文档库 最新最全的文档下载
当前位置:文档库 › 一种新的基于高分辨率全色影像的城市建成区边界提取算法_李海江

一种新的基于高分辨率全色影像的城市建成区边界提取算法_李海江

一种新的基于高分辨率全色影像的城市建成区边界提取算法_李海江
一种新的基于高分辨率全色影像的城市建成区边界提取算法_李海江

高分辨率卫星影像数据报价

GeoEye-1/IKONOS卫星影像数据价格表 说明: 1. 所有影像未经镶嵌处理。 2. 存档与编程: A. 存档数据:3个月前采集的Geo Ortho Kit数据 B. 编程数据:未采集的数据和3个月以内新采集的数据 3. 标准交付期: A. 存档数据:合同签订后5-10个工作日 B. 编程数据:数据接收成功后10-15个工作日 4. 起订面积: A. 存档数据:49km22 (最短边长不小于5公里) B. 编程数据:100km22 (最短边长不小于5公里)

5. 编程费用:标准编程免收编程费,如需加急编程,每个工作区收取38000 元编程费。 6. 运保费:人民币500元。 7. 含云量规定:实际含云量面积低于20%的影像为合格产品,若要求云量覆 盖在10%以内的影像每平方公里加价25%,要求云量覆盖在5%以内的影像每平方公里加价50%。 8. 目标仰角规定:标准拍摄目标仰角在60°- 90°之间。若要求拍摄目标仰 角在72°-90°之间,每平方公里需加收10%的附加费。 QuickBird/WorldView-1/WorldView-2影像数据价格表一、真彩色\彩红外\全色\4波段多光谱(MS1): 二、4波段捆绑(Pan+MS1)\ 4波段融合数据: 三、立体像对(基础产品):

卫星编程级别说明: 1.S级:优先级别最低的编程订单,适用于对影像获取时间要求不严格的客户,以及订单竞争不激烈的地区。优点是单价比较低,客户可以自己设定采集开始和截止时间, 或接受DG提供的采集周期;缺点是获取时间比较长.云量覆盖率不大于15% 。 2.S+级:优先级别比S级订单高,适用于急于获取合格影像的客户,以及订单竞争一般激烈的地区。优点是客户可以自己设定采集开始和截止时间,或接受DG提供的采集周期,单价相对较低,可以保证获取影像的质量。云量覆盖率不大于15% 。 3.AS级:优先级别较高,适用于急于获取合格影像的客户,以及订单竞争激烈的地区。客户必须接受DG提供的采集周期,并接受分批交付。优点是订单优先级别高,如果在DG提供的采集周期内没有完成采集,客户可以选择用DG现有的其他存档数据免费填充未完成的区域,或继续延长订单的采集周期。如果客户选择取消编程订单的未完成部分 并用免费存档数据填充未完成区域,应在原AS级订单取消后180天进行免费数据的申请;如果客户选择延长采集周期,DG会重新评估并给出新的采集周期,客户必须接受这个新的采集周期。云量覆盖率不大于15% 。 4.SS级:优先级别最高的编程订单,目标区域宽度要求小于13.5 公里,南北长度小于165 公里。DG会在未来2周的时间内,指定一个日期进行单次接收,客户可以提前48 小时确认订单,订单一旦确认,不能取消,无论云量多少均收全款。适用于灾害分析、

边缘提取不同算子方法的分析比较

目录 摘要....................................................................... I 1简介. (1) 1.1MATLAB 简介 (1) 1.2数字图像处理简介 (1) 2边缘检测 (3) 2.1边缘的含义 (3) 2.2边缘检测的含义 (3) 2.3边缘检测的步骤 (3) 3常用的边缘检测算子 (5) 3.1微分算子 (5) 3.1.1 Sobel算子 (5) 3.1.2 robert算子 (6) 3.1.3 prewitt算子 (6) 3.2 Laplacian算子 (6) 3.3 Log算法 (7) 3.4 Canny边缘检测法 (7) 4程序设计 (8) 5运行结果 (10) 6边缘检测结果比较 (12) 7心得体会 (13) 参考文献 (14)

摘要 边缘检测是利用边缘增强算子,突出图像中的局部边缘,然后定义象素的“边缘强度”,通过设置阈值的方法提取边缘点集。本设计利用MATLAB软件分析几种应用于数字图像处理中的边缘检测算子,根据它们在实践中的应用结果进行研究,主要包括:Robert 边缘算子、Prewitt 边缘算子、Sobel 边缘算子、LoG边缘算子以及Laplacian 算子等对图像边缘检测,根据实验处理结果对几种算子进行比较。 关键词:Matlab边缘检测算子

