文档库 最新最全的文档下载
当前位置:文档库 › 乳糖操纵子调控机制论文

乳糖操纵子调控机制论文

乳糖操纵子调控机制论文
乳糖操纵子调控机制论文

乳糖操纵子

【摘要】本文主要从操纵子的概念着手,简要介绍关于操纵子的基本结构,结构基因群、启动子、操纵基因、调控基因和终止子的结构和基本功能,并介绍了乳糖对乳糖操纵子的诱导调控机制。

【关键词】乳糖操纵子负性调控

操纵子学说是关于原核基因结构及其表达调控的学说,由法国巴斯德研究所著名科学家的Monod和Jacob在1961年首先提出[1]。他们以对乳糖操纵子的研究,通过大量的试验及分析建立了现在已经被人们广泛接受的乳糖操纵子控制模型[2]。后来人们在大肠杆菌中又陆续发现了色氨酸操纵子、组氨酸操纵子、半乳糖操纵子、阿伯糖操纵子等多种操纵子,从而不断的充实和完善了被誉为生命第三原理的基因调控理论,在这个理论中提出的操纵子概念也被人们普遍接受和证实。

1.乳糖操纵子模型

主要内容有:(1)Z、Y、A基因的产物由同一条多顺反子的mRNA分子所编码;(2)该mRNA分子的启动区(P)[3]位于阻遏基因(I)与操纵区(O)之间,不能单独起始半乳糖苷酶和透过酶基因的高效表达;(3)操纵区是DNA上的一小段序列(仅为26bp),是阻遏物的结合位点;(4)当阻遏物与操纵区相结合时,lac mRNA的转录起始受到抑制;(5)诱导物通过与阻遏物结合,改变它的三维构象,使之不能与操纵区相结合,从而激发lac mRNA 的合成。有人就是说,有阻遏物存在时,操纵区没有被阻遏物占据,所以启动子能够顺利起始mRAN的转录[4]。

2.乳糖操纵子的基本结构

2.1结构基因群

操纵子中被调控的编码蛋白质的基因称为结构基因。一个操纵子中含有1个以上的结构基因,多的可达十几个,各结构基因头尾衔接、串连排列,组成结构基因群。

乳糖操纵子含有Z、Y和A共3个结构基因[5]。Z基因长3510bp,编码含1170个氨基酸、分子量为135000的多肽,以四聚体形式组成有活性的β-半乳糖苷酶,催化乳糖转变为别乳糖(也称异乳糖),再分解为半乳糖[6]和葡萄糖。Y基因长780bp,编码有260个氨基酸、分子量为30000的半乳糖透过酶,促使环境中的乳糖进人细菌。A基因长825bp,编码有275个氨基酸、分子量为32000的转乙酞基酶,二聚体活性形式催化半乳糖的乙酞化。基因Z 的5’侧具有大肠杆菌核糖体识别结合位点特征的Shan-Dagano(SD)序列[7],因而当乳糖操纵子开放时,核糖体能结合在转录产生的mRNA上。由于Z、Y和A三个基因头尾相接,上一个基因的翻译终止码靠近下一个基因的翻译起始码,因而同一个核糖体能沿此转录生成的多顺反子mRNA移动,在翻译合成了上一个基因编码的蛋白质后、不从mRNA上脱落下来而继续沿mRNA移动合成下一个基因编码的蛋白质,依次合成这个基因群所编码的蛋白质。

2.2启动子[8]

启动子是指能被聚合酶识别、结合并启动基因转录的一段DNA序列。它含有RNA聚合酶特异性结合和转录起始所需的保守序列位点,启动子本身不被转录。操纵子至少有个启动子,一般在第二个结构基因5‘侧上游,控制整个结构基因一群的转录。

虽然不同的启动子序列有所不同,但比较已经研究过的上百种原核生物的启动子的序列,发现有一些共同的规律,它们一般长40-60bp,含A-T碱基对较多,某些段落是很相似的,这些相似的保守性段落称为共有性序列。

启动子一般可分为识别、结合和起始三个区段。转录起始第一个碱基(通常标记+1)位置为最常见的是A。在-10bp附近有TA TAA T一组共有序列,因为这段共有序列是首先发现的,称为Pribnow框[9]。在-35bp处又有TTGACA一组共有序列。不同的启动子序列不同,与聚

合酶的亲和力不同,启动转录的频率高低不同,即不同的启动子起动基因转录的强弱不同,例如PL、PR、PT7属强启动子,而PLac则是较弱的启动子。

2.3操纵基因

操纵基因[10]是指能被调控蛋白特异性结合的一段DNA序列。操纵基因常与启动子邻近或与启动子序列重叠,当调控蛋白结合在操纵基因序列上,会影响其下游基因转录的强弱。乳糖操纵子的操纵基因序列位于启动子与被调控的基因之间,部分序列与启动子序列重叠。研究发现这段双链DNA具有回文样的对称性一级结构,能形成十字形的茎环构造。不少操纵子都具有类似的对称性序列,可能与特定蛋白质的结合相关。

2.4调控基因

调控基因[11]是编码能与操纵序列结合的调控蛋白的基因。与操纵子结合后能减弱或阻止其调控基因转录的调控蛋白称为阻遏蛋白,其介导的调控方式称为负性调控与操纵子结合后能增强或启动其调控基因转录的调控蛋白称为激活蛋白,所介导的调控方式称为正性调控。

某些特定的物质能与调控蛋白结合,使调控蛋白的空间构象发生变化,从而改变其对基因转录的影响,这些特定物质称为效应物,其中凡能引起诱导发生的分子称为诱导剂,能导致阻遏发生的分子称为阻遏剂或铺助阻遏。

乳糖操纵子中,调控基因Rlac位于Plac邻近,有其自身的启动子和终止子,转录方向和结构基因群的转录方向一致,编码产生由347个氨基酸组成的调控蛋白R。在环境没有乳糖存在的情况下,R形成分子量为152 000的活性四聚体,能特异性与操纵基因O紧密结合,从而阻止利用乳糖的酶类基因的转录,所以R是乳糖操纵子的阻遏蛋白。当环境中有足够的乳糖时,乳糖受β一半乳糖晋酶作用转变为异乳糖,异乳糖与R结合,使R的空间构象变化,四聚体解聚成单体,失去与操纵基因特异性紧密结合的能力,从而解除了阻遏蛋白的作用,使其后的基因得以转录合成利用乳糖的酶类。在这过程中乳糖实际起作用的是别乳糖就是诱导剂,与结合,起到去阻遏作用,诱导了利用乳糖的酶类基因的转录。许多调控蛋白都是变构蛋白,通过与上述类似的方式与效应物结合改变空间构象,从而改变活性,起到调节基因转录表达的作用2.5终止子

终止子[12]是给予聚合酶转录终止信号的序列,它是基因DNA分子中决定转录产物3’-OH端、酶分子停止聚合,释放出已合成RNA分子的位点。在一个操纵子中至少在结构基因群最后一个基因的后面有一个终止子。

原核生物的终止子结构分为两种主要类型:①内在终止子,是一类不依赖rho因子的终止子(简单终止子);②依赖rho因子的终止子。

不同的终止子的作用也有强弱之分,有的终止子几乎能完全停止转录,有的则只是部分终止转录,一部分聚合酶能越过这类终止序列继续沿移动并转录。如果一串结构基因群中间有这种弱终止子的存在,则前后转录产物的量会有所不同,这也是终止子调节基因群中不同基因表达产物比例的一种方式。

