文档库 最新最全的文档下载
当前位置:文档库 › 半导体制造工艺期末考试重点复习资料

半导体制造工艺期末考试重点复习资料

半导体制造工艺期末考试重点复习资料
半导体制造工艺期末考试重点复习资料

1、三种重要的微波器件:转移型电子晶体管、碰撞电离雪崩渡越时间二极管、

MESFET。

2、晶锭获得均匀的掺杂分布:较高拉晶速率和较低旋转速率、不断向熔融液中

加高纯度多晶硅,维持熔融液初始掺杂浓度不变。

3、砷化镓单晶:p型半导体掺杂材料镉和锌,n型是硒、硅和锑

硅:p型掺杂材料是硼,n型是磷。

4、切割决定晶片参数:晶面结晶方向、晶片厚度(晶片直径决定)、晶面倾斜度

(从晶片一端到另一端厚度差异)、晶片弯曲度(晶片中心到晶片边缘的弯曲程度)。

5、晶体缺陷:点缺陷(替位杂质、填隙杂质、空位、Frenkel,研究杂质扩散和

氧化工艺)、线缺陷或位错(刃型位错和螺位错,金属易在线缺陷处析出)、面缺陷(孪晶、晶粒间界和堆垛层错,晶格大面积不连续,出现在晶体生长时)、体缺陷(杂质和掺杂原子淀积形成,由于晶体固有杂质溶解度造成)。

6、最大面为主磨面,与<110>晶向垂直,其次为次磨面,指示晶向和导电类型。

7、半导体氧化方法:热氧化法、电化学阳极氧化法、等离子化学汽相淀积法。

8、晶体区别于非晶体结构:晶体结构是周期性结构,在许多分子间延展,非晶

体结构完全不是周期性结构。

9、平衡浓度与在氧化物表面附近的氧化剂分压值成正比。在1000℃和1个大气

压下,干氧的浓度C0是5.2x10^16分子数/cm^3,湿氧的C0是3x10^19分子数/cm^3。

10、当表面反应时限制生长速率的主要因素时,氧化层厚度随时间呈线性变

化X=B(t+)/A线性区(干氧氧化与湿氧氧化激活能为2eV,);氧化层变厚时,氧化剂必须通过氧化层扩散,在二氧化硅界面与硅发生反应,并受扩散过程影响,氧化层厚度与氧化时间的平方根成正比,生长速率为抛物线X^2=B(t+)抛物线区(干氧氧化激活能是1.24Ev,湿氧氧化是0.71eV)。

11、线性速率常数与晶体取向有关,因为速率常数与氧原子进入硅中的结合

速率和硅原子表面化学键有关;抛物线速率常数与晶体取向无关,因为它量度的是氧化剂穿过一层无序的非晶二氧化硅的过程。

12、较薄的氧化层MOSFET栅氧化层用干氧氧化,较厚的用湿氧氧化,如

MOS集成电路中的场氧化层和双极型器件,以获得适当隔离和保护,20nm 为界限。

13、给定氧化条件下,在<111>晶面衬底上生成的氧化层厚度大于<100>晶面

衬底,因为<111>方向线性速率常数更大。值得注意的是温度和时间相同时,湿氧氧化厚度是干氧的5~10倍。

14、氧化掩膜厚度一般用实验测量方法获得,主要取决于特定温度和时间下,

不能使低掺杂硅衬底发生反型,典型厚度为0.5um~1.0um。

15、二氧化硅中各掺杂杂质扩散常数依赖氧的密度、性能和结构。

16、MOS器件受氧化层中的电荷和位于二氧化硅-硅界面处势阱影响。

17、势阱和电荷的基本类别:界面势阱电荷Qit(由于二氧化硅-硅界面特性

产生,取决于这个界面的化学组分,势阱位于二氧化硅-硅界面处,能态在硅禁带中,界面势阱密度有取向性,用低温450℃氢退火进行钝化处理);固定电荷Qf(很稳定,难充电或放电,一般是阳性);氧势阱电荷Qot(与二氧化硅缺陷有关,可以通过低温退火处理消除);可移动离子电荷Qm(由于钠或其它碱性离子玷污导致,高温和高电场时可在氧化层中移动,改变阀值电压)。

18、测量氧化层厚度:表面光度法、椭圆偏光法和颜色对比法(主观化,不

精确)。

19、光刻:将掩膜上的几何图形转移到涂在半导体晶片表面的敏光薄层材料

上的工艺过程。

20、级别为M3.5的洁净室(公制),每立方米直径≥0.5um的尘埃粒子数不

超过10^3.5,,大约为3500粒子数/m^3。

21、曝光设备性能参数:分辨率、对准精度和生产效率.

分辨率指能精确转移到半导体表面光刻胶上的最小特征尺寸值;

对准精度指各个掩膜与先前刻在硅片上的图形相互套准的程度;

生产效率指某次光刻中掩膜在1小时内能曝光的硅片数。

22、光学曝光法:遮蔽式曝光和投影式曝光;

遮蔽式曝光掩膜和硅片彼此直接接触为接触式曝光(由尘埃粒子引起的缺点:掩膜与硅片接触时,硅片上的尘埃粒子或硅渣会嵌入掩膜,使掩膜永久性损伤,使随后使用它曝光的每个硅片有缺陷),彼此非常靠近为接近式曝光(将掩膜受损程度减至最小)。

23、一个完整的集成电路工艺流程需要15~20层不同的掩膜。

24、标准尺寸的掩膜衬底是由15x15cm^2,厚度为0.6cm的玻璃平板制成。

25、掩膜的主要指标是密度缺陷,掩膜制造过程或以后的图形曝光过程可能

会给掩膜带来缺陷。

26、光刻胶是一种对辐照敏感的化合物,可分为正性和负性,正胶的曝光部

分在显影时更易于溶解而去掉,所得图形与掩膜上相同,负胶曝光部分在显影时不易被溶解,所得图形与掩膜上相反。

正胶组成:感光剂、树脂基片和有机溶剂,曝光前,感光剂不易溶于显影液,曝光后,曝光区内的感光剂由于吸收了能量导致化学结构发生变化,在显影液中可被溶解,显影后,曝光区内的光刻胶被去掉。

负胶是一种含感光剂的聚合物。曝光后,感光剂吸收光能转变为化学能引起链接反应,是聚合物分子间发生交联,不易溶于显影液,经显影,未曝光部分被溶解,负胶缺点是显影时光刻胶吸收显影液溶剂膨胀,限制了负胶分辨率。

27、分辨率增强技术:相移掩膜和光学邻近效应校正。

28、电子束曝光优点:能生成亚微米线宽的光刻胶图形,自动化程度高,控

制精确,比化学曝光法的聚焦好,而且能直接在半导体晶片上形成图形而不需掩膜;缺点电子束曝光机的产出率低,在分变率小于0.25μm时,每小时只能加工10片左右的晶片,只适于生产掩膜或制造少量定制电路或者验证设计之用。

29、聚焦电子束扫描方式:光栅扫描和矢量扫描(节省时间)。

30、光学曝光中,分辨率受光衍射限制,电子束曝光中则受电子散射限制。

31、电子束在某处的辐照影响邻近区域的辐照现象为邻近效应。

32、离子束曝光由于离子质量较大,散射只用比电子若,故其比光学、X射

线或电子束曝光技术有更高的分辨率。离子束曝光系统:扫描焦聚束系统和掩膜束系统。

33、曝光法:电子束曝光、超紫外光曝光、X射线曝光、离子束曝光和光学

曝光。

34、湿法化学刻蚀机理:反应物通过扩散运输到反应表面、化学反应发生在

此表面、通过扩散将反应生成物从表面移除。

35、最常用的刻蚀剂是硝酸和氢氟酸在水或醋酸中的混合液。

36、对硅晶格,<111>晶面比<110>晶面和<100>晶面的每隔单元上有更多的

化学键,故<111>晶面上的刻蚀速率应该较小。

37、二氧化硅的湿法刻蚀通常使用添加或不添加氟化铵的HF稀释溶液。

38、室温下浓HF溶液、HF稀释溶液或煮沸的磷酸溶液可对硅的氮化物薄膜

进行刻蚀。

39、典型刻蚀液是73%的磷酸、4%的硝酸、3.5%的醋酸和19.5%的去离子水

混合溶液,温度在30℃到80℃间。

40、湿法刻蚀进行图形转移的缺点是掩膜层下有横向钻蚀,导致刻蚀后图形

分辨率下降。

41、干法刻蚀就是等离子体辅助刻蚀,利用低压放电等离子体技术刻蚀方法,

包括等离子体刻蚀、反应离子刻蚀、溅射刻蚀、磁增强反应离子刻蚀,反应离子束刻蚀和高密度等离子体刻蚀。

42、等离子体刻蚀工艺步骤:刻蚀反应剂在等离子体中产生;反应剂以扩散

方式通过不流动的气体边界层到达表面;反应剂吸附在表面;发生化学反应和离子轰击等物理效应生成可挥发性化合物;这些化合物从表面解析出来,通过扩散回到等离子体气体中,然后由真空装置抽出。

