文档库 最新最全的文档下载
当前位置:文档库 › 卡门涡街流量计

卡门涡街流量计

卡门涡街流量计
卡门涡街流量计

压电晶体式涡街流量传感器放大电路的设计

!"#$%&’()*"+,-.$(/$&%0$123$)(’14$"5’"."2)1$201/#)6.7’1)"89.’:;16&#<32"1

杜清府

(山东大学威海分校控制系,威海264209)

摘要通过对涡街信号频谱的分析,发现涡街传感器主要干扰源为固有振荡频率,并设计了解决此种干扰的传感器放大电路。

关键词涡街流量计固有振荡频率低通滤波器

A b s t r a c t T h r o u g h a n a l y z i n g t h e s p e c t r u mo f t h e s i g n a l s o f v o r t e x f l o w t r a n s d u c e r,t h e a u t h o r f o u n d t h a t t h e v o r t e x f l o w m e t e r i sm a i n l y d i s t u r b e d b y t h e f r e q u e n c y o f n a t u r a l o s c i l l a t i o n,a n d d e s i g n s t h e a m p l i f y i n g c i r c u i t o f t h e t r a n s d u c e r t o s o l v e t h i s p r o b l e mo f d i s t u r b a n c e.

K e y w o r d s V o r t e x f l o w m e t e r F r e q u e n c y o f n a t u r a l o s c i l l a t i o n L o w-p a s s f i l t e r

0引言

由于涡街流量传感器无活动部件,重复性好,测量精度较高,输出信号频率与流量成正比等优点,其市场规模迅速扩大,并且市场占有率也逐年提高。

涡街流量传感器设计的关键性技术在于3个方面:①传感器表体设计。当流体经过时,产生稳定的卡门涡街信号;②传感器探头的设计。将压电晶体封装在探头内,卡门涡街信号作用于探头时,探头内的压电晶体将涡街信号变成涡街电信号;③放大电路设计。将涡街电信号放大、整形变成相应的脉冲信号。

各相关仪表厂经过多年的研究,表体设计已经成熟,各种卡门涡街发生器的论述已经很多。而后两个方面的设计有很大的关联性,传感器探头设计得好,信噪比大、灵敏度高、信号大,后边的放大电路设计就比较容易,反之,后边的电路设计就困难。多年来,各相关仪表厂研究发现,立片式(压电晶体竖立放置)结构的探头有很大优点,其信号大(可达100m V),信噪比较高,比圆片式抗震性好。但是,从目前各厂家生产的传感器的使用情况来看,并不令人十分满意。暴露出来的主要问题是:传感器在上限流速时,输出有掉波或增波现象,有时上限频率根本上不去;另一方面,下限流速也达不到设计要求,也就是流体流速接近下限时无脉冲信号输出。所以,现在大多数涡街流量传感器只是在中间流速段时信号比较稳定,这就限制了涡街流量传感器的应用,此问题一直困扰着各涡街仪表生产厂家。为此,笔者应有关厂方要求,对其传感器信号波形进行测量,并进行频谱分析。经分析发现传感器探头的主要问题在于:其固有振荡频率信号干扰着传感器信号,并且涡街信号频率越高,固有频率信号越强;另外,涡街信号在上限和下限流速时幅值差异很

大。

1传感器探头固有振荡频率

很多资料都介绍涡街信号在高流速时附有高频干扰信号,并有要求在放大电路增加低通滤波器环节,但这种高频干扰信号到底有多大,频率是多少?都没有一个定量的指标,因此,设计放大电路时就比较盲目,设计出的放大电路应用效果不好。图1是某仪表厂50m m管径涡街流量传感器压电晶体输出信号的波形图,将它进行频谱分析后得到图2所示的频谱图,其中420H z谱线为流量卡门涡街信号,它和实际的流量值相符合,2988H z谱线为传感器探头高频干扰信号。通过多次实验发现,

当改变管道内流体的流量时,

频谱图

P R O C E S SA U T O M A T I O N I N S T R U M E N T A T I O N V o l.26N o.3M a r c h2005

附近。而不同规格的探头,其高频干扰信号的频率则各不相同,图3所示为100m m 管径涡街流量传感器压电晶体输出信号的波形图,图4为其频谱图,可以看到其高频干扰信号为2080H z 。经对多种规格传感器探头进行对比,发现不同规格的探头(图5)其高度h 各不相同。进一步研究发现,高频干扰信号的频率与探头的高度、直径、材料、壁厚、形状等因素有关,它是传感器探头固有的频率,叫做固有振荡频率。探头的高度越大,固有频率就越低,信号就越大。同一规格探头,涡街信号频率越高(接近固有频率),固有频率的信号对涡街信号的影响就越大。所以,当涡街信号频率非常靠近固有频率时,

涡街信号就会被固有频率信号

淹没。

4

*u i

根据上述要求,确定R C 参数:频率为1400H z 、幅值为200m V 的信号输出2m V ;频率为3000H z 、幅值为200m V 的信号输出0.5m V 。R C 的数值不难确定。2.3自动增益控制放大器

图6中的第3级电路为自动增益控制放大器,其输出信号幅值达到一定值时才能触发后级的施密特触发器,而滤波器输出的信号上限和下限幅值相差200倍,对小信号放大倍数大,大信号放大倍数小,所以R 9/R 7E 200,使放大倍数自动调节到200倍。当信号较小时,二极管不导通,放大倍数为R 9/R 7;一旦二极管导通,放大倍数就变小,起到自动增益控制的作用。

3

5压电晶体式涡街流量传感器放大电路的设计

杜清府

图7为实际电路输出波形,图8为其频谱图,可以看到固有振荡信号,说明前级滤波不够(一级二阶低通滤波)。图9为两级四阶低通滤波器滤波后放大输出波形图,图10

为其频谱图。

1994.6

修改稿收到日期:2004年5月14日。

作者杜清府,男,1964年生,1988年毕业于山东大学,获学士学位,副教授;主要从事测控技术和计算机应用的教学和科研工作。

(上接第51页)

图6温补电路的输入输出特性曲线

把温度补偿电路的输出电压进行模—数转换作为线性化电路的第二输出量,采用数据融合或神经网络的方法进行温度误差修正以达到更高要求的测量精度。

4结束语

实验测试与实际应用表明,各电路运行可靠,性能稳定,精度高,故障率低。测量显示组件电路及传感器的配套电路———激、拾振与温度补偿电路的实现,使检测系统具有自动化程度高、检测速度快、高精度多参数显示的特点,体现了良好的实用性与较高的性价比,可以满足多种测试环境的要求。

参考文献

1郑子礼.单片机及其外围集成电路技术手册[M ].光明日报出版社,1999

2马忠梅,籍顺心.单片机的语言应用程序设计[M ].

