文档库 最新最全的文档下载
当前位置:文档库 › 焓湿图例题解析

焓湿图例题解析

焓湿图例题解析
焓湿图例题解析

中乾汇泰企业培训例题习题(二)

【例题1】某空调房间冷负荷Q =,湿负荷W =s ,室内空气状态参数为:t N =22±1℃, N =55±5,当地大气压为101325Pa, 房间体积150 m 3。

求:送风状态、送风量和除湿量。 解:(1)求热湿比ε= = (2)在焓湿图上确定室内空气状态点N ,通过该点画出ε=12600的过程线。 依据±1℃温度偏差查表1取送风温差为 ℃,则送风温度22-8=14℃。从而得出:h 0=36KJ/kg h N =46 KJ/kg d O =8.6g/kg d N =9.3g/kg

(3)计算送风量 按消除余热: kg/s

按消除余湿: kg/s

则L =×3600=990m 3/h

换气次数n =990/150(次/h) =次/h ,符合要求。

除湿量: 舒适性空调送风温差与换气次数 表1 室内允许波动范围 送风温差(℃)

换气次数(次/h ) ±~0.2℃ 2~3

150~20 ±0.5℃ 3~6

>8 ±1.0℃ 6~10

≥5 >±1.0℃

人工冷源:≤15

≥5 天然冷源:可能的最大值 ≥5 二、两个不同状态空气混合过程的计算

混合气体模型:

空气A :质量流量q A (Kg/s),状态为(h A ,d A )

空气B: 质量流量q B (Kg/s),状态为(h B ,d B )

W Q 12000103.06.33=?-80=?t 33.036466.30=-=-=i i Q G N 33.05.83.93.00=-=-=d d W G N h

kg h g h g s g do d G M N /83.0/6.831)/(3600231.0)

/(231.0)6.83.9(33.0)(==?==-?=-?=

B C A B C A h h q q h h -=-B C A B C A d d q q d d -=-B C C A B C C A

h h h h d d d d --=--B C B C A C A C A B d d h h q BC CA d d h h q --===--混合后空气质量为:q C =q A +q B (kg/s)

状态为C : (h C ,d C )

混合原理

空气的热平衡:q C h C =q A h A +q B h B ;空气水分的湿平衡:q C d C =q A d A +q B d B ; 将 q C =q A +q B 代入以上两式,整理得:

1) q A h C +q B h C =q A h A +q B h B q A h C -q A h A =q B h B -q B h C ;

2) q A d C +q B d C =q A d A +q B d B q A d C -q A d A =q B d B -q B d C ;

(与流量成反比)

上式分别为CB 、AC 的斜率,可见AC 与BC 具有相同斜率,

C 点又为公共点,所以A ,C ,B 在同一直线上。混合点C

将直线AB 分为两段,即AC 与CB 。

混合点C 的位置:混合点C 将线段AB 分成两段,两段长度之比和参与混合的

两种空气的质量成反比,混合点靠近质量大的空气状态一端。

【例题3】已知空气量q m =2.0kg/s ,初状态参数t w=-5oC ,w=80%。现将该空气加热至t N =20oC 。求:空气的终状态参数及空气加热器的加热量。所在地区的大气压力101325Pa 。

解:1)在i-d 图上确定初状态W 及其参数。dw=2.1g/kg 干, h w=0kJ/kg 干

2)在i-d 图上确定终状态N 及其参数。

等湿、焓增过程 N =15%, h N = kJ/kg 干

3)空气加热器的加热量为 Q= q m (h N -h w)=51kW

(加热过程为等湿增焓的过程,是向上的等湿线)

【例题4】某空调房间总的余热量Q =15KW,余湿量

W =1.5g/s ,室内空气参数为:t N =23℃, N =50,

当地大气压为101325Pa, t w=35oC ,w=65%。现采

用一次回风系统处理空气,取送风温差 5℃,机器露点为90%,新风百分

比为15%,求:1)送风状态和送风量,2)新风冷负荷,3)加热段的再热负荷,

4)空气处理制冷量。

解:1)计算室内热湿比:ε=Q/W =15KW/(1000)Kg/s =10000

60=?t

解:1)计算室内热湿比:ε=Q/W=(1000)Kg/s =8000

2)画空气处理过程焓湿图如上:先画出室外状态W点和室内状态N点(即回风状态),查焓湿图表,查得:hw=Kg, dw=24.662g/Kg,

h N=Kg, d N=12.636g/Kg,

3)由于新风处理到室内状态的等焓,新风处理出风点L的状态参数如下:

h L=h N=Kg,ΦL=90%,查得d L=14.477g/Kg

4)由于管温升,新风升温到K点状态温度23℃,且含湿量不变,即

d K=d L=14.477g/Kg,查得:h K=Kg;

5)室内空气经风机盘管冷却出风M点温度为16℃,且相对湿度ΦM=90%,查得M点状态参数:h M=Kg, d M=10.21g/Kg;

