文档库 最新最全的文档下载
当前位置:文档库 › 动态规划及其应用(一)

动态规划及其应用(一)

动态规划练习二

动态规划练习二 1、乘积最大 [问题描述] 在一次数学智力竞赛活动中,主持人给所有参加竞赛的选手出了一到题目:设有一个长度为N的数字串,要求选手使用K个乘号将它分成K+1个部分,找出一种分法,使得这K+1个部分的成绩最大。 同时为了帮助选手能够理解题意,主持人还举了如下一个例子: 有一个数字串:312,当N=3,K=1时有两种分法: (1)3*12=36; (2)31*2=62 这时,符合题目要求的结果是:31*2=62。现在要求设计一个程序,以求得正确的答案。 输入 Input.in文件共有两行:第一行有两个自然数N,K(2<=N<=40, 1<=K<=6);第二行是一个长度为N的数字串。 输出 一个自然数,即所求得的最大乘积。 输入输出样例 输入(input.in) 4 2 1231 输出(ans.out) 62

2、数字加法问题 [问题描述] 有一个由数字1,2,... ,9组成的数字串(长度不超过200),问如何将M(M<=20)个加号("+")插入到这个数字串中,使所形成的算术表达式的值最小。请编一个程序解决这个问题。 注意: 加号不能加在数字串的最前面或最末尾,也不应有两个或两个以上的加号相邻。M保证小于数字串的长度。 例如:数字串79846,若需要加入两个加号,则最佳方案为79+8+46,算术表达式的值133。 [输入格式] 从键盘读入输入文件名。数字串在输入文件的第一行行首(数字串中间无空格且不折行),M的值在输入文件的第二行行首。 [输出格式] 在屏幕上输出所求得的最小和的精确值。 [输入输出举例] 82363983742 3 输入输出 2170

动态规划算法原理与的应用

动态规划算法原理及其应用研究 系别:x x x 姓名:x x x 指导教员: x x x 2012年5月20日

摘要:动态规划是解决最优化问题的基本方法,本文介绍了动态规划的基本思想和基本步骤,并通过几个实例的分析,研究了利用动态规划设计算法的具体途径。关键词:动态规划多阶段决策 1.引言 规划问题的最终目的就是确定各决策变量的取值,以使目标函数达到极大或极小。在线性规划和非线性规划中,决策变量都是以集合的形式被一次性处理的;然而,有时我们也会面对决策变量需分期、分批处理的多阶段决策问题。所谓多阶段决策问题是指这样一类活动过程:它可以分解为若干个互相联系的阶段,在每一阶段分别对应着一组可供选取的决策集合;即构成过程的每个阶段都需要进行一次决策的决策问题。将各个阶段的决策综合起来构成一个决策序列,称为一个策略。显然,由于各个阶段选取的决策不同,对应整个过程可以有一系列不同的策略。当过程采取某个具体策略时,相应可以得到一个确定的效果,采取不同的策略,就会得到不同的效果。多阶段的决策问题,就是要在所有可能采取的策略中选取一个最优的策略,以便得到最佳的效果。动态规划是一种求解多阶段决策问题的系统技术,可以说它横跨整个规划领域(线性规划和非线性规划)。在多阶段决策问题中,有些问题对阶段的划分具有明显的时序性,动态规划的“动态”二字也由此而得名。动态规划的主要创始人是美国数学家贝尔曼(Bellman)。20世纪40年代末50年代初,当时在兰德公司(Rand Corporation)从事研究工作的贝尔曼首先提出了动态规划的概念。1957年贝尔曼发表了数篇研究论文,并出版了他的第一部著作《动态规划》。该著作成为了当时唯一的进一步研究和应用动态规划的理论源泉。在贝尔曼及其助手们致力于发展和推广这一技术的同时,其他一些学者也对动态规划的发展做出了重大的贡献,其中最值得一提的是爱尔思(Aris)和梅特顿(Mitten)。爱尔思先后于1961年和1964年出版了两部关于动态规划的著作,并于1964年同尼母霍思尔(Nemhauser)、威尔德(Wild)一道创建了处理分枝、循环性多阶段决策系统的一般性理论。梅特顿提出了许多对动态规划后来发展有着重要意义的基础性观点,并且对明晰动态规划路径的数