43、等离子体刻蚀技术基于低压时在气体中产生的等离子体。基本方法是物

理方法和化学方法;

44、大部分等离子体工艺释放红外线到紫外线范围内的射线。

45、硅沟槽刻蚀:随着器件特征尺寸的减小,由于需要在电路器件与DRAM

存储单元的贮存电容之间进行隔离,硅片表面面积也相应减少了。这些表面隔离区可以通过对硅衬底刻蚀出沟槽,并用适当的电介质或导电材料填充来减少,深沟槽(<5μm)主要形成存储电容,浅沟槽(<1μm)用来隔离。

46、氯基和溴基的化学剂对硅有较高的硅刻蚀速率,且对二氧化硅掩膜具有

较高的刻蚀选择性。HBr+NF3+SF6+O2的混合气体来形成大约7μm深的沟槽电容,这种气体可以用于浅沟槽隔离的刻蚀。

47、在铝刻蚀过程中加入含碳的气体CHF3或N2以形成侧壁钝化,获得各

向异性刻蚀效果。

48、掺杂是将一定数量的杂质掺入半导体材料的工艺,作用是改变半导体材

料的电学特性。扩散和离子注入是主要掺杂方法。

49、对于硅扩散,硼常用作p型杂质,砷和磷为n型杂质。

50、高温下,晶格原子在格点平衡位置附近振动,基质原子可能获得足够能

量脱离晶格格点成为间隙原子,而产生一个空位,邻近杂质原子可以移到该空位,这种扩散机制为替代式扩散;间隙杂质原子从一个位置运动到另一个位置却不占据格点,称为填隙式扩散。

51、费克扩散方程或法则:

52、扩散工艺的结果用三种测量方式进行评估:结深、薄层电阻和扩散层的

杂质分布。

53、扩散分布也可以用电容—电压法测量。

54、测量总杂质分布更精确的方法是二次离子质谱法(SIMS)。

55、低温时扩散率为本征扩散率。

56、非本征扩散区域内,扩散率与杂质浓度有关,而且扩散和相继的扩散之

间存在相互作用和协同效应。

57、离子注入将具有一定能量的带电粒子掺入到衬底中,注入能量在1keV

到1MeV间,所对应离子分布的平均深度范围是10nm到10μm。

58、离子从进入晶片到停止在晶体中所经过的总距离称为射程R,从此距离

在入射轴上的投影称投影射程Rp,投影射程的统计涨落为投影偏差σp。59、降低沟道效应方法:覆盖一层非晶体的表面层;将硅晶片晶向偏转;在

晶片表面制作一个损伤层。

60、外延层生长技术有化学气相淀积和分子束外延。

61、分子束外延式指在具有极高真空度的环境中,一束或多束热原子流或者

分子流与晶体表面发生反应而生成外延层的工艺。

62、真空技术参数-分子碰撞率Φ,即单位时间衬底的单位面积上多少分子与

其碰撞,是分子质量、温度和压强的函数Φ=p(2πmkT)^(1/2)。

63、异质外延式指外延层与衬底是两种不同的半导体,且外延层必须保持理

想化的界面,意味过界面的原子键必须连续。

64、三种外延层的生长:晶格匹配外延、应力外延和无应力外延。

65、外延层中的缺陷:来自衬底的缺陷(采用没有位错的半导体衬底避免);

来自界面的缺陷(衬底表面必须彻底清洗或采用方程SiCl4+2H2 —Si+4HCl 的逆反应进行现场反蚀);沉积物或位错环;低角晶粒间界;刃型位错。66、磷玻璃流:低温淀积的磷玻璃(掺P的SiO2)在加热时会变软而流动,

形成光滑表面,所以经常采用这种SiO2作为相邻金属层间的绝缘体。适合采用磷的浓度为6%~8%。

67、减小ULSI电路中RC常数,需要互连材料具有低电阻率和掩膜层低电容。

68、保证正确操作,DRAM中存储电容必须保持为定值。但对于平面结构,

随着DRAM密度增加面积减小,故膜的介电常数必须增加。

69、多晶硅作为MOS器件的栅电极原因多晶硅电极可靠性方面性能优于铝。

70、金属常用物理气相淀积方法蒸发、电子束蒸发、等离子溅射淀积和溅射。

71、降低互连网络的PC时间延迟,同时需要高电导率的导线和低介电常数

的绝缘体。铜的优势是具有更高的电导率和电迁移抵御能力。

72、CMP方法的主要部分;待抛的表面;垫板,是使机械行为传到被抛表面

的关键媒介;抛光液,提供了化学和机械两种效果。

73、电阻划分:方块电阻,由注入工艺决定;L/W的比率,由图形尺寸决定。

每个末端接触空面积近似为单位面积的0.65倍。

74、集成电路电容:MOS电容和p-n结电容。

75、所有的CMOS电路都潜在存在着棘手的闩锁问题,闩锁与寄生的双极型

晶体管有关。消除闩锁问题的有效技术室采用深槽隔离。

76、硅的高温和长时间氧化使得沟道阻挡层注入的离子侵入了有源区,使阀

值电压VT漂移。

77、BiCMOS技术是将CMOS和双极型器件结构结合在单一IC芯片中。原

因在于创造一种新的IC芯片,同时具有CMOS和双极型器件的优点。COMS 在功耗、噪声容限和封装密度有优势,双极型在开关速度、电流驱动能力和模拟信号处理能力方面有优势。

78、砷化镓缺乏高质量的绝缘膜。

79、砷化镓固定优势:电子迁移率高,对于给定的器件尺寸,其串联电阻较

低;在给定电场下,漂移速度快,提高了器件的速度;能够制作半绝缘材料,可以提供晶格匹配的介质绝缘衬底。缺点:极短的少子寿命;缺乏稳定的自然保护氧化层;晶体缺陷多。砷化镓IC技术重点是MESFET(多数载流子的运输和金属-半导体接触)。

80、MESFET制造工艺序列:FET沟道注入->T栅的形成->自对准n+注入,

其后退火->欧姆接触->第一层互连->穿通接触->第二层互连。

81、体硅微机械传感器的典型尺寸是毫米量级,而表面显微机械器件则是微

米量级。

82、LIGA工艺步骤是光刻、电镀和成型。其优点是制作三维结构的能力,

其厚度与体显微机械器件相同,而且保留了表面显微机械加工的设计灵活性。

83、制造时将原材料转化成为成品的过程。

84、成本是可以用于评估任何制造工艺步骤的一个重要衡量标准,成品率直

接影响成本。成品率是执行同一套技术规范所制造的合格产品的比率。

85、ATE主要功能包括输入图形的产生、图形应用和输出响应检测。

86、封装CSPs的重要特征:一是引出线和插入层使得封装后的设备足够柔

韧,能够顺利通过在测试夹具上的全测试和老练;更好的适应在印刷电路板上的装配和工作过程中的竖向非平面性,以及热膨胀和收缩。

87、封装的互连线常采用引线键合、倒装芯片键合和载带自动键合。

88、控制图包括中心线、控制上限和控制下限。

89、两种最常用的品质控制图是缺陷图和缺陷密度图。

90、因素实验设计重要问题:实验中选择一组变化的因素;确定各因素可能

发生的变化范围。

91、成品率定义为达到额定技术要求器件或电路的百分比。

92、成品率可以分为功能和参数两类。功能成品率定义为具备完全功能产品

所占比例,也常称为硬成平率。集成电路的功能成品率一般由物理缺陷引起的开路或短路来表征。然而在某些情况下,具备完全功能的产品在一个或几个参数上仍然可能达不到技术要求,这种情况则应采用参数成品率来描述。