1简介 1.1MATLAB简介 Matlab是国际上最流行的科学与工程计算的软件工具,它起源于矩阵运算,已经发展成一种高度集成的计算机语言。有人称它为“第四代”计算机语言,它提供了强大的科学运算、灵活的程序设计流程、高质量的图形可视化界面设计、便捷的与其它程序和语言接口的功能。随着Matlab语言功能越来越强大,不断适应新的要求并提出新的解决方法,可以预见,在科学运算,自动控制与科学绘图领域,Matlab语言将长期保持其独一无二的地位。 Matlab 的特点如下: (1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来; (2) 具有完备的图形处理功能,实现计算结果和编程的可视化; (3) 友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握; (4) 功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,为用户提供了大量方便实用的处理工具. Matlab的优势如下: (1)友好的工作平台和编程环境 (2)简单易用的程序语言 (3)强大的科学计算机数据处理能力 (4)出色的图形处理功能 (5)应用广泛的模块集合工具箱 (6)实用的程序接口和发布平台 (7)应用软件开发(包括用户界面) 1.2数字图像处理简介 数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程,以提高图像的实用性,达到人们所要求的预期结果。从处理的目的来讲主要有:

国产高分辨率卫星影像自动化高精度处理

国产高分辨率卫星影像自动化高精度处理----------卫星影像基于已有DOM/DEM自动化处理测试报告1、测试情况 1.1.数据情况 影像类型景数单景全色大小单景多光谱大小 高分一号31624M156M 天绘一号15976M137M资源1号02C7300M*2103M资源三号6 1.12G606M 1.2参考数据 参考DOM:影像分辨率为2米; 参考DEM:1:1万分幅DEM,格网间距为5米。 1.3机器性能 电脑工作站一台,其主要性能配置如下: CPU:Intel Xeon E5-269016核 RAM:128G 磁盘驱动器:Samsung SSD850

2 、作业流程 3、效率统计 3.1预处理 已有DEM和DOM预处理可在任务开展前,电脑全自动化进行预 处理,本次任务预处理1:10000分幅参考DEM2871,参考DOM40.5G,利用晚上时间(18小时)完成。 3.2自动定向纠正与融合处理 备注:以下时间全为计算机自动计算的时间,不需额外人工处理 影像类型全色影像自动定向与纠正全色与多光谱影像配准纠正与融合 高分一号4.5分钟/景(总共20景,7核 并行,90分钟完成) 1.2分钟/景(总共31景,12核并行, 37分钟完成) 天绘一号9分钟/景(总共9景,5核并 行,85分钟完成) 6分钟/景(总共15景,15核并行, 106分钟完成) 资源三号25分钟/景(总共5景,单核 处理,128分钟完成) 45分钟/景(总共5景,单核处理, 220分钟完成)

4、成果展示 4.1控制点分布情况 备注:因计算机保密要求,以下所有图片均为彩色打印再扫描得到的,色彩有些偏色。 图1高分一号全色影像基于底图匹配控制点分布情况 图2天绘全色影像基于底图匹配控制点分布情况

基于Hough变换的道路边界提取方法

基于Hough变换的道路边界提取方法 摘要:本文利用 matlab7.0软件开发平台工具,采用hough变换等技术手段在图片上进行线性构造信息提取,为今后的研究部署工作提供参考。但hough变换存在一定的局限性,如对影像分割依赖性大、受非道路因素影响大等。本文首先利用道路种子点处的光谱信息进行道路区域的生长, 提取光谱信息一致的道路区域, 得到一个包含道路信息的二值影像,然后对此二值影像进行滤波,在提取出的道路条状区域的基础上, 根据道路具有的形状特点, 利用形态学进行细化和一定次数的形态修剪处理, 得到单像素宽 的道路中心线信息。最后对图像进行基于hough变换的线性特征提取,文章对高分辨率航空遥感影像进行了实验验证了该方法的有效性[1-3]。 关键词:线性特征提取,hough变换,matlab a road edge detection algorithm based on the hough transform qiu zhiweili yan (henan university of urban construction, pingdingshan 467036, china) aqiuzhiwei-2008@https://www.wendangku.net/doc/e07316710.html,, bliyan0502@https://www.wendangku.net/doc/e07316710.html, abstract: by using the road seed point spectrum information in this paper firstly, the relevant road information can be extracted from the spectral information consistent with the road area, road information including two value image can be

基于matlab的图像边缘提取算法实现及应用

大学 课程设计报告课程名称:数字图像处理与分析 课程设计题目:基于Matlab的图像边缘提取算法实现及应用 姓名:学院:专业:年级:学号:

目录 一.课程设计目的 (3) 二.提取图像边缘的背景与意义 (3) 三.设计的主要内容与原理 (4) 3.1 什么是图像边缘 (4) 3.2 图像边缘提取的基本原理与过程 (5) 3.3 对边缘检测与提取算法的介绍(以Canny与Log为例) 3.3.1坎尼(Canny)边缘算子 (7) 3.3.2Log边缘算子 (10) 四.边缘提取算法的实现 (11) 五对算子的稳定性的探讨 (13) 六结束语 (17) 致谢 (18) 参考文献 (18)