动态规划之状态压缩

状态压缩 Abstract 信息学发展势头迅猛,信息学奥赛的题目来源遍及各行各业,经常有一些在实际应用中很有价值的问题被引入信息学并得到有效解决。然而有一些问题却被认为很可能不存在有效的(多项式级的)算法,本文以对几个例题的剖析,简述状态压缩思想及其应用。 Keywords 状态压缩、Hash、动态规划、递推 Content Introducti o n 作为OIers,我们不同程度地知道各式各样的算法。这些算法有的以O(logn)的复杂度运行,如二分查找、欧几里德GCD算法(连续两次迭代后的余数至多为 原数的一半)、平衡树,有的以)运行,例如二级索引、块状链表,再往上有O(n)、O(n p log q n)……大部分问题的算法都有一个多项式级别的时间复杂度上界1,我们一般称这类问题2为P (deterministic Polynomial-time)类问题,例如在有向图中求最短路径。然而存在几类问题,至今仍未被很好地解决,人们怀疑他们根本没有多项式时间复杂度的算法,NPC(NP-Complete)和NPH(NP-Hard)就是其中的两类,例如问一个图是否存在哈密顿圈(NPC)、问一个图是否不存在哈密顿圈(NPH)、求一个完全图中最短的哈密顿圈(即经典的Traveling Salesman Problem货郎担问题,NPH)、在有向图中求最长(简单)路径(NPH),对这些问题尚不知有多项式时间的算法存在。P和NPC都是NP(Non-deterministic Polynomial-time)的子集,NPC则代表了NP类中最难的一类问题,所有的NP类问题都可以在多项式时间内归约到NPC问题中去。NPH包含了NPC和其他一些不属于NP(也更难)的问题,NPC问题的函数版本(相对于判定性版本)一般是NPH的,例如问一个图是否存在哈密顿圈是NPC的,但求最短的哈密顿圈则是NPH的,原因在于我们可以在多项式时间内验证一个回路是否真的是哈密顿回路,却无法在多项式时间内验证其是否是最短的,NP类要求能在多项式时间内验证问题的一个解是否真的是一个解,所以最优化TSP问题不是NP的,而是NPH的。存在判定性TSP问题,它要求判定给定的完全图是否存在权和小于某常数v的哈密顿圈,这个问题的解显然可以在多项式时间内验证,因此它是NP 1请注意,大O符号表示上界,即O(n)的算法可以被认为是O(n2)的,O(n p log q n)可以被认为是O(n p+1)的。2在更正式的定义中,下面提到的概念都只对判定性问题或问题的判定版本才存在(NPH除外)。Levin给出了一个适用于非判定问题的更一般的概念,但他的论文比Cook的晚发表2年。

经典算法——动态规划教程

动态规划是对最优化问题的一种新的算法设计方法。由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的没计法对不同的问题,有各具特色的表示方式。不存在一种万能的动态规划算法。但是可以通过对若干有代表性的问题的动态规划算法进行讨论,学会这一设计方法。 多阶段决策过程最优化问题 ——动态规划的基本模型 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。因此各个阶段决策的选取不能任意确定,它依赖于当前面临的状态,又影响以后的发展。当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线。这种把一个问题看做是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题称为多阶段决策最优化问题。 【例题1】最短路径问题。图中给出了一个地图,地图中每个顶点代表一个城市,两个城市间的连线代表道路,连线上的数值代表道路的长度。现在,想从城市A到达城市E,怎样走路程最短,最短路程的长度是多少? 【分析】把从A到E的全过程分成四个阶段,用k表示阶段变量,第1阶段有一个初始状态A,两条可供选择的支路ABl、AB2;第2阶段有两个初始状态B1、 B2,B1有三条可供选择的支路,B2有两条可供选择的支路……。用dk(x k,x k+1)表示在第k阶段由初始状态x k到下阶段的初始状态x k+1的路径距离,Fk(x k)表示从第k阶段的x k到终点E的最短距离,利用倒推方法求解A到E的最短距离。具体计算过程如下: S1:K=4,有:F4(D1)=3,F4(D2)=4,F4(D3)=3 S2: K=3,有: F3(C1)=min{d3(C1,D1)+F4(D1),d3(C1,D2)+F4(d2)}=min{8,10}=8 F3(C2)=d3(C2,D1)+f4(D1)=5+3=8 F3(C3)=d3(C3,D3)+f4(D3)=8+3=11 F3(C4)=d3(C4,D3)+f4(D3)=3+3=6