93、成品率模型通常是单位面积平均缺陷数和电子系统临界面积的函数。

94、计算参数成平率的一般方法是蒙特卡罗模拟。

95、CMOS逻辑技术未来的挑战:超浅结形成;超薄氧化层;硅化物的形成;

互连新材料;电源限制;SOI技术。

机械制造工艺学课后习题及参考答案.docx

机械制造工艺学复习题及参考答案 第一章 1.1什么叫生产过程、工艺过程、工艺规程? 答案: 生产过程是指从原材料变为成品的劳动过程的总和。 在生产过程中凡属直接改变生产对象的形状、尺寸、性能及相对位置关系的过程,称为工艺过程。 在具体生产条件下,将最合理的或较合理的工艺过程,用文字按规定的表格形式写成的工艺文件,称为机械加工工艺规程,简称工艺规程。 1.3结合具体实例,说明什么是基准、设计基准、工艺基准、工序基准、定位基准、测量基准、装配基准。 答案: 基准是指用以确定生产对象几何要素间的几何关系所依据的点、线、面。 设计基准是指在零件图上标注设计尺寸所采用的基准。 工艺基准是指在零件的工艺过程中所采用的基准。 在工序图中,用以确定本工序被加工表面加工后的尺寸、形状、位置所采用的基准,称为工序基准。 在加工时,用以确定工件在机床上或夹具中正确位置所采用的基准,称为定位基准。 在加工中或加工后,用以测量工件形状、位置和尺寸误差所采用的基准,称为测量基准。 在装配时,用以确定零件或部件在产品上相对位置所采用的基准,称为装

感谢你的观看配基准。 1.6什么是六点定位原理?什么是完全定位与不完全定位?什么是欠定位与过定位?各举例说明。 答案: 六点定位原理:在夹具中采用合理布置的6个定位支承点与工件的定位基准相接触,来限制工件的6个自由度,就称为六点定位原理。 完全定位:工件的6个自由度全部被限制而在夹具中占有完全确定的唯一位置,称为完全定位。 不完全定位:没有全部限制工件的6个自由度,但也能满足加工要求的定位,称为不完全定位。 欠定位:根据加工要求,工件必须限制的自由度没有达到全部限制的定位,称为欠定位。 过定位:工件在夹具中定位时,若几个定位支承重复限制同一个或几个自由度,称为过定位。 (举例在课本page12、13)。 1.10何谓零件、套件、组件和部件?何谓套装、组装、部装、总装和装配? 答案: 零件是组成机器的最小单元,它是由整块金属或其它材料构成的。 套件是在一个零件上,装上一个或若干个零件构成的。它是最小的装配单元。 组件是在一个基准零件上,装上若干套件而构成的。 部件是在一个基准零件上,装上若干组件、套件和零件构成的。部件在机感谢你的观看

《集成电路工艺原理(芯片制造)》课程 试题2016

一、填空题(30分=1分*30)10题/章 晶圆制备 1.用来做芯片的高纯硅被称为(半导体级硅),英文简称(GSG ),有时也被称为(电子级硅)。2.单晶硅生长常用(CZ法)和(区熔法)两种生长方式,生长后的单晶硅被称为(硅锭)。 3.晶圆的英文是(wafer ),其常用的材料是(硅)和(锗)。 4.晶圆制备的九个工艺步骤分别是(单晶生长)、整型、(切片)、磨片倒角、刻蚀、(抛光)、清洗、检查和包装。 5.从半导体制造来讲,晶圆中用的最广的晶体平面的密勒符号是(100 )、(110 )和(111 )。 6.CZ直拉法生长单晶硅是把(融化了的半导体级硅液体)变为(有正确晶向的)并且(被掺杂成p型或n型)的固体硅锭。 7.CZ直拉法的目的是(实现均匀掺杂的同时并且复制仔晶的结构,得到合适的硅锭直径并且限制杂质引入到硅中)。影响CZ直拉法的两个主要参数是(拉伸速率)和(晶体旋转速率)。 8.晶圆制备中的整型处理包括(去掉两端)、(径向研磨)和(硅片定位边和定位槽)。 9.制备半导体级硅的过程:1(制备工业硅);2(生长硅单晶);3(提纯)。 氧化 10.二氧化硅按结构可分为()和()或()。 11.热氧化工艺的基本设备有三种:(卧式炉)、(立式炉)和(快速热处理炉)。 12.根据氧化剂的不同,热氧化可分为(干氧氧化)、(湿氧氧化)和(水汽氧化)。 13.用于热工艺的立式炉的主要控制系统分为五部分:(工艺腔)、(硅片传输系统)、气体分配系统、尾气系统和(温控系统)。 14.选择性氧化常见的有(局部氧化)和(浅槽隔离),其英语缩略语分别为LOCOS和(STI )。15.列出热氧化物在硅片制造的4种用途:(掺杂阻挡)、(表面钝化)、场氧化层和(金属层间介质)。16.可在高温设备中进行的五种工艺分别是(氧化)、(扩散)、()、退火和合金。 17.硅片上的氧化物主要通过(热生长)和(淀积)的方法产生,由于硅片表面非常平整,使得产生的氧化物主要为层状结构,所以又称为(薄膜)。 18.热氧化的目标是按照()要求生长()、()的二氧化硅薄膜。19.立式炉的工艺腔或炉管是对硅片加热的场所,它由垂直的(石英工艺腔)、(加热器)和(石英舟)组成。 淀积 20.目前常用的CVD系统有:(APCVD )、(LPCVD )和(PECVD )。 21.淀积膜的过程有三个不同的阶段。第一步是(晶核形成),第二步是(聚焦成束),第三步是(汇聚成膜)。 22.缩略语PECVD、LPCVD、HDPCVD和APCVD的中文名称分别是(等离子体增强化学气相淀积)、(低压化学气相淀积)、高密度等离子体化学气相淀积、和(常压化学气相淀积)。 23.在外延工艺中,如果膜和衬底材料(相同),例如硅衬底上长硅膜,这样的膜生长称为(同质外延);反之,膜和衬底材料不一致的情况,例如硅衬底上长氧化铝,则称为(异质外延)。