6)送风状态O点风机盘管出风M与新风K连线与热湿比线的交点,即风机盘管出风与新风的混合空气状态点,查h-d图得:h O=Kg, d O=11g/Kg;

7)总送风质量:G=Q/(h N-h0)= = (Kg/s)

总送风量:V=G/ρ=(m3/s)=(m3/s)=1073(m3/h)

8)风机盘管送风量:

V f=V*(h K-h0)/(h K-h M)=1073*891.44m3 G f=G*(h K-h0)/(h K-h M)=*(Kg/s)=(Kg/s) 9)风机盘管制冷量:Q f=G f*(h N-h M)=*

焓湿图例题解析

中乾汇泰企业培训例题习题(二) 【例题1】某空调房间冷负荷Q =3.6KW,湿负荷W =0.3g/s ,室内空气状态参数为:t N =22±1℃,j N =55±5%,当地大气压为101325Pa, 房间体积150 m 3 。 求:送风状态、送风量和除湿量。 解:(1)求热湿比ε= = (2)在焓湿图上确定室内空气状态点N ,通过该点画出ε=12600的过程线。 依据±1℃温度偏差查表1取送风温差为 ℃,则送风温度22-8=14℃。从而得出:h 0=36KJ/kg h N =46 KJ/kg d O =8.6g/kg d N =9.3g/kg (3)计算送风量 按消除余热: kg/s 按消除余湿: kg/s 则L =0.33/1.2×3600=990m 3 /h 换气次数n =990/150(次/h) =6.6次/h ,符合要求。 除湿量: 舒适性空调送风温差与换气次数 表1 室内允许波动范围 送风温差(℃) 换气次数(次/h ) ±0.1~0.2℃ 2~3 150~20 ±0.5℃ 3~6 >8 ±1.0℃ 6~10 ≥5 >±1.0℃ 人工冷源:≤15 ≥5 天然冷源:可能的最大值 ≥5 二、两个不同状态空气混合过程的计算 混合气体模型: 空气A :质量流量q A (Kg/s),状态为(h A , W Q 1200010 3.06 .33 =?-80=?t 33.036 466 .30=-=-=i i Q G N 33 .05 .83.93 .00=-=-=d d W G N h kg h g h g s g do d G M N /83.0/6.831)/(3600231.0)/(231.0)6.83.9(33.0)(==?==-?=-?=

焓湿图(I-H图)应用

二、焓湿图(I-H 图)的应用 湿度图中的任意点均代表某一确定的湿空气状态,只要依据任意两个独立参数,即可在I-H 图中定出状态点,由此可查得湿空气其它性质。 如图7-6,湿空气状态点为A 点,则各参数 分别为: (1)湿度H 由A 点沿等湿线向下与辅助水 平轴相交,可直接读出湿度值。 (2)水汽分压p v 由A 点沿等湿线向下与水 汽分压线相交于C 点,在右纵坐标上读出水汽分 压值。 (3)焓I 通过A 点沿等焓线与纵轴相交, 即可读出焓值。 (4)露点温度t d 由A 点沿等湿线向下与%100=?相交于B 点,由通过B 点的等t 线读出露点温度值。 (5)湿球温度t w (或绝热饱和温度t as ) 过A 点沿等焓线与%100=?相交于D 点,由通过D 点的等t 线读出湿球温度t w 即绝热饱和温度t as 值。 例7-3 在总压101.3kPa 时,用干、湿球温度计测得湿空气的干球温度为20℃,湿球温度为14℃。试在I-H 图中查取此湿空气的其它性质:(1)湿度H ;(2)水汽分压p v ;(3)相对湿度φ;(4)焓I ;(5)露 点t d 。 解:如附图所示,作t w =14℃的等温线与φ =100%线相交于D 点,再过D 点作等焓线与 t=20℃的等温线相交于A 点,则A 点即为该湿空 气的状态点,由此可读取其它参数。 (1)湿度H 由A 点沿等H 线向下与辅助 水平轴交点读数为H =0.0075kg/kg 干气。 (2)水汽分压p v 由A 点沿等H 线向下与水汽分压线相交于C 点,在右纵坐标上读图7-6 I-H 图的用法 H I 例7-3 附图

出水汽分压p v =1.2kPa 。 (3)相对湿度φ 由A 点所在的等φ线,读得相对湿度φ=50% (4)焓I 通过A 点沿等焓线与纵轴相交,读出焓值I =39kJ/kg 干气。 (5)露点t d 由A 点沿等湿线向下与%100=?相交于B 点,由通过B 点的等t 线读出露点温度t d =10℃。 从图中可明显看出不饱和湿空气的干球温度、湿球温度及露点温度的大小关系。