以上5种元件是每一个操纵子必定含有的其中启动子、操纵子位于紧邻结构基因群的上游,终止子在结构基因群之后,它们都在结构基因的附近,只能对同一条链上DNA的基因表达起调控作用,这种作用在遗传学实验上称为顺式作用,启动子、操纵子和终止子就属于顺式作用元件[13]。调控基因可以在结构基因群附近,也可以远离结构基因,它是通过其基因产物—调控蛋白来发挥作用的,因而调控基因不仅能对同一条链上DNA的结构基因起表达调控作用,而且能对不在一条链上DNA的结构基因起作用,在遗传学实验上称为反式作用,调控基因就属于反式作用元件[14],其编码产生的调控蛋白称为反式调控因子。由此,基因表达调控机理的关键在蛋白质与核酸的相互作用上。

3乳糖操纵子的表达调控

3.1乳糖的诱导作用

乳糖作为原核细胞的常用碳源,是乳糖操纵子控制的细菌自身系列酶的天然底物,对乳糖操纵子具有天然的诱导作用[15-16]。当细菌在有葡萄糖的培养基中生长时,不能代谢乳糖,因为缺少乳糖代谢的酶。当生长在没有葡萄糖只有乳糖的培养基中时,代谢乳糖的每两从几个分子迅速增加近千倍即细菌在短时间内合成了能够利用乳糖的一系列酶,具备了利用乳糖作为碳源的能力,在这种培养基上生存下来。这就是乳糖对操纵子的诱导作用。

细菌获得的这一能力的原因是在乳糖的诱导作用下开启了乳糖操纵子,表达了与代谢乳糖相关的一系列酶所致。

3.2乳糖操纵子的调控机制

当培养基中没有乳糖时,存在于操纵子上游的调节基因编码表达的阻遏蛋白结合到操纵子中的操纵基因上,阻止了结构基因的的表达lac基因被调节基因编码表达的阻遏蛋白所阻遏,此时,在细胞中只有几个β-半乳糖苷酶分子。但将大肠杆菌转到乳糖培养基中时,由于诱导物分子结合在阻遏蛋白的特异部位,引起阻遏蛋白构象变化,不能结合到操纵基因上,是RNA聚合酶能够正常转录存在于从操纵子的结构基因,及操纵子被诱导表达,β-半乳糖苷酶分子数量迅速增加,在这个系统中的诱导物分子不是乳糖本身,而是乳糖的同分异构体—异乳糖,因为乳糖进入大肠杆菌细胞后被转化成了异乳糖。

由于乳糖作为细胞代谢的能源,其浓度是变化的,诱导条件不易掌握[17],其本身作为一种碳源可以被菌体代谢利用,因而对于菌体的生理及代谢也有一定程度的影响。在实验室中为了准确的得到结果,常常用能被酶识别但不能被分解的半乳糖苷化合物作为诱导剂,如异丙基-β-D-硫代半乳糖苷(简称IPTG)。IPTG是一种非常高效的乳糖启动子诱导剂,但由于其具有潜在的毒性[18],对菌体生长具有一定的抑制作用,并且价格昂贵,因而不适宜在发酵罐中进行基因工程产品的规模化生产。IPTG作为诱导剂,其诱导的机制不同于乳糖。IPTG可以直接进入大肠杆菌细胞内部而发挥诱导作用,且它是一种非代谢性的诱导物,不会被菌体所消耗,只需极少量的存在就能稳定地诱导乳糖启动子的转录;乳糖却需要借助于乳糖透过酶[19]的作用进入细胞,然后经过β-半乳糖苷酶的作用转化为异乳糖(Allolactose)才能起到诱导剂的作用[20-21]。

综上所述,乳糖操纵子属于可诱导操纵子,这类操纵子通常是关闭的,当受效应物作用后诱导转录起始。这类操纵子使细菌能适应环境的变化,最有效地利用环境能提供的能源物质。

[1]孙乃恩,孙东旭,朱德旭等,《分子遗传学》,南京大学出版社,1990:286

[2]Jacob, F. and Monod,J.”Genetic Regulatory Mechanisms in the Synthesi of Proteins.” J.Mol. Biol.1961,3:318~356

[3]刘祖洞,江绍慧1遗传学[M]1北京:高等教育出版社,1994:270~2711

[4]朱玉贤,李毅,《现代分子生物学》(第二版),高等教育出版社,2002.7,2:201~202

[5]张玉静,《分子遗传学》,北京科学出版社,2004.4:231~249

[6] 韩贻仁,《分子细胞生物学》,北京科学出版社,2001.3.447~452

[7]韦弗(美),《分子生物学》(影印版),北京科学出版社,2008.8.175~190

[8] 朱乾浩,《转座子在植物基因分离中的应用研究进展》,《生物工程进展》,1996,V ol.16,NO.2

[9]赵亚华,《基础分子生物学教程》,科学出版社,2006:220~221

[10] 李汝祺,《中国大百科全书·生物学分册》北京:中国大百科全书出版社,1983:791

[11] 广川秀夫(日),胡宝华译,《生物工程名词解释》,化学工业出版社,1991:61

[12]褚启人,《遗传的结构与功能》,上海科学技术出版社,1980:317~319

[13]张飞雄主编,《普通遗传学》,科学出版社,2004:197~198.

[14]张飞雄主编,《普通遗传学》,科学出版社,2004:197~198.

[15]郝淑美,王宣军,张秀霞,等.《用乳糖作为诱导剂进行重组蛋白的表达》,中国生物制品学杂志,2005,18(5):409~411.

[16]汪建华,熊凌霜,吴军,等人.《重组Shiga2EGF工程菌发酵工艺研究》,中国生化药物杂志,2001,22(6):292~294.

[17]Panda A K,Ghorpade A,Mukhopadhyay A,et al.High cell density fermentation of recombinant Vibrio cholerae for the production of B subunit of Eshcherichia coli enterotoxin[J].Biotechnol Bioengineer,1995,45:245~250.

[18]金奇.医学分子病毒学.北京:科学出版社,2001.

[19]陈亮,任随周,许玫英,孙国萍等人,《乳糖替代IPTG诱导脱色酶TpmD基因

在大肠杆菌中的高效表达》,微生物学通报APR 20,2009,36(4):551~556

[20]Jobe A,Bourgeois https://www.wendangku.net/doc/e75704512.html,c repressor-operator interaction:Ⅵ.The natural inducer of the lac operon.J Mol Biol,1972,69(3):397~404.

[21]Muller-Hill B,Rickenberg HV,Wallenfels K.Specificity of the induction of the enzymes of the lac operon in Es-cherichia coli.J Mol Biol,1964,10:303~318.