《机械制造工艺学》复习重点

1.机械加工工艺过程由若干个工序组成,每一 个工序分为安装、工位、工步、走刀。 2.工序:一个(或一组)工人在一个工作地点 对一个(或同时对几个)工件连续完成的那 一部分工艺过程。 3.安装:在一个工序中需要对工件进行几次装 夹,则每次装夹下完成的那一部分工序内容 称为一个安装。 4.工位:在工件的一次安装中通过分度(或位 移)装置,使工件相对于机床床身变换加工 位置,则把每一个加工位置上的安装内容称 为工位。 5.工步:加工表面、切削刀具、切削速度和进 给量都不变的情况下所完成的工位内容称 为一个工步。 6.走刀:切削刀具在加工表面上切削一次所完 成的工步内容,称为一次走刀。 7.在机械加工中完成一个工件一道工序所需 的时间称为基本时间。 8.生产纲领:计划期内,包括备品率和废品率 在内的产量称为生产纲领。 9.生产批量:指一次投入或产出的同一产品或 零件的数量。 10.生产类型可按大量生产、成批生产、单件生 11.工件在机床或夹具中的装夹方法有三种: 直接找正装夹(比较经济,定位精度不易保 证,生产率低,仅适用于单件小批量生产); 划线找正装夹(生产效率低,精度不高,适 小批生产中的复杂铸件或铸件精度较低的粗加工工序); 夹具装夹(生产率高,易于保证加工精度要 求,操作简单方便,效率高,适用于大批量 生产,形状复杂件)。 12.六点定位原理:采用六个按一定规则布置的 约束点来限制工件的六个自由度,实现完全 定位。 13.完全定位:工件的六个自由度被完全限制的 定位。 14.不完全定位:允许少于六点的定位,都是合 理的定位方式。 15.欠定位:工件应限制的自由度未被限制的定 际生产中是绝对不允许的。 16.过定位:工件一个自由度同时被两个或两个 以上约束点重复限制的定位,一般来说也不 合理。 17.用一个短V形块定位可以限制工件2个移动 自由度。两个短V形块或长V形块限制2 个移动、2个转动。短圆柱销限制2个移动。 长圆柱销限制2个移动、2个转动。一个矩 形支承板限制1个移动、2个转动。一个条 形支承板限制1个移动、1个转动。一个支 承钉限制1个移动。采用大端面和短销组合 定位限制5个。 18.基准:可分为设计基准和工艺基准(工序基 准、定位基准、测量基准和装配基准)19.粗基准的选择原则: 1)保证相互位置要求的原则。应以不加工 面为粗基准。 2)保证加工面加工余量合理分配的原则。 应选择该表面的毛坯面为粗基准。 3)便于工件装夹原则。 4)基准一般不得重复使用的原则。 精基准的选择原则: 准不重合误差。 2)基准统一原则,在生产线上使用统一基 准使各工序定位简单一致。 3)互为基准原则,提高加工表面间的相互 位置精度。 4)自为基准原则,使加工余量均匀、提高 精度。 5)便于装夹原则。 20.机械加工工艺规程:是规定产品或零部件机 械加工工艺过程和操作方法等的工艺文件。 21.机械加工工艺规程步骤:图纸分析;工艺审 查;确定毛坯;确定机械加工工艺路线;确 定满足各工序要求的工艺装备;确定各主要 工序的技术要求和检验方法;确定各工序的 加工余量、计算工序尺寸和公差;确定切削 用量;确定时间定额;填写工艺文件。22.机械加工工艺规程的作用: 夹具、辅具; 是生产计划、调度工人操作和质量检验等的 依据; 车间厂房的设计依据。 23.机械加工工艺规程设计原则:好(可靠保证 图纸和所有技术条件的实现);快(满足生 产纲领的要求,劳动生产率高);省(加工 成本低);轻(劳动条件好,劳动强度低)。 24.时间定额:是指在一定生产条件下,规定生 成一道工序所需消耗时间。 25.工艺顺序的安排原则:先面后孔;先主后次; 先粗后精;先基准后其他。 26.工序集中:工序集中就是将工件的加工集中 内完成。每道工序的加工内容较多。高效的自动化机床(主要是加工中 心)27.工序分散:将工艺路线中的工步内容分散在 更多的工序中去完成,因而每道工序的工步 少,工艺路线长。主要有传统的流水线、自 动线、组合机床、大批量生产。 28.加工余量:指毛坯尺寸与零件设计尺寸之 差。 29.入体原则:对被包容尺寸(轴的外径、实体 大加工尺寸就是基本尺寸,上 偏差为零。对包容尺寸(孔的直径、槽的宽 度)其最小加工尺寸就是基本尺寸,下偏差 为零。毛坯尺寸公差按双向对称偏差形式标 注。 30.确定加工余量的方法有:计算法;查表法; 31.工序余量的影响因素:上工序的尺寸公差; 上工序产生的表面粗糙度;上工序留下的空 间误差e a;本工序的装夹误差εb。 32.机床夹具基本组成:定位元件;刀具导向元 件;夹紧装置;联接元件;夹具体;其他元 件或装置。 33.夹具的功能:保证加工质量;提高生产效率, ;扩大机床加工范围;减轻工 人劳动强度,保证安全生产。 34.装夹分为两个步骤:定位和夹紧 35.机床夹具的分类:具、可 调整夹具和成组夹具、组合夹具、随行夹具。 36.夹具上常用的定位元件(特点P261):固定 辅 助支承在工件定位后才参与工作,不起定位 作用)、心轴、定位销、套筒或卡盘、V型 块。 37.一面两孔定位中,定位元件为什么采用短圆 柱销,为什么采用一个短圆柱销和一个短削 边销?削边应从哪个方向削?答:当采用两 个圆柱销与两个定位孔配合时,两销在连心 线方向限制的自由度发生重复,发生过定 位,可能妨碍部分工件的装入,所以在设计 制造两销时,将一个销的直径进行削边,以 补偿孔销间中心距误差,使工件满足装卸条 件,同时又不增大转角误差,所以削边应在 两销连心线方向进行。 38.定位误差:由于工件在夹具上(或机床上) 定位不准确而引起的加工误差。包括基准不 重合误差和基准位移误差。P268 39.在采用调整法加工时,定位误差实质:工序 基准在加工尺寸方向上的最大变动量。 40.工件夹紧力三要素:大小、方向、作用点。 41.夹紧力选用原则:方主要夹紧力方向应 垂直于主要定位面;尽量和切削力、工件重 力方向一致;工件变形尽可能小。作用点: 应正对支承元件或位于支承元件形成的支 承面内;避免支承反力与夹紧力构成力偶; 夹紧力应作用在刚度较好部位,以减少工件 的加紧变形;夹紧力作用点应尽可能靠近加 工表面,以减少切削力对工件造成的翻转力 矩。大小:根据切削力F(刀具课讲)按静力 平衡求得;根据切削力、工件重力的大小、 方向和相互位置关系具体计算 42.常用夹紧机构:斜楔夹紧机构:斜楔夹紧的 1)结构简单,但操作不方便。 2)有增力作用,扩力比 i = FW / FQ ; 3)夹紧行程小, tanα= h/s=tan6°=0.1 , 故 h 远小于 s ; 4)能实现自锁。 其自锁条件为:Φ1+Φ2≥α 式中Φ1——楔块与工件间的摩擦角; Φ2——楔块与夹具体间的摩擦角; α——斜楔升角 螺旋夹紧机构:1)结构简单,多数用在手 动夹紧的夹具中; 2)具有良好的自锁性,夹紧可靠; 3)具有较大的增力比,约为80,远比斜楔 夹紧力大; 4)夹紧行程不受限制; 5)但夹紧行程大时,操作时间长。夹紧动 作较慢,效率低。所以通常使用一些快撤 装置; 偏心夹紧机构: 优点:结构简单、操作方便、动作迅速。 缺点:圆偏心轮夹紧力小,行程小,自锁性 能较差,用于切削力小,无振动,工件尺寸 公差不大的场合。铰链夹紧机构;定心夹紧 机构;联动夹紧机构。 43.机械加工精度:零件加工后的实际几何尺寸 参数的符合程度。 44.加工误差:指加工后零件的实际几何参数对 理想几何参数的偏离程度。 45.加工精度包括尺寸精度、形状精度、位置精 46.研究加工精度的方法: 单因素分析法 研究某一确定因素对加工精度的影响 统计分析法 以生产中一批工件的实测结果为基础, 47.影 响机械加工精度的原始误差有: 48.误差敏感方向:把对加工精度影响最大的那 刃的加工表面的法线方 向。 49.车床的敏感方向水平,刨床垂直,镗床圆周 50.工艺系统刚度:指工件加工表面在切削力法 向分力的作用下,刀具相对工件在该方向上 位移的比值。 51.误差复映:由于工艺系统受力变形,使加工 表面的原始形状误差将以缩小的比例复映 到已经加工的工件表面。 52.误差复映系数:是一个小于1的正数,有修 正误差的能力。 (a)工件的刚性较差,机床、刀具的刚度很大 (b)机床的刚性较差,刀具、工件刚度很大 (c)镗孔时,镗杆的刚性较差, 53.引起工艺系统变形的热源:内部热源(指切 削热和摩擦热,产生于工艺系统内部,其热 量主要是以热传导的形式传递)和外部热源 (工艺系统外部的、以对流传热为主要形式 的环境温度和各种辐射热)。 54.热的传递方式:导热传热、对流传热、辐射 55.控制热变形的措施: 1)减少发热和隔热 2)用热补偿方法减少热变形(均衡温度场) 平面磨床补偿油沟 3)采用合理的机床部件结构及装配基准 4)加速达到热平衡状态 5)控制环境温度 56.切削热:是切削加工过程中最主要的热源。 57.加工误差可分为系统误差(常值系统误差和 和随机误差。 常值系统误差是加工原理误差 58.工艺系统:在机械加工中机床、夹具、刀具 完整的系统。 59.工序能力:指工序处于稳定状态时,加工误 差正常波动的幅度。 60.提高加工精度的途径: (一)合理采用先进工艺与设备 (二)消除或减小原始误差 (三)转移原始误差 (四)均分原始误差 (五)均化原始误差 (六)就地加工(自干自) (七)自动测量补偿、恒温控制等 二、误差补偿技术 1.在线检测 2.偶件自动配磨 3.积极控制起决定作用的误差因素 61.加工表面质量:包括加工表面的几何形貌和 学物理性能和化学性能。 62.研究表面加工的目的是:要掌握机械加工中 各种工艺因素对加工表面质量影响的规律, 以便应用这些规律控制加工过程,最终达到 提高加工表面质量、提高产品使用性能的目 的。 63.加工表面的几何形貌:包括表面粗糙度、表 表面缺陷。 64.表面层的力学物理性能产生的变化有:加工 表面层的冷作硬化;表面金属的金相组织变 化;表层金属的残余应力。 65.冷作硬化:机械加工过程中产生的塑性变 形,使晶格扭曲、畸变,晶粒间产生滑移, 晶粒被拉长,使表面层金属的硬度增加,强 度提高的现象。 66.影响切削加工表面冷作硬化的因素(PP T第 四章.第三节) 67.工件材料的塑形越大,冷硬倾向越大,冷硬 程度越严重。 68.(PP T第四章.第三节) 69.磨削淬火钢时,在工件表面层的瞬时高温将 使表层金属产生回火烧伤、淬火烧伤、退火 烧伤等三种金相组织变化。 70.磨削烧伤:对于已淬火的钢件,很高的磨削 温度往往会使表面金属层的金相组织产生 变化,使表层金属硬度下降,使工件表面呈 现氧化膜颜色,这种现象称为磨削烧伤。 71.减少残余应力的措施:增加消除内应力的热 程;改善零件结 构,提高零件的刚性,使壁厚均匀等均可减 少残余应力的产生。 72.机械加工过程中的振动分为强迫振动和自 激振动。

