等,就称两个矩阵相等,;元素都是零的矩阵称为零矩阵,记作;注意不同型的零矩阵是不同的。 特殊矩阵 阶单位矩阵,简称单位阵。特征:主对角线上的元素为,其他元素为; 对角矩阵,特征:不在对角线上的元素都是0,记作

线性代数知识点归纳,超详细

线性代数复习要点 第一部分行列式 1. 排列的逆序数 2. 行列式按行(列)展开法则 3. 行列式的性质及行列式的计算 行列式的定义 1.行列式的计算: ①(定义法) ②(降阶法)行列式按行(列)展开定理: 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.

③(化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积. ④若都是方阵(不必同阶),则 ⑤关于副对角线: ⑥范德蒙德行列式: 证明用从第n行开始,自下而上依次的由下一行减去它上一行的倍,按第一列展开,重复上述操作即可。 ⑦型公式: ⑧(升阶法)在原行列式中增加一行一列,保持原行列式不变的方法. ⑨(递推公式法) 对阶行列式找出与或,之间的一种关系——称为递推公式,其中 ,,等结构相同,再由递推公式求出的方法称为递推公式法. (拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和,使问题简化以例计算. ⑩(数学归纳法) 2. 对于阶行列式,恒有:,其中为阶主子式;

3. 证明的方法: ①、; ②、反证法; ③、构造齐次方程组,证明其有非零解; ④、利用秩,证明; ⑤、证明0是其特征值. 4. 代数余子式和余子式的关系: 第二部分矩阵 1.矩阵的运算性质 2.矩阵求逆 3.矩阵的秩的性质 4.矩阵方程的求解 1.矩阵的定义由个数排成的行列的表称为矩阵. 记作:或 ①同型矩阵:两个矩阵的行数相等、列数也相等. ②矩阵相等: 两个矩阵同型,且对应元素相等. ③矩阵运算 a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减). b. 数与矩阵相乘:数与矩阵的乘积记作或,规定为. c. 矩阵与矩阵相乘:设, ,则, 其中 注:矩阵乘法不满足:交换律、消去律, 即公式不成立.

线性代数知识点全归纳

线性代数知识点 1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90o ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==-g ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;

山东省自学考试线性代数(经管类)

线性代数(经管类)综合试题一 (课程代码 4184) 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设D==M≠0,则D1== ( B ). A.-2M B.2M C.-6M D.6M 2.设A、B、C为同阶方阵,若由AB = AC必能推出B = C,则 A应满足 ( D ). A. A≠ O B. A = O C.|A|= 0 D. |A|≠0 3.设A,B均为n阶方阵,则( A ). A.|A+AB|=0,则|A|=0或|E+B|=0 B.(A+B)2=A2+2AB+B2 C.当AB=O时,有A=O或B=O D.(AB)-1=B-1A-1 4.二阶矩阵A,|A|=1,则A-1= ( B ). A. B. C. D. ,则下列说法正确的是( B ). A.若两向量组等价,则s = t .

B.若两向量组等价,则r()= r() C.若s = t,则两向量组等价. D.若r()=r(),则两向量组等价. 6.向量组线性相关的充分必要条件是( C ). A.中至少有一个零向量 B.中至少有两个向量对应分量成比例 C.中至少有一个向量可由其余向量线性表示 D.可由线性表示 7.设向量组有两个极大无关组与 ,则下列成立的是( C ). A. r与s未必相等 B. r + s = m C. r = s D. r + s > m 8.对方程组Ax = b与其导出组Ax = o,下列命题正确的是( D ). A. Ax = o有解时,Ax = b必有解. B. Ax = o有无穷多解时,Ax = b有无穷多解. C. Ax = b无解时,Ax = o也无解. D. Ax = b有惟一解时,Ax = o只有零解. 9.设方程组有非零解,则k = ( D ). A. 2 B. 3 C. -1 D. 1 10.n阶对称矩阵A正定的充分必要条件是( D ).