2设计动态规划算法的主要步骤为

2设计动态规划算法的主要步骤为: (1)找出最优解的性质,并刻划其结构特征。(2)递归地定义最优值。(3)以自底向上的方式计算出最优值。(4)根据计算最优值时得到的信息,构造最优解。 3. 分治法与动态规划法的相同点是:将待求解的问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。 两者的不同点是:适合于用动态规划法求解的问题,经分解得到的子问题往往不是互相独立的。而用分治法求解的问题,经分解得到的子问题往往是互相独立的。 贪心选择算法与动态规划算法的异同点:同:都要求问题具有最优子结构性质;异:动态规划算法为自底向上的方式解各子问题,贪心算法为自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每做一次贪心选择问题就转换为规模更小的字问题。 6. 分治法所能解决的问题一般具有的几个特征是:(1)该问题的规模缩小到一定的程度就可以容易地解决; (2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质; (3)利用该问题分解出的子问题的解可以合并为该问题的解; (4)原问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。 P:也即是多项式复杂程度的问题。 NP就是多项式复杂程度的非确定性问题。 NPC(NP Complete)问题 ADT 抽象数据类型 分析问题→设计算法→编写程序→上机运行和测试 算法特性1. 确定性、可实现性、输入、输出、有穷性 算法分析目的2. 分析算法占用计算机资源的 情况,对算法做出比较和评价,设计出额更好 的算法。 3. 算法的时间复杂性与问题的规模相关,是 问题大小n的函数。 算法的渐进时间复杂性的含义:当问题的规模 n趋向无穷大时,影响算法效率的重要因素是 T(n)的数量级,而其他因素仅是使时间复杂度 相差常数倍,因此可以用T(n)的数量级(阶) 评价算法。时间复杂度T(n)的数量级(阶)称为 渐进时间复杂性。 最坏情况下的时间复杂性和平均时间复杂性有什么不同? 最坏情况下的时间复杂性和平均时间复杂性 考察的是n固定时,不同输入实例下的算法所 耗时间。最坏情况下的时间复杂性取的输入实 例中最大的时间复杂度: W(n) = max{ T(n,I) } , I∈Dn 平均时间复杂性是所有输入实例的处理时间 与各自概率的乘积和: A(n) =∑P(I)T(n,I) I∈Dn 为什么要分析最坏情况下的算法时间复杂 性?最坏情况下的时间复杂性决定算法的优 劣,并且最坏情况下的时间复杂性较平均时间 复杂性游可操作性。 1.贪心算法的基本思想? 是一种依据最优化量度依次选择输入的分级处理方法。基本思路是:首先根据题意,选取一种量度标准;然后按这种量度标准对这n个输入排序,依次选择输入量加入部分解中。如果当前这个输入量的加入,不满足约束条件,则不把此输入加到这部分解中。 贪心选择算法与动态规划算法的异同点:同:都要求问题具有最优子结构性质;异:动态规划算法为自底向上的方式解各子问题,贪心算法为自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每做一次贪心选择问题就转换为规模更小的字问题。

解0-1背包问题的动态规划算法

关于求解0/1背包问题的动态规划算法 摘要:本文通过研究动态规划原理,提出了根据该原理解决0/1背包问题的方法与算法实现, 并对算法的正确性作了验证.观察程序运行结果,发现基于动态规划的算法能够得到正确的决策方案且比穷举法有效. 关键字:动态规划;0/1背包;约束条件;序偶;决策序列;支配规则 1、引 言 科学研究与工程实践中,常常会遇到许多优化问题,而有这么一类问题,它们的活动过程可以分为若干个阶段,但整个过程受到某一条件的限制。这若干个阶段的不同决策的组合就构成一个完整的决策。0/1背包问题就是一个典型的在资源有限的条件下,追求总的收益最大的资源有效分配的优化问题。 对于0/1背包问题,我们可以这样描述:设有一确定容量为C 的包及两个向量C ’=(S 1,S 2,……,S n )和P=(P 1,P 2,……,P N ),再设X 为一整数集合,即X=1,2,3,……,N ,X 为SI 、PI 的下标集,T 为X 的子集,那么问题就是找出满足约束条件∑S i 〈=C ,使∑PI 获得最大的子集T 。在实际运用中,S 的元素可以是N 个经营项目各自所消耗的资源,C 可以是所能提供的资源总量,P 的元素可是人们从各项项目中得到的利润。 0/1背包问题是工程问题的典型概括,怎么样高效求出最优决策,是人们关心的问题。 2、求解问题的动态规划原理与算法 2.1动态规划原理的描述 求解问题的动态规划有向前处理法向后处理法两种,这里使用向前处理法求解0/1背包问题。对于0/1背包问题,可以通过作出变量X 1,X 2,……,X N 的一个决策序列来得到它的解。而对于变量X 的决策就是决定它是取0值还是取1值。假定决策这些X 的次序为X n ,X N-1,……,X 0。在对X 0做出决策之后,问题处于下列两种状态之一:包的剩余容量是M ,没任何效益;剩余容量是M-w ,效益值增长了P 。显然,之后对X n-1,Xn-2,……,X 1的决策相对于决策X 所产生的问题状态应该是最优的,否则X n ,……,X 1就不可能是最优决策序列。如果设F j (X )是KNAP (1,j ,X )最优解的值,那么F n (M )就可表示为 F N (M )=max(f n (M),f n-1(M-w n )+p n )} (1) 对于任意的f i (X),这里i>0,则有 f i (X)=max{f i-1(X),f i-1(X-w i )+p i } (2) 为了能由前向后推而最后求解出F N (M ),需从F 0(X )开始。对于所有的X>=0,有F 0(X )=0,当X<0时,有F 0(X )等于负无穷。根据(2),可求出0〈X 〈W 1和X 〉=W 1情况下F 1(X )的值。接着由(2)不断求出F 2,F 3,……,F N 在X 相应取值范围内的值。 2.2 0/1背包问题算法的抽象描述 (1)初始化各个元素的重量W[i]、效益值P[i]、包的最大容量M ; (2)初始化S0; (3)生成S i ;

动态规划讲解大全(含例题及答案)