生物化学试题及答案13

生物化学试题及答案(13-1) 医学试题精选 20**-01-01 22:05:03 阅读756 评论0 字号:大中小订阅 第十三章基因表达调控 [測试题] 一、名词解释 1.基因表达(gene expression) 2.管家基因(housekeeping gene) 3.反式作用因子(trans-acting element) 4.操纵子(operon) 5.启动子(promoter) 6.增强子(enhancer) 7.沉默子(silencer) 8.锌指结构(zinc finger) 9.RNA干涉(RNA interference,RNAi) 10.CpG岛 11.反转重复序列(inverted repeat) 12.基本转录因子(general transcription factors) 13.特异转录因子(special transcription factors) 14.基因表达诱导(gene expression induction) 15.基因表达阻遏(gene expression repression) 16.共有序列(consensus sequence ) 17.衰减子(attenuator) 18.基因组(genome) 19.DNA结合域(DNA binding domain) 20.顺式作用元件(cis-acting element) 21.基因表达的时间特异性(temporal specificity) 22.基因表达的空间特异性(spatial specificity) 23.自我控制(autogenous control) 24.反义控制(antisense control) 二、填空题 25.基因表达的时间特异性和空间特异性是由____ 、____和____相互作用决定的。 26.基因表达的方式有____和____。 27.可诱导和可阻遏基因受启动子与_相互作用的影响。 28.基因表达调控的生物学意义包括____ 、____。 29.操纵子通常由2个以上的_序列与____序列,____序列以及其他调节序列在基因组中成簇串联组成。30.真核生物基因的顺式作用元件常见的有____ 、____ 、____。 31.原核生物基因调节蛋白分为____ 、____ 、____三类。____决定____对启动序列的特异识别和结合能力;____与____序列结合,阻遏基因转录。 32.就基因转录激活而言,与其有关的要素有____ 、____ 、____ 、____。 33.乳糖操纵子的调节区是由____ 、____ 、____构成的。 34.反义RNA对翻译的调节作用是通过与 ____ 杂交阻断30S小亚基对____的识别及与____序列的结合。35.转录调节因子按功能特性分为____ 、____两类。 36.所有转录调节因子至少包括____ 、____两个不同的结构域。

描述乳糖操纵子的作用机理

描述乳糖操纵子的作用机理? 1.针对大肠杆菌利用乳糖的适应现象,法国的Jacob和Monod等人做了一系列遗传学和生化学研究实验,于1961年提出乳糖操纵元(lac operon)学说,如图19-3所示。图19-3中z、a和b型是大肠杆菌编码利用乳糖所需酶类的基因,p是转录z、a、b所需要的启动子,调控基因i编码合成调控蛋白R,R能与o结合而阻碍从p开始的基因转录,所以o就是调节基因开放的操纵序列,乳糖能改变R结构使其不能与o结合,因而乳糖浓度增高时基因就开放,转录合成所编码的酶类,这样大肠杆菌就能适应外界乳糖供应的变化而改变利用乳糖的状况,这个模型是人们在科学实验的基础上第一次开始认识基因表达调控的分子机理。 2.操纵子(operator)是指能被调控蛋白特异性结合的一段DNA序列,常与启动子邻近或与启动子序列重叠,当调控蛋白结合在操纵子序列上,会影响其下游基因转录的强弱。以前许多书中将操纵子称为操纵基因(operator gene)。但现在基因定义是为蛋白质编码的核酸序列,而操纵序列并不是编码蛋白质的基因,却是起着调控基因表达强弱的作用,正如启动序列不叫启动基因而称为启动子一样,操纵序列就可称为操纵子。以前将operon译为操纵子则可改译为操纵元,即基因表达操纵的单元之意。 举乳糖操纵元中的操纵子为例,如图19-5所示,其操纵子(o)序列位于启动子(p)与被调控的基因之间,部分序列与启动子序列重叠。仔细分析该操纵子序列,可见这段双链DNA具有回文(palindrome)样的对称性一级结构,能形成十字形的茎环(stem loop)构造。不少操纵子都具有类似的对称性序列,可能与特定蛋白质的结合相关。 阻遏蛋白与操纵子结合,就妨碍了RNA聚合酶与启动子的结合及其后β-半乳糖苷酶等基因的转录起始,从而阻遏了这群基因的表达。最早只把与阻遏蛋白结合、起阻遏作用的序列

13生物化学习题与解析--基因表达调控

基因表达调控 一、选择题 (一) A 型选择题 1 .基因表达调控的最基本环节是 A .染色质活化 B .基因转录起始 C .转录后的加工 D .翻译 E .翻译后的加工 2 .将大肠杆菌的碳源由葡萄糖转变为乳糖时,细菌细胞内不发生 A .乳糖→ 半乳糖 B .cAMP 浓度升高 C .半乳糖与阻遏蛋白结合 D .RNA 聚合酶与启动序列结合 E .阻遏蛋白与操纵序列结合 3 .增强子的特点是 A .增强子单独存在可以启动转录 B .增强子的方向对其发挥功能有较大的影响 C .增强子不能远离转录起始点 D .增强子增加启动子的转录活性 E .增强子不能位于启动子内 4 .下列那个不属于顺式作用元件 A .UAS B .TATA 盒 C .CAAT 盒 D .Pribnow 盒 E .GC 盒 5 .关于铁反应元件(IRE )错误的是 A .位于运铁蛋白受体(TfR) 的mRNA 上 B .IRE 构成重复序列 C .铁浓度高时IRE 促进TfR mRNA 降解 D .每个IR E 可形成柄环节构 E .IRE 结合蛋白与IRE 结合促进TfR mRNA 降解 6 .启动子是指 A .DNA 分子中能转录的序列 B .转录启动时RNA 聚合酶识别与结合的DNA 序列 C .与阻遏蛋白结合的DNA 序列 D .含有转录终止信号的DNA 序列 E .与反式作用因子结合的RNA 序列 7 .关于管家基因叙述错误的是 A .在同种生物所有个体的全生命过程中几乎所有组织细胞都表达 B .在同种生物所有个体的几乎所有细胞中持续表达 C .在同种生物几乎所有个体中持续表达 D .在同种生物所有个体中持续表达、表达量一成不变 E .在同种生物所有个体的各个生长阶段持续表达 8 .转录调节因子是 A .大肠杆菌的操纵子 B .mRNA 的特殊序列 C .一类特殊的蛋白质 D .成群的操纵子组成的凋控网络 E .产生阻遏蛋白的调节基因 9 .对大多数基因来说,CpG 序列高度甲基化 A .抑制基因转录 B .促进基因转录 C .与基因转录无关 D .对基因转录影响不大 E .既可抑制也可促进基因转录 10 .HIV 的Tat 蛋白的功能是 A .促进RNA pol Ⅱ与DNA 结合 B .提高转录的频率

福医大生化生理

【(福医大)生理&生化期末试题汇编(via:zhangyu)】 10级 3种酶的作用特点及结构特点分别是限制酶,LPL,端粒酶, RNA的三种结构特点及功能, 论述是DNA复制的基本特点, 糖酵解和有氧氧化关于作用场所,关键酶,产生的能量,生理意义以及产物的比较 10生化 名解: DNA变性,酶的特异性,遗传密码,抑癌基因,氧化磷酸化,不对称转录 问答: 1. 蛋白质二三级结构αβ特征 2. DNA复制特点 3. 脂肪动员及激素调节 4. mRNA结构特点及功能 5. 遗传密码的定义和特点 6. 乳糖操纵子阻遏蛋白的负性调节 7. 胰高血糖素升高血糖通过G蛋白信号转导途径 09影生化 英译汉:变性生物氧化启动子酶原 名解:同工酶顺式作用元件密码子 DNA变性蛋白质三级结构糖酵解 脂肪动员 大题:1 DNA复制基本规律 (考的概率一直很高)