一.课程设计目的 图像的边缘作为图像的一种基本特征,经常被应用到较高层次的图像应用中去。它在图像识别,图像分割,图像增强以及图像压缩等的领域中有较为广泛的应用,也是它们的基础。 图像边缘是图像最基本的特征之一,往往携带着一幅图像的大部分信息。而边缘存在于图像的不规则结构和不平稳现象中,也即存在于信号的突变点处,这些点给出了图像轮廓的位置,这些轮廓常常是我们在图像边缘检测时所需要的非常重要的一些特征条件,这就需要我们对一幅图像检测并提取出它的边缘。而边缘检测算法则是图像边缘检测问题中经典技术难题之一,本文主要介绍两种经典的边缘提取算法,这两种都是用MATLAB语言编程实现,对提取结果进行比较和分析。 二.提取图像边缘的背景与意义 数字图像边缘检测技术起源于20世纪20年代,当时受条件的限制一直没有取得较大进展,直到20世纪60年代后期电子技术、计算机技术有了相当的发展,数字图像边缘检测处理技术才开始进入了高速发展时期。经过几十年的发展,数字图像边缘检测处理技术目前己经广泛应用于工业、微生物领域、医学、航空航天以及国防等许多重要领域,多年来一直得到世界各科技强国的广泛关注。 数字图像边缘检测处理技术在最近的10年发展尤为迅速,每年均有数以百计的新算法诞生,其中包括canny算法、小波变换等多种有相当影响的算法,这些算法在设计时大量运用数学、数字信号处理、信息论以及色度学的有关知识,而且不少新算法还充分吸取了神经网络、遗传算法、人工智能以及模糊逻辑等相关理论的一些思想,开阔了进行数字图像边缘检测处理的设计思路。 现代数字图像边缘检测处理的目标有三:可视化、自动化和定量化: (1)可视化:当图像被采集并显示时,这些图像通常需要改善以便观察者更容易解释它们。感兴趣的目标必须突出或者图像各部位之间的对比度需要增强处理。自从像CT和MRI等三维成像手段问世以来,可视化,特别是三维结构的可视化受到极大的关注。

边缘提取

图像边缘提取的经典算法及展望 摘要:该文对现有图像边缘提取的经典边缘检测算子方法进行了介绍,对比、分析了各自的优缺点,为了更清楚地看出各种算法的效果,给出了一些常用算法对同一幅标准测试图像的原图像进行边缘提取的实验结果。最后,对图像边缘提取技术所面临的问题和发展方向阐述了自己的观点。 关键词:图像处理,边缘提取,边缘检测算子 中图分类号:TP 314.7 文献标识码:A The Algorithm for I m age Edge Detection and Prospect Abstract:The representative algorithms in these days for image edge detection have been presented in this paper.After contrasting and analyzing the advantages and the disadvantages of every algorithm.In order to have a much clearer look at the effect of every algorithm,we give the results of the experiments in which the common algorithms are used to detect image edge of the same standard testing image.At last,we bring forward our viewpoint about the problems the image edge detection technology is facing and where is its developmental direction . Key words:Image manipulation ;Edge recognition ;Edge recognition arithmetic operators 1 选题背景与研究意义 图像是人们从客观世界获取信息的重要来源,也是人类视觉延伸的重要手段。随着计算机和各个相关研究领域的迅速发展,科学计算的可视化、多媒体技术等研究与应用的兴起,数字图像处理从一个专门领域的学科,发展成为了一种新型的科学研究和人机界面的工具。通过对人类视觉系统的研究表明,图像中的边界特别重要,往往仅凭一些粗略的轮廓线就能够识别出一个物体,而轮廓线就是图像的边缘。图像的边缘是图像区域属性(像素灰度)发生明显变化的地方,也是图像信息最集中的地方,包含了图像的大部分特征信息,这些信息足图像识别中抽取特征的蕈要属性,能勾画出目标物体,是人类判别物体的重要依据。因此,图像的边缘是图像的最基本特征,被应用到较高层次的特征描述、图像识别、图像分割、图像增强以及图像压缩等图像处理和分析技术中,同时边缘提取也作为图像分析与模式识别的主要特征提取手段,应用于计算机视觉、模式识别等研究领域中IlJ。图像的边缘广泛存在于物体与背景之问、物体与物体之间,边缘检测的实质是采用某种算法提取出图像中对象与背景之间的交界线。通过边缘检测,提取出边缘才能将目标和背景区分开来,简化图像分析,突出图像的重要特征,降低后继图像分析处理的数据量,使图像理解及识别更加容易和深刻。因此,边缘提取算法是图像处理问题中经典技术之一,其优劣直接影响整个计算机视觉系统性能的好坏,它的解决对于我们进行高层次的图像特征描述、识别和理解等有着重大的影响。在数字图像处理的研究过程中,图像的边缘提取一直以来都是图像处理与分析领域的研究热点,也一直是机器视觉研究领域中最活跃的课题之一,在工程应用中占有十分重要的地位。因此,研究图像边缘提取方法具有重要的理论意义和现实意义。具有重要的意义。 2 研究现状及发展趋势 图像边缘提取的方法多种多样,但由于其本所具有的难度和深度,研究没有很大的突破性进展,至目前还没有提出一种方法或是理论,能完美地解决边缘提取问题,这也促使研究人员对此问题不断深入研究。 同时,由于目前的边缘提取评价方法都存在很大的局限性,所以对图像边缘提取评价系统的研究得到越来越多的关注。目前,用得较多的还是通过人眼进行主观判断,评价边缘提取方法的优劣。 总之,边缘提取算法主要存在两个问题:一是没有一种可以普遍使用的图像边缘提取算法;二是没有一个较好的通用的边缘提取的评价标准。因此,这两个问题也将成为今后研究解决的重点和研究趋