动态规划讲解大全 动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 动态规划程序设计是对解最优化问题的一种途径、一种方法,而不是一种特殊算法。不象前面所述的那些搜索或数值计算那样,具有一个标准的数学表达式和明确清晰的解题方法。动态规划程序设计往往是针对一种最优化问题,由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的设计方法对不同的问题,有各具特色的解题方法,而不存在一种万能的动态规划算法,可以解决各类最优化问题。因此读者在学习时,除了要对基本概念和方法正确理解外,必须具体问题具体分析处理,以丰富的想象力去建立模型,用创造性的技巧去求解。我们也可以通过对若干有代表性的问题的动态规划算法进行分析、讨论,逐渐学会并掌握这一设计方法。 基本模型 多阶段决策过程的最优化问题。 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。当然,各个阶段决策的选取不是任意确定的,它依赖于当前面临的状态,又影响以后的发展,当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线,如图所示:(看词条图) 这种把一个问题看作是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题就称为多阶段决策问题。 记忆化搜索 给你一个数字三角形, 形式如下: 1 2 3 4 5 6 7 8 9 10 找出从第一层到最后一层的一条路,使得所经过的权值之和最小或者最大. 无论对与新手还是老手,这都是再熟悉不过的题了,很容易地,我们写出状态转移方程:f(i, j)=a[i, j] + min{f(i+1, j),f(i+1, j + 1)} 对于动态规划算法解决这个问题,我们根据状态转移方程和状态转移方向,比较容易地写出动态规划的循环表示方法。但是,当状态和转移非常复杂的时候,也许写出循环式的动态规划就不是那么

动态规划(2)

Farmer John's farm consists of a long row of N (1 <= N <= 100,000)fields. Each field contains a certain number of cows, 1 <= ncows <= 2000. FJ wants to build a fence around a contiguous group of these fields in order to maximize the average number of cows per field within that block. The block must contain at least F (1 <= F <= N) fields, where F given as input. Calculate the fence placement that maximizes the average, given the constraint. Input * Line 1: Two space-separated integers, N and F. * Lines 2..N+1: Each line contains a single integer, the number of cows in a field. Line 2 gives the number of cows in field 1,line 3 gives the number in field 2, and so on. Output * Line 1: A single integer that is 1000 times the maximal average.Do not perform rounding, just print the integer that is 1000*ncows/nfields. Sample Input 10 6 6 4 2 10 3 8 5 9 4 1 Sample Output 6500

算法分析复习题目及答案

一、选择题 1、二分搜索算法是利用 (A)实现的算法。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法 2、下列不是动态规划算法基本步骤的是(A)。 A、找出最优解的性 质B、构造最优解C、算出最优解D、定义最优解3、最大效益优先是 ( A )的一搜索方式。 A、分支界限法 B、动态规划法 C、贪心法 D、回溯法 4、在下列算法中有时找不到问题解的是(B)。 A、蒙特卡罗算 法B、拉斯维加斯算法C、舍伍德算法D、数值概率算法5.回溯法解旅行售货员问题时的解空间树是( A )。 A、子集树 B、排列树 C、深度优先生成树 D、广度优先生成树 6.下列算法中通常以自底向上的方式求解最优解的 是(B)。 A、备忘录法 B、动态规划法 C、贪心法 D、回溯法 7、衡量一个算法好坏的标准是(C)。 A运行速度快B 占用空间少C时间复杂度低D代码短 8、以下不可以使用分治法求解的是 ( D )。 A棋盘覆盖问题 B 选择问题C归并排序D0/1背包问题 9.实现循环赛日程表利用的算法是(A)。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法 10、下列随机算法中运行时有时候成功有时候失败的是(C) A数值概率算法B舍伍德算法C拉斯维加斯算法D蒙特卡罗算法 11.下面不是分支界限法搜索方式的是(D)。 A、广度优先 B、最小耗费优先 C、最大效益优先 D、深度优先 12.下列算法中通常以深度优先方式系统搜索问题解的是(D)。 A、备忘录法 B、动态规划法 C、贪心法 D、回溯法 13.备忘录方法是那种算法的变形。(B) A、分治法 B、动态规划法 C、贪心法 D、回溯法14.哈弗曼编码的贪心算法所需的计算时间为 (B)。 A、O(n2n) B、O(nlogn) C、O(2n) D、O(n)15.分支限界法解最大团问题时,活结点表的组织形式是(B)。 A、最小堆 B、最大堆 C、栈 D、数组16.最长公共子序列算法利用的算法是 (B)。 A、分支界限法 B、动态规划法 C、贪心法 D、回溯法17.实现棋盘覆盖算法利用的算法是(A)。 A、分治法 B、动态规划法 C、贪心法 D、回溯法 18.下面是贪心算法的基本要素的是(C)。 A、重叠子问题 B、构造最优解 C、贪心选择性质 D、定义最优解 19.回溯法的效率不依赖于下列哪些因素 (D) A.满足显约束的值的个 数 B. 计算约束函数的时间C.计算限界函数的时间 D. 确定解空间的时间