2 血氨来源及在血液中存在形式(P190) 3 乳糖操纵子概念作用(几乎年年考) 4 两条氧化呼吸链(P166那两条) 5 ρ因子终止转录(P273) 6 肾上腺素调节血糖(细胞信号转导+糖代谢调节,一般不是肾上腺素就是胰高血糖素,概率很高) 09影生理 名解:静息电位小肠分节运动牵涉痛瞳孔对光反射红细胞沉降率 射血分数呼吸运动允许作用食物特殊动力效应渗透性利尿 大题:1 钠泵名解加功能 2 心肌兴奋性变化 3 最重要消化液(胰液),为什么 4 睾酮作用 5 大失血如何引起醛固酮分泌,意义 10级影像生理题目 名解心输出量、静息电位、渗透脆性、微音器电位、特异性投射系统、下丘脑调节肽、肺泡通气量、胃肠激素、呼吸商、水利尿 问答 1 动脉血压的形成及其影响因素 2局部电位及其特点 3牵张反射?分类、生理意义、机制 4激素传递信息的主要方式 5 波尔效应?生理意义 6肾小球率过滤的影响因素 另附08届打听到一题:感受器一般生理特性

操纵子简介

操纵组(英语:Operon)又称操纵子或操纵元,是一组关键的核苷酸序列,包括了一个操纵基因(Operator),一个普通的启动子,及一个或以上的结构基因被用作生产信使RNA(mRNA)的基元。操纵子主要在原核生物及线虫动物门出现。它们是由弗朗索瓦·雅各布及雅克·莫诺于1961年所发现。 操纵子是与调节子及刺激子有关:操纵子包含了一组受操纵基因调节的基因,调节子包含了一组受单一调节蛋白质的基因,而刺激子则包含一组受单一细胞调节的基因。 作为转录的基元 操纵子包含一个或以上的结构基因,这个结构基因会被转录成为一个多基因性的mRNA。一个单一的mRNA分子会为多于一个蛋白质编码。在结构基因上游的是启动子序列,能给核糖核酸聚合酶(RNA聚合酶)提供结合位点及引发转录。在启动子附近的是一组DNA称为操纵基因。操纵子亦会包含调控基因,如阻遏基因能为调控蛋白质编码,使之与操纵基因结合及阻止转录。调控基因未必是操纵子的一部份,但是位于基因组的某一处。阻遏基因会到达操纵基因阻碍结构基因的转录。原核生物的一个转录区段可视为一个转录单位,也称作操纵子。 启动子 主条目:启动子 一个启动子是一组DNA序列能使一个基因进行转录。启动子是由RNA聚合酶所确认,并且引发转录。在RNA的合成中,启动子是一种方法区分哪一个基因用作制造mRNA,及进而控制细胞制造哪一种蛋白质。 操纵基因 操纵基因是DNA的一节能调控与操纵子连结的结构基因的活动,这种调控是透过独特阻遏基因或活跃基因的相互作用。这是一个调控过程将基因“关掉”或“开启”。 基因调节 控制操纵子基因是属于基因调节的一种,能使生物调控不同基因对环境条件的表现。操纵子调节可以是负向或正向的。负向调节涉及与阻遏基因与操纵基因的结合,以阻止转录。 在负向可诱导操纵子中,一个调节的阻遏蛋白质一般会与操纵基因结合,并阻止操纵子中基因的转录。若存在着一个诱导物分子,它会与阻遏基因结合,并改变它的构造,使它不能与操纵基因结

生化模拟题

一、单项选择题 1.维持蛋白质二级结构的主要化学键是: A.盐键B.疏水键C.肽键D.氢键E.二硫键 2.下列哪种碱基只存在于RNA而不存在于DNA: A.尿嘧啶 B.腺嘌呤 C.胞嘧啶 D.鸟嘌呤 E.胸腺嘧啶 3.磺胺类药物的类似物是: A.四氢叶酸 B.二氢叶酸 C.对氨基苯甲酸 D.叶酸 E.嘧啶 4.酶与一般催化剂的不同点,在于酶具有: A.酶可改变反应平衡常数 B.极高催化效率 C.对反应环境的高度不稳定 D.高度专一性 5.丙酮酸氧化脱羧生成乙酰辅酶A与许多维生素有关,但除外:

A.B1 B.B2 C.B6 D.PP E.泛酸 6.正常血浆脂蛋白按密度低→高顺序的排列为: A.CM→VLDL→IDL→LDL B.CM→VLDL→LDL→HDL C.VLDL→CM→LDL→HDL D.VLDL→LDL→IDL→HDL E.VLDL→LDL→HDL→CM 7. 低密度脂蛋白: A.在血浆中由前β-脂蛋白转变而来 B.是在肝脏中合成的 C.胆固醇含量最多 D.富含apoB100 8. P/O比值是指: A.每消耗一分子氧所需消耗藁 椎姆肿邮?br>B.每消耗一分子氧所需消耗无机磷的克数 C.每消耗一分子氧所需消耗无机磷的克原子数 D.每消耗一分子氧所需消耗无机磷的克分子数 E.每消耗一分子氧所需消耗无机磷的克数

9.转氨酶的辅酶组分含有: A.泛酸 B.吡哆醛(或吡哆胺) C.尼克酸 D.核黄素 E.硫胺素 10.最直接联系核苷酸合成与糖代谢的物质是: A.葡萄糖 B.6磷酸葡萄糖 C.1磷酸葡萄糖 D.1,6二磷酸葡萄糖 E.5磷酸葡萄糖 二、多项选择题 (在备选答案中有二个或二个以上是正确的,错选或未选全的均不给分) 1.芳香族氨基酸是: A.苯丙氨酸B.酪氨酸C.色氨酸D.脯氨酸 2.DNA水解后可得到下列哪些最终产物: A.磷酸 B.核糖 C.腺嘌呤、鸟嘌呤 D.胞嘧啶、尿嘧啶

乳糖操纵子

14 原核生物基因的表达调控 生物体在其生命活动中,基因的表达严格有序,任何影响到基因开启与关闭、转录和翻译等基因表达程序的调节作用,都属于对基因表达的调控。原核生物是单细胞生物,没有核膜和明显的核结构。它们与周围环境关系密切。在长期进化过程中产生了高 度的适应性和应变能力,这是它们赖以生存的保证。由此可见,原核生物的基因表达既 与自身的遗传结构相适应,又体现了它们对环境的应变能力。 原核生物基因表达调控主要发生在转录水平上,这可以最经济地在基因表达的第一 步实行最有效的控制。原核生物以操纵子为单位的调控系统即体现了这一特点。然而, 转录调控的方式多种多样,如噬菌体基因表达的时序调控;大肠杆菌色氨酸合成代谢的 衰减调控,即是转录调控的明显例证。此外,也有许多翻译水平上的调控机制,如核糖体 蛋白质合成的自身调节;反义RNA或小RNA对mRNA翻译的调控作用等等。有时, 原核生物甚至还能从DNA水平上对基因表达进行调节,如沙门氏杆菌的相变过程,就 是以基因重排的方式调控基因转录。