《机械制造工艺学》期末考试题参考答案

机械制造工艺学》期末考试题参考答案 一、名词解释(本大题共 5 小题,每小题 2 分,共 1 0 分) 1 .工序:一个或一组工人,在一台机床或一个工作地点对同一或同时对 几个工件所连续完成的那部分工艺过程。 2.尺寸链:相互联系,按一定顺序首尾相接和尺寸封闭图形。 3.基准:确定生产对象上几何要素的几何关系所依据的那些点,线,面。 4.过定位:几个定位支撑点重复限制同一个或几个自由度。 5.形状精度:加工后零件各表面的实际形状与表面理想形状之间的附和精度。 二、填空题(本大题共7 小题,每空1 分,共 2 0 分) 6.牛头刨床的主运动是(刨刀)的直线往复移动,进给运动是(工件)的 间歇移动。 7.工时定额是完成某一(零件)或(工序)所规定的时间。 8 .刨削和插削都是(间断)切削,刀具易受到(冲击),因此(切削速度)不宜太高。 9.电火花加工是在一定的(介质)中,通过(工具)电极和(工件)电极之间的(脉冲放电)的电蚀作用,对工作进行加工的方法。

I 0 .切削用量是在切削加工过程中(V )(F )和(ap )的总称。 II .装夹是工件在加工前,使其在机床上或夹具中获得(正确而固定位置) 的过程,它包括(定位)和(夹紧)两部分内容。 12 .零件的加工精度包括(尺寸精度)(形状精度)和(相互位置)三个方面。 三、不定项选择(本大题共 1 0 小题,每小题 1 分,共 1 0 分) 1 3 . 车床主轴的纯轴向窜动对(B 、C )加工有影响。 A 、车销内外圆 B 、车销端面 C 车销螺纹 1 4 . 制定零件工艺过程时,首先研究和确定的基准是(C ) A 、设计基准 B 、工序基准 C 、定位基准 D 、测量基准 1 5 . 零件在加工过程中使用的基准叫做( B 、D ) A 、设计基准 B 、工艺基准 C 、装配基准 D 、定位基准 E 、测量基准 16 .车床主轴轴颈和锥孔的同轴度要求很高,常采用( B )来保证 A 、基准重合 B 、互为基准 C 、自为基础 D 、基准统一 17 .机械加工中直接改变工件的形状、尺寸和表面性能使之变成所需零件 的过程为( C ) A 、生产过程 B 、工艺过程C、机械加工工艺过程

半导体工艺及芯片制造技术问题答案(全)

常用术语翻译 active region 有源区 2.active component有源器件 3.Anneal退火 4.atmospheric pressure CVD (APCVD) 常压化学气相淀积 5.BEOL(生产线)后端工序 6.BiCMOS双极CMOS 7.bonding wire 焊线,引线 8.BPSG 硼磷硅玻璃 9.channel length沟道长度 10.chemical vapor deposition (CVD) 化学气相淀积 11.chemical mechanical planarization (CMP)化学机械平坦化 12.damascene 大马士革工艺 13.deposition淀积 14.diffusion 扩散 15.dopant concentration掺杂浓度 16.dry oxidation 干法氧化 17.epitaxial layer 外延层 18.etch rate 刻蚀速率 19.fabrication制造 20.gate oxide 栅氧化硅 21.IC reliability 集成电路可靠性

22.interlayer dielectric 层间介质(ILD) 23.ion implanter 离子注入机 24.magnetron sputtering 磁控溅射 25.metalorganic CVD(MOCVD)金属有机化学气相淀积 26.pc board 印刷电路板 27.plasma enhanced CVD(PECVD) 等离子体增强CVD 28.polish 抛光 29.RF sputtering 射频溅射 30.silicon on insulator绝缘体上硅(SOI) 第一章半导体产业介绍 1. 什么叫集成电路?写出集成电路发展的五个时代及晶体管的数量?(15分) 集成电路:将多个电子元件集成在一块衬底上,完成一定的电路或系统功能。集成电路芯片/元件数产业周期 无集成 1 1960年前 小规模(SSI) 2到50 20世纪60年代前期 中规模(MSI) 50到5000 20世纪60年代到70年代前期 大规模(LSI) 5000到10万 20世纪70年代前期到后期 超大规模(VLSI) 10万到100万 20世纪70年代后期到80年代后期甚大规模(ULSI) 大于100万 20世纪90年代后期到现在 2. 写出IC 制造的5个步骤?(15分)

机械制造工艺学--试卷12要点

机械制造工艺学试卷(十二) 一、是非题(共20分,每题2分) 1.六点定位原理只能解决工件自由度的消除问题,不能解决定位的精度问题。() 2.在夹具中对一个工件进行试切法加工时,不存在定位误差。() 3.自位支承和辅助支承的作用是相同的。() 4.加工长轴外圆时,因刀具磨损产生的工件形状误差属于变值系统性误差。() 5.装配精度与装配方法无关,取决于零件的加工精度。() 6.夹紧力的作用点应远离加工部位,以防止夹紧变形。() 7.斜楔夹紧机构的自锁能力只取决于斜角,而与长度无关。() 8.工艺过程包括生产过程和辅助过程两个部分。() 9.在装配尺寸链中,封闭环一定是装配精度。() 10.圆偏心夹紧机构自锁性能好、生产效率高。() 二、填空(共30分,每空1分) 1.磨削烧伤的形式主要有: 、和。 2.生产类型分为、、。 3.利用分布曲线研究一批工件的加工精度时,最主要的二个参数是、和。 4.保证装配精度的方法通常有、、。 5.在选择精基准时,应遵循的原则有、、 、。 6.工序尺寸的公差带一般取方向,而毛坯尺寸的公差带一般取分布。 7.为减少毛坯形状造成的误差复映,可用如下三种方法,分别是:、、。 8.工艺系统是指机械加工中由、、和构成的一个完整系统。 9.分组选配法装配对零件的要求不高,而可获得很高的装配精度。 10..为了提高生产率,用几把刀具同时加工几个表面的工步,称为。

11.机床导轨在工件加工表面方向的直线度误差对加工精度影响大, 而在方向的直线度误差对加工精度影响小。 三、解释概念(共20分,每题5分) 1.工艺系统刚度 2.加工精度 3.原始误差 4.定位基准 四、工艺分析题(共10分) 车削一批轴的外圆,其尺寸要求为Φ20010-.mm,若此工序尺寸按正态分布,均方根差σ=0.025mm,公差带中心小于分布曲线中心,其偏移量△=0.03mm(如图),试指出该批工件的常值系统性误差及随机误差,并计算合格品率和废品率?