空气调节系统模拟实验20150429

空气调节系统模拟实验 1、实验目的 1.1、演示循环式系统的空气处理过程; 1.2、进行热工测量及计算的训练。 2、实验原理 2.1空气调节系统 2.1.1按空气处理设备的位置情况来分 2.1.1.1集中系统:集中进行空气的处理、输送和分配。其主要的系统形式为:单风道系统、双风道系统。 2.1.1.2半集中系统:除了有集中的中央空调器外,半集中空调系统还设有分散在各被调房间内的二次设备(又称末端装置)。其主要的系统形式为:末端再热式系统、风机盘管机组系统。 2.1.1.3分散系统:每个房间的空气处理分别由各自的整体式空调机组承担。其主要的系统形式为:单元式空调器系统、窗式空调器系统、分体式空调器系统。 2.1.2按负担室内负荷所用的介质种类来分类 2.1.2.1全空气系统:是指空调房间的室内负荷全部由经过处理的空气来负担的空调系统。其主要的形式为:一次回风系统、二次回风系统。 2.1.2.2全水系统:空调房间的热湿负荷全靠水作为冷、热介质来负担,这种系统一般不单独使用。其主要的系统形式为:房间盘管机组系统。 2.1.2.3空气-水系统:空调房间的热、湿负荷同时用经过处理的空气和水来负担的空调系统。其主要的系统形式为:新风加冷辐射吊顶空气系统、风机盘管机组加新风空调系统。 2.1.2.4制冷剂系统:是将制冷系统的蒸发器直接设置在室内来承担空调房间热、湿负荷的空调系统。其主要系统形式为:单元式空调器系统、窗式空调器系统、分体式空调器系统。 2.1.3按集中系统处理的空气来源分类 2.1. 3.1封闭式系统:系统所处理的空气全部来自空调房间本身,没有室外空气补充。系统形式为:再循环空气系统。 2.1. 3.2直流式系统:系统处理的空气全部来自室外,室外空气经处理后送入室内,然后全部排出室外。系统形式为:全新风系统。 2.1. 3.3混合式系统:系统运行时混合一部分回风,这种系统既能满足卫生要求,又经济合理。系统形式为:一次回风系统、二次回风系统。 2.2、空气状态点的确定 由实验装置可测得某点的干球温度Tg和湿球温度Ts,然后就可在焓湿图上确定空气状态,具体方法如下: 分别在焓湿图上找到干球温度Tg和湿球温度Ts所对应的等温线,确定湿球温度Ts等温线与饱和线的交点,通过该点的等比焓线与干球温度等温线的交点即为所要找的空气状态点。 2.3、空气处理过程中热量交换的确定 通过测定空气处理过程始末的干球温度Tg和湿球温度Ts,由前述方法即可在焓湿图上确定对应的空气状态点,然后就可确定对应的比焓值。再由焓差和空

超详细的焓湿图的应用

第2章湿空气的状态与焓湿图的应用 第一课:湿空气 §2.1湿空气的组成和状态参数 一、湿空气的组成 湿空气=干空气+水蒸气+污染物 1.干空气:N2—78.09% O2—20.95% C O2—0.03%看成理想气体 N e—气体常数:R g=287J/k g.k H e—0.93% A r— 2.水蒸气—看成理想气体,气体常数—461J/k g.k 3.污染物 从空气调节的角度:湿空气=干空气+水蒸气(干空气成分基本不变,水蒸气变化大) 二、湿空气的状态参数 1.压力P(单位:帕,P a) (1)大气压力: 定义:地球表面的空气层在单位面积上所形成的压力称为大气压力; 特点:不是一个定值,随海拔高度变化而变化,随季节天气变化而变化。 一个标准大气压为1a t m=101325P a=1.01325b a r 当地大气压=干空气分压力+水蒸气分压力(B=P g+P q) 其中水蒸气分压力(P q) 定义:湿空气中,水蒸汽单独占有湿空气的容积,并具有与湿空气相同的温度时,所产生的压力称为水蒸气分压力。 湿空气可看成理想的混合气体,湿空气的压力等于干空气的分压力与水蒸气的分压力之和:

P(B)=P g+P q 湿空气中水蒸气含量越多,则水蒸气的分压力越大。 2.温度t(单位:摄氏温标0C) t(℃)以水的冰点温度为起点0℃,水的沸点100℃为定点。 3.湿空气的密度ρ 定义:单位容积空气所具有的质量,即(k g/m3) 计算式: 结论:①湿空气比干空气轻。 ②阴凉天大气压力比晴天低。 ③夏天比冬天大气压力低。 标准状态下,干空气密度 ρ干=1.205k g/m3,湿空气密度略小于干空气密度。 工程上取ρ湿=1.2k g/m3 4.含湿量d(单位:g/k g干空气): 定义:对应于1千克干空气的湿空气所含有的水蒸气量。 d=622g/k g干空气 在一定范围内,空气中的含湿量随着水蒸气分压力的增加而增加,但是,在一定的温度下,湿空气所能够容纳的水蒸气量有一个限度,即空气所达到饱和状态,成为饱和空气。相应具有饱和水蒸气分压力和饱和含湿量。 空气温度与饱和水蒸气分压力、饱和含湿量的关系(B=101325P a) 表1-1 空气温度t/0C 饱和水蒸气分压力 P q,b(饱和)/P a 饱和含湿量 d b(饱和)/g/k g(干空气) 10 20 30 1225 2331 4232 7.63 14.70 27.20