浅谈我国动态规划算法研究与应用

动态规划算法研究与应用 1.引言 动态规划被认为是组成运筹学其中的一部分,也被当成为进行运算决定时最好的一种数学方式。在1950年左右,美国相关方面的几位数学家,对阶段决策期间关于优化的问题做了大量的研究,并发布著名的最优化理论,将众多的阶段变成了一个一个单一的问题,并分别进行解答,最后,发明了能够处理这种相关优化方面事情新的解决措施——动态规划。到了1957年,创造出了Dynamic Programming这一名著,被称为该领域创作第一人[1]。 在数学和计算机科学领域,动态规划算法对于求解最优解的问题方便快捷。动态规划方法经常用来解决生活中的实际问题,这些问题往往可以分解为很多个子问题,每个子问题都有一个对应解,其中的临界值就是我们所要求得的最优解。动态规划并非一种数学算法,而是用于最优化解题的一种技巧和方法。它非但不具有一个标准的数学方程式,不能够推导出清晰明确的解题步骤,更不具备万能性。对于要解决的若干问题,一定要建立在正确理解的基础上具体问题具体分析,用我们现有的数学知识和丰富的想象力创建模型,结合日常的技巧分析求解。客观人为的介入时间和空间因素,只要可以分为若干子问题的多状态过程,就可以用此方法快速求解。 2.动态规划算法简介 动态规划诞生之后,很快就在在工业生产、金融管理、工程技术、和资源最大化利用等领域得到了好评。在处理路线规划、物品进出库管理、资源最优化利用、更换设备、顺序、装载等问题,动态规划算法相比于其他算法更有优势而且更加便捷。 2.1基本原理 其主要的理论可以被理解成是将求解的划分成若干个子问题,并将其称作为N,然后这些子问题又有N个解的情况,其中这些可行解之中一定会有一个最优解,研究动态规划也就是希望能够找到最优解[2]。 如何能够合理的推导出基本的最优化方程式和找出唯一的临界值是研究动

动态规划的原理及应用

动态规划的原理及应用 班级:计科1302班 小组成员:王海涛蔡佳韦舒 蒋宪豪尹卓 完成时间:2015年5月26日

动态规划的原理及应用 学生:算法设计第5组,计算机系 指导教师:甘靖,计算机系 摘要:动态规划是解决多阶段决策过程最优化问题的一种方法。特点是把多阶段决策问题变换为一系列相互联系的单阶段问题,然后逐个加以解决。其基本思想就是把全局的问题化为局部的问题,为了全局最优必须局部最优,适用于在解决问题过程中需要多次重复解决子问题的问题。其应用领域广泛,涉及到管理学、经济学、交通、军事和计算机等多个领域,将动态规划思想正确地应用于实践,将对我们的生活带来便利,甚至带给我们的社会和国家以保障。 关键词:动态规划;最优决策;应用;领域 The Principle and Application of Dynamic Programing The dynamic programing is a way to solve optimization problem in the process of multi-stage decision,whose feature is alter the multi-stage decision problems to single phase problems which are connected with each other,and then solve them one by one.The basic idea is to change the overall problem into partcial problem.And the partcial one must keep the best in order to promise the quality of overall one,which splies to repeatedly solving subproblem throughout the whole process.It is spreading to many fields,like management,economics,traffic,military and computer. Put the idea of dynamic programing correctly into practice will bring a lot of convenience to our daily life,our society as well as our country.

贪心算法与动态规划的比较

贪心算法与动态规划的比较 【摘要】介绍了计算机算法设计的两种常用算法思想:贪心算法与动态规划算法。通过介绍两种算法思想的基本原理,比较两种算法的联系和区别。通过背包问题对比了两种算法的使用特点和使用范围。 【关键字】动态规划;贪心算法;背包问题 1、引言 为了满足人们对大数据量信息处理的渴望,为解决各种实际问题,计算机算法学得到了飞速的发展,线性规划、动态规划、贪心策略等一系列运筹学模型纷纷运用到计算机算法学中,产生了解决各种现实问题的有效算法。虽然设计一个好的求解算法更像是一门艺术而不像是技术,但仍然存在一些行之有效的、能够用于解决许多问题的算法设计方法,你可以使用这些方法来设计算法,并观察这些算法是如何工作的。一般情况下,为了获得较好的性能,必须对算法进行细致的调整。但是在某些情况下,算法经过调整之后性能仍无法达到要求,这时就必须寻求另外的方法来求解该问题。本文针对部分背包问题和0/ 1 背包问题进行分析,介绍贪心算法和动态规划算法的区别。 2、背包问题的提出 给定n种物品( 每种物品仅有一件) 和一个背包。物品i的重量是w i,其价值为p i,背包的容量为M。问应如何选择物品装入背包,使得装入背包中的物品的总价值最大,每件物品i的装入情况为x i,得到的效益是p i*x i。 ⑴部分背包问题。在选择物品时,可以将物品分割为部分装入背包,即0≤x i≤1 ( 贪心算法)。 ⑵0/ 1背包问题。和部分背包问题相似,但是在选择物品装入时要么不装,要么全装入,即x i = 1或0。( 动态规划算法) 。 3、贪心算法 3.1 贪心算法的基本要素 能够使用贪心算法的许多例子都是最优化问题,每个最优化问题都包含一组限制条件和一个优化函数,符合限制条件的问题求解方案称为可行解;使优化函数取得最佳值的可行解称为最优解。此类所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到(这是贪心算法与动态规划的主要区别) 。 3.2贪心策略的定义 贪心策略是指从问题的初始状态出发,通过若干次的贪心选择而得出最优值( 或较优解) 的一种解题方法。贪心策略总是做出在当前看来是最优的选择,也就是说贪心策略并不是从整体上加以考虑,它所做出的选择只是在某种意义上的局部最优解,而许多问题自身的特性决定了该问题运用贪心策略可以得到最优解或较优解。(注:贪心算法不是对所有问题都能