北京航空航天大学出版社,19983王幸之,王雷,王闪,等.单片机应用系统抗干扰技术[M ].北京航空航天大学出版社,1999

修改稿收到日期:2004-09-02。

第一作者张

,男,1974年生,2004年毕业于空军工程大学,

获硕士学位,现为在读博士研究生;主要研究方向为检测与自动化、传感器网络与网络传感器、传感器数据融合及远程检测与故障诊断。

4

5《自动化仪表》第26卷第3期2005年3月P R O C E S SA U T O M A T I O N I N S T R U M E N T A T I O N V o l .26N o .3M a r c h2005

简述旋涡流量计的工作原理及性能特点

在电力、化工、石油等众多的工业部门当中,旋涡流量计这种仪器的使用已经是比较的常见了。旋涡流量计这种先进的仪器,它是采用了最新的微处理技术,因此旋涡流量计具有流量范围宽、功能强等的众多优点。下面我们就来了解下旋涡流量计的一些基本的工作原理以及性能的特点。 一、旋涡流量计基本工作原理 旋涡流量计原理当流体通过由螺旋形叶片组成的旋涡发生器后,流体被迫绕着发生体轴剧烈旋转,形成旋涡。当流体进入扩散段时,旋涡流受到回流的作用,开始作二次旋转,形成陀螺式的涡流进动现象。该进动频率与流量大小成正比,不受流体物理性质和密度的影响。检测元件测得流体二次旋转进动频率,就知道了流量。而且能在较宽的流量范围内获得良好的线性度。菲格瑞思旋涡流量计算式为流量计的仪表系数在一定的结构参数和规定的雷诺数范围内与流体的温度、压力、组分和物性(密度、粘度)无关。 二、漩涡流量计主要的性能特点 1、内置式压力、温度、流量传感器,安全性能高,结构紧凑,外形美观。 2、采用新型信号处理放大器和独特的滤波技术,有效地剔除了压力波动和管道振动所产生的干扰信号,大大提高了流量计的抗干扰能力,使小流量具有出色的稳定性。 3、就地显示温度、压力、瞬时流量和累积流量。 4、特有时间显示及实时数据存储之功能,无论什么情况,都能保证内部数据不会丢失,可永久性保存。 5、防盗功能可靠,具有密码保护,防止参数改动。 6、表头可180度随意旋转,安装方便。 7、整机功耗极低,能凭内电池长期供电运行,是理想的无需外电源就地显示仪表。 上述的内容就是我们在使用漩涡流量计之前需要去了解到的基本原理及性能的特点。希望上面所说的内容对您有所帮助吧。详细参考资料:https://www.wendangku.net/doc/e518919269.html,/

智能涡街流量计说明书

一、概述 涡街流量计是根据卡门涡街理论,利用了流体的自然振动原理,以压电晶体或差动电容作为检测部件而制成的一种速度式流量仪表。 该仪表采用独特的差动技术,配合隔离、屏蔽、滤波等措施,克服了同类产品抗震性差、小信号数据紊乱等问题,并采用了独特的检测探头封装新技术和防护措施,保证了产品的可靠性。产品有管道式和插入式两种结构型式,每种型式都有高温、高压、防腐、防爆、温压补偿一体型等规格,又有整体和分体结构,以适应不同的测量介质和安装环境。 该仪表具有量程比宽,精度高,安装维护方便和介质适应性广等一系列优点。可广泛应用于石油化工、冶金机械、食品、造纸,以及城市管道供热、供水、煤气等行业的各种低黏度液体、气体、蒸汽等单相流体的工艺计量和节能管理。 二、工作原理 涡街流量计根据卡门涡街理论,在流体中设置旋涡发生体,当流体流经旋涡发生体时,它的两侧就形成了交替变化的两排旋涡,这种旋涡被称为卡门涡街。斯特罗哈尔在卡门涡街理论的基础上又提出了卡门涡街的频率与流体的流速成正比,并给出了频率与流速的关系式: f = St × V/d 式中: f 涡街发生频率 (Hz) St 斯特罗哈尔系数(常数) d 旋涡发生体迎流面宽度 V旋涡发生体两侧的平均流速(m/s ) 图1 这些交替变化的旋涡就形成了一系列交替变化的负压力,该压力作用在检测探头上,便产生一系列交变电信号,经过检测放大器转换、整形、放大处理后,输出脉冲频率信号,或进一步转换成与流量成正比的4 ~ 20mA.DC标准电流信号。 三、基本特点 ●安装简便,维护十分方便。 ●应用范围广,压力损失小,运行费用低。 ●结构简单牢固,无可动部件,使用寿命长。 ●采用抗机械振动,抗冲击和抗脏污的结构新设计。 ●从检测探头到运放电路实现了高度的互换性和通用性。 ●可现场显示,也可远距离传输,还可与计算机控制系统联网。 ●检测元件不直接接触测量介质,尤其适合恶劣环境下的流量测量。 ●操作简单,全部参数设定和调试在出厂前已完成,一般通电后即可正常工作。

旋进旋涡流量计的工作原理、结构及特点

旋进旋涡流量计的工作原理、结构及特点1、工作原理 旋进旋涡流量计中流量传感器的流通剖面类似文丘利管的型线,在入口侧安放一组螺旋型导流叶片。当流体进入流量传感器时,导流叶片迫使流体产生剧烈的旋涡流;当流体进入扩散段时,旋涡流受到回流的作用,开始作二次旋转,形成陀螺式的涡流进动现象。该进动频率与流量大小成正比,不受流体物理性质和密度的影响,检测元件测得流体二次旋转进动频率就能在较宽的流量范围内获得良好的线性度。信号经前置放大器放大、滤波、整形转换为与流速成正比的脉冲信号,然后再与温度、压力等检测信号一起被送往微处理器进行积算处理,在液晶显示屏上显示出测量结果(瞬时流量、累积流量及温度、压力数据)。流量计由温度和压力检测模拟通道、流量传感器通道以及微处理器单元组成,并配有外输出信号接口,输出各种信号。 当被计量介质沿着流动的流体进入流量传感器入口时,螺旋形叶片强迫流体进入旋转运动,于是在旋涡发生体中心产生旋涡流,旋涡流在文丘利管中旋进,到达收缩段突然节流使旋涡流加速。当旋涡流进入扩散段后,因回流作用强迫进行旋进式二次旋转,此时旋涡流的旋转频率与介质流速成正比,并为线性。两个压电传感器检测的微弱电荷信号,同时经前置放大器放大、滤波、整形后变成两路频率与流速成正比的脉冲信号,积算仪中的处理电路对两路的脉冲信号进行比较与判别,剔除干扰信号,而对正常的流量信号进行计数处理。旋进旋涡

流量计其工作原理如图1 所示。 2、组成结构 旋进旋涡流量计由壳体、旋涡发生体、除旋整流器、旋涡检测组件、压力接口、信号输出接口、温度接口等组成(图2)。 3、特点 (1)测量流量范围较宽,可有效工作在孔板流量计无法准确计量的小流量区域。 (2)在工艺安装中,较孔板流量计可大大缩短仪表上、下游直管段。(3)流量信号既可就地显示,也可按需远传。 (4)体积小、重量轻,便于离线标定。 (5)无可动部件,对于一般的测量不存在仪表的机械磨损。(6)实现机电一体化,日常的计量不需要人工值守。

旋进旋涡流量计(新样本)