新风系统设计方案和新风量计算方法详解

新风系统设计方案和新风量计算方法详解

4 风管设置情况一般情况下如办公室、住宅 等只设新风管,管路较简 单,餐厅、会议室等新风量 较大的场合需设排风管 设新风管、排风管,管路较 复杂;要求不高时,也可采 用走廊回风 一般情况下如办公室、住 宅等只设新风管,管路较 简单,餐厅、会议室等新 风量较大的场合需设排风 5 使用寿命零部件及整机进行了全面的 检测,寿命长达20年 热交换元件是以多孔纤维性 材料加工的纸作为基材制成 的,寿命较短 寿命较长 6 造价及运行费用需设置室外机,新风系统的 造价较高,但空调系统(不 包括新风系统)的造价较 低,运行费用稍高 新风系统的造价比①低,但 空调系统的造价比①高,运 行费用低 新风系统的造价最低,但 空调系统的造价最高,运 行费用稍低 7 使用范围制冷: 20℃~43℃,低于2 0℃自动转换为通风; 制热: -5℃~15℃,高于 15 ℃自动转换为通风;低 于-5℃,系统停机 在空气焓湿图上,室内、室 外两个状态点的连线与饱和 曲线相交时,冷凝水会形成 在热交换元件上,此时,不 宜使用,因此,(1)当室 外温度低于-10℃~-15℃ 时,有可能会出现凝水、结 霜,设计时必须仔细校核, 必要时应在新风进风管上设 空气预热器;(2)当室内 空气的相对湿度较大(如浴 室)且室外温度较低时,有 可能会出现凝水,此时,不 宜使用 当室内机不使用时,直接 送新风易造成室内温度过 高或过低,特别在冬季, 由于室内温度过低,室内 机不易开启,室内达到空 调设定温度的时间加长, 影响空调效果 另外,显热交换器有时也会采用,与全热交换器相比,其优点为:热交换元件 是以交叉叠放的铝箔波纹板作为基材制成的,寿命长;其缺点为:只能回收显热,不能回收潜热,焓效率较低。 (3)通过以上对比,可以看出,“风机箱直接送风”这种新风方案,处理不当会造成室内舒适度下降,实际工程中应用较少;对于新风处理机和全热交换器这两种方案,应首选新风处理机,因为该方案将室外新风处理到室内设计状态,处理效果最好,最规范。 1.3 除以上三种外,其它新风方案有: (1)选用风冷热泵水机和水盘管的新风机组;

焓湿图及相关知识分享

焓湿图 1、理想气体混合物 2、湿空气 3、湿空气性质 4、焓湿图 5、湿空气过程 1、理想气体混合物 (1)道尔顿分压定律:在温度、总体积保持不变,混合气体的总压力p等于各组成气体分压之和。 (2)亚美格分体积定律:在温度、总压力保持不变,理想气体的分体积之和等于混合气体的总体积。(3)适用条件:理想气体状态(各组分气体的分子不具有体积,分子间不存在作用力,处于混合状态的个组分气体对容器壁面的撞击效果如同单独存在于容器时一样)。 2、湿空气 (1)定义:指干空气和水蒸气的混合空气。 (2)可作为理想气体混合物。 3、湿空气性质 (1)露点(温度):在保持水蒸气量不变的情况下(水蒸气分压力不变),未饱和湿空气冷却达到饱和状态时(即将结出露珠时)的温度,这个临界温度称之为露点温度td。可用湿度计或露点仪测量。t d=f(P v)。 机器露点指空气经喷水室或表冷器处理后接近饱和状态(100%相对湿度线)时的终状态点。(2)相对湿度φ:湿空气中,水蒸气的分压力p v,与同一温度下同样总压力的饱和湿空气中水蒸气的分压力p s(t)的比值。 (3)含湿量d:1kg干空气所带有的水蒸气质量。 绝对湿度ρv:单位体积的混合气体中,水蒸气的质量。 (4)焓值h:指含有1kg干空气的湿空气的焓值,等于1kg干空气的焓值与dkg水蒸气的焓值之和。基准:0℃下的干空气和0℃下的水蒸气的焓。 干空气比焓ha=1.005t;水蒸气的比焓hv=2051+1.86t