高分辨率遥感图像融合方法的比较正式

包头师范学院 本科学年论文 论文题目:高分辨率遥融图像融合方法比较院系:资源与环境学院 专业:地理信息系统 学号:0912430022 姓名:郭殿繁 指导教师:同丽嘎 撰写学年:2010 至2011 学年 二零一零年十二月

摘要:目前,遥感中高分辨率全色遥感影像和低空间分辨率的多光谱遥感影像融合是影像融合技术应用的主流。本文通过对遥感影像四种融合方法的研究,并且用呼和浩特市快鸟影像图像融合举例,加深对四种融合方法的理解和理论应用,最后通过截取呼和浩特市快鸟影像的原始多波段彩色影像和原始高分辨率全色波段影像的一部分进行四种融合方法来进行精度的比较,以ENVI4.7软件作为平台,最终得出,Gram-Schmidt变换效果最好,HSV变换融合效果最差。 关键词:图像融合;PCA变换;Gram-Schmidt变换;Brovey变换;HSV变换;精度比较 Abstract: At present, the remote sensing high resolution full-color remote sensing image and low spatial resolution multi-spectral remote sensing image fusion is image fusion technology application of mainstream. This article through to four kinds of remote sensing image fusion method with the principle and analysis, and in Hohhot, fast image image fusion for example, the bird to deepen the understanding of four fusion method and theory, and finally by intercepting the original image Hohhot fast bird multichannel color image and primitive high-resolution full-color band image on the part of four fusion method for precision compared to ENVI4.7 software as a platform to finally arrive, the best effect, Schmidt transform - the worst. Fusion result transformation HSV. Key words: image fusion, PCA transform; Schmidt transform; the - Brovey transform; HSV transform; Precision;

图像处理中的边缘提取算法及实现毕业设计论文

毕业论文(设计) 题目: 图像处理中的边缘提取算 法及其实现

原创性声明 本人郑重声明:本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。毕业论文中凡引用他人已经发表或未发表的成果、数据、观点等,均已明确注明出处。除文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的科研成果。对本文的研究成果做出重要贡献的个人和集体,均已在文中以明确方式标明。 本声明的法律责任由本人承担。 论文作者签名:日期:

关于毕业论文使用授权的声明 本人在指导老师指导下所完成的论文及相关的资料(包括图纸、试验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属XXX。本人完全了解XXX有关保存、使用毕业论文的规定,同意学校保存或向国家有关部门或机构送交论文的纸质版和电子版,允许论文被查阅和借阅;本人授权XXX可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存和汇编本毕业论文。如果发表相关成果,一定征得指导教师同意,且第一署名单位为XXX。本人离校后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为XXX。 论文作者签名:日期: 指导老师签名:日期:

XXX本科毕业设计 毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

高分辨率遥感影像数据一体化测图系统PixelGrid

高分辨率遥感影像数据一体化测图系统PixelGrid 北京四维空间数码科技有限公司 一、概况介绍 高分辨率遥感影像数据一体化测图系统PixelGrid(以下简称“PixelGrid”)是由中国测绘科学研究院自主研发的“十一五”重大科技成果,获得2009年度国家测绘科技进步一等奖。 为将这一重大科技成果实现产业化,2008年开始,由中国测绘科学研究院参股单位北京四维空间数码科技有限公司进行成果转化和产品化,并开展销售。 该软件是我国西部1:5万地形图空白区测图工程以及第二次全国土地调查工程的主力软件, 被誉为国产的“像素工厂”。 PixelGrid以其先进的摄影测量算法、集群分布式并行处理技术、强大的自动化业务化处理能力、高效可靠的作业调度管理方法、友好灵活的用户界面和操作方式,全面实现了对卫星影像数据、航空影像数据以及低空无人机影像数据的快速自动处理,可以完成遥感影像从空中三角测量到各种比例尺的DEM/DSM、DOM等测绘产品的生产任务。 PixelGrid软件主界面。 二、主要特点 PixelGrid系统以现代摄影测量与遥感科学技术理论为基础,融合计算机技术和网络通讯技术,采用基于RFM通用成像模型的大范围遥感影像稀少或无控制区域网平差、基于旋转/缩放不变性特征多影像匹配的高精度航空影像自动空三、基于多基线/多重特征的高精度DEM/DSM自动提取、等高线数据半自动采集及网络分布式编辑、基于地理信息数据库等多源控制信息的高效影像地图制作、基于松散耦合并行服务中间件的集群分布式并行计算等一系列核心关键技术,是中国测绘科学研究院研制的一款类似“像素工厂”(ISTAR PixelFactoryTM)的新一代多源航空航 天遥感数据一体化高效能处理系统。

灰度图像边缘提取方法综述

内蒙古科技大学 本科毕业论文 题目:灰度图像边缘提取方法综述学生姓名: 学院:物理科学与技术学院 专业:应用物理学 学号:0809810054 班级:08级 指导教师: 二〇一二年 4 月

摘要 本文先介绍了一般边缘检测的步骤和灰度图像形态学的主要操作。着重讨论基于细胞神经网络的一般灰度图像的边缘提取和图像分割。先陈述了几种传统算法,并比较了各算法的优劣。通过例举介绍CNN 基本知识,详细描述了用CNN 提取图像边缘的过程,给出算法流程,阐述算法实现中的关键步骤。对二值图像和灰度图像,分别采用基于CNN 的算法和传统算子(prewitt、sobel、canny)进行边缘提取,给出提取效果图,定性比较两类算法在性能上的优劣。来直接的了解灰度图像边缘提取的方法。 关键字:灰度图像,边缘提取,分割,CNN算法,传统算子

Abstract This paper first introduces the general steps of gray image edge detection and morphology of the main operation. Focuses on the cellular neural network based general gray image edge extracting and image segmentation. Through the examples of introduction of basic knowledge of CNN, a detailed description of the CNN image edge extraction process, the algorithm process, the key step in the algorithm implementation. On two value image and the gray scale image, which are based on CNN algorithm and the traditional operator ( Prewitt, Sobel, canny ) edge extraction, given the extraction effect chart, qualitative comparison of two algorithms in performance on the quality of. To direct understanding of gray image edge extraction method. Keywords: image, edge detection, segmentation, CNN algorithm, the traditional operator

边缘检测原理(内含三种算法)

边缘检测原理的论述

摘要 数字图像处理技术是信息科学中近几十年来发展最为迅速的学科之一。图像边缘是图像最基本的一种特征,边缘在图像的分析中起着重要的作用。边缘作为图像的一种基本特征,在图像识别、图像分割、图像增强以及图像压缩等的领域中有较为广泛的应用,其目的就是精确定位边缘,同时更好地抑制噪声。目前,数字图像处理技术被广泛应用于航空航天、通信、医学及工业生产等领域中。图像边缘提取的手段多种多样,本文主要通过MATLAB语言编程分别用不同的算子例如Roberts算子、Prewitt算子、Sobel算子、Kirsch 算子、Laplacian算子、Log算子和Canny算子等来实现静态图像的边缘检测,并且和检测加入高斯噪声的图像进行对比。阐述了不同算子在进行图像边缘提取的特点,并在此基础上提出利用小波变换来实现静态图像的边缘检测。 【关键字】图像边缘数字图像边缘检测小波变换 背景 图像处理就是对图像信息加工以满足人的视觉心理或应用需求的方法。图像处理方法有光学方法和电子学方法。从20世纪60年

代起随着电子计算机和计算技术的不断提高和普及,数字图像处理进入了高速发展时期,而数字图像处理就是利用数字计算机或其它的硬件设备对图像信息转换而得到的电信号进行某些数学处理以提高图像的实用性。 计算机进行图像处理一般有两个目的:(1)产生更适合人观察和识别的图像。(2)希望能由计算机自动识别和理解图像。数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。 边缘是图象最基本的特征.边缘检测在计算机视觉、图象分析等应用中起着重要的作用,是图象分析与识别的重要环节,这是因为子图象的边缘包含了用于识别的有用信息.所以边缘检测是图像分析和模式识别的主要特征提取手段。 所谓边缘是指其周围像素灰度后阶变化或屋顶状变化的那些像素的集合,它存在于目标与背景、目标与目标、区域与区域,基元与基元之间。因此它是图象分割所依赖的重要的特征,也是纹理特征的重要信息源和形状特征的基础;而图象的纹理形状特征的提取又常常依赖于图象分割。图象的边缘提取也是图象匹配的基础,因为它是位置的标志,对灰度的变化不敏感,它可作为匹配的特征点。 图象的其他特征都是由边缘和区域这些基本特征推导出来 的.边缘具有方向和幅度两个特征.沿边缘走向,像素值变化比较平缓;而垂直与边缘走向,则像素值变化比较剧烈.而这种剧烈可能呈