327  14畅1 大肠杆菌乳糖操纵子的调控机制 14畅1畅1 大肠杆菌对乳糖的利用和酶诱导 早在20世纪初期就发现,酵母细胞只有在某种底物存在时才产生相应的酶。这种由底物诱导而产生酶的效应,称为诱导作用(i nducti on )。酶诱导普遍存在于细菌中,如大肠杆菌(E 畅co li )的乳糖利用 系统便是诱导过程的典型例证。大肠杆菌的乳糖代谢需要有β半乳糖苷酶(βgalactosidase )的催化,该酶能把乳糖水解为半乳糖(gal acto se )和葡萄糖(g l u co se )(图141)。如果在大肠杆菌的培养基中所用的碳源不是乳糖,而是其他种类的糖(如葡萄糖),那么细胞内的β半乳糖苷酶的分子极少,平均只有0畅5~5个分子。可是,一旦培养基的碳源完全用乳糖取代葡萄糖,则在2~3m i n 内,细胞中就合成了大量β半乳糖苷酶分子,数量骤增,分子数可达1000~10000个。当从培养基中除去半乳糖,细菌很快就停止合成β半乳糖苷酶。显然,新合成的β半乳糖苷酶是在底物乳糖诱导下产生的。可见,乳糖是合成β半乳糖苷酶的诱导物,而β半乳糖苷酶是可诱导酶(i n duci b l e enzym e )。这个系统称为可诱导系统(i nduci b l e system )。 大肠杆菌对乳糖的分解利用,除了需要β半乳糖苷酶外,还需要半乳糖苷透性酶(gal acto si de permease )。半乳糖苷透性酶是一种膜蛋白,可协助乳糖分子穿膜进入细胞。除上述两种酶外,还产生了硫代半乳糖苷转乙酰基酶(thi ogal acto si de transacetyl ase )。 14畅1畅2 大肠杆菌乳糖操纵子的负控制 为解释上述现象,1961年法国分子生物学家F 畅Jacob 和J 畅M onod 通过对大肠杆菌乳糖代谢系统的一系列研究,根据其基因的活动和表达的调节提出了操纵子学说(operon hypo thesis )。实验证明,3种蛋白质:β半乳糖苷酶(Z )、半乳糖透性酶(Y )和硫代半乳糖苷转乙酰基酶(A )的编码基因l a cZ 、l acY 图141 乳糖操纵子的结构 (引自G riffiths 等,2005) 和l acA 依次连接在一起,形成了一个转录单位。操纵子学说主张,该转录单位的转录是从启动子 14畅1 大肠杆菌乳糖操纵子的调控机制

乳糖操纵子

一、简述乳糖操纵子的结构和诱导机制(英文)-(大题) Functional and regulatory components of the lac operon(作用) Lac R = Regulatory gene,that encodes for the lac Repressor protein that is concerned with regulating the synthesis of the structural genes in the operon. Lac R is adjacent to the Promoter site of the operon. The lac repressor is inactivated by lactose, and is active in the absence of lactose. O = Operator,specific nucleotide sequence on DNA to which an active Repressor binds. P = Promoter,specific nucleotide sequence on DNA to which RNA polymerase binds to initiate transcription. If the Repressor protein binds to the operator, RNAp is prevented from binding with the promoter and initiating transcription. Under these conditions the enzymes concerned with lactose utilization are not synthesized. Structual gene Lac Z, Y and A = Structural Genes in the lac operon. Lac Z encodes for Beta-galactosidase; Lac Y encodes the lactose permease; Lac A encodes a transacetylase.(lac = lactose),the inducer molecule. When lactose binds to the Repressor protein, the Repressor is inactivated; the operon is derepressed; the transcription of the genes for lactose utilization occurs. Response to lactose(作用机制) ①Lack of inducer: the lac repressor binds to operator and blocks all. This prevents binding RNAp to promoter subsequent transcription of lac genes but a very low level of trans-cription of lacZYA . ②Lactose is present, the low basal level of permease allows its uptake, andβ-galactosidase catalyzes the conversion of some lactose to allolactose. ③Allolactose acts as an inducer, binding to the lac repressor and inactivate it. RNAp initiates transcription of lac structual genes. 二、Microbes are preferred to plants and animals as sources of enzymes because:(英文)1)they are generally cheaper to produce. 2)their enzyme contents are more predictable and controllable, 3)plant and animal tissues contain more potentially harmful materials than microbes, including phenolic compounds (from plants), endogenous enzyme inhibitors and proteases. 三、固定化酶的优点(Advantages of Immobilized Enzymes)(英文) Immobilised enzymes are very important for commercial uses as they possess many benefits which include: ①Convenience: Minuscule amounts of protein dissolve in the reaction, so workup can be much easier. Upon completion, reaction mixtures typically contain only solvent and reaction products. ②Economical: The immobilized enzyme is easily removed from the reaction making it easy to recycle the biocatalyst. ③Stability: Immobilized enzymes typically have greater thermal(热的)and operational stability than the soluble form of the enzyme.

新乡医学院2008—2009学年第一学期医学分子生物学考试卷(A)

2008—2009学年第一学期Array 一、单项选择题(每题1.5分,共75分) 1、关于基因下列哪个叙述是不正确的 A.是核酸分子中储存遗传信息的遗传单位 B.是RNA和蛋白质相关遗传信息的基本存在形式 C.构成基因的核酸物质是DNA,少数生物是RNA D.基因存在于染色体及线粒体的DNA和RNA上 E.基因功能表达具有相对的独立性 2、关于结构基因的叙述错误的是 A. 结构基因可以决定特定RNA的一级结构 B. 结构基因的实质是一段DNA序列 C. 结构基因的表达产物是蛋白质 D. 结构基因是由信息链和反义链构成 E. 真核生物的结构基因是断裂基因 3、下列关于基因描述正确的是 A. 基因就是断裂基因 B. 基因就是结构基因 C. 基因包括结构基因和断裂基因 D. 基因是RNA和蛋白质相关遗传信息的基本存在形式 E. 结构基因就是断裂基因 4、下列关于大肠杆菌启动子说法错误的是 A. 大肠杆菌启动子长约40—60bp B. 包括转录起始部位、-10bp区和-35bp区 C. RNA聚合酶的σ因子可以识别结合在-10bp 区和-35bp区 D. 大肠杆菌启动子在-35bp区和-10bp区具有保守序列 E. 位于结构基因上游3′端,具有方向性 5、下列关于增强子的描述不正确的是 A. 能够被反式作用因子识别和结合 B. 实质是一段DNA序列 C. 可以调控(通常是增强)基因转录 D. 属于反式作用因子的一种 E. 通常位于转录起始点上游-100bp— -300bp处 6、一个操纵子通常有 A. 一个启动序列和一个编码基因 B. 一个启动序列和数个编码基因 C. 数个启动序列和一个编码基因 D. 数个启动序列和数个编码基因 E. 两个启动序列和数个编码基因 7、下列关于tRNA的叙述不正确的是 A. 二级结构呈三叶草状 B. 三级结构呈倒L型 C. 具有反密码环 D. 通常含有74-95个核苷酸 E. 5′端是CCA-OH结构 8、基因突变常见的类型不包括哪一项 A. 点突变 B. 插入 C. 缺失 D. 倒位 E.以上都不正确 9、原核生物与真核生物基因组比较,以下哪项是原核生物的特点