H=1.005t+d(2501+1.86t)KJ/kg干空气 (5)湿球温度tw:就是用湿球温度计测出的空气温度。也就是说将温度计的水银球用浸水的纱布包裹起来,所测得的稳定的空气温度。 从理论来说,湿球温度就是室内放置一盆水,水吸收空气中的热量后部分水蒸发成水蒸汽释放到空气中,增加空气的潜热,而空气失去了热量,温度降低失去了空气的显热。当这一热湿交换达到平衡以后,空气所得的潜热(水蒸汽)和所失的显热(温度降低)达到平衡后,其空气的总热量(焓值)不变时,此时的水面空气的温度就是空气的湿球温度(即增加的潜热等于失去的显热时)。湿球温度也就是相对湿度100%时的饱和温度。 (6)干球温度t::就是用干球温度计测出的空气温度。 (7)饱和水蒸气分压力pv (8)热湿比ε线:空调房间内的全热负荷与全湿负荷之比。 4、焓湿图 (1)坐标轴:纵坐标时湿空气的比焓h,单位kj/kg(干空气);横坐标时含湿量d,单位kg(水蒸气)/kg(干空气)。两者夹角135°。 (2)5条等值线: 5、湿空气过程 (1)加热/冷却过程:压力与含湿量均保持不变。Q=Δh=h2-h1;等湿加热/冷却。 (2)绝热加湿过程: ①喷淋加湿:绝热条件下,喷淋加热时,水蒸发需要热量,汽化热量由空气提供,故加湿后

蒸发式冷凝器原理讲解

先向大家好解释几个概念: 一、显热与潜热 物体在加热或冷却过程中,温度升高或降低而不改变其原有相态所需吸收或放出的热量,称为“显热”。它能使人们有明显的冷热变化感觉,通常可用温度计测量出来。如将水从20℃升高到80℃所吸收到的热量,就叫显热。 在物体吸收或放出热量过程中,其相态发生了变化(如气体变成液体,功液体变成气体),但温度不发生变化,这种吸收或放出的热量叫“潜热”。“潜热”不能用温度计测量出来,人体也无法感受到,但可通过实验计算出来。 如水从100℃液态变为100℃气态这时所吸收的热量就是潜热。 二、干球温度与湿球温度 干球温度是温度计在普通空气中所测出的温度,即我们一般天气预报里常说的气温。 湿球温度是指同等焓值空气状态下,空气中水蒸汽达到饱和时的空气温度,在空气焓湿图上是由空气状态点沿等焓线下降至100%相对湿度线上,对应点的干球温度。 蒸发式冷凝器最低可冷却到湿球温度以上8℃,在宝鸡地区湿球温度是24.8℃,就是说可冷凝到33℃。 干球温度对水冷器的换热效果影响不大,同样在宝鸡地区普通水冷只能冷凝到时37~40℃。 总之,冷凝的效果跟冷却水的进口温度、需冷却介质的进口温度有关,但还有热量、介质、压力等等因素有关。如果换热面积无限大,循环水量无限大那就可以降到更低的温度,可以降到冷却水的进口温度。也就是说在宝鸡地区和普通水冷相比,同样的条件下,和普通水冷相比蒸发冷可以冷凝到32度,而水冷只能到37~40度。最经济的设备投资下我们的冷凝温度要比水冷器低,所以说蒸发冷凝要比水冷节能。 蒸发式冷凝器工作原理 蒸发冷凝器以水和空气作为冷却剂,它主要利用部分水的蒸发带走工艺介质

新风系统设计方案和新风量计算方法详解

新风系统设计方案和新风量计算方法详解 一新风方案的选择 1.1 空调系统的新风量,应符合下列规定: (1)不小于人员所需新风量,以及补偿排风和保持室内正压所需风量两项中的较大值; (2)人员所需新风量应满足下表的要求,并根据人员的活动和工作性质以及在室内的停留时间等因素确定。 (3)工业建筑应保证每人不小于 30m3/h的新风量。

1.2 当空调系统不设新风系统时,室外风仍可通过门、窗的缝隙渗透到室内,因此负荷计算时,必须计算通过围护结构、门、窗缝隙渗入室内的新风负荷,渗入的空气量可按不小于以下换气次数估算:

适用于一面或二面有门、窗暴露的房间,当房间有三面或四面门、窗暴露面时,应乘以系 数1.15。 1.3 与多联式中央空调相配套,常用的新风方案有三种:①新风处理机;②全热交换器; ③风机箱直接送风(新风不处理)。 (1)板翅式全热交换器 板翅式全热交换器的热交换单元是采用不燃性矿物纤维作为基材,经专门加工制成吸湿、 透湿性能良好的纸状波形折摺态,能够实现湿度(水分子)的交换,这样,温度和湿度不 同的两股气流相间通过各自流道时,一方面通过传导进行显热的交换,另一方面,也在水 蒸气分压力差的作用下,透过薄的纸状层进行质-湿的交换。 (2)三种方案的对比如下:

另外,显热交换器有时也会采用,与全热交换器相比,其优点为:热交换元件是以交叉叠放的铝箔波纹板作为基材制成的,寿命长;其缺点为:只能回收显热,不能回收潜热,焓效率较低。 (3)通过以上对比,可以看出,“风机箱直接送风”这种新风方案,处理不当会造成室内舒适度下降,实际工程中应用较少;对于新风处理机和全热交换器这两种方案,应首选新风处理机,因为该方案将室外新风处理到室内设计状态,处理效果最好,最规范。 1.3 除以上三种外,其它新风方案有: (1)选用风冷热泵水机和水盘管的新风机组; (2)高层的塔楼选用多联机系统,而裙房选用传统的水机系统时,可以考虑用水机系统带上塔楼的新风系统; (3)选用其他品牌的直接蒸发的新风机组。 (4)机械排风、自然进风的“会呼吸”的新风系统。 1.4 普通的风管式室内机与新风处理机相比,配件的选用、内部构造、控制方式以及工作范围等有很大的不同,风管机处理的是室内工况(回风工况),不能处理全新风工况,因此不能当作新风机来用。 普通风管机可以处理新风与回风的混合风,新风量不应超过风管机处理风量的30%。 二新风系统的设计 2. 1 首先要注意各种新风系统的使用范围,例如:

第二章-制冷空调基础知识

课题】第二章制冷空调基础知识 第一节热力学定律 教学目标】 1.知识目标:工质的基本状态参数,理解热力学定律的内涵及应用。 2.能力目标:通过理论知识的学习和应用,培养综合运用能力。 3.情感目标:培养学生热爱科学,实事求是的学风和创新意识,创新精神。教学重点】热力学定律的内涵及应用。 教学难点】焓湿图的意义和应用。 教学方法】 读书指导法、分析法、演示法、练习法。 课时安排】 4 学时。 教学过程】 导入〗(2 分钟) 在热力工程中,实现热能与机械能的转换或热能的转移,都要借助于一种携带热能的工作物质即工质,各种气体、蒸气及液体是工程上常用的工质。在热力过程中,一方面工质的热力状态不断地发生变化,另一方面工质与外界之间有能量的交换。因此,工质的热力性质及热能转换规律是工程热力学研究的内容。 〖新课〗1-2 学时 第一节热力学定律 一、工质的物理性质及基本状态参数 1.物质的三态固态、液态及气态,三态之间是通过吸热或放热来完成其状态转化的。 (1)固态该种状态的物质分子间的引力比其它两种状态大,且分子间的距离最小。固体具一定形状。 (2)液态液态的物质分子间的引力较小而间距较大。分子间相互可移动,因此液体具有流动性而且无一定的形状。 (3)气态和上述两种状态相比较,气态物体的分子间距离最大而分子间引力很小,分子间无相互约束,不停地进行着无规则的运动。因此,气体无形状,元固定体积。 物质的状态取决于分子之间引力的大小和其热运动的强弱。 2.基本状态参数 热力学中常见的状态参数有(基本状态参数)温度T、压力p、密度或比体积v、比 内能u、比焓h 等。 (1)温度描述热力系统冷热程度的物理量。热力学温度的符号用T 表示,单位为K (开)。热力学温度与摄氏温度之间的关系为 t = T- 273.15 K 或T = 273.15 K + t t ——摄氏温度,℃。 (2)压力

通风与空气调节工程学习重点及习题详解

第一章室内污染物的控制与通风 学习目标: 通过本章的学习,全面了解自然通风和机械通风的组成和工作原理,熟悉建筑物的防火排烟系统在通风、空调系统中的应用,具有一般建筑物通风的设计计算能力。 小结: 本章主要介绍了室内污染物的来源与危害,建筑物通风的分类、概念和工作原理,防火排烟系统的概念和作用原理,并讨论了建筑物通风和防火排烟系统的设计方法。在学习本章时应掌握和理解以下几点: 一、熟悉室内污染物的分类、来源及危害,理解室内空气品质的概念及其评价方法。 二、掌握局部通风的概念、组成、工作原理及特点,熟悉空气幕和外部吸气罩的设计计算方法。 三、掌握全面通风的分类和全面通风换气量的确定方法,理解置换通风的概念和作用原理,熟悉气流组织的类型及设计计算原则,利用空气质量平衡和热平衡方程熟练进行全面通风系统的设计计算。 四、理解热压和风压作用下自然通风的工作原理,熟悉自然通风的设计计算原则和设计计算方法。 五、掌握防火分区、防烟分区、加压送风防烟和疏导排烟等基本概念,理解烟气的危害和防排烟的重要性,熟悉烟气的流动与控制原则以及建筑物的防火排烟系统在通风、空调系统中的应用。 本章重点: 1、室内空气品质的概念及其评价。 2、局部通风、全面通风和自然通风的概念、工作原理及特点。 3、局部通风、全面通风和自然通风的设计计算方法。 4、防火分区、防烟分区的概念,加压送风量和机械排烟量的确定方法。 5、建筑物的防火排烟系统在通风、空调系统中的应用。