8.1.2图像的分辨率,图像的颜色深度

池河中学2017-2018学年度第一学期教学设计 年级8年级 科 目信息 技术 任课教师李瑞峰授课时间 1 课题图像的分辨率,图像的颜色深度授课类型新授 课标依据学习应用技能 ,提高信息素养,培养创新能力 《图像的分辨率,图像的颜色深度》属于初中信息技术课程第1章图形图像初步知识中的重要内容,本节课选用的教材是人民教育出版社出版的:《信息技术》八年级上册中的二节。主要是帮助学生掌握一些基本的概念,教会学生理解图像参数的方法。 教学目标知识与 技能 理解和掌握图像的分辨率,图像的颜色深度概念,并能理解二者对图像的影响。 过程与 方法 通过自学和讲解二个参数的特点,理解它们之间的联系与区别。 情感态 度与价 值观 激发并保持利用信息技术不断学习和探索的热情,形成积极主动地学习和使用信息技术、参与信息技术的 活动。 教学重点难点教学 重点 全面掌握图像的分辨率,图像的颜色深度概念。 编号:8.1.2

教学 难点 掌握图像的颜色深度。 教学过程设计 师生活动设计意图回想上节课的内容,我们学习了位图和矢量图, 在学习过程中我们也提到了像素,分辨率等概念, 今天我们要加深这几个概念的了解。 在照像机的参数中。像素是描述的数码相机的 主要参数,引出分辨率的概念。 任务一,阅读自学课本第二课,初步了解像素 和深度概念。 布置探究任务二,按课本要求查看图像素材文 件像素、存储容量、颜色位数。查看过程中理解分 辨率和文件大小及像素等概念。 发放相关知识材料教师对照讲解让学生理解分 辨率和像素的关系。 阶段性小结。图像分辨率则是单位英寸中所包 含的像素点数,辨率是图片清晰程度的标志。 显示分辨率与图像分辨率两个方向来分类 利用电脑的显示属性设置来自主探究“位深度” 的概念。 任务三,动手调整计算机的显示参数 教师提示:右键,分辨率,高级设置 阶段性小结 复习巩固旧 知识,引出 新知识。 以任务为驱 动开展教学 激发学生兴 趣;引导学 生发现问 题,并学会 分析问题。 学生动手进行 操作,在操作 中体会理解概 念