大连计测机器有限公司 旋进旋涡流量计 使用说明书

目录 一、概述 二、结构与工作原理 三、主要技术参数与功能 四、选性与安装 五、使用方法 六、接线 七、故障现象及排除方法 八、包装、运输及贮存 九、开箱及检查

旋进旋涡流量计 一、概述 JCLUX智能旋进旋涡流量计是我公司开发研制的具有国内领先水平的新型气体流量仪表。该流量计集流量、温度、压力检测功能于一体,并能进行温度、压力、压缩因子自动补偿,是石油、化工、电力、冶金等行业用于气体计量的理想仪表。 1.1产品主要特点 ●无机械可动部件,不易腐蚀,稳定可靠,寿命长,长期运行无须特殊维护; ●采用16位电脑芯片,集成度高,体积小,性能好,整机功能强; ●智能型流量计集流量探头、微处理器、压力、温度传感器于一体, 采取内置式组合, 使结构更加紧凑,可直接测量流体的流量、压力和温度,并自动实时跟踪补偿和压 缩因子修正; ●采用双检测技术可有效地提高检测信号强度,并抑制由管线振动引起的干扰; ●采用国内领先的智能抗震技术,有效的抑制了震动和压力波动造成的干扰信号; ●采用汉字点阵显示屏,显示位数多,读数直观方便,可直接显示工作状态下的体积 流量、标准状态下的体积流量、总量,以及介质压力、温度等参数; ●采用EEPROM技术,参数设置方便,可永久保存,并可保存最长达一年的历史数 据; ●转换器可输出频率脉冲、4~20mA模拟信号,并具有RS485接口,可直接与微机 联网,传输距离可达1.2km; ●多物理量参数报警输出,可由用户任选其中之一; ●流量计表头可360度旋转,安装使用简单方便; ●配合本公司的FM型数据采集器,可通过因特网或者电话网络进行远程数据传输 ●压力、温度信号为传感器输入方式,互换性强; ●整机功耗低,可用内电池供电,也可外接电源。 1.2主要用途 JCLUX智能旋进旋涡流量计可广泛应用于石油、化工、电力、冶金、城市供气等行业测量各种气体流量,是目前油田和城市天然气输配计量和贸易计量的首选产品。 二、结构与工作原理 2.1流量计结构 流量计由以下七个基本部件组成(图1): 1.旋涡发生体 用铝合金制成,具有一定角度的螺旋叶片,它 固定在壳体收缩段前部,强迫流体产生强烈的漩 涡流。 ⒉壳体 本身带有法兰,并有一定形状的流体通道, 根据不同的工作压力,壳体材料可采用铸铝合金或不锈钢。 (图1)

卡门涡街的计算

卡门涡街的计算 一、现象简述 粘性不可压的定常来流绕过某些物体时,物体两侧会周期性地脱落出旋转方向相反、并排列规则的双列线涡。开始时,这两列线涡分别保持自身的运动前进,接着它们互相干扰,互相吸引,而且干扰越来越大,形成非线性涡街。 卡门涡街的形成与雷诺数有关,雷诺数为40-300时,脱落的涡旋有周期规律,雷诺数大于300,涡旋开始随机脱落,随着雷诺数的增大,涡旋脱落的随机性也增大,最后形成湍流。现通过二维圆柱绕流问题对涡街现象进行数值模拟。 二、模型建立 几何模型建立如下,数值计算中雷诺数为200,即入口速度为 0.031m/s。 圆柱体半径为50mm.

三、创建网格 通过Ansys ICEM CFD进行预处理,生成二维平面网格。 观察发现,圆周周围网格较密,向外逐步变疏,同时圆周围有理想边界层。 四、计算结果 将所生成的网格导入FLUENT,检查网格质量合格后,通过二维求解器求解。因为模型设定雷诺数为200,所以选择层流模式进行流动模拟。默 认空气为默认材料,并采用系统默认的物性参数。进一步定义边界条件,设置速度入口和出流边界。应用SIMPLE速度-压强关联算法,通过二阶迎 风格式计算通量。初始化后,先进行基于压力的定常求解。 而后将上一阶段求解结果作为之后非定常求解的初值进一步求解。 求解结束后生成的涡量云图如下:

计算最后阶段的静压云图如下: 速度云图如下:

五、问题、收获总结 收获: 1、初步了解了ICEM CFD和FLUENT的操作使用 2、简单了解了卡门涡街现象 例如:通过监视升力能看到升力系数随时间不断波动,且波动幅度在 逐步增大,后来渐渐稳定。通过涡量云图看到了涡街的大致形态。并 在定常计算过程中,观察到监控残差在不断的快速上下大幅度波动, 且波动幅度越来越大。 存在的问题: 1、只能大体知晓软件操作流程,对其中的物理意义和数学方法还无法理 解。 2、对于计算所得的数据也是一头雾水 3、软件使用并不熟练。 例如: 监控升力画出的曲线是可以以图片格式导出的(write),可是我在一开始的操作过程中并没有这样做,导致最后找不到曲线图。 最开始使用FLUENT,不会按时间间隔导出数据,导致最后只能显示第200个时间间隔的数据,最后不得不重新计算。 像这样,还如诸多问题,有待解决。 六、相关理论学习及遇到的问题 1、雷诺数是表征粘性影响的物理量,其大小决定了粘性流体流动特性。 雷诺数小于2000时,流体是层流,大于4000,为湍流,2000到4000 之间为过渡阶段。周期性卡门涡街对应的雷诺数为40-300。 2、除三类流动(准定常流动、流场变化速率很快的流动和流场变化速度 极快的流动)外某些状态反复出现的流动也被认为是非定常流动,例 如,脉流动(流场各点的平均速度和压强随时间周期性波动)。而卡门 涡街就属于脉流动的一种。 3、该算例雷诺数等于200条件下,涡脱落的周期是25秒。 4、涡量是流体速度矢量的旋度,是描写旋涡运动常用的物理量。 问题 1、每次脱落的一对涡有哪些异同? 2、涡是不是不能单独一个出现? 3、涡的定义与结构是什么?