半导体工艺流程

1清洗 集成电路芯片生产的清洗包括硅片的清洗和工器具的清洗。由 于半导体生产污染要求非常严格,清洗工艺需要消耗大量的高纯水; 且为进行特殊过滤和纯化广泛使用化学试剂和有机溶剂。 在硅片的加工工艺中,硅片先按各自的要求放入各种药液槽进行表面化学处理,再送入清洗槽,将其表面粘附的药液清洗干净后进入下一道工序。常用的清洗方式是将硅片沉浸在液体槽内或使用液体喷雾清洗,同时为有更好的清洗效果,通常使用超声波激励和擦片措施,一般在有机溶剂清洗后立即米用无机酸将其氧化去除,最后用超纯水进行清洗,如图1-6所示。 图1-6硅片清洗工艺示意图 工具的清洗基本米用硅片清洗同样的方法。 2、热氧化 热氧化是在800~1250C高温的氧气氛围和惰性携带气体(N2)下使硅片表面的硅氧化生成二氧化硅膜的过程,产生的二氧化硅用以作为扩散、离子注入的阻挡层,或介质隔离层。典型的热氧化化学反应为: Si + O2 T SiO2

3、扩散 扩散是在硅表面掺入纯杂质原子的过程。通常是使用乙硼烷(B2H6)作为N —源和磷烷(PH3)作为P+源。工艺生产过程中通常 分为沉积源和驱赶两步,典型的化学反应为: 2PH3 —2P+3H2 4、离子注入 离子注入也是一种给硅片掺杂的过程。它的基本原理是把掺杂物质(原子)离子化后,在数千到数百万伏特电压的电场下得到加速,以较高的能量注入到硅片表面或其它薄膜中。经高温退火后,注入离子活化,起施主或受主的作用。 5、光刻 光刻包括涂胶、曝光、显影等过程。涂胶是通过硅片高速旋转在硅片表面均匀涂上光刻胶的过程;曝光是使用光刻机,并透过光掩膜版对涂胶的硅片进行光照,使部分光刻胶得到光照,另外,部分光刻胶得不到光照,从而改变光刻胶性质;显影是对曝光后的光刻胶进行去除,由于光照后的光刻胶 和未被光照的光刻胶将分别溶于显影液和不溶于显影液,这样就使光刻胶上 形成了沟槽。 6、湿法腐蚀和等离子刻蚀 通过光刻显影后,光刻胶下面的材料要被选择性地去除,使用的方法就

江苏科技大学机械制造工艺学期末考试卷及答案

机械加工中,不完全定位是允许的,而欠定位则不允许。(√) 机床的热变形造成的零件加工误差属于随机性误差。(×) 毛坯误差造成的工件加工误差属于变值系统性误差。(×) 磨削淬火钢时,影响工件金相组织变化的主要因素是磨削热。(×) 加工长轴外圆时,因刀具磨损产生的工件形状误差属于常值系统性误差。(×) 采用合适的切削液是消除积屑瘤、鳞刺和减小表面粗糙度值的有效方法。(√) 喷丸加工,工件表面产生拉应力。 ( ×) 所有金属表面的精加工均可采用磨削加工方法得到。(×) 误差复映系数ε的大小主要取决于加工次数的多少。(×) 常值系统性误差不会影响工件加工后的分布曲线形状,只会影响它的位置。(√) 工件的六个自由度全部被限制的定位称为(完全定位) 定位元件所限制的自由度预期(大小)(长短)(数量)(组合)有关 零件的加工质量包括(机械加工精度)(加工表面质量) 工艺系统是由(机床)、(夹具)、(刀具)、(工件)构成的完整系统。 加工原理误差是指采用了(近似的成型运动)或(近似的切削刃轮廓)的进行加工而产生的误差 机床主轴回转轴线的运动误差分解(径向圆跳动)、(端面圆跳动)、(倾角摆动)。 机械产品的生产过程是有(直接生产过程)和(辅助生产过程)所组成 产品的装配精度,一般包括(相互位置精度)(相对运动精度)(相互配合精度) 在机械加工中直接改变工件的形状,尺寸和表面性能使之变成所需零件的过程称为(D)。 A生产过程;B工艺过程;C工艺规程;D机械加工工艺过程 编制零件机械加工工艺规程,编制生产计划和进行成本核算最基本的单元是(C)。 A工步;B工位;C工序;D安装 零件在加工过程中使用的基准叫做(B) A设计基准;B工艺基准;C装配基准;D定位测量基准 零件的生产纲领是指( C )。 A.一批投入生产的零件数量B.生产一个零件所花费的劳动时间C.零件的全年计划生产量D.一个零件从投料到产出所花费的时间 在生产中批量愈大,准备与终结时间摊到每个工件上的时间就愈( A ) A、少; B、多; C、无关 在车床上用三爪卡盘夹持套筒外圆镗孔时,若三爪卡盘与机床主轴回转中心有偏心则镗孔时影响:( D) A、孔的尺寸变大 B、孔的尺寸变小 C、孔的不圆度误差 D、孔与外圆的不同轴度误差工艺系统刚度等于工艺系统各组成环节刚度( D ) A.之和 B.之和的倒数 C.倒数之和 D.倒数之和的倒数 机床部件的实际刚度( D )按实体所估算的刚度。 A 大于B等于 C 小于 D 远小于 误差复映系数与工艺系统刚度成( B ) A正比B反比C指数关系D对数关系