计算题详解: 1-6 已知某房间散发的余热量为160kW ,一氧化碳有害气体为32mg/s ,当地通风室外计算温度为31℃。如果要求室内温度不超过35℃,一氧化碳浓度不得大于1mg/m 3,试确定该房间所需要的全面通风量。 【解】 据题意得一氧化碳p1y ≤1 mg/m 3,考虑送风中不含有一氧化碳,故0s1=y 。 (1)消除余热所需的全面通风量: ()()=-?+?=-ρ=313531 273353011160s p p 1.t t C Q L 34.1 m 3/s (2)稀释一氧化碳所需的全面通风量: =?? ? ??-?=-=01326s1p112y y kx L 192m 3/s (取6=k ) 或 =??? ??-?=-= 013210s1p112y y kx L 320m 3/s (取10=k ) (3)该房间所需要的全面通风量取(1)和(2)中的最大值: 192m 3/s (取6=k )或320m 3/s (取10=k )。 1-8 已知某车间内总余热量为Q =80kW ,车间上部天窗排风量zp L =2.5m 3/s ,局部机械排风量jp L =3.0 m 3/s ,自然进风量zj L =1 m 3/s ,车间工作区温度为25℃,外界空气温度w t =-12℃。 求:(1)机械进风量jj G ;(2)机械送风温度jj t ;(3)加热机械进风所需的热量3Q 。 【解】 (1)确定机械进风量jj G : 由jp zp jj zj G G G G +=+得: jj j jp jp zp zp jj ρ-ρ+ρ=j L L L G 16512 2733530125273353032527335352....=-?-+?++? =kg/s (2)确定送风温度 jp jp zp zp zj zj jj jj Ct G Ct G Q Ct G Ct G +=++

(完整word版)焓湿图例题解析

中乾汇泰企业培训例题习题(二) 【例题1】某空调房间冷负荷 Q=3.6KW,湿负荷V=0.3g/s ,室内空气状态参数 3 为:t N =22± 1C, N =55± 5 ,当地大气压为101325Pa,房间体积150 m 求:送风状态、送风量和除湿量。 解:⑴ 求热湿比 尸= .3 12000 W 0.3 10 3 (2) 在焓湿图上确定室内空气状态点 N,通过该点画出6=12600的过程线。 依据土 1C 温度偏差查表1取送风温差为 t 。8C,则送风温度22-8=14 C o 从而得出:h 0=36KJ/kg h N =46 KJ/kg d O =8.6g/kg d N =9.3g/kg (3)计算送风量 按消除余热:G -kg^— 0.33 i N i 0 4^ 36 按消除余湿:G —kg/3 0. 33 d N d 0 9.3 8.5 则 L=0.33/1.2 X 3600=990r 3 /h 换气次数n =990/150(次/h) =6.6 次/h ,符合要求。 除湿量:M G (d N do ) 0.33 (9.3 8.6) 室内允许波动范围 送风温差(C ) 换气次数(次/h ) ± 0.1 ?0.2 C 2?3 150 ?20 ± 0.5 C 3?6 >8 ± 1.0 C 6?10 > 5 人工冷源:w 15 > 5 >± 1.0 C 天然冷源:可能的最大值 > 5 0. 231 360Q g / h ) 831. 6g / h 0.83kg / h 舒适性空调送风温差与换气次数 表1 二、两个不同状态空气混合过程的计算 混合气体模型: 空气A :质量流量q A (Kg/s ),状态为(h A , d A ) 空气B:质量流量q B (Kg/s ),状态为(h B , d B ) — C —

焓湿图知识

利用Flash实现焓湿图表查询程序Ξ 白 鹤 俞微微 (大连水产学院) 摘 要 湿空气的焓湿图在工程领域的应用非常广泛,也是制冷空调设计中不可或缺的基本物性图表之一。利用Flash实现的焓湿图表查询程序可以方便、快捷地获得湿空气各状态参数,对于实现制冷空调设计计算的计算机化、节省时间、提高效率有重要意义,具有一定的工程应用价值。 关键词 焓湿图 状态参数 Flash 绘制 查询 Development of query program of enthalpy2humidity using Flash Bai He Yu Weiwei (DaLian Fisheries University) ABSTRACT The enthalpy2humidity chart is more useful in the field of engineering,and it is one of the necessary basic charts in the refrigeration and air2conditioning design.The program developed by using the Flash MX2004is convenient to acquire the property and correlation pa2 rameter of wet air quickly,has important meaning for realizing program computerization,sav2 ing time,improving efficiency,has certain applied value for the engineering. KE Y WOR DS enthalpy2humidity chart;parameters;Flash;drawing;query 湿空气的焓湿图在工程领域的应用非常广泛,它可以直观地表示湿空气的状态、状态变化过程以及进行有关的分析和计算,并且湿度计算作为一种研究空气和水蒸气混合物的热能和物理性质的方法,在许多领域中都很重要。在农业工程问题中包括:1)调节建筑室内温度和相对湿度;2)空调处理; 3)浓缩控制;4)动植物生存环境的调节;5)蒸发和蒸腾作用;6)农作物烘干及其加工处理[1]。 另外,由于国内多使用由同济大学通风与空气调节教研室于1979年所绘制的湿空气焓湿图(h2d 图)[2]来查算,但因压力仅有500,550,600,650,700, 730,745和760mmHg(1mmHg=133.322Pa)8种情况,故一些学者根据ASHRAE推荐公式编制出BASIC程序[3],这给本软件的开发提供了一些启示。 在网络技术快速发展的今天,Flash技术凭借其体积小、流通广的优势很快在互联网上占据了一席之地,那么能不能应用Flash技术来开发实现焓湿图表的查询功能呢?答案是肯定的。Flash最新版本Flash MX2004在面向对象编程方面已初具成熟,虽然不能与Visual Basic,Visual C,C++和JAVA这些专业编程软件相媲美,不过其所拥有的简单的可视化操作,使得设计者很快就能上手,将直观、精确、美观的设计图呈现在使用者面前。根据湿空气各状态参数的基本计算公式,利用Flash MX2004开发有关焓湿图表计算机查询系统的程序,并在此基础上构建一个简单的网页操作平台,无论是使用Windows还是Linux操作系统,也无论是在单机上还是在网络上都可以方便、快捷地查询湿空气的状态参数值。 1 开发软件简介 Flash是Micromedia公司推出的优秀动画设计软件,它是一种功能强大的交互式图形和动画设计工具,用它可以将音乐、声效、动画融合在一起,利用其产生矢量图的特征制作出高品质的动态效果。Micromedia Flash作为矢量化的交互式web 第7卷 第4期 2007年8月 制冷与空调 REFRIGERA TION AND AIR-CONDITION IN G 92295 Ξ收稿日期:2006209225 通讯作者:白鹤,Email:bigbird365@https://www.wendangku.net/doc/e62319719.html,