智能涡街流量计使用说明书(三线制)

智能涡街流量计使用说明书

目录 一,产品概述 二,测量原理 三,结构与技术参数 四,流量计的选型 五,流量计的安装 六,流量计的电气连接 七,故障排除与日常维护

一、 产品概述 1. 概述 涡街流量仪表是根据卡门涡街理论,利用了流体的自然振动原理,以压电晶体或差动电容作为检测部件而制成的一种速度式流量仪表。 该仪表具有无可动部件、测量范围度大、介质适应性广、测量精度高、检定周期长、 传输信号距离远、压力损失小、结构简单、运行可靠、使用寿命长、安装维护方便等许多显著优点。可广泛应用于石油化工、治金机械、食品、造纸,以及城市管道供热、供水、煤气等行业的各种液体、气体、蒸气等单相流体的工艺计量和节能管理。 2. 产品特点 ● 采用抗机械震动,抗冲击和抗脏污的结构新设计。 ● 采用最先进的集成电路,信号处理精度高,高抗干扰性,可靠性高。 ● 可选用加宽量程型号,获得优越的小流量性能和扩宽的流量范围。 ● 可选用电容式流量计,抗震性能好,最高测量温度达到400 ℃。 二、 测量原理 涡街流量计是由设计在流场中的旋涡发生体、检测探头及相关的电子线路等组成。当液体流经三角柱形旋涡发生体时,它的两侧就成了交替变化的两排旋涡,这种旋涡被称为卡门涡街(图1),在此基础上得出了频率与流体的流速的关系: F= St ×V/d 式中:f ————————————涡街发生频率(Hz ) V ————————旋涡发生体两测的平均流速(m/s )St-----------------------斯特罗哈尔系数(常数) 这些交替变化的旋涡就形成了一系列替变化的负压力,该压力作用在检测深头上,便产生一系列交变电信号,经过前置放大器转换、整形、放大处理后,输出与旋涡同步成正比的脉冲频率信号(或标准信号) 旋涡发生体 探头 交变力 图1 三、 结构与技术参数 1. 流量计的结构形式 流量计是由表体与检测放大器及连接这两部分的连接杆组成,表体及其组成部件和连接杆均由1Cr18Ni9Ti 不锈钢材质制成,具有防腐耐用之优点;仪表根据安装方式不同分三种结构形式,分别是满管式、简易插入式、球阀插入式,结构形式如下图所示:

基于四叉树的复杂边界四边形网格自适应生成方法研究

基于四叉树的复杂边界四边形网格自适应生成方法研究 网格生成是有限元分析中不可缺少的前处理阶段,被处理对象只有在被网格化之后才能运用有限元方法进行求解。通常典型的适体网格生成方法不适于对复杂边界进行自适应网格生成,作为一种典型的非适体网格生成方法,笛卡尔网格 越来越受人们的青睐。 目前,笛卡尔切割网格法中的边界切割的形式仅仅局限于单边切割,对于边 界切割单元的处理也多局限于合并处理。某些情况下不方便甚至不可能将其划分至单边切割的形式。 此外,还存在如对于切割单元的合并处理会导致有限元分析中不要的悬点的产生等情况。本文以上述问题为切入点,对笛卡尔切割网格进行了深入研究。 本文首先将平衡四叉树网格生成的终止条件之一修改为双边切割。为了便于分析和判断,对两线段的位置关系和网格类型做了详细的分类,并给出严格的说 明和定义;在此基础上,给出了两线段位置关系的判别算法和网格节点内外类型判别方法。 在判定网格是否被域边切割时,创新性地提出了网格对角线标准相交判别法。其次,本文深入研究了悬点的特点和规律,提出了悬点环和悬点链的概念,并用来处理初始生成的网格中的悬点。 在这个过程中,本文给出了悬点环和悬点链的悬点处理模板。为进一步消除边界顶点式悬点和小面积网格,本文对悬点处理后的网格进行了移点处理。 第三,在边界切割处理环节,本文研究了多种边界切割情况,并从中总结出了边界切割规律。本文提出了单边切割和域点切割两种基本网格切割类型,其他网格切割类型都可看成这两种基本切割类型的组合。

通过这两种基本切割类型,本文有效地求解了三边以下的网格切割,得到了8种切割单元类型。针对每种切割单元类型,本文都给出了相应的四边形化模板,应用这些模板将切割单元进行四边形化不会产生新的悬点,并通过多个实例验证了其中较为常用的模板的正确性。 最后,本文采用了拉普拉斯方法对网格进行优化,并将优化后的网格应用于卡门涡街和后台阶流动两个典型的实例,验证了本文网格划分方法可行性和有效性。

简述旋进漩涡流量计的原理

简述旋进漩涡流量计的原理 旋进漩涡流量计是智能旋进漩涡流量计采用微处理技术,具有功能强、流量范围宽、操作维修简单,安装使用方便等优点,主要技术指标达到国外同类产品先进水平。广泛应用于石油、化工、电力、冶金煤炭等行业各种气体计量。 流量传感器的流通剖面类似文丘里管的型线。在入口侧安放一组螺旋型导流叶片,当流体进入流量传感器时,导流叶片迫使流体产生剧烈的旋涡流。当流体进入扩散段时,旋涡流受到回流的作用,开始作二次旋转,形成陀螺式的涡流进动现象。该进动频率与流量大小成正比,不受流体物理性质和密度的影响,检测元件测得流体二次旋转进动频率就能在较宽的流量范围内获得良好的线性度。信号经前置放大器放大、滤波、整形转换为与流速成正比的脉冲信号,然后再与温度、压力等检测信号一起被送往微处理器进行积算处理,在液晶显示屏上显示出测量结果(瞬时流量、累积流量及温度、压力数据)。 旋进漩涡流量计的主要特点 1、旋进漩涡流量计内置式压力、温度、流量传感器,安全性能高,结构紧凑,外形美观。 2、就地显示温度、压力、瞬时流量和累积流量。 3、旋进漩涡流量计采用新型信号处理放大器和独特的滤波技术,有效地剔除了压力波动和管道振动所产生的干扰信号,大大提高了流量计的抗干扰能力,使小流量具有出色的稳定性。 4、特有时间显示及实时数据存储之功能,无论什么情况,都能保证内部数据不会

丢失,可性保存。 5、旋进漩涡流量计整机功耗极低,能凭内电池长期供电运行,是理想的无需外电源就地显示仪表。 6、防盗功能可靠,具有密码保护,防止参数改动。 7、旋进漩涡流量计表头可180度随意旋转,安装方便。 旋进漩涡流量计集流量、温度、压力检测功能于一体,并能进行温度、压力、压缩因子自动补偿,旋进漩涡流量计是石油、化工、电力、冶金等行业用于气体计量的理想仪表。