算法合集之《动态规划算法的优化技巧》

动态规划算法的优化技巧 福州第三中学毛子青 [关键词] 动态规划、时间复杂度、优化、状态 [摘要] 动态规划是信息学竞赛中一种常用的程序设计方法,本文着重讨论了运用动态规划思想解题时时间效率的优化。全文分为四个部分,首先讨论了动态规划时间效率优化的可行性和必要性,接着给出了动态规划时间复杂度的决定因素,然后分别阐述了对各个决定因素的优化方法,最后总结全文 [正文] 一、引言 动态规划是一种重要的程序设计方法,在信息学竞赛中具有广泛的应用。 使用动态规划方法解题,对于不少问题具有空间耗费大、时间效率高的特点,因此人们在研究动态规划解题时更多的注意空间复杂度的优化,运用各种技巧将空间需求控制在软硬件可以承受的范围之内。但是,也有一部分问题在使用动态规划思想解题时,时间效率并不能满足要求,而且算法仍然存在优化的余地,这时,就需要考虑时间效率的优化。 本文讨论的是在确定使用动态规划思想解题的情况下,对原有的动态规划解法的优化,以求降低算法的时间复杂度,使其能够适用于更大的规模。 二、动态规划时间复杂度的分析 使用动态规划方法解题,对于不少问题之所以具有较高的时间效率,关键在于它减少了“冗余”。所谓“冗余”,就是指不必要的计算或重复计算部分,算法的冗余程度是决定算法效率的关键。动态规划在将问题规模不断缩小的同时,记录已经求解过的子问题的解,充分利用求解结果,避免了反复求解同一子问题的现象,从而减少了冗余。 但是,动态规划求解问题时,仍然存在冗余。它主要包括:求解无用的子问题,对结果无意义的引用等等。 下面给出动态规划时间复杂度的决定因素: 时间复杂度=状态总数*每个状态转移的状态数*每次状态转移的时间[1] 下文就将分别讨论对这三个因素的优化。这里需要指出的是:这三者之间不是相互独立的,而是相互联系,矛盾而统一的。有时,实现了某个因素的优化,另外两个因素也随之得到了优化;有时,实现某个因素的优化却要以增大另一因素为代价。因此,这就要求我们在优化时,坚持“全局观”,实现三者的平衡。 三、动态规划时间效率的优化 3.1 减少状态总数 我们知道,动态规划的求解过程实际上就是计算所有状态值的过程,因此状态的规模直接影响到算法的时间效率。所以,减少状态总数是动态规划优化的重要部分,本节将讨论减少状态总数的一些方法。

动态规划与随机控制

动态规划与随机控制 1953年,R . Bellman 等人,根据某类多阶段序贯决策问题的特点,提出了著名的“最优性原理”。在这个原理的指导下,他将此类多阶段决策问题转变为一系列的互相联系的单阶段决策问题,然后,逐个阶段予以解决,最后再形成总体解决。从而创建了求解优化问题的新方法——动态规划。1957年,他的名著《动态规划》出版。 1.离散型动态规划 离散型确定性动态规划 在解决美式期权问题时,我们通常采用倒向递推的方法来比较即时执行价格与继续持有价格。这是利用动态规划原理的一个典型例子。Richard Bellman在1953年首次提出动态规划原理. 最优化原理:无论过去的状态和决策如何,相对于前面的决策侧所形成的的状态而言,余下的决策序列必然构成最优子策略. 求解最短路径问题: 来看下面一个具体的例子:我们要求从Q点到T点的最短路径 其基本思想是分阶段求出各段到T点的最短路径: ?Ⅳ:C1—T 3 ?Ⅲ--Ⅳ: B1—C1—T 4 ?Ⅱ--Ⅲ--Ⅳ:A2—B1—C1—T 7 ?Ⅰ--Ⅱ--Ⅲ--Ⅳ: ?Q—A2—B1—C1—T 11 ?Q--A3—B1—C1—T 11 ?Q--A3—B2—C2—T 11 从以上分析可以看出最短路径不唯一。 最短路径解的特点 ?1、可以将全过程求解分为若干阶段求解;------多阶段决策问题 ?2、在全过程最短路径中,将会出现阶段的最优路径;-----递推性 ?3、前面的终点确定,后面的路径也就确定了,且与前面的路径(如何找到的这个终点)无关;-----无后效性 ?3、逐段地求解最优路径,势必会找到一个全过程最优路径。-----动态规划 离散型不确定性动态规划 离散型不确定性动态规划的特点就是每一阶段的决策不是确定的,是一个随机变量,带有一