乳糖操纵子的正负调控机制

1.乳糖操纵子的正负调控机制 ⑴乳糖操纵子(lac)是由调节基因(lac I)、启动子(lac P)、操纵基因(lac O)和结构基因(lac Z、lac Y、lac A)组成的。lac I 编码阻遏蛋白,lac Z、lac Y、lac A分别编码β-半乳糖苷酶,β-半乳糖苷透性酶和β-半乳糖苷转乙酰基酶。 ⑵阻遏蛋白的负性调控:当培养基中没有乳糖时,阻遏蛋白结合到操纵子中的操纵基因上,阻止了结构基因的表达;当培养基中有乳糖时,乳糖(真正是异乳糖)分子和阻遏蛋白结合,引起阻遏蛋白构象改变,不能结合到操纵基因上,使RNA聚合酶能正常催化转录操纵子上的结构基因,即操纵子被诱导表达。 ⑶cAMP-CAP是一个重要的正调节物质,可

以与操纵上的启动子区结合,启动基因转录。培养基中葡萄糖含量下降,cAMP合成增加,cAMP与CAP形成复合物并与启动子结合,促进乳糖操纵子的表达。 ⑷协调调节:乳糖操纵子调节基因编码的阻遏蛋白的负调控与CAP的正调控两种机制,互相协调,互相制约。 2.详述大肠杆菌色氨酸操纵子的调控机理。 答:大肠杆菌色氨酸操纵子的转录受阻遏和衰减两种机制的控制,前者通过阻遏蛋白和操纵基因的作用控制转录的起始,后者通过前导序列形成特殊的空间结构控制转录起始后是否进行下去。 ⑴色氨酸操纵子的可阻遏系统: 在阻遏系统中,起负调控的调节基因的产物是一个无活性的阻遏蛋白,色氨酸是辅阻遏物;当色氨酸不足时,阻遏蛋白无活性,不能和操纵基因结合,色氨酸操纵子能够转录;当色氨酸充足时,阻遏蛋白和它结合而被激活,从而结合到操纵基因上,而色氨酸操纵子的操纵基因位于启动基因内,因此,活性阻遏物的结合排斥了RNA聚合酶的结合,从而抑制了结构基因的表达。

分子生物学章节习题

分子生物学章节习题 第二章染色体和DNA习题 1、证明DNA是遗传物质的两个关键性实验是:肺炎链球菌在老鼠体内的毒性和T2噬菌体感染大肠杆菌。这两个实验中主要的论点证据是:(A) (a)从被感染的生物体内重新分离得到DNA,作为疾病的致病剂 (b)DNA突变导致毒性丧失 (c)生物体吸收的外源DNA(而并非蛋白质)改变了其遗传潜能 (d)DNA是不能在生物体间转移的,因此它一定是一种非常保守的分子 2、1953年Watson和Crick提出:(A) (a)多核苷酸DNA链通过氢键连接成一个双螺旋 (b)DNA的复制是半保留的,常常形成亲本—子代双螺旋杂合链 (c)三个连续的核苷酸代表一个遗传密码 (d)遗传物质通常是DNA 而非RNA 3、下列哪一种蛋白不是组蛋白的成分( D ) (a) H1 (b) H2A 、H2B (c) H3、H4 (d) H5 4、DNA的变性:(AE) (a)包括双螺旋的解旋 (b)可以由低温产生 (c)是可逆的 (d)是磷酸二酯键的断裂 (e)包括氢键的断裂 5、DNA的二级结构指:( C ); (a)是指4种核苷酸的连接及其排列顺序,表示了该DNA分子的化学构成; (b)是指DNA双螺旋进一步扭曲盘绕所形成的特定空间结构; (c)是指两条多核苷酸链反向平行盘绕所生成的双螺旋结构。 6、在原核生物复制子中以下哪种酶除去RNA引发体并加入脱氧核糖核甘酸:C (A)DNA聚合酶Ⅲ (B) DNA聚合酶Ⅱ (C)DNA聚合酶Ⅰ(D)外切核酸酶MFl 7、DNA复制时不需要以下哪种酶?( B)。 (A) DNA指导的DNA聚合酶 (B) RNA指导的DNA聚合酶 (C)拓扑异构酶 (D)连接酶 8、细菌的错配修复机制可以识别复制时新旧DNA链之间错误配对的碱基,这是因为( C )A.新DNA链含有错误的碱基 B.旧DNA链更倾向于含有错误碱基 C.旧DNA链在特殊位点含有甲基化基团 D.新DNA链在特殊位点含有甲基化基 E.DNA聚合酶与新链结合 9、使DNA超螺旋结构松驰的酶是(C)。 A.引发酶 B.解旋酶 C.拓扑异构酶 D.端粒酶 E.连接酶 10、真核生物中主要有五种DNA聚合酶,它们是① α ;② β ;③ γ ;④ δ ;⑤ ε ;真核DNA聚合酶δ 和 ε 显示 3'→5' 外切核酸酶活性。 11、DNA复制时在前导链上DNA沿5’-3’方向合成,在滞后链上则沿3’-5’方向合成。

大肠杆菌乳糖操纵子的结构及其调控机制

大肠杆菌乳糖操纵子的结构及其正、负调控:负控诱导型操纵子 大肠杆菌乳糖操纵子包括三个结构基因:Z、Y、A以及一个操纵序列(启动子序列P、操纵基因序列O、调节基因I)。转录时RNA聚合酶首先与P启动子区结合,通过操纵子向下游转录出Z、 Y 、A三个基因的多顺反子。转录的调控是在启动子区和操纵子区进行。 正调控机制: cAMP-CAP复合物与启动子区的DNA结合改变了此区域DNA的次级结构,促进了RNA聚合酶结合区的解链,增强了转录。cAMP-CAP 复合物的形成取决于细胞内cAMP的浓度(或活性),当细菌以葡萄糖为能源时,因为有葡萄糖降解物的效应(抑制了腺苷酸环化酶的活性),使ATP生成cAMP的浓度降低,因而cAMP-CAP复合物的量低,导致乳糖操纵子结构基因不被转录。 负调控机制: 由调节基因I表达的阻遏蛋白以四聚体的活性结构结合于操纵子基因上,阻绕了RNA聚合酶的转录。 诱导调控: 当有诱导物(异乳糖(乳糖异构体)、IPTG、TMG等)存在时,诱导物可以与调节基因I表达的阻遏蛋白结合,改变其蛋白构象后不能与操纵基因结合,RNA聚合酶可以进行结构基因的转录,也就实现了分解乳糖代谢的相关酶的基因表达,即细菌可以分解和利用乳糖。 大肠杆菌乳糖操纵子的正、负调控协调调节其结构基因的表达。总结:使大肠杆菌乳糖操纵子高效表达,必须既有诱导物又无葡萄糖效应。 大肠杆菌培养基中有葡萄糖和乳糖时,细菌为何优先利用葡萄糖?(1)培养基中有葡萄糖,无乳糖时,cAMP-CAP复合物浓度低,即CAP 不发挥作用,无诱导物存在时,阻遏蛋白与操纵基因结合,关闭了下游结构基因的表达。 (2)培养基中既有葡萄糖,又有乳糖时,虽然阻遏蛋白不能与操纵基因结合,但cAMP-CAP复合物浓度低,即CAP不发挥作用,下游结构基因的表达仍然处于关闭状态。 (3)培养基中无葡萄糖,有乳糖时,cAMP-CAP复合物浓度高,即CAP 可以发挥(分解代谢基因激活蛋白的)作用,而且有诱导物,阻遏蛋白不能与操纵基因结合,开放下游结构基因的表达。