涡街模拟建议

1.我计算的是一个二维自维持振荡问题(好多文献都这样说),我采用层流算法也得到了类似的结果,k-e-rng也可以。而别的模型都不行了,一般都是最后得到一个稳定的解(和文献上说的不同)。因为雷诺数比较小,不能确定什么时候转变成紊流,所以想用一个能够计算过渡流动的模型。不知道用k-e-rng模型是不是就可以说是准确,因为没有具体的试验数据,是不是可以根据它的计算流场和试验流场相似就确定计算的合理性和准确性呢?多谢多谢 Hi-key: 这种问题的要求比较高,类似的问题我只算过卡门涡阶的。不过当时是用层流算得。你这个例子里面如果跟湍流模型敏感,我建议你可以尝试以下方法:FzN/5[ 选用其他湍流模型,然后在进出口边界处的湍流相设置时,使用湍流强度和粘性比然后将这两个数值全部给0,再计算时使用绝对压力计算。也许会有变化,也许没用,你可以试试,把结果告诉我。谢谢,另外在所有的湍流模型中k-e-rng是最适合计算低雷诺数湍流模型的,当然你也可以尝试真正的低雷诺数湍流模型,需要在用户界面中输入命令行激活,至于怎么激活我忘了,哈哈,不好意思,等我查到了给你哈。f.!Z?流体中文网论坛-- 流体力学及相关领域学术问题交流论坛。/. 另外判断结果是否正确只能靠实验或者查文献了,流态特征相似只能证明大体上没错,但是精度就不知道了。 我计算的是周期性边界条件,和绝对压力有关系吗?我刚才改变了初场的两个湍流变量(不知道是不是你所说的湍流强度和粘性比)计算了一下,发现对结果影响很大,都为零时,没有振荡现象;增大这两个值又会出现不同的流场。 绝对压力只是为了使计算更加准确,你也可以用表压计算。Re\!3 湍流的两个变量是入口处的脉动情况,都为0时跟层流接近但是跟层流不同。你将湍流强度设为5%,粘性比设为0.01。再试试看,有变化的话,换别的湍流模型再试下。UH另外周期边界中你设定压降还是流量?流量的指定方式更加容易出现波动。pMy 我设定的是流量。刚才我变化了这两个湍流变量,影响比较大。我这段时间一直在试验不同的湍流模型,以找到比较适合的。我试过别的湍流模型,最后都是趋于稳定的。另外,我选用层流和rng模型时,最后的振荡基本是一致的(如图,绿色:rng,白色:层流)。我计算的过程是,先用稳态算法算出一个初场,然后改用非稳态算法继续计算(有人说过这样的方法),不知道这个是不是有什么影响?这样计算时,非稳态计算的初场是不同的。 换成别的湍流模型时,即使用稳态得到一个类似于r ng的计算结果,然后改用非稳态算法,最后都是稳定的。上下对称就不会振荡,不对称才会振荡。其他湍流模型的初场都类似于这个不对称流场,但是最终都是稳定了,即上下对称。nUvIv 按照我的经验,你这样算:^P& 选用层流模型,通过修改流体的物性来凑雷诺数,然后把流速条的小一些(雷诺数不变),然后计算就可以了,所有的松弛因子调到1,连续性方程0.9,用simplc算法,离散格式用二阶,应该就没错了。vHSp PS上面那个图是算淹没射流同志的case,不知道是不是他想要得结果。

卡门涡街的成因及涡街流量计的应用前景

卡门涡街的成因及涡街流量计的应用前景 曹继和 (锦州铁合金(集团)股份有限公司,锦州市121005) 摘 要 本文对卡门旋涡的形成进行了阐述,通过与节流型流量计比较,指出了涡街流量计的优点,并对其应用前景进行了展望。 关键词 卡门涡街 节流孔板 涡街流量计 流动流体中旋涡的出现,是增大流动阻力、造成较大能量损失的重要原因。所以,在流体输送中应尽量避免或减少旋涡产生的机会。但随着人们对旋涡产生和运动规律的认识不断深化,在工程实践中有意识地加以运用,如近年来人们对卡门涡街的旋涡研究取得了新的成果,运用到流量测量中去,便成功地设计制造了卡门涡街流量计。 一、卡门涡街的形成及涡街流量计 当流体绕流一个无限长的圆柱体时,将发生边界层分离,并在柱后形成旋涡,增大机械能量的损失。实验证明,在流体雷诺数R e=60~5000的范围内,圆柱体后面出现两列多少有些规则的旋涡列。两列旋涡的旋转方向相反,上面的一列均按顺时针方向旋转,下面的一列循逆时针方向旋转;上下两列的旋涡交替地排列着。这种整齐排列着象街道一样的旋涡列被称为“涡街”。1912年卡门最先研究了这一现象,所以又称卡门涡街。卡门涡街不只是在流体绕流圆柱体时出现,在流体绕流三角柱、四角柱时也会发生。应当指出,并不是任何情况下都能形成涡街。对于一定形状的物体和不同的流体,涡街的形成,取决于雷诺数的大小。若雷诺数很低将不发生边界层分离,没有旋涡形成(或只在圆柱后形成一对尾涡);若流速极大(R e数很大),旋涡流动极其多变而又杂乱无章,便无法实现涡街的整齐排列。卡门涡街的斯特罗哈尔数与旋涡发射频率f、圆柱直径d 及平均流速v-之间存在着下列关系:S t=f d/v-。在R e数介于103~105范围内,S t数为常数的特性是卡门涡街的一个重要特性。由上式可见,若圆柱直径d已知,如果能测出旋涡发射频率f,便可求得流速v-,再乘以流道截面积A就可得到流量Q了。卡门涡街流量计就是根据这一特性制成的。 二、卡门涡街流量计与孔板差压计 的比较及应用前景 差压式流量仪表有许多一次元件可供选用,薄边锐孔板是应用最多的一种,其中又以同心锐孔板使用最为广泛,相比之下偏心孔板和圆缺孔板的使用要少得多。同心锐孔板被广泛应用的主要原因是由于它有以下一些优点: 1.价格便宜;2.各种材料均可使用;3.适用的管道尺寸范围大(25~1200)m m; 4.有大量的应用数据,特性是已知的;5.孔板安装恰当时,误差小。但是孔板也存在着一些难以克服的缺点: 1.永久压力损失较大; 2.易堵塞,不宜用在浆料测量场所; 3.量程仅为3∶1,最大不超过4∶1; 4.要求有较长的直管段; 5.准确度取决于安装的好坏,并易受磨损、冲蚀的影响。相对孔板而言,卡门涡街流量计的优点是: 1.仪表的标定系数不受流体压力、温度、密度、粘度及成分变化的影响,在更换检测元件时不需重新标定; 2.量程比大,液体为15∶1,气体为30∶1; 3.管道口径不受限制,范围很宽,为(25~2700)mm; 4.压力损失相当小; 5.输出 13 计量技术 1997.№5

LUGB涡街流量计说明书

LUGB系列涡街流量计使用说明书

录目 - - - - - - - - - - - - - - - (3)工作原理一. 概述二. 技术参数 - - - - - - - - - - - - - - - - - - - (4) 三. 流量范围- - - - - - - - - - - - - - - - - - - (4) 四. 安装结构图- - - - - - - - - - - - - - - - - - (5) 五. 安装及接线 - - - - - - - - - - - - - - - - - - (6) 六. 流量计参数整定 - - - - - - - - - - - - - - - - (9) 七. 流量计信号检测、调整和校验方法 - - - - - - - - - (10) 八. 维护及故障排除 - - - - - - - - - - - - - - - - (10) 九. 订货须知 - - - - - - - - - - - - - - - - - - - (11) 十. 智能流量计操作说明 - - - - - - - - - - - - - - (12)