lab4_动态规划算法设计与应用

实验四动态规划算法设计与应用 一. 实验目的和要求 1.加深对动态规划算法的基本原理的理解,掌握用动态规划方法求解最优化问题的方法步骤及应用; 2.用动态规划设计整数序列的最长递增子序列问题的算法,分析其复杂性,并实现; 3.用动态规划设计求凸多边形的三角剖分问题的算法,分析其复杂性,并实现。 4.选做题:用动态规划设计求解0/1背包问题的算法,分析其复杂性,并实现。 二.基本原理 动态规划是一种非常重要的程序设计方法,常用于求解最优化问题。最优化问题:给定若干个约束条件和一个目标函数,在某指定集合中求满足所有约束条件的且使得目标函数值达最大或最小的元素和相应的目标函数值,即:问题的最优值和最优解。 适用动态规划求解的问题的基本要素: (1)满足最优性原理:即一个最优化问题的最优解包含了其子问题的最优解。 (2)无后向性:即某阶段状态一旦确定,就不受这个状态以后决策的影响。也即,某状态以后的过程不会影响以前的状态,只与当前状态有关,这种特性也被称为无后效性。 (2)具有重叠的子问题:即问题被分解成的子问题存在互相重叠。动态规划方法对于这些重叠的子问题只求解一次,以提高算法的效率。 三.该类算法设计与实现的要点 动态规划算法求解最优化问题的步骤: (1) 找出问题的最优子结构。分析问题的最优解(最优值)的结构特征。 (2) 递归地定义最优值。根据最优子结构,确定最优值所满足的递归公式。 (3) 计算最优值。根据最优值的递归公式,采用自底向上的迭代或自顶向下的递归,计算最优值。 (4) 构造最优解。在求解最优值的过程中要记录下得到最优值的相应最优解的信息,并根据该信息构造最优解。 注意:在计算最优值时应保存相应的信息: (a) 已经求出的子问题的最优值(避免重复计算)。 (b) 最优解的有关信息。 动态规划算法求解其它问题的步骤: (1) 根据最优化原理分析问题的解的结构。 (2) 递归地定义问题的解。 (3) 计算问题的解。根据解的递归公式,自底向上或自顶向下地计算解,计算过程中注意保存已经求出的子问题的解。 其中,自底向上方法通过迭代来实现,适用于所有的子问题都需要解的情况,实现时要注意根据递归公式正确确定子问题的求解顺序。自顶向下方法通过递归来实现,适用于不必解所有的子问题的情况,实现时要注意标记子问题是否计算过,同一个子问题只在第一次递归调用时计算并存储结果。 四.实验内容 (一) 最长递增子序列问题

动态规划算法及其应用

湖州师范学院实验报告 课程名称:算法 实验二:动态规划方法及其应用 一、实验目的 1、掌握动态规划方法的基本思想和算法设计的基本步骤。 2、应用动态规划方法解决实际问题。 二、实验内容 1、问题描述 1 )背包问题 给定 N 种物品和一个背包。物品 i 的重量是 C i ,价值为 W i ;背包的容量为 V。问应如何选择装入背包中的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品,对每种物品只有两个选择:装入或不装入,且不能重复装入。输入数据的第一行分别为:背包的容量 V,物品的个数 N。接下来的 N 行表示 N 个物品的重量和价值。输出为最大的总价值。 2)矩阵连乘问题 给定 n 个矩阵:A1,A2,...,An,其中 Ai 与 Ai+1 是可乘的,i=1 , 2... , n-1。确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。输入数据为矩阵个数和每个矩阵规模,输出结果为计算矩阵连乘积的计算次序和最少数乘次数。 3 )LCS问题 给定两个序列,求最长的公共子序列及其长度。输出为最长公共子序列及其长度。 2、数据输入:文件输入或键盘输入。 3、要求: 1)完成上述两个问题,时间为 2 次课。 2)独立完成实验及实验报告。 三、实验步骤 1、理解方法思想和问题要求。 2、采用编程语言实现题目要求。 3、上机输入和调试自己所写的程序。 4、附程序主要代码: (1) #include int max(int a, int b) { return (a > b)? a : b; } int knapSack(int W, int wt[], int val[], int n) { if (n == 0 || W == 0) return 0;

常见动态规划算法问题策略分析

常见动态规划算法问题 策略分析

目录 一、动态规划策略 (1) 1.动态规划介绍 (1) 2.求解动态规划问题步骤 (1) 二、几种动态规划算法的策略分析 (1) 1.装配线调度问题 (1) 2.矩阵链乘问题 (2) 3.最长公共子序列(LCS) (3) 4.最大字段和 (4) 5.0-1背包问题 (4) 三、两种解决策略 (5) 1.自底向上策略 (5) 2.自顶向上(备忘录)策略 (5) 3.优缺点分析 (5) 四、总结 (6)