焓湿图例题解析

中乾汇泰企业培训例题习题(二) 【例题11某空调房间冷负荷Q=3.6KW,湿负荷V=0.3g/s ,室空气状态参数为: 3 N=22± 1C, N=55±5 ,当地大气压为101325Pa,房间体积150 m。求:送风状态、送风量和除湿量。 解: (1)求热湿比£=2-= ——3-6―3 W 0.3 10 3 (2)在焓湿图上确定室空气状态点N,通过该点画出£=12600的过程线。 依据土1C温度偏差查表1取送风温差为t。8C,则送风温度22-8=14 C。 从而得出:h o=36KJ/kg h N=46 KJ/kg d O=8.6g/kg d N=9.3g/kg (3)计算送风量 按消除余热:G -kg^—0.33 i N i 0 4^ 36 按消除余湿:G —kg/30. 33 d N d09.3 8.5 则L=0.33/1.2 X 3600=990r 3 /h 换气次数n =990/150(次/h) =6.6 次/h,符合要求。 除湿量:M G (d N do) 0.33 (9.3 8.6) 0. 231 360Q g / h)831. 6g / h 0.83kg / h 舒适性空调送风温差与换气次数表1 室允许波动围送风温差(C)换气次数(次/h ) ± 0.1 ?0.2 °C2?3150 ?20 ±0.5 C3?6>8 ±1.0 C6?10> 5 人工冷源:w 15> 5 >±1.0 C天然冷源:可能的最大值> 5 二、两个不同状态空气混老合过程的计算 混合气体模型: 空气A:质量流量q A(Kg/s),状态为(h A , d A )空气B:质量流量q B (Kg/s),状态为(h B , d B ) 12000

超详细的焓湿图的应用

超详细的焓湿图的应用

第2章湿空气的状态与焓湿图的应用 第一课:湿空气 §2.1湿空气的组成和状态参数 一、湿空气的组成 湿空气=干空气+水蒸气+污染物 1.干空气: N2—78.09% O2—20.95% CO2—0.03% 看成理想气体 Ne—气体常数:Rg=287J/kg.k He—0.93% Ar— 2.水蒸气—看成理想气体,气体常数—461 J/kg.k 3.污染物 从空气调节的角度:湿空气=干空气+

水蒸气(干空气成分基本不变,水蒸气变化大) 二、湿空气的状态参数 1.压力P(单位:帕,Pa) (1)大气压力: 定义:地球表面的空气层在单位面积上所形成的压力称为大气压力; 特点:不是一个定值,随海拔高度变化而变化,随季节天气变化而变化。 一个标准大气压为1atm=101325Pa=1.01325bar 当地大气压=干空气分压力+水蒸气分压力(B=Pg +Pq) 其中水蒸气分压力(Pq) 定义:湿空气中,水蒸汽单独占有湿空气的容积,并具有与湿空气相同的温度时,所产生的压力称为水蒸气分压力。 湿空气可看成理想的混合气体,湿空气的压力等于干空气的分压力与水蒸气的 分压力之和: P(B)=Pg+Pq

湿空气中水蒸气含量越多,则水蒸气的分压力越大。 2.温度t(单位:摄氏温标0C) t(℃)以水的冰点温度为起点0℃,水的沸点100℃为定点。 3.湿空气的密度ρ 定义:单位容积空气所具有的质量,即(kg/m3) 计算式: 结论:①湿空气比干空气轻。 ②阴凉天大气压力比晴天低。 ③夏天比冬天大气压力低。 标准状态下,干空气密度 ρ干=1.205kg/m3,湿空气密度略小于干空气密度。 工程上取ρ湿=1.2kg/m3 4.含湿量d(单位:g/kg干空气):定义:对应于1千克干空气的湿空气所

相关文档