一概述 LUGB系列涡街流量计是一种采用压电晶体作为检测元件,输出与流量成正比的标准信号的流量仪表。该仪表可以直接与DDZ-Ⅲ型仪表系统配套,也可以与计算机及集散系统配套使用,对不同介质的流量参数进行测量。该仪表根据流体涡街的检测原理,其检测涡街的压电晶体不与介质接触,仪表具有结构简单、通用性好和稳定性高的特点. LUGB系列涡街流量计可用于各种气体、液体和蒸汽的流量检测及计量。 LUGB 系列涡街流量计可以与本公司生产的智能流量积算仪配套使用,也可以和其它仪表厂商生产的智能仪表配套使用,具有通用性强的特点。 二工作原理 涡街流量计的基本原理是卡门涡街原理,?即“涡街旋涡分离频率与流速成正比”。 流量计流通本体直径与仪表的公称口径基本相同。如图一所示,?流通本体内插入有一个近似为等腰三角形的柱体,柱体的轴线与被测介质流动方向垂直,底面迎向流体。 当被测介质流过柱体时,在柱体两侧交替产生旋涡,旋涡不断产生和分离,?在柱体下游便形成了交错排列的两列旋涡,即“涡街”。理论分析和实验已证明,?旋涡分离的频率与柱侧介质流速成正比。 式中: f──柱体侧旋涡分离的频率(Hz); V──柱侧流速(m/s); d──柱体迎流面宽度(m); Sr ──斯特劳哈尔数。是一个取决于柱体断面形状而与流体性质和流速大小基本无关的常数。 圆管内的涡街图一 三产品特点

湍流形成的真实原因-射流涡街理论的研究价值

湍流形成的真实原因—射流涡街现象的深入力学分析 (2011-12-25 07:04:32) 标签: 分类:流体力学涡流理论 科学论文 流体力学理论 实验分析 新涡街现象 杂谈 湍流真实成因解密—新发现射流涡街现象力学原理深入分析 刘昌喆发现了与卡门涡街不同的射流涡街,在射流涡街实验中,演示了低速入塘射流会有左右交替生成涡街现象,速度升高以后射流还会出现甩尾现象。参见本博图片。自然河流中也常有射流涡街现象,不过至今还没有多少人对此注意。刘昌喆于2011年录到了深圳沙河中射流涡街视频影像。参见我新浪博客新发现涡街日志中视频。 北京航空学院(现在的中国航空航天大学)著名教授宁幌讲课说过“流体经不住搓,一搓就有涡。”这话最早出自普朗特关门女弟子、北航创始人陆士嘉教授。这种大家熟识的现象力学过程涉及新涡流学理论,对它详细的分析不在本文范围。简单地描述就是速度差会产生局部低压区域,也可以称为“涡核”。因低压区使低压区具有速度差部分流束受到法向力,产生法向加速度旋转成涡(或曲线偏转)。 常态速度差的流体“搓出”的涡(或曲线偏转)不会是单独孤立的,一个形成的涡会随流滚动(曲线偏转会随流移动),后面新的速度差条件就会形成新涡,这样就能形成间断的涡系列(或连续的振荡曲线)。射流的速度差是双面对称存在的,所以两边都有搓出涡的条件。在一面形成涡旋的后部旋流对于另一面有法向干扰,这一干扰诱导加速了这另一面搓成涡速度,在干扰者身后的对面迅速形成旋向相反的新涡。这样的过程交替反复,所以会左右交替形成涡列(或正弦振荡曲线)。这交错对应的两个涡列就是射流涡街,以上就是射流涡街形成过程的力学解释。在自然界中这种现象的痕迹随处可见,如小股溪流冲过松软平坦的泥滩时,所留下的沟痕不是笔直而是弯曲的。自然界无论湍急还是舒缓的河流的河岸也基本都是左右交替弯曲,也是这个道理。所以射流涡街理论也是研究堤岸冲刷力学的理论,值得人们深入研究它。

漫话卡门涡街及其应用

漫话卡门涡街及其应用 王振东 摘要根据冯·卡门的著作,阐述了卡门涡街研究的历史。讨论了卡门涡街的应用。 关键词冯·卡门卡门涡街涡旋共振流量计 卡门涡街是流体力学中重要的现象。在自然界中常可遇到,在一定条件下的定常来流绕过某些物体时,物体两侧会周期性地脱落出旋转方向相反、排列规则的双列线涡,经过非线性作用后,形成卡门涡街。如水流过桥墩,风吹过高塔、烟囱、电线等都会形成卡门涡街。卡门涡街有一些很重要的应用,因此在学习流体力学时,有必要了解其研究历史及有关的应用情况。 卡门涡街的研究历史 冯·卡门(Theodore von Kármán 1881~1963)是美藉匈牙利力学家,近代力学的奠基人之一,1881年5月11日生于匈牙利布达佩斯,1963年5月6日卒于德国亚琛。他出身于奥匈帝国—个教育学教授的家庭,1902年毕业于布达佩斯皇家工学院,1906年去德国哥廷根(G?ttingen)大学求学,在普朗特(Ludwig Prandtl 1875~1953)教授的指导下,完成了关于柱体塑性区内屈曲问题的论文,于1908年获得博士学位。1911年时,他在哥廷根大学当助教。普朗特教授当时的研究兴趣,主要集中在边界层问题上。普朗特交给博士生哈依门兹(Karl Hiemenz )的任务,是设计一个水槽,使能观察到圆柱体后面的流动分裂,用实验来核对按边界层理论计算出来的分裂点。为此,必须先知道在稳定水流中圆柱体周围的压力强度如何分布。哈依门兹做好了水槽,但出乎意外的是在进行实验时,发现在水槽中的水流不断地发生激烈的摆动。 哈依门兹向普朗特教授报告这一情况后,普朗特告诉他:“显然,你的圆柱体不够圆”。可是,当哈依门兹将圆柱体作了非常精细的加工后,水流还是在继续摆动。普朗特又说:“水槽可能不对称”。哈依门兹于是又开始细心地调整水槽,但仍不能解决问题。 冯·卡门当時所做的课题与哈依门兹的工作并没有关系,而他每天早上进实验室时总要跑过去问:“哈依门兹先生,现在流动稳定了没有?”哈依门兹非常懊丧地回答:“始终在摆动”。 这时冯·卡门想,如果水流始终在摆动,这个现象一定会有内在的客观原因。在一个周末,冯·卡门用粗略的运算方法,试计算了一下涡系的稳定性。他假定只有一个涡旋可以自由活动,其他所有的涡旋都固定不动。然后让这一涡旋稍微移动一下位置,看看计算出来会有什么样的结果。冯·卡门得到的结论是:如果是对称的排列,那么这个涡旋就一定离开它原来的位置越来越远;而对于反对称的排列,虽然也得到同样的结果,但当行列的间距和相邻涡旋的间距有一定比值对,这涡旋却停留在它原来位置的附近,并且围绕原来的位置作微小的环形路线运动。 星期一上班时,冯·卡门向普朗特教授报告了他的计算结果,并问普朗特对这一现象的看法如何?普朗特说,“这里面有些道理,写下来罢,我把你的论文提交到学院去”。冯·卡门后来回忆时,对此事写道:“这就是我关于这一问题的第一篇论文。之后,我觉得,我的