乳糖操纵子

乳糖操纵子 乳糖操纵子是参与乳糖分解的一个基因群,由乳糖系统的阻遏物和操纵序列组成,使得一组与乳糖代谢相关的基因受到同步的调控。1961年雅各布(F.Jacob)和莫诺德(J.Monod)根据对该系统的研究而提出了著名的操纵子学说。在大肠杆菌的乳糖系统操纵子中,β-半乳糖苷酶,半乳糖苷渗透酶,半乳糖苷转酰酶的结构基因以LacZ(z),Lac Y(y),Lac A(a)的顺序分别排列在染色体上,在z的上游有操纵序列Lac O(o),更前面有启动子Lac P(p),这就是操纵子(乳糖操纵子)的结构模式。编码乳糖操纵系统中阻遏物的调节基因Lac I(i)位于和p上游的临近位置。 细菌相关功能的结构基因常连在一起,形成一个基因簇。它们编码同一个代谢途径中的不同的酶。一个基因簇受到同一的调控,一开俱开,一闭俱闭。也就是说它们形成了一个被调控的单位,其它的相关功能的基因也包括在这个调控单位中,例如编码透过酶的基因,虽它的产物不直接参与催化代谢,但它可以使小分子底物转运到细胞中。 乳糖分解代谢相关的三个基因,lacZ、Y、A就是很典型的是上述基因簇。它们的产物可催化乳糖的分解,产生葡萄糖和半乳糖。它们具有顺式作用调节元件和与之对应的反式作用调节因子。三个结构基因图的功能是: lacZ编码β-半乳糖苷酶(β-galactosidase),此酶由500kd的四聚体构成,它可以切断乳糖的半乳糖苷键,而产生半乳糖和葡萄糖 lacY编码β一半乳糖苷透性酶(galactoside permease),这种酶是一种分子量为30kDd膜结合蛋白,它构成转运系统,将半乳糖苷运入到细胞中。 lacA编码β-硫代半乳糖苷转乙酰基酶(thiogalactosidetransacetylase),其功能只将乙酰-辅酶A上的乙酰基转移到β-半乳糖苷上。 无论是lacZ发生突变还是lacY发生突变却可以产生lac-型表型,这种lac-表型的细胞不能利用乳糖。lacZ-突变体中半乳糖苷酶失去活性,直接阻止了乳糖的代谢。lacY-突变体不能从膜上吸取乳糖。 这一个完整的调节系统包括结构基因和控制这些基因表达的元件,形成了一个共同的调节单位,这种调节单位就称为操纵子(opron)。操纵子的活性是由调节基因控制的,调节基因的产物可以和操纵子上的顺式作用控制元件相互作用。 lacZ、Y、A基因的转录是由lacI基因指令合成的阻遏蛋白所控制。lacI一般和结构基因相毗连,但它本身具有自己的启动子和终止子,成为独立的转录单位。由于lacI的产物是可溶性蛋白,按照理说是无需位于结构基因的附近。它是能够分散到各处或结合到分散的DNA 位点上(这是典型的反式-作用调节物。) 通过突变的效应是可以将结构基因和调节基因相区别的,结构基因发生突变,细胞中就失去这些基因合成的蛋白。但是调节基因发生突变会影响到它所控制的所有结构基因的表达。调节蛋白的突变的结果可以显示调节的类型。 lac基因簇是受到负调节(negative regulation)。它们的转录可被调节蛋白所关闭。若调节蛋白因突变而失活就会导致结构基因组成型表达。表明调节蛋白的功能是阻止结构基因的表达,因此称这些蛋白为“阻遏”蛋白。 乳糖操纵子的阻遏蛋白是由4个亚基(38kDa)组成的四聚体。一个野生型细胞中大约有10个四聚体。调节基因转录成单顺反子的mRNA,它和操纵子的比率与RNA聚合酶和启动子之比是相似的。 lac I的产物称为lac阻遏物(lac repressor),其功能是和lacZ、Y、A基因簇5′端的操

生物化学复习题

、选择题 1 ?侧链含有咪唑基的氨基酸是( D ) 6. ATP 分子中各组分的连结方式是: B A 、R-A-P-P-P B 、A-R-P-P-P C 、P-A-R-P-P D 、P-R-A-P-P E 、P-A-P-R-P 7 .决定tRNA 携带氨基酸特异性的关键部位是: E A 、3'末端 B 、T C 环 C 、二氢尿嘧啶环 D 、额外环 E 、反密码子环 8. 构成多核苷酸链骨架的关键 是: E A 、2', 3'—磷酸二酯键 B 、 2', 4'—磷酸二酯键 C 、2', 5'—磷酸二酯键 D 、 3', 4磷酸二酯键 E 、3', 5'—磷酸二酯键 9. 含稀有碱基较多的核酸是: C A 、核DNA B 、线粒体 DNA C 、 tRNA D 、mRNA E 、rRNA 10. 有关DNA 的叙述哪项绝对错误: E A 、A= T B 、G= C C 、 P u=Py D 、C 总=C+mC E 、A=G T=C 11. 真核细胞mRNA 冒结构最多见的是:B A 、m7ApppNmP B 、m7GpppNmP C m7UpppNmP D 、m7CpppNmP E 、m7TpppNmP 12. DNA 变性后,下列那一项变化是正确的 ? B A 、对260nm 紫外吸收减少 B 、溶液粘度下降 C 、磷酸二酯键断裂 D 、核苷键断裂 E 、嘌吟环破裂 13. 双链DNA 的 Tm 较高是由于下列哪组核苷酸含量较高所致 :D A 、A+ G B 、C+ T C 、A+ T D 、G+ C E 、A+ C 14. DNA 复性的重要标志是:D A 、溶解度降低 B 、溶液粘度降低 C 、紫外吸收增大 D 、紫外吸收降低 15. 下列哪种糖无还原性?B A.麦芽糖 B. 蔗糖 C. 阿拉伯糖 D. 木糖 E. 果糖 16环状结构的己醛糖其立体异构体的数目为 D A.4 B.3 C.18 D.32 E.64 A 、甲硫氨酸 B 、半胱氨酸 C 、精氨酸 、组氨酸 A 、Glu B 、 L ys C 、 3 .精氨酸的Pk1=2.17、 Pk2=9.04 (-NH3) A 、1/2(2.17+9.04) B C 、1/2(9.04+12,48) D 4 .谷氨酸的Pk1=2.19( -COOH) pk2=9.67( Ser D 、Asn Pk3=12.48 (胍基)PI= ( C ) 、1/2(2.17+12.48) 、1/3 (2.17+9。04+12。48) -NH3)、pk3=4.25( -COOH) pl= ( C A 、1/2 (2.19+9。67) B C 、1/2(2.19+4.25) D 5. 氨基酸不具有的化学反应是( D ) 、1/2 (9.67+4.25 ) 、1/3(2.17+9.04+9.67) C 、茚三酮反应 D 、双缩脲反应 2 ? PH 为8时,荷正电的氨基酸为(B )