半导体工艺半导体制造工艺试题库1 答案

一、填空题(每空1分,计31分) 1、工艺上用于四氯化硅的提纯方法有 吸附法 和 精馏法 。 2、在晶片表面图形形成过程中,一般通过腐蚀的方法将抗蚀膜图形转移到晶片上,腐蚀的方法有 湿法腐蚀 和 干法腐蚀 。 3、直拉法制备单晶硅的过程是:清洁处理——装炉——加热融化——拉晶,其中拉晶是最主要的工序,拉晶包括 下种 、 缩颈 、放肩、 等径生长 和收尾拉光等过程。 3、抛光是晶片表面主要的精细加工过程,抛光的主要方式有 化学抛光 、 机械抛光 和 化学机械抛光 。 4、掺杂技术包括有 热扩散 、 离子注入 、合金和中子嬗变等多种方法。 5、晶片中的锂、钠、钾等碱金属杂质,通常以 间隙式 (空位式或间隙式)扩散方式在晶片内部扩散,并且这类杂质通常称为 快扩散 (快扩散或慢扩散)杂质。 6、在有限表面源扩散中,其扩散后的杂质浓度分布函数符合 高斯分布函数 ; 而在恒定表面源扩散中,其扩散后的杂质浓度分布函数符合 余误差分布函数 。 7、在离子注入法的掺杂过程中,注入离子在非晶靶中的浓度分布函数满足对称的高斯分布,其浓度最大位于 R P 处。 8、在离子注入后,通常采用退火措施,可以消除由注入所产生的晶格损伤,常用的退火方式有 电子束退火 、 离子束退火 、 激光退火 。 9、根据分凝现象,若K 0>1,则分凝后杂质集中在 尾部 (头部或尾部);若K 0<1,则杂质分凝后集中在 头部 (同上)。 10、把硅片置于氯化氢和氧气的混合气体中进行的氧化,称为 掺氯氧化 。 11、在二氧化硅的热氧化方法中,氧化速度最快的是 干氧氧化 方法。 12、氢氧合成氧化设备中,两个重要的保险装置是 氢气流量保险装置 和 温度保险装置 。 13、工艺中常用的测量二氧化硅厚度的方法有 比色法 和 椭圆偏振光法 。 14、固态源硼扩散中常用的硼源是 氮化硼 ,常用的液态磷源是 三氯氧磷 。 15、箱法扩散在工艺中重要用来进行TTL 电路 隐埋层 的锑扩散。 二、选择题(每题2分,单项多项均有,计12分) 1、 在SiO 2网络中,如果掺入了磷元素,能使网络结构变得更( A ) (A )疏松 (B )紧密 (C )视磷元素剂量而言 2、 在微电子加工环境中,进入洁净区的工作人员必须注意以下事项(A 、B 、C 、D ) (A ) 进入洁净区要先穿戴好专用净化工作服、鞋、帽。 (B ) 进入洁净区前先在风淋室风淋30秒,然后才能进入。 (C ) 每周洗工作服,洗澡、理发、剪指甲,不用化妆品。 (D ) 与工作无关的纸张、书报等杂物不得带入。 3、离子注入设备的组成部分有(A 、B 、C 、D ) (A )离子源 (B )质量分析器 (C )扫描器 (D )电子蔟射器 4、CVD 淀积法的特点有(A 、C 、D ) (A )淀积温度比较低 (B )吸附不会影响淀积速度 (C )淀积材料可以直接淀积在单晶基片上 (D )样品本身不参与化学反应 5、 工艺中消除沟道效应的措施有(A 、B 、C 、D ) (A )增大注入剂量 (B )增大注入速度 (C )增加靶温 (D )通过淀积膜注入 6、液态源硼扩散所选用的硼源有(A 、B 、C ) (A )硼酸三甲脂 (B )硼酸三丙脂 (C )三溴化硼 (D )三氯氧磷 三、判断(每题1分,计10分) 1、Ⅰ号液是碱性过氧化氢清洗液。 ( R ) 2、筛选器是用来去除杂质离子的设备。 ( R ) 3、石墨基座的清洁处理,首先用王水煮沸,再用去离子水冲洗。 ( R ) 4、注入窗口中淀积的二氧化硅薄层是起退沟道的作用。 ( R ) 5、以一般能量注入的重离子,在进入靶片中,以电子阻挡为主。 ( F ) 6、硅烷热分解法淀积中,一旦源变成黄色就不能使用。 ( R ) 7、在二氧化硅氧化膜中,可动钠离子含量要求越高越好。 ( F ) 8、二氧化硅中的宏观缺陷是指用肉眼可以直接观察到的缺陷。 ( R ) 9、氮化硼(BN )是常用的固态硼杂质扩散源。 ( R ) 10、用四探针法可以测试扩散后的结深。 ( R ) 四、名词解释(每题5分,计20分) 1、杂质分凝 答:杂质在晶体中有一定分布,在固态中和液态中的分布又不一样,在晶体提纯时,利用杂质在晶体固态和液态的分布不一样,进行提纯,将杂质集中在晶体的头部或尾部,达到提纯的 装 订 班级 姓名 学号 成绩 - 学年第 学期 半导 第 学期 半导体制造工艺 半 导体制造工艺

机械制造工艺学-重点习题解答

“机械制造工艺学”重点习题解答(2015-5-31) 2-10 何谓毛坯余量?何谓工序余量?影响工序余量的因素有哪些? 答:毛坯余量即加工总余量——毛坯尺寸与零件尺寸之差。 工序余量——相邻两工序基本尺寸之差。 影响工序余量的因素有:上工序的尺寸公差Ta ,上工序产生的表面粗糙度Ry 和表面缺陷层Ha ,上工序留下的空间误差ea ,本工序的装夹误差εb 四个部分。 2-13 在图4-73所示的工件中,0.02510.05070L --=mm ,020.02560L -=mm ,0.153020L +=mm ,不便直接测 量,试重新给出测量尺寸,并标注该测量尺寸的公差。 解:尺寸链如左图所示,图中L3为封闭环,L1, L2, L4 为组成环,且 L1 为减环,L2, L4 为增环。 求L4的基本尺寸,由L3=(L2+L4)-L1 得 L4=L3+L1-L2=20+70-60=30mm 由ES3=ES4+ES2-EI1 得 ES4=ES3-ES2+EI1=0.15-0+(-0.05)=0.1mm 由EI3=EI4+EI2-ES1 得 EI4=EI3-EI2+ES1=0-(-0.025)+(-0.025)=0mm 故测量尺寸应为0.14030L +=mm 。 2-14 图4-74为某零件的一个视图,图中槽深为+0.305m m ,该尺寸不便直接测量,为检验槽深是否合 格,可直接测量哪些尺寸?试标出它们的尺寸及公差。 解:[第一种方法] 测量键槽的槽低到外圆最远素线的距离,尺寸链如左图(a)所示; 槽深L0为封闭环,外径L1为增环,测量尺寸L2为减环。 L2的公称尺寸为:L2=L1-L0=90-5=85 由ES0=ES1-EI2 得 EI2=ES1-ES0=0-0.3=-0.3

机械制造工艺学期末考试样卷

浙江科技大学 2019-2020 学年第二学期考试试卷 A 卷 考试科目 机械制造工艺学 考试方式 闭 完成时限 120分钟 拟题人 吴瑞明 审核人 批准人 2020年 1月 5 日 机械与汽车工程学院 2019 年级 机制、材料成型 专业 题序 一 二 三 四 五 六 七 八 九 十 总分 加分人 复核人 得分 签名 命题: 一、单选题。正确答案填入表格,填表格外无效。(15×2分,共30分) 序号 1 2 3 4 5 6 7 8 9 10 答案 C D B D C D D C A C 序号 11 12 13 14 15 答案 C D D B A 1.装夹工件时应考虑 。 A 专用夹具 B 组合夹具 C 夹紧力靠近支撑点 D 夹紧力不变 2.基准是 。 A 在工件上特意设计的测量点 B 工件上与机床接触的点 C 又称为机床原点 D 用来确定生产对象上几何要素关系的点,线,面 3.在下面孔的加工方法中,加工精度最高的方法是 。 A 钻孔 B 铰孔 C 扩孔 D 锪钻 得分 专业班级 学号 姓名

4.在下面几种车床导轨误差中,对加工精度影响最小的是。 A 导轨在垂直平面内的误差 B 导轨在水平面内的误差 C 两导轨之间的平行度误差 D 主轴回转精度 5.对于相互位置精度要求高的大孔孔系的精加工(例如车床主轴箱箱体孔系的精加工),应该采用加工工艺。 A. 扩孔 B. 钻孔 C. 镗孔 D. 铰孔 6.分组装配法适用于的机器结构。 A 大量生产,装配精度要求高,组成环多 B 小批生产,装配精度要求高,组成环多 C 大量生产,装配精度要求不高,组成环少 D. 大量生产,装配精度要求高,组成环少 7.在下列夹具元件中,不限制自由度的是。 A 可调支承 B 自位支承 C 辅助支承D气动支承 8. 磨削薄板时,由于工件的热变形,工件的,加工误差就越大。 A 材料热膨胀系数小 B 长度和厚度小 C 长度大并且厚度小 D 长度和厚度都大 9. 工件装夹时,决不允许的情况发生。 A 欠定位 B 过定位 C 产生夹紧变形D不完全定位 10.减少工艺系统受力变形对加工精度的影响主要措施。 A 减少误差复映和合理选择切削用量 B 消除残余应力和工艺系统热变形 C提高系统刚度,减少载荷及其变化