卡门涡街现象分析

卡门涡街现象分析 1881年5月11日是著名的美国工程力学家卡门(1881-1963)的诞生纪念日。卡门出生在匈牙利的布达佩斯。他对人类最大的贡献是开创了数学、力学在航空、航天和其它工程技术领域的应用,为近代力学的发展奠定了基础。1911年卡门对流动的流体在圆柱体后留下的两排周期性旋涡进行了深入的研究,在理论上对这种旋涡做出了精辟的分析。这就是著名的卡门旋涡。卡门创建了美国航空科学学院,并把这所学院建设成了当时流体力学的研究中心和培训基地。卡门支持他的学生对火箭推进技术进行研究并和马利纳第一次证明能够设计出稳定持久燃烧的固体火箭发动机。 一.卡门涡街现象 实际流体绕流圆柱(管)体时,边界层分离所形成的旋涡在背流面有一定释放(脱落)规律,当Re90~200时,背流面旋涡不断的交替生成及脱离,并在尾涡区形成交替排列、旋转方向相反、有规则且较稳定的两行旋涡,以比来流小得多的速度运动,这种现象称为卡门涡街(冯·卡门首先实验测得),又称卡门涡列。 [注意]卡门涡街现象在Re60~210都可以观察到,但有规则的卡门涡街在Re60~5000范围内,而只有Re90~200范围内观察到的卡门涡街现象才是较稳定的。 二.卡门涡街的利用及危害 a.利用:测量流体来流速度及流量。卡门涡街中旋涡脱落频率f可表示为 5 d 5式中St称为斯特罗哈尔数,是个无量纲量。当Re800~1.510时,一般St0.21。 因此利用这一特点可以制成卡门涡街流量计,即测得脱落频率f、圆柱外直径d后,因为fStSt0.21已知,则可以求得来流速度c,进而获得流量。 b.危害:会产生振动及噪声,严重时产生共振及声振。 卡门涡街时旋涡交替产生并脱落,因此将产生交变力,从而被绕流柱体产生振动及噪声;当交变力频率与柱体材料的固有频率接近时,便会产生共振现象,使振动加剧;振动会使周围空气发出声响效应,若其频率与柱体材料的固有频率接近时,又会产生所谓的声振,使振动及噪声加剧。如风吹电线时发出的呜呜声就是卡门涡街的结果;管式空气预热器中,若空气绕流管束时出现卡门涡街现象,会使管子破坏等等。 涡街流量计是速度式流量计的一种,它以卡门涡街理论为基础,采用压电晶体检测流体通过管道内三角柱时所产生的旋涡频率,从而测量出流体的流量。涡街流量计广泛应用测量的介质有:蒸汽、气体、液体、油类等。

涡街流量计使用说明书

一、使用时的注意事项 1.1、确认收货时 1.1.1、在您拿到本产品时,请确认运输途中有没有磕碰划伤等。 1.1.2、根据产品铭牌的标注,请确认与您要买的型号是否相符。 1.2、运输与储存时 1.2.1、尽可能的利用本公司的包装,将流量计直接运送到安装现场。 1.2.2、运送过程中不要强烈碰撞、也不要让雨水淋湿。 1.2.3、保管时尽量利用本公司的原包装进行保管,保管的地方应符合下列条件要求: 1不会有淋雨水的地方 2振动或碰撞尽量少的地方 3温度:-40℃—+55℃ 4湿度:5%—90% 1.2.4、使用过的流量计保管时,要将内部的残留液体及粘附物完全清洗干净,另外注意在电源接口处要密封,以防潮湿。 1.3、安装时 1.3.1、使用时要在流量计规定的条件下使用,超出这个规定使用是不可行的,如果因此而造成流量计损坏,维修的费用会由您自己承担。 1.3.2、流量计出现问题以后,尽可能的与我们或维修商联系,以便尽快的把问题解决。 1.3.3、安装之前必须认真阅读说明书,由于没有按照说明书操作造成的流量计损坏,维修费用自己承担。 二、产品用途及工作原理 2.1、用途 LUGB涡街流量计广泛用于石油、化工、电力、轻工等部门工业管道中测量

液体或气体的流量。由于传感器材料为1Cr18Ni9Ti,也可用于城市供水、供热、锅炉供水、医疗行业流体管道的流量测量。 防爆型涡街流量传感器,采用的是本安防爆技术。电池供电的涡街流量计其防爆标志为“Ex iaⅡBT4”,适合不高于Ⅱ类B级的0区、1区、2区含有T1~T4组的危险场所使用;靠安全栅供电的涡街流量计其防爆标志为“ExiaⅡBT5”,适于Ⅱ类B级的0区、1区、2区含有T1~T5组的危险场所使用。 2.2、工作原理 图一:卡门涡街工作原理图 LUGB涡街流量计是利用卡门涡街原理,用来测量蒸汽、气体及低粘度的液体的流量仪表。当流体流过与被测介质流向垂直放置的旋涡发生体时,在其后方两侧交替地产生两列旋涡,称之为卡门涡街,如上图1所示。在一定雷诺数范围内(2×104~7×106),旋涡所产生的频率f与介质的平均速度V及旋涡发生体的迎流面宽度d之间有下列关系: f=St式中St为斯特劳哈尔数,它是无量纲常数,当R =2×104~7×106 eD 时约为0.15~0.22,通过压电元件检测出旋涡产生的频率f,就可计算出平均流 =A*V,,其中A为管道横截面积。 速V,从而确定管道内的体积流量:Q V 三、产品的特点 我公司生产的涡街流量计是借鉴日本OVAL公司的产品设计理念结合国内企业的使用特点,经过多年的研发而推出的产品。本产品是按照日系国家标准JIS Z8766:2002《涡街流量计—流量测定方法》,进行生产的,因此我公司的涡街流量计有这国内同类产品没有的精确性和稳定性,除具备普通涡街流量计的特点外,还具有下述突出特点:

旋进漩涡流量计的常见故障

旋进漩涡流量计的常见故障 旋进漩涡流量计的测量原理。旋进漩涡流量计的整体构成如图1所示,其构成相对简单,测量原理如下:在实际的生产过程中,由于在流量计入口处会存在漩涡发生器,气体在流经此部位时,会伴随着较为剧烈的漩涡流,当漩涡形成以后,气体所流经区段的漩涡会在漩涡流的驱使下加快漩涡速度,当达到漩涡的扩散状态时,漩涡的速度最快,在这种情况下,压力将大大提升,出现严重的回流现象,而此回流现象会驱动漩涡流中心方向的变动,使得其改变原有的方向,产生与扩散段相类似的陀螺运动。经由检测元件对电晶体进行施压,能够准确测得气体振动频率,而该频率是与流速呈正向变化的,传感器电路会将所获得的频率转变为电信号,而此信号在表头内放大整形与转换以后,会形成脉冲信号,在旋进涡流流量计仪表中加以显示与传输。旋进漩涡流量计的常见故障有以下几点。 1、机械干扰 在旋进漩涡流量计的运行过程中,机械干扰的存在会影响计量结果的准确性,在实际的计量过程中,如果旋进漩涡流量计的使用过程中受到了剧烈的机械振动或者冲击,其内部的电气元件会出现受到影响,出现严重的振动与变形情况。在一些油田工程中,应用旋进漩涡流量计时,这种仪表多是安装在室内的,这种使用环境使得其在具体的应用过程中,机械干扰的情况难以避免,甚至有时还存在着声波干扰、地面振动干扰等现象,这一系列的干扰都将会影响计量结果的准确