线性代数笔记

线性代数笔记 第一章行列式 (1) 第二章矩阵 (2) 第三章向量空间 (8) 第四章线性方程组 (11) 第五章特征值与特征向量...................................... 错误!未定义书签。第一章行列式 1.3。1 行列式的性质 给定行列式,将它的行列互换所得的新行列式称为D的转置行列式,记为或。 性质1 转置的行列式与原行列式相等。即 (这个性质表明:行列式对行成立的性质,对列也成立,反之亦然) 性质2 用数k乘行列式D的某一行(列)的每个元素所得的新行列式等于kD。 推论1 若行列式中某一行(列)的元素有公因数,则可将公因数提到行列式之外。 推论2 若行列式中某一行(列)的元素全为零,则行列式的值为0。 可以证明:任意一个奇数阶反对称行列式必为零。 性质3行列式的两行(列)互换,行列式的值改变符号。 以二阶为例 推论3 若行列式某两行(列),完全相同,则行列式的值为零. 性质4 若行列式某两行(列)的对应元素成比例,则行列式的值为零。 性质5 若行列式中某一行(列)元素可分解为两个元素的和,则行列式可分解为两个行列式的和, 注意性质中是指某一行(列)而不是每一行。 性质 6 把行列式的某一行(列)的每个元素都乘以加到另一行(列),所得的行列式的值不变。 范德蒙德行列式 例10 范德蒙行列式…… . =(x2-x1)(x3—x1)(x3—x2)

1。4 克莱姆法则 定理1.4.1 对于n阶行列式 定理1.4。2 如果n个未知数,n个方程的线性方程组的系数行列式D≠0,则方程组有惟一的解: 定理1.4。3 如果n个未知数n个方程的齐次方程组的系数行列式D≠0,则该方程组只有零解,没有非零解. 推论如果齐次方程组有非零解,则必有系数行列式D=0. 第二章矩阵 一、矩阵的运算 1、矩阵的加法 设A=(a ij)m×n,B=(b ij)m×n,则 A+B=(a ij+b ij)m×n 矩阵的加法适合下列运算规则: (1)交换律:A+B=B+A (2)结合律:(A+B)+C=A+(B+C) (3)A+0=0+A=A

线性代数知识点总结汇总

线性代数知识点总结 1 行列式 (一)行列式概念和性质 1、逆序数:所有的逆序的总数 2、行列式定义:不同行不同列元素乘积代数和 3、行列式性质:(用于化简行列式) (1)行列互换(转置),行列式的值不变 (2)两行(列)互换,行列式变号 (3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k 乘此行列式 (4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。 (5)一行(列)乘k加到另一行(列),行列式的值不变。 (6)两行成比例,行列式的值为0。 (二)重要行列式 4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积 5、副对角线行列式的值等于副对角线元素的乘积乘 6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则 7、n阶(n≥2)范德蒙德行列式

数学归纳法证明 ★8、对角线的元素为a,其余元素为b的行列式的值: (三)按行(列)展开 9、按行展开定理: (1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0 (四)行列式公式 10、行列式七大公式: (1)|kA|=k n|A| (2)|AB|=|A|·|B| (3)|A T|=|A| (4)|A-1|=|A|-1 (5)|A*|=|A|n-1 (6)若A的特征值λ1、λ2、……λn,则 (7)若A与B相似,则|A|=|B| (五)克莱姆法则 11、克莱姆法则: (1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解

(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0 (3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。 2 矩阵 (一)矩阵的运算 1、矩阵乘法注意事项: (1)矩阵乘法要求前列后行一致; (2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律) (3)AB=O不能推出A=O或B=O。 2、转置的性质(5条) (1)(A+B)T=A T+B T (2)(kA)T=kA T (3)(AB)T=B T A T (4)|A|T=|A| (5)(A T)T=A (二)矩阵的逆 3、逆的定义: AB=E或BA=E成立,称A可逆,B是A的逆矩阵,记为B=A-1 注:A可逆的充要条件是|A|≠0 4、逆的性质:(5条) (1)(kA)-1=1/k·A-1 (k≠0) (2)(AB)-1=B-1·A-1 (3)|A-1|=|A|-1 (4)(A T)-1=(A-1)T (5)(A-1)-1=A

《线性代数(经管类)》综合测验题库

《线性代数(经管类)》综合测验题库 一、单项选择题 1.下列条件不能保证n阶实对称阵A为正定的是() A.A-1正定 B.A没有负的特征值 C.A的正惯性指数等于n D.A合同于单位阵 2.二次型f(x1,x2,x3)= x12+ x22+x32+2x1x2+2x1x3+2x2x3,下列说法正确的是() A.是正定的 B.其矩阵可逆 C.其秩为1 D.其秩为2 3.设f=X T AX,g=X T BX是两个n元正定二次型,则()未必是正定二次型。 A.X T(A+B)X B.X T A-1X C.X T B-1X D.X T ABX 4.设A,B为正定阵,则() A.AB,A+B都正定 B.AB正定,A+B非正定 C.AB非正定,A+B正定 D.AB不一定正定,A+B正定 5.二次型f=x T Ax经过满秩线性变换x=Py可化为二次型y T By,则矩阵A与B() A.一定合同 B.一定相似 C.即相似又合同 D.即不相似也不合同