图像边缘提取方法及展望

1引言 图像最基本的特征是边缘,边缘是图像性区域和另一个属性区域的交接处,是区域属性发生突变的地方,是图像中不确定性最大的地方,也是图像信息最集中的地方,图像的边缘包含着丰富的信息。因此,图像的边缘提取在计算机视觉系统的初级处理中具有关键作用,但目前仍是“瓶颈”问题。 边缘检测技术对于数字图像是非常重要的,提取出边缘才能将目标和背景区分开来。现有的图像边缘提取方法可以分为三大类:一类是基于某种固定的局部运算方法,如:微分法,拟合法等,它们属于经典的边缘提取方法;第二类则是以能量最小化为准则的全局提取方法,其特征是运用严格的数学方法对此问题进行分析,给出一维值代价函数作为最优提取依据,从全局最优的观点提取边缘,如松驰法,神经网络分析法等;第三类是以小波变换、数学形态学、分形理论等近年来发展起来的高新技术为代表的图像边缘提取方法,尤其是基于多尺度特性的小波变换提取图像边缘的方法是目前研究较多的课题。该文将较为详细地对各种图像边缘提取算法的原理进行阐述,对几种最常用的图像边缘提取算法给出实验结果,并进行结果对比与分析。 2经典的图像边缘提取方法 2.1微分算子法 边缘的检测可借助空域微分算子通过卷积完成,导数算子具有突出灰度变化的作用,对图像运用导数算子,灰度变化较大的点处算得的值较高,因此可将这些导数值作为相应点的边界强度,通过设置门限的方法,提取边界点集。 一阶导数 !f !x 与 !f !y 是最简单的导数算子,一个连续函数f(x,y)在位置(x,y)处方向导数的最大值是I G I=( !f !x )2+(!f !y )2 [I12,称为梯度模,相应地,取得最大值的方向为"=tan-1 !f !y !f !x T I I L T I I J 。 利用梯度模算子来检测边缘是一种很好的方法,它不仅具有位移不变性,还具有各向同性。在实际中,对于一幅数字图像采用了梯度模的近似形式,如常用的罗伯特交叉算子(Roberts Cross)和索贝尔算子(SobeI)的表达式分别为: Roberts算子表达式为: \G\=maX(I f(i,J)-f(i+1,J+1)I,I f(i+1,J)-f(i,J+1)I) SobeI算子表达式为: 121 000 -1-2- T I I L T I I J 1 10-1 20-2 10- T I I L T I I J 1 x方向卷积核y方向卷积核 图像边缘提取方法及展望 季虎孙即祥邵晓芳毛玲 (国防科技大学电子科学与工程学院,长沙410073) E-maiI:Iove63901@https://www.wendangku.net/doc/e07316710.html, 摘要该文对现有代表性的各种图像边缘提取方法进行了介绍,对比、分析了各自的优缺点,重点对以小波变换为代表的现代信号处理技术提取图像边缘的方法进行了分析和阐述,为了更清楚地看出各种算法的效果,给出了一些常用算法对同一幅标准测试图像Lena进行边缘提取的实验结果。最后,对图像边缘提取技术所面临的问题和发展方向阐述了自己的观点。 关键词边缘提取小波变换多尺度分析图像边缘检测 文章编号1002-8331-(2004)14-0070-04文献标识码a中图分类号TP391 The Algorithm for Image Edge Detection and Prospect Ji Hu Sun Jixiang Shao Xiaofang Mao Ling (SchooI of EIectronic and Engineering,NationaI University of Defense TechnoIogy,Changsha410073)Abstract:The representative aIgorithms in these days for image edge detection have been presented in this paper.after contrasting and anaIyzing the advantages and the disadvantages of every aIgorithm,we pIace an emphasis on anaIyzing and iIIuminating waveIet transform,which is one of the modern signaI processing technigues for image edge detection.in order to have a much cIearer Iook at the effect of every aIgorithm,we give the resuIts of the eXperiments in which the common aIgorithms are used to detect image edge of the same standard testing image Lena.at Iast,we bring forward our viewpoint about the probIems the image edge detection technoIogy is facing and where is its deveIopmentaI direction. Keywords:edge detection,waveIet transform,muItiscaIe anaIysis,image edge detection 作者简介:季虎(1972-),男,工程师,博士研究生,主要研究方向为计算机视觉、图像处理、模式识别。孙即祥(1946-),男,教授,博士生导师,现已出版专著三部,并正在撰写另外一部专著,已发表论文十数篇。主要感兴趣的研究方向为计算机视觉、图像处理、模式识别等。 70 2004.14计算机工程与应用

高分辨率卫星影像数据正射图制作工艺及应用

高分辨率卫星影像数据正射图制作工艺及应用 朱继东程晓阳刘宏陈绍光 (北京天目创新科技有限公司北京 100088) 摘要:本文阐述了应用高分辨率卫星获取地球表面影像数据制作正射影像图的工艺及在抗震救灾、全国第二次土地调查中的应用。随着航天技术的发展和普及,针对卫星影像数据的相关应用处理技术将成为我国地理信息相关产业空间信息获取和保障的重要手段。 关键词:卫星;数据;正射影像图 应用卫星获取地球表面影像数据制作正射影像图,可以为地理信息系统及时提供可靠的地形信息,测地卫星能不断地对地球拍摄,提供新的地表信息,卫星影像数据全部采用通用的电子计算机处理,工艺简便,生产效率高。所以,应用卫星影像数据制作正射影像图具有很大优势。目前,美国QuickBird(快鸟)和World View-1(视界-1)影像分辨率分别达到0.61米和0.47米像素,为制作大、中比例尺正射影像图创造了必要条件。随着航天技术的不断发展和普及,应用卫星影像数据制作大、中比例尺正射影像图将会成为重要的技术途径。 一、基于卫星影像数据的地表正射影像图基本制作工艺 应用卫星影像数据制作正射影像图的整个工艺流程,都是在通用的电子计算机中进行,采用专门遥感处理软件进行数据处理。 1.1控制资料 ●导航矢量数据 针对成果的精度要求,利用少量精度相对较高的矢量资料作为控制资料。 ●已有地形图 利用现有的1:10000或1:50000比例尺的地形图作为控制资料。 ●实测控制点 利用外业GPS实测控制点作为控制资料,适合高精度成果。 1.2 处理软件 PCI Geomatica10.1专业遥感影像处理软件,PhotoShop等其它辅助软件。 1.3正射影像制作流程 针对通用的快鸟捆绑数据正射影像图制作流程见图1。