一、动态规划策略 1.动态规划介绍 动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移。一个决策序列就是在变化的状态中产生出来的,所以,这种多 阶段最优化决策解决问题的过程就称为动态规划。 基本思想与分治法类似,也是将待求解的问题分解为若干个子问题(阶段),按顺序求解子阶段,前一子问题的解,为后一子问题的 求解提供了有用的信息。在求解任一子问题时,列出各种可能的局部 解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解。 依次解决各子问题,最后一个子问题就是初始问题的解。 由于动态规划解决的问题多数有重叠子问题这个特点,为减少重复计算,对每一个子问题只解一次,将其不同阶段的不同状态保存在 一个二维数组中。 与分治法最大的差别是:适合于用动态规划法求解的问题,经分解后得到的子问题往往不是互相独立的(即下一个子阶段的求解是建 立在上一个子阶段的解的基础上,进行进一步的求解)。 2.求解动态规划问题步骤 (1)确定最优解结构 (2)递归定义最优解的值 (3)自底向上计算最优解的值 (4)重构最优解 二、几种动态规划算法的策略分析 1.装配线调度问题 分析:首先确定最优解结构,分析问题可知大致分为两种情况:

动态规划matlab仿真实例

动态规划在火力分配中的应用。 1.问题描述 设有m个目标,目标价值(重要性和危害性)各不相同,用数值A K(K=1,2,..m)表示,计划用n枚导弹突袭,导弹击毁目标的概率P K=,其中是常数,取决于导弹的特性与目标的性质;为向目标发射的导弹数,问题:做出方案使预期的突击效果最大。 2.问题建模 上述问题可以表述为 约束条件为 (为非负整数) 3.算法描述 下面通过一个实例说明:设目标数目为4(m=4),导弹为5(n=5),和a K取值情况如下表所示: 表1:A k 取值情况 目标K 1 2 3 4 8 7 6 3 0.2 0.3 0.5 0.9 将火力分配可分为4个阶段,每个阶段指标函数为:

可能取值为0,1,2,3,4,5,将函数值带人如下表: 表2 函数值 u 0 0 0 0 0 1 1.45 1.81 2.36 1.79 2 2.64 3.16 3.79 2.51 3 3.61 4.15 4.66 2.81 4 4.41 4.89 5.19 2.93 5 5.0 6 5.44 5.51 2.97 动态规划问题基本方程为: c =0 逐次向前推一级 K=4 K=3 K=2 K=1 () 只需要求解的最大值然后反推回去就可以获得最优的分配方案

4.Matlab仿真求解 因为与取值为整数,可以采用动态规划的方法,获得的最大值,对应的

最优方案 function[p_opt,fval]=dynprog(x,DecisFun,SubObjFun,TransFun,ObjFun) %求解动态规划问题最小值函数 k=length(x(1,:)) %判断决策级数 x_isnan=~isnan(x); % 非空状态矩阵 t_vubm=inf*ones(size(x)); % 性能指标中间矩阵 f_opt=nan*ones(size(x)); % 总性能指标矩阵 d_opt=f_opt; %每步决策矩阵 tmp1=find(x_isnan(:,k)); % 最后一步状态向量 tmp2=length(tmp1); % 最后一步状态个数 for i=1:tmp2 u=feval(DecisFun,k,x(tmp1(i),k)); tmp3=length(u);%决策变量 for j=1:tmp3 % 求出当前状态下所有决策的最小性能指标 tmp=feval(SubObjFun,k,x(tmp1(i),k),u(j)); if tmp <= t_vubm(i,k) %t_vub f_opt(i,k)=tmp; d_opt(i,k)=u(j); t_vubm(i,k)=tmp; end; end; end for ii=k-1:-1:1 tmp10=find(x_isnan(:,ii)); tmp20=length(tmp10); for i=1:tmp20 %求出当前状态下所有可能的决策 u=feval(DecisFun,ii,x(tmp10(i),ii)); tmp30=length(u) ; for j=1:tmp30 % 求出当前状态下所有决策的最小性能指标 tmp00=feval(SubObjFun,ii,x(tmp10(i),ii),u(j)); % 单步性能指标 tmp40=feval(TransFun,ii,x(tmp10(i),ii),u(j)); % 下一状态 tmp50=x(:,ii+1)-tmp40; % 找出下一状态在 x 矩阵的位置 tmp60=find(tmp50==0) ; if~isempty(tmp60) if nargin<6 %矩阵不同需要修改nargin的值,很重要 tmp00=tmp00+f_opt(tmp60(1),ii+1); % set the default object value else tmp00=feval(ObjFun,tmp00,f_opt(tmp60(1),ii+1)); end %当前状态的性能指标 if tmp00<=t_vubm(i,ii) f_opt(i,ii)=tmp00; d_opt(i,ii)=u(j);

相关文档