乳糖操纵子

1、乳糖操纵子的组成:大肠杆菌乳糖操纵子含Z、Y、A三个结构基因,分别编码半乳糖苷酶、透酶和半乳糖苷乙酰转移酶,此外还有一个操纵序列O,一个启动子P和一个调节基因I。 2、阻遏蛋白的负性调节:没有乳糖存在时,I基因编码的阻遏蛋白结合于操纵序列O处,乳糖操纵子处于阻遏状态,不能合成分解乳糖的三种酶;有乳糖存在时,乳糖作为诱导物诱导阻遏蛋白变构,不能结合于操纵序列,乳糖操纵子被诱导开放合成分解乳糖的三种酶。所以,乳糖操纵子的这种调控机制为可诱导的负调控。 3、CAP的正性调节:在启动子上游有CAP结合位点,当大肠杆菌从以葡萄糖为碳源的环境转变为以乳糖为碳源的环境时,cAMP浓度升高,与CAP结合,使CAP发生变构,CAP结合于乳糖操纵子启动序列附近的CAP结合位点,激活RNA聚合酶活性,促进结构基因转录,调节蛋白结合于操纵子后促进结构基因的转录,对乳糖操纵子实行正调控,加速合成分解乳糖的三种酶。 4、协调调节:乳糖操纵子中的I基因编码的阻遏蛋白的负调控与CAP的正调控两种机制,互相协调、互相制约。 5、在葡萄糖存在的情况下乳糖操纵子不表达,只有在葡萄糖不存在而乳糖存在的情况下表达。 色氨酸操纵子要点 色氨酸操纵子负责色氨酸的生物合成,当培养基中有足够的色氨酸时,这个操纵子自动关闭,缺乏色氨酸时操纵子被打开,trp基因表达,色氨酸或与其代谢有关的某种物质在阻遏过程(而不是诱导过程)中起作用。 阻遏-操纵机制对色氨酸来说是一个一级开关,主管转录是否启动,相当于粗调开关。trp操纵子中对应于色氨酸生物合成的还有另一个系统进行细调控,指示已经启动的转录是否继续下去。这个细微调控是通过转录达到第一个结构基因之前的过早终止来实现的,由色氨酸的浓度来调节这种过早终止的频率。 当培养基中色氨酸的浓度很低时,前导区结构是2-3配对,不形成3-4配对的终止结构,所以转录可继续进行。 当培养基中色氨酸浓度较高时,核糖体可顺利通过两个相邻的色氨酸密码子,3-4区自由配对形成基一环终止子结构,转录被终止,trp操纵子被关闭。

分子生物学 复习题2

综合复习题1 一、选择题(将正确答案的序号填入下表中,每小题2分,共40分)。 1.不能证明DNA是遗传物质的实验是。 A 半保留复制的实验 B 细菌转化实验 C 噬菌体侵染实验 D 真核细胞转染实验 2.在真核生物的转录过程中,起定位RNA聚合酶作用的因子是。 A TAFs B TFII A C TBP D TFII B 3.下列有关大肠杆菌DNA聚合酶III的说法不正确的是。 A DNA聚合酶III是多亚基组成的蛋白质 B DNA聚合酶III α亚基具有5’→3’方向合成DNA的催化活性 C DNA聚合酶III不具有3’→5’方向的校对功能 D DNA聚合酶III全酶可以协同复制DNA双螺旋的两条链 4. 有关氨酰tRNA合成酶的说法中,错误的是。 A 氨酰tRNA合成酶催化氨基酸与tRNA之间的反应。 B 氨酰tRNA合成酶所催化的反应有特异性,即能选择相应的tRNA 和氨基酸。 C 所有的tRNA均是以全部序列与氨酰tRNA合成酶结合。 D 氨酰tRNA合成酶催化氨基酸和ATP形成腺苷酸化氨基酰,需要消耗ATP中的两个高能磷酸键。 5. 下列有关原核生物基因表达调控的叙述中,不正确的是。 A 原核生物的基因调控可以发生在转录和翻译等不同阶段,但也是以转录水平为主。 B 原核生物一个操纵子中的全部结构基因从同一个启动子开始转录成单个mRNA分子。 C 大肠杆菌乳糖操纵子的调控是解释诱导作用机制的最好范例。 D 葡萄糖可以抑制β-半乳糖苷酶表达的一个很重要的因素是葡萄糖提高了细菌体内cAMP的水平。 6. 真核生物组蛋白的乙酰化可以 A 激活转录 B 阻抑转录 C 激活翻译 D 阻抑翻译 7. 一个典型的真核基因转录单位不包括() A.外显子B.内含子C.非翻译区(UTR区)D.调节基因 8. 端粒酶实质是一种() A.RNA聚合酶B.逆转录酶 C.核酸酶D.修饰酶 9. 对原核生物终止子的描述不正确的是() A、分依赖ρ因子的终止子和不依赖ρ因子的终止子 B、依赖ρ因子的终止子具备发夹结构和紧邻的U串 C、不依赖ρ因子的终止子具备发夹结构和紧邻的U串 D、RNA聚合酶在终止子区解离 10. 真核生物细胞中,负责rRNA转录的是() A.RNA聚合酶ⅢB.RNA聚合酶Ⅱ C.RNA聚合酶ⅠD.DNA聚合酶α 11. 哺乳动物线粒体是靠D环复制的,关于D环复制下面叙述正确的是() A.两条链的复制是从两个独立的起点同时起始的

普通生物学试题库(DOC)教学内容

第七章植物的形态与功能 填空题 1.微观组织包括木质部和韧皮部两部分,它们分别运输水分和矿物质和有机养分。 2.植物根毛区横切面的结构从外到内依次为表皮、皮层和维管柱。 3.植物激素包括生长素类、赤霉素类、细胞分裂素类、脱落酸类和乙烯 4.植物组织可分为成熟组织和分生组织两大类,其中分生组织的细胞具有细胞壁薄、细胞质浓厚、液泡无或不明显等特点;成熟组织可分为表皮组织、薄壁组织、机械组织、维管组织等组织。这些组织各有特点,执行着不同的功能。 5.根尖可分为根冠、分生区、伸长区、根毛区(或成熟区)四个部分。 6.植物维管组织分为木质部和韧皮部。 7.筛管分子就是一个细胞,成熟时,其细胞核消失,两端壁特化而具许多细孔,称为筛板。 8.水生植物茎的结构特征是具有发达的通气组织。 9.多年生植物根、茎的周皮是由木栓、木栓形成层和栓内层共同组成的。 10.典型的花着生在花柄顶部膨大的花托上,由花被、雄蕊群和雌蕊群组成。 11.花萼是由不同数目的萼片组成的,花冠是由不同数目的花瓣组成的。 12.一朵花常由下列6个部分组成:花柄、花托、花萼、花冠、雄蕊群和雌蕊群。 13.被子植物的成熟胚囊为含7个细胞或8个细胞核的雌配子体,它包括卵细胞、助细胞、反足细胞和中央细胞(或两个极核)。 14.被子植物在完成双受精作用后,胚珠中的受精卵发育成胚,受精极核发育成胚乳。 15.果实大体可分为真果和假果两大类。梨和苹果可食部分来自花被和花托。 16.果实就是由果皮和种子两部分构成的。 17.种子植物受精卵细胞分裂、组织分化,建成胚器官,其中包括胚芽、胚轴、胚根和子叶等部分。 18.水及无机盐离子由植物根的表皮进入到根的中部凯氏带(内皮层之外)的主要有两条运输途径:质外体途径和共质体途径。 19.植物激素主要包括生长素、赤霉素、细胞分裂素、脱落酸、乙烯五大类。\ 20.光合作用可分为光反应和碳反应两个阶段,分别在叶绿体的类囊体片层和基质中进行。光反应的产物有氧气、ATP 和NADPH。 21.叶绿体中的光合色素规律地分布在类囊体膜,构成了两个功能单位,它们是包含吸收峰

相关文档