边缘检测和轮廓提取方法和VC++程序

边沿检测和轮廓提取方法和程序 1 边沿检测 我们给出一个模板和一幅图象。不难发现原图中左边暗,右边亮,中间存在着一条明显的边界。进行模板操作后的结果如下: 。 可以看出,第3、4列比其他列的灰度值高很多,人眼观察时,就能发现一条很明显的亮边,其它区域都很暗,这样就起到了边沿检测的作用。 为什么会这样呢?仔细看看那个模板就明白了,它的意思是将右邻点的灰度值减左邻点的灰度值作为该点的灰度值。在灰度相近的区域内,这么做的结果使得该点的灰度值接近于0;而在边界附近,灰度值有明显的跳变,这么做的结果使得该点的灰度值很大,这样就出现了上面的结果。 这种模板就是一种边沿检测器,它在数学上的涵义是一种基于梯度的滤波器,又称边沿算子,你没有必要知道梯度的确切涵义,只要有这个概念就可以了。梯度是有方向的,和边沿的方向总是正交(垂直)的,例如,对于上面那幅图象的转置图象,边是水平方向的,我们可以用 梯度是垂直方向的模板检测它的边沿。 例如,一个梯度为45度方向模板,可以检测出135度方向的边沿。 1.Sobel算子

在边沿检测中,常用的一种模板是Sobel 算子。Sobel 算子有两个,一个是检测水平边沿的 ;另一个是检测垂直平边沿的。与和 相比,Sobel算子对于象素的位置的影响做了加权,因此效果更好。 Sobel算子另一种形式是各向同性Sobel(Isotropic Sobel)算子,也有两个,一个是检测水平边 沿的,另一个是检测垂直平边沿的。各向同性Sobel 算子和普通Sobel算子相比,它的位置加权系数更为准确,在检测不同方向的边沿时梯度的幅度一致。 下面的几幅图中,图7.1为原图;图7.2为普通Sobel算子处理后的结果图;图7.3为各向同性Sobel算子处理后的结果图。可以看出Sobel算子确实把图象中的边沿提取了出来。 图7.1 原图

数字图像的边界提取

实验九数字图像的边界提取 一、实验目的 了解有关数字图像边界提取的基本概念,熟悉Matlab软件中关于数字图像边界提取的基本命令,掌握利用Matlab软件进行数字图像边界提取的方法;同时,学会在图上加图题,会控制图题的位置。 二、相关知识 在图像处理中,有一种十分实用的操作叫做边界提取,在提取了图像的边界后,就可以对图像进行进一步的操作如图像分割,特定区域的提取,骨架提取等等。 常用的边界检测算子有微分算子、拉普拉斯高斯算子和canny算子。 在MA TLAB中,系统提供edge函数,其功能是利用各种边界检测算子来检测灰度图像的边界。 函数edge的用法有以下几种: 1.BW=edge(I); 2.BW=edge(I,method); 3.BW=edge(I,method,thresh); 4.BW=edge(I,method,thresh,direction) 其中: I:输入图像; method:提取边界的方法,共有六种可取的值,即共有六种可使用的方法,包 括:’sobel’,’prewitt’,’roberts’,’log’,’zerocross’,’canny’,缺省时使用’sobel’; thresh:指定的阈值,所有不强于thresh的边都被忽略; direction:对于’sobel’和’prewitt’方法指定方向,可取值为:’horizontal’和’vertical’,’both’(缺省值)BW:返回的二值图像,其中1代表找到的边界。 在这些方法中,canny是较为优秀的一种,该方法使用两种不同的阈值分别检测强边界和弱边界,并且仅当弱边界和强边界相连时,才将弱边界包含在输出图像中。因此,这种方法不容易被噪声干扰,更容易检测到真正的弱边界。 关于这些方法的真正含义,我们以后有专门的课程加以详细讨论,现在先看看它们的效果。 例:分别调用’sobel’,’prewitt’,’roberts’,’log’,’zerocross’和’canny’六种方法检测图像rice.tif的边界。程序如下: I=imread('rice.tif'); BW1=edge(I,'sobel'); BW2=edge(I,'prewitt'); BW3=edge(I,'roberts'); BW4=edge(I,'log'); BW5=edge(I,'zerocross'); BW6=edge(I,'canny'); imshow(I);title('图1: rice.tif原图','fontsize',14,'position',[128,280,0]); figure;imshow(BW1);title('图2: sobel算子提取的边界','fontsize',14,'position',[128,280,0]) figure;imshow(BW2);title('图3: prewitt算子提取的边界','fontsize',14,'position',[128,280,0]) figure;imshow(BW3);title('图4: roberts算子提取的边界','fontsize',14,'position',[128,280,0]) figure;imshow(BW4);title('图5: log算子提取的边界','fontsize',14,'position',[128,280,0]) figure;imshow(BW5);title('图6: zerocross算子提取的边界','fontsize',14,'position',[128,280,0]) figure;imshow(BW6);title('图7: canny算子提取的边界','fontsize',14,'position',[128,280,0]) 运行结果如下:

相关文档