— 6.实对称矩阵A的秩等于r,又它有t个正特征值,则它的符号差为() A.r B.t-r C.2t-r D.r-t 7.设 8.f(x1,x2,x3)= x12-2x1x2+4x32对应的矩阵是() 9.设A是n阶矩阵,C是n阶正交阵,且B=C T AC,则下述结论()不成立。 A.A与B相似 B.A与B等价 C.A与B有相同的特征值

— D.A与B有相同的特征向量 10.下列命题错误的是() A.属于不同特征值的特征向量必线性无关 B.属于同一特征值的特征向量必线性相关 C.相似矩阵必有相同的特征值 D.特征值相同的矩阵未必相似 11.下列矩阵必相似于对角矩阵的是() 12.已知矩阵有一个特征值为0,则() A.x=2.5 B.x=1 C.x=-2.5 D.x=0 13.已知3阶矩阵A的特征值为1,2,3,则|A-4E|=() A.2 B.-6 C.6 D.24 14.已知f(x)=x2+x+1方阵A的特征值1,0,-1,则f(A)的特征值为() A.3,1,1 B.2,-1,-2 C.3,1,-1

最全线性代数公式笔记

线性代数公式必记 1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90 ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解;

2018年4月线性代数(经管类)试题

2018年4月高等教育自学考试全国统一命题考试 04184线性代数(经管类)试卷 一、单项选择题(本大题共5小题,每小题2分,共10分) 1. 设2阶行列式 121 21a a b b =-,则12 1212 12 a a a a b b b b +-=+- A. 2- B. 1- C. 1 D.2 2. 设A 为3阶矩阵,且||=0A a ≠,将A 按列分块为123(,,)A a a a = ,若矩阵122331(,,),B a a a a a a =+++则||=B A. 0 B. a C. 2a D.3a 3. 设向量组123,,a a a 线性无关,则下列向量组中线性无关的是 A. 123,2,3a a a C. 122331,,a a a a a a --- B. 1123,2,a a a a - D.1223123,,2a a a a a a a +-+- 4. 设矩阵300 00 00000120 02 2B ?? ? ? = ?- ??? ,若矩阵,A B 相似,则矩阵3E A -的秩为 A. 1 B. 2 C. 3 D.4 5. 设矩阵120240001A -?? ?=- ? ??? ,则二次型T x Ax 的规范型为 A. 222123z z z ++ B. 222123z z z +- C. 2212z z - D.2212z z + 二、填空题:本题共10小题,每小题2分,共20分。 6. 设3阶行列式11 1213 21 222312 2 2 a a a a a a = ,若元素ij a 的代数余子式为ij A ,则

313233++=A A A . 7. 已知矩阵(1,2,1),(2,1,1)A B =-=- ,且,T C A B = 则C = . 8. 设A 为3阶矩阵,且1||=3A -,则行列式1 * 132A A -??+= ??? . 9.2016 2017 001123010010456100=100789001?? ???? ? ??? ? ??? ? ????? ???? . 10. 设 向 量 (1 ,T β= 可由向量组 123(1,1,)(1,,1)(,1,1)T T T a a a ααα===,,线性表示,且表示法唯一,则 a 的取值应满足 . 11. 设向量组123(1,2,1)(0,4,5)(2,0,)T T T t ααα=-=-=,,的秩为2,则 t = . 12. 已知12(1,0,1)(3,1,5)T T ηη=-=-,是3元非齐次线性方程组Ax b = 的两个解,则对应齐次线性方程组Ax b =有一个非零解=ξ . 13.设2=3 λ- 为n 阶矩阵A 的一个特征值,则矩阵2 23E A - 必有一个特征值为 . 14.设2阶实对称阵A 的特征值为2,2- ,则2 A = . 15.设二次型22111211(,)4f x x x x tx x =+- 正定,则实数t 的取值范围是 . 三、计算题:本大题共有7小题,每小题9分,共63分。 16. 计算4阶行列式23001230 01230012 D --=-- .

相关文档
相关文档 最新文档