性。 2、紫外线的伤害 由于旋进漩涡流量计多处于室外露天环境下,这种运行与使用环境就导致在实际的应用过程中,极易受到外部环境因素的影响,仪表的屏幕显示难以正常进行,常常存在读数不清晰、显示不全的问题。3、感应探头易损坏 旋进漩涡流量计的使用过程中,感应探头是其中的主要元件,在实际的使用过程中,在一定的条件下,受到各种内外部因素的干扰,常常会出现感应探头损坏的情况,比如,在大井节流器失效、开镜过程中气流量中杂质含量较高的情况下,探头极易被损坏,引发计量异常。

卡门涡街实验

卡门涡街 一、实验现象 首先,把小纸条在无风处竖直放置,观察到纸片是静止的。 然后,将吹风机调至低风速档,将纸片放在吹风机下面,风从纸片正上方往下吹,先将纸片放在离吹风口远一点的位置,纸片还是基本静止的;慢慢靠近风口,由于实验存在误差,纸片会有一点微小的摆动,但是纸片的振幅不会太大。由此可以观察到当风速比较低时,纸片基本上还是静止的。 最后,把吹风机打到高风速挡,这个时候可以观察到纸片中部振幅波动大,后头尾巴会明显摆出。 二、实验原理 卡门涡街是流体力学中重要的现象,在自然界中常可遇到。在一定条件下的定常来流绕过某些物体时,物体两侧会周期性地脱落出旋转方向相反排列规则的双列线涡,经过非线性作用后,形成卡门涡街,如水流过桥墩,风吹过高层楼厦、电视塔捆囱、电线等都部会形成卡门涡街。 一个轴对称的圆形物体受到风的作用,如果风的速度小于某个值,它的流线如下图(a)所示;随着流速的增大在它的尾部出现了一个气流的涡旋(如下图(b)),这个涡旋会脱落,每次脱落的时候它都会交替的出现,尾部的涡在脱落的过程造成的负压力出现周期性的变化,最后出现下图(d)(e)的情况。 三、原理应用 实际上,卡门涡街并不全是会造成不幸的事故,它也有很成功的应用。比如己在工业中广泛使用的卡门涡街流量计,就是利用卡门涡街现象制造的一种流量计。它将涡旋发生体垂直插入到流体中时,流体绕过发生体时会形成卡门涡街,在满足一定的条件下,非对称涡列就能保持稳定,此时,涡旋的频率f与流体的流速v成正比,与涡旋发生体的正面宽度d成反比,可用公式表示为:

f=Stv/d 其中St为斯特劳哈尔数,在正常工作条件下为常数。 卡门涡街流量计有许多优点:可测量液体、气体和蒸汽的流量;精度可达±1%(指示值);结构简单,无运动件,可靠、耐用;压电元件封装在发生体中,检测元件不接触介质;使用温度和压力范围宽,使用温度最高可达400℃;并具备自动调整功能,能用软件对管线噪声进行自动调整。 四、教学建议 1.应该建立一个丰富的知识数据库,给学生提供课内学习外的一些资源; 2.课程时间持续过长,两个小时多次上课更好 3.老师们确实应该加强计算机技术的学习了

流体力学第9章

第九章 绕流与射流 重点阐述不可压缩粘性流体绕流二维和回转物体绕流现象及其绕流阻力的计算,分析工业生产中常遇到的紊流射流问题。 §9-1 绕流阻力与阻力系数 当粘性流体绕流物体时,物体总是受到压力和摩擦力的作用。作用在整个物体一表面上的压力和摩擦力的合力F 可分解为两个分力,即绕流物体的未受干扰时来流速度∞V 方向上的分力F D ,及垂直来流速度∞V 方向上的分力F L 。对于在静止流体中运动的物体来讲,由于F D 与物体运动方向相反,是阻碍物体运动的力,故称之为绕流阻力;F L 称为绕流升力。于是 D L F F F += 绕流阻力和升力二者都包含摩擦力和压力两个分量,因此,物体所受摩擦力和压力的大小及二者的变化是分析绕流阻力的基础。 一、绕流阻力一般分析 物体壁面所受摩擦阻力是粘性直接作用的结果,所受压力又称压差阻力,是粘性间接作用的结果,当粘生流体绕流物体时,边界层分离是引起压差阻力的主要原因。 下面以圆柱绕流为例来说明绕流阻力的变化规律。 在绕流未分离的情况下,由理想流体所确定的物面上的压强分布如图6-12所示,在第六章的第四节详细地讨论过这个解,物体所受压力阻力为零。 在绕流圆柱体发生严重分离的情况下,由于柱体后部背流面存在分离区,此时主流区的边界处在分离区的外缘,柱面上的压强分布不同于未分离时的压强分布,从分离点开始,柱体后部受到的流体压强大约等于分离处的压强,而不能恢复到理想流体绕圆柱体流动时应有的压强数值,从而产生对圆柱体的压差阻力。图9-1(b)所示是有边界层分离的圆柱面上的无因次压强分布,实验曲线见图6-12中的II 、III 曲线。 对于摩擦阻力,其形成过程比较清楚。实验表时,象机翼、船只和其它一些流线型物 D F

涡街流量计说明书

一. 工作原理 在流体中设置三角柱型旋涡发生体,则从旋涡发生体两侧交替地产生两列有规则的旋涡,这种旋涡称为卡门涡街,如图(一)所示。 图(一) 旋涡列在旋涡发生体下游非对称地排列。设旋涡的发生频率为f ,被测介质来流的平均速度为V ,旋涡发生体迎流面宽度为d ,表体通径为D ,根据卡曼涡街原理,有如下关系式: f=St.V/〔(1-1.25d/D )d 〕 式中: f -发生体一侧产生的卡门旋涡频率 St -斯特罗哈尔数 V -流体的平均流速 d -柱体流面宽度 D-管道径 在漩涡发生体中装入电容检测探头或压电检测探头及相应匹配电路,即可构成电容检测式涡街流量/传感器或压电检测式涡街流量传感器。 图(二) 在曲线表中St =0.17的平直部分,漩涡的释放频率与流速成正比,即为涡街流量传感器测量围度。只要检测出频率f 就可以求得管流体的流速,由流速V 求出体积流量。 Q =3600f/K 或M=ρ3600 f/K 式中:K =仪表常数(1/m 3)。 M=质量流量 Q =体积流量(m 3/h ) St 0.2 0.15 0.1

ρ=介质密度(kg/m3) F=频率Hz 二. 主要技术指标

三、传感器的选型 3.1.尊敬的用户,当您要选用产品时,请仔细阅读选型样本,并做好以下工作: 1.认真核对被测介质的工况条件:温度、压力、管径等工艺参数。 2.认真核对被测介质的使用流量围,特别是最小流量值以最终确定使用仪表的口径及配管参数。 3.确定仪表的安装地点,保证直管段,并为仪表的安装维护创造好的环境条件。 3.2.涡街流量仪表选型表(符合JB/T9249-1999标准)

相关文档