硅工艺-《集成电路制造技术》课程-试题

晶圆制备 1.用来做芯片的高纯硅被称为(半导体级硅),英文简称(GSG ),有时也被称为(电子级硅)。 2.单晶硅生长常用(CZ法)和(区熔法)两种生长方式,生长后的单晶硅被称为(硅锭)。 3.晶圆的英文是(wafer ),其常用的材料是(硅)和(锗)。 4.晶圆制备的九个工艺步骤分别是整型、定向、标识。 5.从半导体制造来讲,晶圆中用的最广的晶体平面的密勒符号是(100 )、(110 )和(111)。 6.CZ直拉法生长单晶硅是把(融化了的半导体级硅液体)变为(有确定晶向的)并且(被掺杂成p型或n型)的固体硅锭。 7.CZ直拉法的目的是(实现均匀掺杂的同时,并且复制仔晶的结构,得到合适的硅锭直径)。影响CZ直拉法的两个主要参数是(拉伸速率)和(晶体旋转速率)。 8.晶圆制备中的整型处理包括(去掉两端)、(径向研磨)和(硅片定位边和定位槽)。 9.制备半导体级硅的过程:1(制备工业硅);2(生长硅单晶);3(提纯)。 10.晶片需要经过切片、磨片、抛光后,得到所需晶圆。 氧化 10.二氧化硅按结构可分为()和()或()。 11.热氧化工艺的基本设备有三种:(卧式炉)、(立式炉)和(快速热处理炉)。 12.根据氧化剂的不同,热氧化可分为(干氧氧化)、(湿氧氧化)和(水汽氧化)。 13.用于热氧化工艺的立式炉的主要控制系统分为五部分:(工艺腔)、(硅片传输系统)、气体分配系统、尾气系统和(温控系统)。 14.选择性氧化常见的有(局部氧化)和(浅槽隔离),其英语缩略语分别为LOCOS和(STI )。 15.列出热氧化物在硅片制造的4种用途:(掺杂阻挡)、(表面钝化)、场氧化层和(金属层间介质)。 16.可在高温设备中进行的五种工艺分别是(氧化)、(扩散)、(蒸发)、退火和合金。 17.硅片上的氧化物主要通过(热生长)和(淀积)的方法产生,由于硅片表面非常平整,使得产生的氧化物主要为层状结构,所以又称为(薄膜)。 18.卧式炉的工艺腔或炉管是对硅片加热的场所,它由平卧的(石英工艺腔)、(加热器)和(石英舟)组成。淀积 19.目前常用的CVD系统有:(APCVD )、(LPCVD )和(PECVD )。 20.淀积膜的过程有三个不同的阶段。第一步是(晶核形成),第二步是(聚焦成束),第三步是(汇聚成膜)。21.缩略语PECVD、LPCVD、HDPCVD和APCVD的中文名称分别是(等离子体增强化学气相淀积)、(低压化学气相淀积)、高密度等离子体化学气相淀积、和(常压化学气相淀积)。 22.在外延工艺中,如果膜和衬底材料(相同),例如硅衬底上长硅膜,这样的膜生长称为(同质外延);反之,膜和衬底材料不一致的情况,例如硅衬底上长氧化铝,则称为(异质外延)。 23.化学气相淀积是通过()的化学反应在硅片表面淀积一层()的工艺。硅片表面及其邻近的区域被()来向反应系统提供附加的能量。 金属化 24.金属按其在集成电路工艺中所起的作用,可划分为三大类:()、()和()。 25.气体直流辉光放电分为四个区,分别是:无光放电区、汤生放电区、辉光放电区和电弧放电区。其中辉光放电区包括前期辉光放电区、()和(),则溅射区域选择在()。 26.集成电路工艺中利用溅射现象主要用来(),还可以用来()。 27.对芯片互连的金属和金属合金来说,它所必备一些要求是:(导电率)、高黏附性、(淀积)、(平坦化)、可靠性、抗腐蚀性、应力等。 28.在半导体制造业中,最早的互连金属是(铝),在硅片制造业中最普通的互连金属是(铜),。 29.写出三种半导体制造业的金属和合金(Al )、(Cu )和(铝铜合金)。 30.阻挡层金属是一类具有(高熔点)的难熔金属,金属铝和铜的阻挡层金属分别是(W )和(W )。 31.被用于传统和双大马士革金属化的不同金属淀积系统是:()、()、()和铜电镀。 32.溅射主要是一个()过程,而非化学过程。在溅射过程中,()撞击具有高纯度的靶材料固体平板,按物理过程撞击出原子。这些被撞击出的原子穿过(),最后淀积在硅片上。 平坦化 33.缩略语PSG、BPSG的中文名称分别是()、()。 34.列举硅片制造中用到CMP的几个例子:()、LI氧化硅抛光、()、()、钨塞抛光和双大马士革铜抛光。 35.终点检测是指(CMP设备)的一种检测到平坦化工艺把材料磨到一个正确厚度的能力。两种最常用的原位终点检测技术是(电机电流终点检测)和(光学终点检测)。 36.硅片平坦化的四种类型分别是(平滑)、部分平坦化、(局部平坦化)和(全局平坦化)。 37.传统的平坦化技术有()、()和()。

机械制造工艺学总结

机 械 制 造 工 艺 学 学 习 报 告 学院:机电工程学院 班级:13机械本2 姓名:黄宇 学号:20130130815

机械制造过程是机械产品从原材料开始到成品之间各相互关联的劳动过程的总和。它包括毛坯制造、零件机械加工、热处理、机器的装配、检验、测试和油漆包装等主要生产过程,也包括专用夹具和专用量具制造、加工设备维修、动力供应(电力供应、压缩空气、液压动力以及蒸汽压力的供给等)。 工艺过程是指在生产过程中,通过改变生产对象的形状、相互位置和性质等,使其成为成品或半成品的过程。机械产品生产工艺过程又可分为铸造、锻造、冲压、焊接、机械加工、热处理、装配、涂装等。其中与原材料变为成品直接有关的过程,称为直接生产过程,是生产过程的主要部分。而与原材料变为产品间接有关的过程,如生产准备、运输、保管、机床与工艺装备的维修等,称为辅助生产过程。 主要包括机械加工工艺规程的制订、机床夹具设计原理、机械加工精度、加工表面质量、典型零件加工工艺、机器装配工艺基础、机械设计工艺基础、现代制造技术及数控加工工艺等部分。 机械制造工艺学的研究对象是机械产品的制造工艺,包括零件加工和装配两方面,其指思想是在保证质量的前提达到高生产率、经济型。课程的研究重点是工艺过程,同样也包括零件加工工艺过程和装配工艺过程。工艺是使各种原料、半成品成为产品的方法和过程。 各种机械的制造方法和过程的总称为机械制造工艺 工艺系统:在机械加工时,机床、夹具、刀具和工件构成的一个完整的系统。研究加工精度的方法:单因素分析法、统计分析法 加工表面质量:加工表面的几何形貌和表面层材料的力学物理和化学性质 几何形貌:表面粗糙度表面波纹度纹理方向表面缺陷。表面材料力学的物理化学性能:表面层金属的冷作硬化、表面层金属金相组织变化。冷作硬化:机械加工中因切削力产生的塑性变形使表层金属硬度和强度提高的现象。 机械加工工艺规程是规定产品或零部件机械加工工艺过程和操作方法等的工艺文件,是一切有关生产人员都应严格执行、认真贯彻的纪律性文件机械加工工艺规程的作用 1根据机械加工工艺规程进行生产准备(包括技术准备) 2.机械加工工艺规程是生产计划、调度,工人的操作、质量检查等的依据 3.新建或扩建车间,其原始依据也是机械加工工艺规程 机械加工工艺规程的设计原则: (1)可靠地保证零件图样上所有技术要求的实现 (2)必须能满足生产纲领要求 (3)在满足技术要求和生产纲领要求前提下,一般要求工艺成本 最低 (4)尽量减轻工人的劳动强度,保障生产安全。 通过对机械制造工艺学的学习我对我们机械设计制造及其自动化这个专业有了更深一步的理解,知道了工件的装夹与夹具的基础、机械工艺规程的制定典型模具与机械零件加工工艺、装配工艺、还有刀具的相关知识。使我受益匪浅。

相关文档
相关文档 最新文档